
On the Link Between Refactoring Activity and Class Cohesion Through the Prism of Two
Cohesion-Based Metrics

Steve Counsell1, Giuseppe Destefanis1 Steve Swift1, Mahir Arzoky1 and Davide Taibi2

1Department of Computer Science
Brunel University London, United Kingdom

steve.counsell@brunel.ac.uk
2 CloWeE. Cloud and Web Engineering Research Group

Tampere University, Tampere, Finland
davide.taibi@tuni.fi

Abstract—The practice of refactoring has evolved over the past thirty
years to become standard developer practice; for almost the same
amount of time, proposals for measuring object-oriented cohesion
have also been suggested. Yet, we still know very little about their
inter-relationship empirically, despite the fact that classes exhibiting
low cohesion would be strong candidates for refactoring. In this
paper, we use a large set of refactorings to understand the
characteristics of two cohesion metrics from a refactoring
perspective. Firstly, through the well-known LCOM metric of
Chidamber and Kemerer and, secondly, the C3 metric proposed
more recently by Marcus et al. Our research question is motivated
by the premise that different refactorings will be applied to classes
with low cohesion compared with those applied to classes with high
cohesion. We used three open-source systems as a basis of our
analysis and on data from the lower and upper quartiles of metric
data. Results showed that the set of refactoring types across both
upper and lower quartiles was broadly the same, although very
different in actual numbers. The ‘rename method’ refactoring stood
out from the rest, being applied over three times as often to classes
with low cohesion than to classes with high cohesion.

Keywords— Refactoring, coupling, metrics, empirical.

1. INTRODUCTION
As a core software engineering concept, cohesion has been
recognized as an important attribute of software since the late
1960’s and is often used in the same context as coupling [1]. In
essence, cohesion measures the intra-relatedness of the elements
of a component (e.g., the variables within a function, attributes
within a class etc). Since the seminal texts on refactoring were
published in the 90’s by Opdyke [22] and Fowler et al., [13],
refactoring has been the subject of hundreds of empirical studies
and has become a vital tool in the daily work of a developer [19,
20, 21, 26]. In short, refactoring is the process: “Of changing a
software system in such a way that it does not alter the external
behavior of the code yet improves its internal structure” [13]. In
the past twenty-five years or so, a wide range of software metrics

have also been proposed that claim to capture OO class features
as well as cohesion [2, 4]. The most common way of measuring
cohesion in the past has been to consider the interplay between
instance variables and their usage by the methods of the class. The
most well-known of cohesion metrics is the Lack of Cohesion of
the Methods in a class (LCOM) of Chidamber and Kemerer
(C&K) [6]. A more recent metric by Marcus et al., [16] is the C3
metric which takes a different approach to the measurement of
cohesion; it is based on information retrieval techniques and:
“….identifies and captures properties shared between members
of a class that take into account not only syntactic but also
semantic information” . Both of these metrics attempt to identify
classes where there is low or high class cohesion and, so, in
theory, have the same goal. Developers should always strive for
high cohesion in their classes, but it is well-understood that as
systems age, they tend to decay and class cohesion will tend to
deteriorate also [15]. Refactoring is one means through which this
decay can be partially reversed and so a direct link exists between
the two concepts. Our work is motivated by two factors. Firstly,
the concepts of cohesion and refactoring have been around for
decades; yet there is no empirical work using systems explicitly
linking the two that the authors know of. Both have serious
implications for maintenance and test activities. Secondly, the
LCOM and C3 metrics both measure cohesion, but in different
ways [1]. Our study tries to uncover whether one captures
different aspects of code to the other through the prism of
refactoring. That may help us understand what each does better
(than the other), and also adds to our understanding of refactoring,
since it forces us to explore and think about why a developer
might take a specific course of action and the consequences if they
do not.

In this paper, we therefore explore one over-arching research
question. Based on cohesion values generated by the two metrics
(i.e., LCOM and C3), we ask whether classes with low cohesion
attract different types of refactorings than classes with high
cohesion? Developers should spend more time rectifying classes

91

2020 IEEE 20th International Conference on Software Quality, Reliability and Security (QRS)

978-1-7281-8913-0/20/$31.00 ©2020 IEEE
DOI 10.1109/QRS51102.2020.00024

whose elements have become unrelated (i.e., are exhibiting low
cohesion) and we might reasonably expect classes with low
cohesion to be the subject of different types of refactoring, since
their poor structure and composition would dictate other forms of
remedial action (i.e., refactoring) compared to highly cohesive
classes (in theory). To this end, we used a refactoring dataset
produced by Bavota et al. [3], as the basis for our analysis. The
same dataset is freely downloadable for replication purposes from
their original paper. The data represents information (class-based
metrics and the types of refactoring applied) from thousands of
refactoring operations applied to releases of three open-source
systems. We explore those refactorings with specific reference to
cohesion and, to further facilitate our analysis, we decomposed
the dataset into inter-quartile ranges. This gave us three parts to
our analysis: the lower 25% of cohesion values, the 50% in the
mid-range of cohesion values and the upper 25% of cohesion
values for each metric. For the purposes of this paper, we ignore
the set of mid-range of metric values since we want to explore
very high and very low cohesion values. Results showed that,
broadly speaking, the same set of refactorings was applied in the
upper quarter as in the lower quarter, contrary to what we
expected. One major difference between upper and lower quarters
related to the Rename field refactoring [13]. Well over three times
as many of these refactorings were applied to classes with low
cohesion as to classes with high cohesion. This implies that there
might be strong links between the cohesion of a class and the
ability of a developer to understand firstly, what the class actually
does and secondly, how refactoring can be used to remedy that
situation. The remainder of the paper is organized as follows. In
the next section, we describe preliminary information on the two
metrics we use for our analysis, the three systems studied, the data
collected and summary data. We then present results through an
analysis of each of the three systems (Sections 3 and 4) using the
LCOM and C3 metrics. Section 5 discusses related work and
general discussion points as well as threats to study validity.
Finally, we conclude and point to further work (Section 6).

2. PRELIMINARIES

2.1 The LCOM metric

In this paper, we follow the definition of LCOM according to the
JHawk tool [31]; this tool was used to collect all the metrics used
in this paper. Informally, the LCOM metric measures cohesion
through the distribution of class instance variables across the
methods of a class. If every method uses every instance variable,
then that class is maximally cohesive. If, at the other extreme, the
instance variables used by every method are completely disjoint,
then the class has minimal cohesion. Consider, for example, a
class C with three methods we will call M1, M2 and M3 and a set
of instance variables {a, b, c, d, e, x, y, z}. Let I1-I3 be the three
sets of instance variables used by each of the three methods where
{I1} = {a, b, c, d, e}, {I2} = {a, b, e} and {I3} = {x, y, z}. LCOM

is the number of empty intersections of I1-I3, minus the number
of non-empty intersections (the calculated value is set to zero if
the subtraction is negative). Enumerated: {I1} ∩ {I2} is non-
empty, but {I1} ∩ {I3} and {I2} ∩ {I3} are empty sets. LCOM,
in this case, is therefore 2 (number of empty sets) - 1 (non-empty
set) giving a value for LCOM of 1. It then follows that the larger
the value of LCOM, the less cohesive the class and the lower the
LCOM, the more cohesive the class.

2.2 The C3 metric

The C3 metric is calculated using information recorded in the
source code through information in the methods. Analysis of this
type of semantic information can be useful in forming and
evaluating metrics. The code being analyzed is converted into a
text corpus and only identifiers and comments are extracted from
each method. According to Marcus et al., [16] the process is as
follows: “Each method is a document in this corpus and LSI
[…Latent Semantic Indexing [9]] is used to map each document
to a vector in a multidimensional space determined by the terms
that occur in the vocabulary of the software. Once each method is
represented as a vector, a similarity measure between any two
methods can be defined as the cosine between their corresponding
vectors. This similarity measure will express how much relevant
semantic information is shared among the two methods, in the
context of the entire system”. This is the basis upon which the C3
metric is calculated. A graph-based representation of the system
with weighted edges is used to compute the similarity of pairs of
methods. If a class is cohesive, then C3 will tend towards a value
of 1, meaning that all the methods of the class are strongly related
to each other conceptually. If the methods are weakly related
conceptually however, then the C3 value will tend towards a value
of 0 and is considered to have low cohesion.

2.3 Systems studied

The systems studied consisted of three Java open source projects:
Xerces [30], ApacheAnt [28] and ArgoUML [29]. Xerces-J is a
Java XML parser, Apache Ant a build tool and library primarily
designed for Java applications and ArgoUML a UML modeling
tool and. Table 1 is taken verbatim from [3] and shows the salient
characteristics of the three systems. Here, ‘Rel.’ is the number of
releases and the final column (#Ref.) represents the total number
of refactorings for that system before we decomposed it into its
inter-quartile ranges.

Table 1. Features of the three systems analyzed from [3]

System Period Analyzed Rel. # Classes # Ref.
Xerces Nov ‘99-Nov

‘10
1.0.4-2.9.1 33 181-776 7502

Apache Ant Jan ‘00-Dec ‘10 1.2-1.8.2 17 87-1191 1289
ArgoUML Oct ‘02-Dec ‘11 0.12-0.34 13 777-1519 3255

92

Table 2 shows data the number of refactorings in each of the
ranges for the three systems, after it had been decomposed. It
shows the Upper Quartile (UQ) and Lower Quartile (LQ) median
values for the LCOM and C3 metrics and the Inter-Quartile Range
(IQR) in each case. IQR is calculated as the UQ value minus the
LQ value. For example, in the UQ of the Xerces systems, the
median LCOM was 5 and in the lower quartile the median was
1724. The IQR for LCOM was 1719. For the C3 metric UQ, the
median C3 value was 0.36 and was 0.21 for the LQ. The IQR was
0.21.

Table 2. Dataset decomposition into quartiles

System LCOM
(UQ)

LCOM
(LQ)

IQR C3
(UQ)

C3
(LQ)

IQR

Xerces 1724 5 1719 0.36 0.15 0.21
ApacheAnt 388 2 386 0.35 0.12 0.23
ArgoUML 164 0 164 0.51 0.14 0.37

The Ref-Finder tool [14] was used to extract the set of refactorings
on which our analysis was based; the refactorings were extracted
and validated as part of the earlier study and are reused in our
paper [3]. The Ref-Finder tool collects up to sixty-three of
Fowler’s original set of 72 refactorings [13] and has recall of
95% and precision of 79%. We begin our analysis by looking at
the LCOM metric and the refactorings in the UQ and LQ quartiles,
before moving on to do the same for C3. At this juncture, we
emphasize the point that a high numerical value of LCOM means
that the class has low cohesion, since the metric measures the
‘lack’ of cohesion in a class. Correspondingly, a low value of
LCOM implies that the class is relatively cohesive (i.e., it does
not lack cohesion). It is the opposite of C3 where a high cohesion
tends towards 1 and low cohesion 0.

3. LCOM REFACTORING ANALYSIS

Table 3 shows, for the Xerces system, the number of refactorings
applied in the UQ and LQ when ranked on the five most popular
refactorings in the UQ. For example, the most popular refactoring
in the UQ of the LCOM values (i.e., where classes have low
cohesion) was the Rename method refactoring (RM) with 573
occurrences. This represents 26.91% of the total number of
refactorings in the UQ. In the LQ, where classes have high
cohesion, the corresponding number of RM refactorings was just
110, representing just 6.63% of the total number of refactorings
in that quartile. A totals row in the table shows the sum of numbers
in each of the columns. Below the totals row, we also show, for
completeness, and for each system, the refactorings that were in
the top five refactorings in the LQ. So, for example, from Table
3, the top five refactoring in the UQ are in the row order we see
(i.e., RM, MM, MF, AP and CDCF); for the LQ, the top five most
popular refactorings were AP, RP, RMN, MF and MM, in that
order. The motivation for RM is when the name of a method does
not convey what that method does very well; it should therefore

be renamed to make its purpose more obvious/clear. We note that
our choice of the top five refactorings was made on the basis that
this gave us the majority of what we believe to be key refactorings
for that system. One plausible explanation for the large number
of RM refactorings in the UQ could be down to poor naming of
methods and a general lack of understandability about what the
class does by developers; a class with low cohesion will be
difficult to understand. If developers cannot understand what the
class functionality is or what the methods in the class do, then this
might naturally be the trigger for the rename method refactoring
to be applied.

Table 3. Refactoring data for the Xerces system

Refactoring LCOM
(UQ)

% LCOM
(LQ)

%

Rename Method (RM) 573 26.91 110 6.63
Move Method (MM) 250 11.74 121 7.30
Move Field (MF) 244 11.46 199 12.00
Add Parameter (AP) 182 8.55 325 19.60
Cons. Dupl. Frag. (CDCF) 131 6.15 96 5.79
Totals 1380 64.81 851 51.32
Remove Parameter (RP) 100 4.70 223 13.45
Replace Magic Number (RMN) 109 5.12 222 13.39

It is remarkable that the largest proportion of refactorings in the
UQ was for RM, but for the LQ (where we consider classes to
have relatively high cohesion) it was the Add Parameter (AP)
refactoring that dominated. The motivation for using AP is when
[13]: “A method doesn’t have enough data to perform certain
actions”. The solution is to: “Create a new parameter to pass the
necessary data”. One possible explanation for the result for AP is
that adding a parameter means that data available to the class is
being shared around the methods of the class. This in theory
contributes positively to the cohesiveness of a class. After all, the
basis of the LCOM metric is the commonality in the use of
instance variables by the methods; if greater sharing is taking
place (through the addition of parameters) then that can only aid
its cohesiveness. Table 3 also shows significant numbers of Move
Field (MF) and Move Method (MM) refactorings in both the UQ
and LQ. The motivation for applying the MM refactoring is when
[13]: “A method is used more in another class than in its own
class”. The solution is to: “Create a new method in the class that
uses the method the most, then move code from the old method to
there.” A similar motivation and solution applies to the MF
refactoring. One generally recognized and accepted way of
improving cohesion is to move features around classes to where
they are most needed. This is normally a convenient way of
reducing coupling also; however, in a positive sense, reducing
coupling in one or more classes can often lead to improved class
cohesion in other classes if external features are moved around.
So, the motivation for applying MF and MM might be to reduce
coupling, but this has the side effect of improving cohesion.
Finally, the Consolidate Duplicate Conditional Fragments
(CDCF) refactoring was applied in similar numbers in the UQ and
LQ. The CDCF refactoring removes duplicate lines of code in

93

conditional statements. Table 4 shows the same data for LCOM
as that in Table 3, but for the ApacheAnt system.

Table 4. Refactoring data for the ApacheAnt system

Refactoring LCOM
(UQ)

% LCOM
(LQ)

%

Rename Method (RM) 90 23.75 6 1.82
Inline Temp (IT) 37 9.76 6 1.58
Introduce Exp. Var (IEV) 36 9.50 24 7.27
Remove Parameter (RP) 33 8.71 36 10.91
Add Parameter (AP) 30 7.92 43 13.03
Total 226 59.64 115 34.61
Replace Magic No. (RMN) 32 8.44 113 34.24
Cons. Dup. Frag. (CDCF) 11 2.90 25 7.58

The RM refactoring is, again, the most frequently applied
refactoring in the UQ for the ApacheAnt system (90 compared
with just 6 in the LQ) and the AP again features, as it did for the
Xerces system. The numbers of AP refactorings in the LQ far
exceed those in the UQ - the same result as was found for AP in
the Xerces system. The number of RP refactorings in the LQ for
the Xerces system was 223, compared with just 100 in the UQ.
The motivation for the RP refactoring is when a parameter in the
body of a method is unused. The RP refactoring simply removes
that parameter. The most frequently applied refactoring across
both the UQ and LQ was Replace Magic Number (the full title of
this refactoring [13] is ‘Replace Magic Number with Symbolic
Constant’). The motivation for this refactoring is when a value is
hard-coded in multiple places throughout the code. It should be
replaced with a const declaration for the hard-coded value. The
example of “pre-” refactoring and “post-” refactoring code for
RMN given in [13] is as follows:

Before refactoring:

function potentialEnergy(mass, height) {
 return mass * 9.81 * height;
}

becomes:

const STANDARD_GRAVITY = 9.81;
function potentialEnergy(mass, height) {
 return mass * STANDARD_GRAVITY * height;
}

Table 5 shows the corresponding data for the ArgoUML system.
The AP and RP refactoring again feature strongly in the UQ data;
however, one of the largest disparities between UQ and LQ in
percentage terms is for the RM refactoring, again dominating in
terms of numbers in the UQ. Exactly the same observation was
made for the previous two systems in terms of RM and so a pattern
is emerging for this particular refactoring. The MF refactoring
dominated the LQ; 27.91% of refactorings in the LQ were MF.

Table 5. Refactoring data for the ArgoUML system

Refactoring LCOM
(UQ)

% LCOM
(LQ)

%

Add Parameter (AP) 144 15.37 53 11.65
Remove Parameter (RP) 134 14.30 59 12.97
Rename Method (RM) 110 11.74 16 3.52
Remove Control Flag (RCF) 98 10.46 10 2.20
Move Method (MM) 82 8.75 61 13.41
Totals 568 60.62 199 33.75
Move Field (MF) 30 3.20 127 27.91
Introduce Expl. Var. (IEV) 32 3.42 62 13.63
Replace Meth with Obj. 75 8.00 60 13.19

It is clear from the analysis thus far that the standout refactoring
is RM and, to a lesser extent, AP and RP. It is also revealing that
for the ApacheAnt and ArgoUml systems, we found no
occurrences of inheritance-related refactorings such as Pull up
field, Pull up method, Push down method/field. In the Xerces
system, we only found limited evidence (129 out of 7503) of these
refactorings. In none of the three systems did we find evidence
either that classes had been decomposed using the Extract class
refactoring [13]; according to Du Bois et al., [11] this is one of the
key refactorings that aid the cohesion of class.

3.1 Does class size matter?

Across all three systems and considering the LCOM metric
overall, the RM refactoring was consistently found to be the most
frequently applied refactoring, the vast majority of which were
applied to classes in the UQ in the case of the LCOM (i.e., to those
classes with a high LCOM and hence low cohesion) and the LQ
in the case of the C3 metric (low cohesion classes). This suggests
that these classes may have poor readability and hence
comprehension issues, either intrinsically or as a result of constant
change to the class requiring the method name changes to be
applied. Classes with high cohesion, on the other hand, were not
targeted as much by the RM refactoring. The AP and RP
refactorings also figure across all three systems, but the pattern is
a little less clear in these two cases in the UQ and LQ.

One factor that may have influenced this result for RM is the size
of classes where it was applied. Larger classes are more difficult
to understand (generally speaking) and if classes are larger, then
they will inevitably attract more RM than smaller classes by the
law of averages. To investigate this question, we therefore
explored whether classes in the UQ were larger than those in the
LQ for the LCOM and vice versa for the LCOM metric. Figure 1
for the Xerces system shows the plot of class size (y-axis) given
by the number of methods for each refactoring (on the x-axis); the
UQ (thicker line) and LQ (thinner line) represent each LCOM
observation on the UQ and LQ, respectively. The LQ values
appear to exceed those in the LQ from the figure. In fact, the
average number of methods for the UQ was 100.99 (median 58)
and for the LQ the average was 160.99 (median 148). In other
words, the size of classes was generally lower in the UQ where

94

LCOM was higher and hence cohesion lower. Excessive
differences class sizes between the UQ and LQ would not seem to
be the immediate reason for the mismatch in renaming activity.

 Figure 1. No. methods for the Xerces system (UQ vs. LQ)

For the ApacheAnt system, a similar trend was observed as that
in Figure 1. The average number of methods for the UQ was 82.86
(median 44) and for the LQ the average was 106.10 (median 121).
In other words, the size of classes was again generally lower in
the UQ where LCOM was higher and hence cohesion lower.
Finally, for the ArgoUML system, the average number of methods
in the LQ was 9.00 (median 4) and for the UQ, average 35.78
(median 19). For two of the systems therefore, the number of
methods in the LQ was much higher than for the UQ.

4. C3 REFACTORING ANALYSIS

Just as we analyzed the LCOM metric in the previous section, we
next compare the results for the C3 metric. Since LCOM and C3
compute cohesion in very contrasting ways, we might expect to
see different results from our analysis in terms of what
refactorings are applied to classes with high and low cohesion.
The C3 metric produces a different range of values (all lay
between 0-1) and the C3 metric does not use instance variables as
a basis of its computation. Table 6 shows the C3 data for the
Xerces system (same format as produced for LCOM). The data
mirrors that in Table 3, but is clearly very different in terms of the
most popular five refactorings.

Table 6. Refactoring data for the Xerces system

Refactoring C3-UQ % C3-LQ %

Add Parameter (AP) 459 21.56 162 9.90
Remove Parameter (RP) 236 11.09 108 6.60
Move Method (MM) 233 10.94 209 12.78
Rename Method (RM) 230 10.80 471 28.79
Replace Magic Number (RMN) 198 9.07 132 8.07
Totals 1356 63.46 1082 66.14
Move Field (MF) 138 6.48 193 11.80

The most marked difference between the UQ and LQ data is again
for the RM refactoring. Nearly 29% of the top five refactorings in
the LQ were accounted for by RM (numbering 471), the largest of
any percentage in the data thus far, whether in the UQ or LQ. A
low value of C3 represents low cohesion and so we see exactly
the same result occurring as was found in Tables 3-5 for the
LCOM metric; namely, that classes with low cohesion attract
large numbers of RM refactorings. Clearly, there is something that
links classes with low cohesion and the propensity for applying
the RM refactoring and this may have important implications for
maintainability – perhaps proper naming of methods, one of the
clean code principles impacts class erosion more than we think it
does [18]. It is also interesting that the AP and RP refactorings
are again the most prevalent in the UQ of the C3 data representing
highly cohesive classes and reflecting the result that we also found
for LCOM. Table 7 shows the data for the ApacheAnt system. The
most popular refactoring in the UQ was for the RMN refactoring
(accounting for nearly 40% of refactorings). While the RM does
not figure in the top five refactorings in the UQ, it does appear to
be the most popular refactoring in the LQ data, by a considerable
margin. Nearly 35% of all refactorings in the LQ were RM
refactorings.

Table 7. Refactoring data for the ApacheAnt system

Refactoring C3-UQ % C3-LQ %

Replace Magic Number (RMN) 145 38.29 15 4.55
Remove Assign. to Par. (RAP) 35 9.23 0 0.00
Cons. Dup. Frag. (CDCF) 30 7.92 0 0.00
Introduce Expl. Variable (IEV) 28 7.39 39 11.82
Add Parameter (AP) 26 6.86 39 11.82
Totals 264 69.69 93 28.19
Rename Method (RM) 9 2.37 114 34.55
Move Field (MF) 6 1.58 43 13.03
Remove Parameter (RP) 22 5.80 39 11.82

The result for the RMN refactoring in Table 7 is also interesting.
One of the advantages of applying this metric is that it improves
maintainability, since you only have to change a constant’s value
once if it is declared and set in one place. The majority of the
RMN refactorings were in the UQ, i.e., for highly cohesive
classes. One possibility why so many of these refactorings were
applied was because declaring a const and then using it many
of the methods of a class adds to the textual similarity between
methods. In other words, the C3 metric would see application of
this refactoring as something that contributed positively to the
cohesion of a class; the LCOM metric would not, since it uses
instance variables only and is not based on patterns of similarity
in other parts of the class. Finally, Table 8 shows the data for the
ArgoUML system. Nearly a third of refactoring (29.78%) were
accounted for by the MF refactoring. Again, we need to look to
the way that the C3 metric is calculated to provide an explanation
for this result. Moving a field to where it is used more from
outside immediately raises the textual similarity within the class,
since, by definition, you would only move a field to a class where

0
100
200
300
400
500
600
700
800

1
13

5
26

9
40

3
53

7
67

1
80

5
93

9
10

73
12

07
13

41
14

75
16

09
17

43
18

77
20

11

95

it is being used most. If many elements of the class use that data,
then that raises the textual similarity of the elements in the class
and hence the value of the C3 metric. It is another case of where
reducing coupling would have the positive side-effect of raising
cohesion in the target class. The RM is the second highest of
refactorings in the LQ and did not feature in the top five
refactorings of the UQ. Only Replace Method with Method Object
was applied more times. The motivation for using the RMwMO
refactoring is when [13]: “You have a long method in which the
local variables are so intertwined that you can’t apply Extract
Method”. The mechanics of this refactoring are: “Transform the
method into a separate class so that the local variables become
fields of the class. Then you can split the method into several
methods within the same class”.

Table 8. Refactoring data for the ArgoUML system

Refactoring C3-UQ % C3-LQ %
Move Field (MF) 279 29.78 46 10.11
Move Method (MM) 143 15.26 52 11.43
Add Parameter (AP) 123 13.13 38 8.35
Remove Parameter (RP) 111 11.85 45 9.89
Replace Method with Obj. 90 9.61 59 12.97
Totals 746 69.63 240 52.75
Rename Method (RM) 32 3.42 56 12.31

Clearly, the C3 metric showed similar results to that of LCOM.

4.1 Does class size matter?

The same result was found for the C3 metric as for the LCOM
with respect to RM - significantly more were applied to classes
with low cohesion than with high cohesion. The same question
has to be asked as to whether the size of the class in terms of
number of methods may have been a factor in attracting that
number of RM refactorings. Looking at the C3 values for Xerces,
the average number of methods for the UQ was 67.16 (median 47)
and for the LQ the average was 227.11 (median 244). In other
words, the size of classes was generally lower in the UQ where
C3 was higher and hence cohesion higher. This contradicts the
view that the size of the classes in the system may have been the
reasons for the large number of RM refactorings. For the
ApacheAnt system, the average number of methods for the UQ
was in 39.99 (median 23) and for the LQ the average was 117.49
(median 121), again contradicting the view about large classes.
Finally, for the ArgoUML system, the UQ the average number of
methods was 31.96 and median 16; for the LQ the average was
32.52 and median 25. For the ArgoUML system, the method sizes
were comparable. Again, we can say that the pattern in number of
methods from a summary analysis does not suggest that it was a
factor in the RM refactoring trend.

As a final aspect of the analysis, it is worth considering the
(correlational) relationship between the LCOM and C3 for the UQ
and LQ set of values, since that might inform our understanding
of the results. Table 9 shows the Spearman (Sp.), Kendall (Kn.)

and Pearson (Ps.) correlation coefficients for LCOM versus C3 in
the UQ and LQ (in that order). Spearman and Kendall are both
non-parametric measures making no assumption about the
distribution of the data; Pearson’s measure however assumes a
distribution in the data (usually normal). We include both all types
for completeness. Here an ‘*’ indicates statistical significance at
the 0.01 level; we note that in the LQ of ArgoUML, all LCOM
values were zero, hence correlation coefficients could not be
computed.

Table 9. Correlation values between LCOM and C3
System UQ (Sp., Kn., Ps.) LQ (Sp., Kn., Ps.)
Xerces -0.62* -0.44* -0.50* -0.31* -0.22* -0.29*
ApacheAnt 0.56* 0.31* 0.22* -0.37* -0.27* -0.32*
ArgoUML 0.16* 0.11* 0.03 - - -

The most striking aspect of Table 9 is the difference in the UQ
between the three systems. For the Xerces system, the correlation
values are highly significant (negatively), while for ArgoUML
they are significant (positively). Reasonably, we may expect a
negative correlation between the two metrics, since one measures
the strength of cohesion and the other the lack of cohesion. The
explanation for this data is relatively straightforward: values of
the LCOM metric increase exponentially with the number of
attributes, while the range of the C3 metric is 0-1 and where lower
values represent low cohesion (the opposite to LCOM). The
correlations demonstrate that the Xerces system may have a
different, yet more “conformant” set of classes when compared to
that of ApacheAnt and ArgoUML, at least for the UQ.

5. RELATED WORK/DISCUSSION

Cohesion has been the subject of numerous empirical studies, yet
remains, in many ways, one of the most controversial topics in the
software metrics community. Although cohesion as a concept was
first introduced in the 1970’s and for the procedural paradigm
[25], these days it is more often than not seen as part a study of
the OO paradigm. The gold standard of cohesion metrics is still
the LCOM, even though numerous attempts have been made to
study and/or improve on it in the past twenty-five years [5, 12,
24]. This includes revisions of the original metric itself and claims
by other metrics that they are an improvement. The reasons why
it has persisted is manifold; however, the two key reasons that we
believe it persists are that most OO data collection tools collect
the C&K metrics as standard and those tools have enjoyed and
will continue to enjoy widespread use; secondly, because of the
large number of previous studies that have used LCOM, it is
difficult to justify using any other cohesion metrics without a
sound empirical grounding showing demonstrably that it is better
or more useful in some sense. That in itself is problematic since
the LCOM has been used for over twenty-five years. What we
have tried to do in the paper presented is to highlight the links
between two cohesion metrics and refactoring. We make no
judgment on either metric as to which is better since they are both

96

founded on reasonable assumptions and theory. The original
paper in which the C3 metric paper was first published was later
applied to defect-proneness [17]. In that later paper, it was shown
how the C3 improved upon current measures of cohesion. The
study also showed how combining C3 with existing structural
cohesion metrics was a better predictor of defective classes when
compared to different combinations of structural cohesion
metrics. The problem with adopting the metric is that very few
other studies have used the metric.

The work in our paper was inspired by previous work of the same
authors [8], where coupling levels in the same three systems were
analyzed. The Coupling between Objects (CBO) metric of C&K
and the Conceptual Coupling between Classes (CCBC) metric of
[23] were compared from a refactoring perspective. The thrust of
the research was whether coupling levels given by the two metrics
were influenced by specific refactoring effort. Results showed no
significant difference in the types of refactoring applied across
either coupling for both metrics; refactorings usually associated
with coupling removal were actually more numerous for classes
with low levels of coupling in some cases. A lack of inheritance-
related refactorings across all systems was also noted. The over-
riding message was that developers were largely indifferent to
classes with high coupling when it came to refactoring types –
they treat classes with relatively low coupling in almost the same
way. It is interesting in this paper that through the C3 metric
especially, cohesion can improve if class features are moved
around since they add to the textual and hence semantic similarity
of methods. Another relevant and interesting study on refactoring
is by Du Bois et al., [11]. The paper explored different types of
refactoring and their relevance in the improvement of cohesion
and coupling in systems. Rationale for using a subset of
refactorings was provided in the context of why and why they
would help improve cohesion and/or coupling. Results from their
analysis showed that for cohesion and coupling, the best
refactoring was the Move method refactoring [27]. “Good” results
were provided by the guidelines on, amongst others, the Replace
method with method object and Extract class refactorings. For the
last two refactorings, the authors point out that “These guidelines
are a good help in improving cohesion, yet provide only limited
help in resolving coupling issues”. On the down side, the paper
did not use any empirical system data for the analysis and did not
consider a wide range of refactorings. The RM refactoring was
excluded from their analysis, which, on the evidence of the work
presented, seems to be inextricably linked to low cohesion and we
found no examples of the Extract class refactoring across the data
we used. In the paper presented herein, we implicitly provide a
comparison of the LCOM and C3 metrics. Briand et al., present a
comprehensive appraisal and comparison of the different forms of
the LCOM metric and interpretations from an empirical and
theoretical standpoint [5]. In a similar way, Counsell et al. [7] also
explored three cohesion metrics from a theoretical and empirical
standpoint. One of their conclusion resonates with the work we
present: “…While it may be true that a generally accepted formal

and informal definition of cohesion continues to elude the OO
software engineering community, there seems considerable value
in being able to compare, contrast, and interpret metrics which
attempt to measure the same features of software”.

5.1 Discussion

The preceding analysis raises a number of questions about the
results. Firstly, as found in Bavota et al., [3], and supported in this
paper, developers only seem to use a limited number of
refactorings extensively. To put this into perspective, from our
analysis of the five most popular refactorings in the upper and
lower quartiles, only thirteen distinct refactorings can be
identified from the sixty-three that Ref-Finder is capable of
extracting. It may be true that there are many other refactorings
embedded in the code that are not part of the tool and exploring
this aspect of the data is a topic of future work. Conspicuous by
their absence are any inheritance-related refactorings in the top
five of either the upper or lower quartiles, a trend also identified
in the previous coupling analysis [8]. Secondly, we have to
consider what the analysis means for the two metrics studied.
Clearly, both metrics are connected to a common core of
refactorings. If we consider the set of thirteen refactorings across
all Tables 3-8, there is only one refactoring, i.e., Remove
Assignment to Parameters in Table 7 that is not common to either
of the LCOM and C3 metrics top five (upper or lower quarter).
The question, again a topic for future work, is to establish whether
the two metrics essentially measure the same thing. Our analysis
has not shown any significant or obvious differences, although for
some refactorings that we’ve highlighted the approach that the C3
metric takes with respect to method textual similarity would likely
make a difference to its value compared with LCOM. Thirdly, we
need to consider the implications of the results of our analysis on
the developer. It is clear that the Rename method refactoring is
different in terms of how often it is applied compared with other
refactorings – this is reasonably clear. We have to consider the
possibility that it is the simplicity of this refactoring that makes it
an easy target for developers and the fact that many tools support
the refactoring; the same refactoring also poses a low test burden
[10] compared with other refactorings and this may also make it
an appealing refactoring if it is being applied manually.

Our study also needs to consider the threats to the validity of the
work presented. Firstly, we have only considered three open-
source systems and this poses a validity threat since it brings into
question the generalizability of the work. Secondly, we have only
considered the top five refactorings in our analysis; while we
could have considered every refactoring, this would have diluted
the message of the paper and made the analysis excessively
cumbersome. It would also have made the message that were
trying to convey less focused. A third threat is that we have not
included information about the effect that each refactoring has on
the class where it is applied. Put another way, we know that, for
example, a method has been renamed, but we don’t know whether

97

that refactoring had a positive effect or not on the cohesion of the
class. We have assumed that refactorings have been applied in a
remedial sense. In the case of Rename method we have posited
that it was done to make the method and class more readable and
hence more maintainable. Perhaps this was the first step in tidying
up classes and making them more cohesive in the long run (again
in accordance with the notion of clean code [18]. Finally, without
experimenting with actual developers to find out how their
decision-making processes work and on a scale that can be
generalized, our conclusions will always be speculative.

6. CONCLUSIONS AND FURTHER WORK

In this paper, we analyzed large set of refactorings to understand
the characteristics of two cohesion metrics (the LCOM [6] and the
C3 [16]) from a refactoring perspective. Our main research
question was whether, when we decomposed the metric data into
quartiles, different sets of refactorings would be identified in the
lower and upper quartiles for each metric. Results showed that the
set of refactoring types across both upper and lower quartiles was
broadly the same, although in actual numbers the refactorings
differed widely. The Rename method refactoring stood out from
the rest for both metrics. It was applied over three times as often
to classes with low cohesion than classes with high cohesion. This
suggests that it may be a useful tool in making classes more
cohesive for long-term maintainability, although a more in-depth
study would need to establish how that would work in practice.
We believe that the study is interesting since it tells us something
about the relationship between the concept of cohesion and
refactoring, an under-researched, yet important aspect of systems.
There are many other avenues for further work. Firstly, it would
be useful to include defect data in a similar analysis to establish
whether low or highly cohesive classes as we have portrayed them
influence the type of refactorings applied to a class. It is also
planned to undertake experiments with industrial developers to
determine the motivation for why developers refactor and when.
It would also be interesting to measure the post-impact of
renaming refactorings on the comprehension of classes, since our
study suggests that it may be a significant factor. Finally, we want
to expand the analysis to other open-source systems and to include
industrial systems to see how the two compare.

REFERENCES

[1] R. Barker, E. Tempero, (2008). A Large-Scale Empirical Comparison of
Object-Oriented Cohesion Metrics. APSEC, 414-421.

[2] V. Basili, L. Briand, W. Melo, 1995. A validation of object-oriented design
metrics as quality indicators. IEEE Trans. on Software Eng. 22, 10, 751–761.

[3] G. Bavota, A. De Lucia, M. Di Penta,, R. Oliveto, F. Palomba, An
experimental investigation on the innate relationship between quality and
refactoring. J. Syst. Software. 107, 1-14.

[4] L.C. Briand, J. Daly, J. Wüst. 1999, A Unified Framework for Coupling
Measurement in Object-Oriented Systems. IEEE Trans. Softw. Eng. 25, 1,
91-121.

[5] L. Briand, J. Daly and J. Wust, A Unified Framework for Cohesion
Measurement in Object-Oriented Systems, Empirical Software Engineering,
Vol. 3, No. 1, 1998, pp. 65-117.

[6] S. R. Chidamber, C. F. Kemerer, A Metrics Suite for Object Oriented Design,
IEEE Transactions on Software Engineering, 20(6):476-493, 1994.

[7] S. Counsell, S. Swift, J. Crampton, The interpretation and utility of three
cohesion metrics for object-oriented design. ACM Transactions on Softw.
Eng. Methodology. 15, 2 (April 2006), 123-149.

[8] S. Counsell, M. Arzoky, G. Destefanis, D. Taibi, On the Relationship
Between Coupling and Refactoring: An Empirical Viewpoint. ACM/IEEE
International Symposium on Empirical Software Engineering and
Measurement, Porto De Galinhas, Brazil, pages 1-6, 2019.

[9] S. Deerwester, S., Dumais, G, Furnas, T., Landauer, and R. Harshman,
Indexing by Latent Semantic Analysis, Journal of the American Society for
Information Science, vol. 41, 1990, pp. 391-407.

[10] A. van Deursen and L. Moonen. The Video Store Revisited - Thoughts on
Refactoring and Testing. International Conf. on eXtreme Programming and
Flexible Processes in Software Engineering XP 2002, Sardinia, Italy.

[11] B. Du Bois, S. Demeyer, J. Verelst, Refactoring -- Improving Coupling and
Cohesion of Existing Code. WCRE 2004: 144-151.

[12] L. Etzkorn, S. Gholston, J. Fortune, C. Stein, D. Utley, P. Farrington and G.
Cox, A comparison of cohesion metrics for OO systems, Information and
Software Technology, vol. 46, no. 10, August 2004, pp. 677-687.

[13] M. Fowler, Refactoring: Improving the Design of Existing Code, Addison-
Wesley, 1999.

[14] M. Kim, M. Gee, A. Loh, N. Rachatasumrit, Napol, (2010). Ref-Finder: A
refactoring reconstruction tool based on logic query templates. ACM
SIGSOFT Symposium on the Foundations of Software Eng.. 371-372.

[15] M. Lehman, (1980), On Understanding Laws, Evolution, and Conservation
in the Large-Program Life Cycle. Journal of Systems and Soft., 1: 213–221.

[16] A. Marcus, Denys Poshyvanyk: The Conceptual Cohesion of Classes.
International Conference on Software Maintenance, ICSM 2005: 133-142

[17] A. Marcus, D. Poshyvanyk, R. Ferenc, Using the Conceptual Cohesion of
Classes for Fault Prediction in Object-Oriented Systems. IEEE Trans.
Software Eng. 34(2): 287-300 (2008).

[18] R. Martin, Clean Code: A Handbook of Agile Software Craftsmanship,
Prentice Hall, 2008

[19] T. Mens, T. Tourwe, 2004. A survey of software refactoring. IEEE
Transactions on Software Engineering 30, 2, 126–139.

[20] E. Murphy-Hill, C. Parnin, A. Black, How We Refactor, and How We Know
It. IEEE Trans. Software Eng. 38(1): 5-18 (2012).

[21] S. Negara, N. Chen, M. Vakilian, R. Johnson, D. Dig, A Comparative Study
of Manual and Automated Refactorings, ECOOP 2013.

[22] W. Opdyke, Refactoring object-oriented frameworks, PhD Thesis,
University of Illinois, Urbana-Champaign, 1992.

[23] D. Poshyvanyk, A., Marcus, R., Ferenc,, and T., Gyimothy, 2009. Using
information retrieval based coupling measures for impact analysis. Empirical
Software Engineering 14, 1, 5–32.

[24] C. Stein, G. Cox, L. Etzkorn, Exploring the relationship between cohesion
and complexity, Journal of Computer Science. 1 (2): 137–144, 2005.

[25] W. Stevens, G. Myers, L. Constantine, Structured design, IBM Systems
Journal. 13 (2): 115–13, 1974.

[26] N. Tsantalis, A., Chatzigeorgiou, A. 2009. Identification of move method
refactoring opportunities. IEEE Trans. on Soft. Engineering 35, 3, 347–367.

[27] https://refactoring.guru/move-method
[28] http://ant.apache.org/
[29] http://argouml.tigris.org/
[30] http://xerces.apache.org/xerces-j/
[31] http://www.virtualmachinery.com/

98

