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Abstract—The practice of refactoring has evolved over the past thirty 
years to become standard developer practice; for almost the same 
amount of time, proposals for measuring object-oriented cohesion 
have also been suggested. Yet, we still know very little about their 
inter-relationship empirically, despite the fact that classes exhibiting 
low cohesion would be strong candidates for refactoring. In this 
paper, we use a large set of refactorings to understand the 
characteristics of two cohesion metrics from a refactoring 
perspective. Firstly, through the well-known LCOM metric of 
Chidamber and Kemerer and, secondly, the C3 metric proposed 
more recently by Marcus et al. Our research question is motivated 
by the premise that different refactorings will be applied to classes 
with low cohesion compared with those applied to classes with high 
cohesion. We used three open-source systems as a basis of our 
analysis and on data from the lower and upper quartiles of metric 
data. Results showed that the set of refactoring types across both 
upper and lower quartiles was broadly the same, although very 
different in actual numbers. The ‘rename method’ refactoring stood 
out from the rest, being applied over three times as often to classes 
with low cohesion than to classes with high cohesion.        

Keywords— Refactoring, coupling, metrics, empirical.  

1. INTRODUCTION
As a core software engineering concept, cohesion has been 
recognized as an important attribute of software since the late 
1960’s and is often used in the same context as coupling [1]. In 
essence, cohesion measures the intra-relatedness of the elements 
of a component (e.g., the variables within a function, attributes 
within a class etc). Since the seminal texts on refactoring were 
published in the 90’s by Opdyke [22] and Fowler et al., [13], 
refactoring has been the subject of hundreds of empirical studies 
and has become a vital tool in the daily work of a developer [19, 
20, 21, 26]. In short, refactoring is the process: “Of changing a 
software system in such a way that it does not alter the external 
behavior of the code yet improves its internal structure” [13]. In 
the past twenty-five years or so, a wide range of software metrics 

have also been proposed that claim to capture OO class features 
as well as cohesion [2, 4]. The most common way of measuring 
cohesion in the past has been to consider the interplay between 
instance variables and their usage by the methods of the class. The 
most well-known of cohesion metrics is the Lack of Cohesion of 
the Methods in a class (LCOM) of Chidamber and Kemerer 
(C&K) [6]. A more recent metric by Marcus et al., [16] is the C3 
metric which takes a different approach to the measurement of 
cohesion; it is based on information retrieval techniques and: 
“….identifies and captures properties shared between members 
of a class that take into account not only syntactic but also 
semantic information” . Both of these metrics attempt to identify 
classes where there is low or high class cohesion and, so, in 
theory, have the same goal. Developers should always strive for 
high cohesion in their classes, but it is well-understood that as 
systems age, they tend to decay and class cohesion will tend to 
deteriorate also [15]. Refactoring is one means through which this 
decay can be partially reversed and so a direct link exists between 
the two concepts. Our work is motivated by two factors. Firstly, 
the concepts of cohesion and refactoring have been around for 
decades; yet there is no empirical work using systems explicitly 
linking the two that the authors know of. Both have serious 
implications for maintenance and test activities. Secondly, the 
LCOM and C3 metrics both measure cohesion, but in different 
ways [1]. Our study tries to uncover whether one captures 
different aspects of code to the other through the prism of 
refactoring. That may help us understand what each does better 
(than the other), and also adds to our understanding of refactoring, 
since it forces us to explore and think about why a developer 
might take a specific course of action and the consequences if they 
do not.  

In this paper, we therefore explore one over-arching research 
question. Based on cohesion values generated by the two metrics 
(i.e., LCOM and C3), we ask whether classes with low cohesion 
attract different types of refactorings than classes with high 
cohesion? Developers should spend more time rectifying classes 
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whose elements have become unrelated (i.e., are exhibiting low 
cohesion) and we might reasonably expect classes with low 
cohesion to be the subject of different types of refactoring, since 
their poor structure and composition would dictate other forms of 
remedial action (i.e., refactoring) compared to highly cohesive 
classes (in theory). To this end, we used a refactoring dataset 
produced by Bavota et al. [3], as the basis for our analysis. The 
same dataset is freely downloadable for replication purposes from 
their original paper. The data represents information (class-based 
metrics and the types of refactoring applied) from thousands of 
refactoring operations applied to releases of three open-source 
systems. We explore those refactorings with specific reference to 
cohesion and, to further facilitate our analysis, we decomposed 
the dataset into inter-quartile ranges. This gave us three parts to 
our analysis: the lower 25% of cohesion values, the 50% in the 
mid-range of cohesion values and the upper 25% of cohesion 
values for each metric. For the purposes of this paper, we ignore 
the set of mid-range of metric values since we want to explore 
very high and very low cohesion values. Results showed that, 
broadly speaking, the same set of refactorings was applied in the 
upper quarter as in the lower quarter, contrary to what we 
expected. One major difference between upper and lower quarters 
related to the Rename field refactoring [13]. Well over three times 
as many of these refactorings were applied to classes with low 
cohesion as to classes with high cohesion. This implies that there 
might be strong links between the cohesion of a class and the 
ability of a developer to understand firstly, what the class actually 
does and secondly, how refactoring can be used to remedy that 
situation. The remainder of the paper is organized as follows. In 
the next section, we describe preliminary information on the two 
metrics we use for our analysis, the three systems studied, the data 
collected and summary data. We then present results through an 
analysis of each of the three systems (Sections 3 and 4) using the 
LCOM and C3 metrics. Section 5 discusses related work and 
general discussion points as well as threats to study validity. 
Finally, we conclude and point to further work (Section 6). 

 
 

2. PRELIMINARIES 
 
2.1 The LCOM metric    

In this paper, we follow the definition of LCOM according to the 
JHawk tool [31]; this tool was used to collect all the metrics used 
in this paper. Informally, the LCOM metric measures cohesion 
through the distribution of class instance variables across the 
methods of a class. If every method uses every instance variable, 
then that class is maximally cohesive. If, at the other extreme, the 
instance variables used by every method are completely disjoint, 
then the class has minimal cohesion. Consider, for example, a 
class C with three methods we will call M1, M2 and M3 and a set 
of instance variables {a, b, c, d, e, x, y, z}. Let I1-I3 be the three 
sets of instance variables used by each of the three methods where 
{I1} = {a, b, c, d, e}, {I2} = {a, b, e} and {I3} = {x, y, z}. LCOM 

is the number of empty intersections of I1-I3, minus the number 
of non-empty intersections (the calculated value is set to zero if 
the subtraction is negative). Enumerated: {I1} ∩ {I2} is non-
empty, but {I1} ∩ {I3} and {I2} ∩ {I3} are empty sets. LCOM, 
in this case, is therefore 2 (number of empty sets) - 1 (non-empty 
set) giving a value for LCOM of 1. It then follows that the larger 
the value of LCOM, the less cohesive the class and the lower the 
LCOM, the more cohesive the class.  

2.2 The C3 metric 

The C3 metric is calculated using information recorded in the 
source code through information in the methods. Analysis of this 
type of semantic information can be useful in forming and 
evaluating metrics. The code being analyzed is converted into a 
text corpus and only identifiers and comments are extracted from 
each method. According to Marcus et al., [16] the process is as 
follows: “Each method is a document in this corpus and LSI 
[…Latent Semantic Indexing [9]] is used to map each document 
to a vector in a multidimensional space determined by the terms 
that occur in the vocabulary of the software. Once each method is 
represented as a vector, a similarity measure between any two 
methods can be defined as the cosine between their corresponding 
vectors. This similarity measure will express how much relevant 
semantic information is shared among the two methods, in the 
context of the entire system”. This is the basis upon which the C3 
metric is calculated. A graph-based representation of the system 
with weighted edges is used to compute the similarity of pairs of 
methods. If a class is cohesive, then C3 will tend towards a value 
of 1, meaning that all the methods of the class are strongly related 
to each other conceptually. If the methods are weakly related 
conceptually however, then the C3 value will tend towards a value 
of 0 and is considered to have low cohesion.   

2.3 Systems studied 

The systems studied consisted of three Java open source projects: 
Xerces [30], ApacheAnt [28] and ArgoUML [29]. Xerces-J is a 
Java XML parser, Apache Ant a build tool and library primarily 
designed for Java applications and ArgoUML a UML modeling 
tool and. Table 1 is taken verbatim from [3] and shows the salient 
characteristics of the three systems. Here, ‘Rel.’ is the number of 
releases and the final column (#Ref.) represents the total number 
of refactorings for that system before we decomposed it into its 
inter-quartile ranges. 

Table 1. Features of the three systems analyzed from [3] 

System Period Analyzed Rel. # Classes # Ref. 
Xerces Nov ‘99-Nov 

‘10 
1.0.4-2.9.1 33 181-776 7502 

Apache Ant  Jan ‘00-Dec ‘10 1.2-1.8.2 17 87-1191 1289 
ArgoUML Oct ‘02-Dec ‘11 0.12-0.34 13 777-1519 3255 
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Table 2 shows data the number of refactorings in each of the 
ranges for the three systems, after it had been decomposed. It 
shows the Upper Quartile (UQ) and Lower Quartile (LQ) median 
values for the LCOM and C3 metrics and the Inter-Quartile Range 
(IQR) in each case. IQR is calculated as the UQ value minus the 
LQ value. For example, in the UQ of the Xerces systems, the 
median LCOM was 5 and in the lower quartile the median was 
1724. The IQR for LCOM was 1719. For the C3 metric UQ, the 
median C3 value was 0.36 and was 0.21 for the LQ. The IQR was 
0.21.    

Table 2.  Dataset decomposition into quartiles 

System LCOM 
(UQ) 

LCOM 
(LQ) 

IQR C3 
(UQ) 

C3  
(LQ) 

IQR 

Xerces 1724 5 1719 0.36 0.15 0.21 
ApacheAnt  388 2 386 0.35 0.12 0.23 
ArgoUML 164 0 164 0.51 0.14 0.37 

 
The Ref-Finder tool [14] was used to extract the set of refactorings 
on which our analysis was based; the refactorings were extracted 
and validated as part of the earlier study and are reused in our 
paper [3]. The Ref-Finder tool collects up to sixty-three of 
Fowler’s original set of 72 refactorings [13] and has   recall of 
95% and precision of 79%. We begin our analysis by looking at 
the LCOM metric and the refactorings in the UQ and LQ quartiles, 
before moving on to do the same for C3. At this juncture, we 
emphasize the point that a high numerical value of LCOM means 
that the class has low cohesion, since the metric measures the 
‘lack’ of cohesion in a class. Correspondingly, a low value of 
LCOM implies that the class is relatively cohesive (i.e., it does 
not lack cohesion).  It is the opposite of C3 where a high cohesion 
tends towards 1 and low cohesion 0.  

  

3. LCOM REFACTORING ANALYSIS 

Table 3 shows, for the Xerces system, the number of refactorings 
applied in the UQ and LQ when ranked on the five most popular 
refactorings in the UQ. For example, the most popular refactoring 
in the UQ of the LCOM values (i.e., where classes have low 
cohesion) was the Rename method refactoring (RM) with 573 
occurrences. This represents 26.91% of the total number of 
refactorings in the UQ. In the LQ, where classes have high 
cohesion, the corresponding number of RM refactorings was just 
110, representing just 6.63% of the total number of refactorings 
in that quartile. A totals row in the table shows the sum of numbers 
in each of the columns. Below the totals row, we also show, for 
completeness, and for each system, the refactorings that were in 
the top five refactorings in the LQ. So, for example, from Table 
3, the top five refactoring in the UQ are in the row order we see 
(i.e., RM, MM, MF, AP and CDCF); for the LQ, the top five most 
popular refactorings were AP, RP, RMN, MF and MM, in that 
order. The motivation for RM is when the name of a method does 
not convey what that method does very well; it should therefore 

be renamed to make its purpose more obvious/clear. We note that 
our choice of the top five refactorings was made on the basis that 
this gave us the majority of what we believe to be key refactorings 
for that system.  One plausible explanation for the large number 
of RM refactorings in the UQ could be down to poor naming of 
methods and a general lack of understandability about what the 
class does by developers; a class with low cohesion will be 
difficult to understand. If developers cannot understand what the 
class functionality is or what the methods in the class do, then this 
might naturally be the trigger for the rename method refactoring 
to be applied.  
 

Table 3.  Refactoring data for the Xerces system  

Refactoring  LCOM  
(UQ) 

% LCOM   
(LQ) 

% 

Rename Method (RM) 573 26.91 110 6.63 
Move Method (MM)  250 11.74 121 7.30 
Move Field  (MF) 244 11.46 199 12.00 
Add Parameter (AP) 182 8.55 325 19.60 
Cons. Dupl.  Frag. (CDCF) 131 6.15 96 5.79 
Totals 1380 64.81 851 51.32 
Remove Parameter (RP) 100 4.70 223 13.45 
Replace Magic Number (RMN) 109 5.12 222 13.39 

 
It is remarkable that the largest proportion of refactorings in the 
UQ was for RM, but for the LQ (where we consider classes to 
have relatively high cohesion) it was the Add Parameter (AP) 
refactoring that dominated. The motivation for using AP is when 
[13]: “A method doesn’t have enough data to perform certain 
actions”. The solution is to: “Create a new parameter to pass the 
necessary data”. One possible explanation for the result for AP is 
that adding a parameter means that data available to the class is 
being shared around the methods of the class. This in theory 
contributes positively to the cohesiveness of a class. After all, the 
basis of the LCOM metric is the commonality in the use of 
instance variables by the methods; if greater sharing is taking 
place (through the addition of parameters) then that can only aid 
its cohesiveness. Table 3 also shows significant numbers of Move 
Field (MF) and Move Method (MM) refactorings in both the UQ 
and LQ. The motivation for applying the MM refactoring is when 
[13]: “A method is used more in another class than in its own 
class”. The solution is to: “Create a new method in the class that 
uses the method the most, then move code from the old method to 
there.” A similar motivation and solution applies to the MF 
refactoring. One generally recognized and accepted way of 
improving cohesion is to move features around classes to where 
they are most needed. This is normally a convenient way of 
reducing coupling also; however, in a positive sense, reducing 
coupling in one or more classes can often lead to improved class 
cohesion in other classes if external features are moved around. 
So, the motivation for applying MF and MM might be to reduce 
coupling, but this has the side effect of improving cohesion. 
Finally, the Consolidate Duplicate Conditional Fragments 
(CDCF) refactoring was applied in similar numbers in the UQ and 
LQ. The CDCF refactoring removes duplicate lines of code in 
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conditional statements. Table 4 shows the same data for LCOM 
as that in Table 3, but for the ApacheAnt system.  
 

Table 4.  Refactoring data for the ApacheAnt system  

Refactoring LCOM  
(UQ) 

% LCOM   
(LQ) 

% 

Rename Method (RM) 90 23.75 6 1.82 
Inline Temp (IT) 37 9.76 6 1.58 
Introduce Exp. Var  (IEV) 36 9.50 24 7.27 
Remove Parameter (RP) 33 8.71 36 10.91 
Add Parameter (AP) 30 7.92 43 13.03 
Total 226 59.64 115 34.61 
Replace Magic No. (RMN) 32 8.44 113 34.24 
Cons. Dup. Frag. (CDCF)  11 2.90 25 7.58 

 
The RM refactoring is, again, the most frequently applied 
refactoring in the UQ for the ApacheAnt system (90 compared 
with just 6 in the LQ) and the AP again features, as it did for the 
Xerces system. The numbers of AP refactorings in the LQ far 
exceed those in the UQ - the same result as was found for AP in 
the Xerces system. The number of RP refactorings in the LQ for 
the Xerces system was 223, compared with just 100 in the UQ. 
The motivation for the RP refactoring is when a parameter in the 
body of a method is unused. The RP refactoring simply removes 
that parameter. The most frequently applied refactoring across 
both the UQ and LQ was Replace Magic Number (the full title of 
this refactoring [13] is ‘Replace Magic Number with Symbolic 
Constant’). The motivation for this refactoring is when a value is 
hard-coded in multiple places throughout the code. It should be 
replaced with a const declaration for the hard-coded value. The 
example of “pre-” refactoring and “post-” refactoring code for 
RMN given in [13] is as follows:  
 
Before refactoring:  
 
function potentialEnergy(mass, height) { 
  return mass * 9.81 * height; 
} 
 
becomes: 
 
const STANDARD_GRAVITY = 9.81; 
function potentialEnergy(mass, height) { 
  return mass * STANDARD_GRAVITY * height; 
} 
 
Table 5 shows the corresponding data for the ArgoUML system. 
The AP and RP refactoring again feature strongly in the UQ data; 
however, one of the largest disparities between UQ and LQ in 
percentage terms is for the RM refactoring, again dominating in 
terms of numbers in the UQ. Exactly the same observation was 
made for the previous two systems in terms of RM and so a pattern 
is emerging for this particular refactoring. The MF refactoring 
dominated the LQ; 27.91% of refactorings in the LQ were MF.       
 
 
 

Table 5.  Refactoring data for the ArgoUML system  

Refactoring LCOM  
(UQ) 

% LCOM   
(LQ) 

% 

Add Parameter  (AP) 144 15.37 53 11.65 
Remove Parameter  (RP) 134 14.30 59 12.97 
Rename Method (RM) 110 11.74 16 3.52 
Remove Control Flag (RCF) 98 10.46 10 2.20 
Move Method (MM) 82 8.75 61 13.41 
Totals 568 60.62 199 33.75 
Move Field (MF) 30 3.20 127 27.91 
Introduce Expl. Var. (IEV) 32 3.42 62 13.63 
Replace Meth with Obj. 75 8.00 60 13.19 

 
It is clear from the analysis thus far that the standout refactoring 
is RM and, to a lesser extent, AP and RP. It is also revealing that 
for the ApacheAnt and ArgoUml systems, we found no 
occurrences of inheritance-related refactorings such as Pull up 
field, Pull up method, Push down method/field. In the Xerces 
system, we only found limited evidence (129 out of 7503) of these 
refactorings. In none of the three systems did we find evidence 
either that classes had been decomposed using the Extract class 
refactoring [13]; according to Du Bois et al., [11] this is one of the 
key refactorings that aid the cohesion of class.    
 
3.1 Does class size matter?  
 
Across all three systems and considering the LCOM metric 
overall, the RM refactoring was consistently found to be the most 
frequently applied refactoring, the vast majority of which were 
applied to classes in the UQ in the case of the LCOM (i.e., to those 
classes with a high LCOM and hence low cohesion) and the LQ 
in the case of the C3 metric (low cohesion classes). This suggests 
that these classes may have poor readability and hence 
comprehension issues, either intrinsically or as a result of constant 
change to the class requiring the method name changes to be 
applied. Classes with high cohesion, on the other hand, were not 
targeted as much by the RM refactoring. The AP and RP 
refactorings also figure across all three systems, but the pattern is 
a little less clear in these two cases in the UQ and LQ.  
 
One factor that may have influenced this result for RM is the size 
of classes where it was applied. Larger classes are more difficult 
to understand (generally speaking) and if classes are larger, then 
they will inevitably attract more RM than smaller classes by the 
law of averages. To investigate this question, we therefore 
explored whether classes in the UQ were larger than those in the 
LQ for the LCOM and vice versa for the LCOM metric. Figure 1 
for the Xerces system shows the plot of class size (y-axis) given 
by the number of methods for each refactoring (on the x-axis); the 
UQ (thicker line) and LQ (thinner line) represent each LCOM 
observation on the UQ and LQ, respectively. The LQ values 
appear to exceed those in the LQ from the figure. In fact, the 
average number of methods for the UQ was 100.99 (median 58) 
and for the LQ the average was 160.99 (median 148). In other 
words, the size of classes was generally lower in the UQ where 
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LCOM was higher and hence cohesion lower. Excessive 
differences class sizes between the UQ and LQ would not seem to 
be the immediate reason for the mismatch in renaming activity.      
 

 
     Figure 1.  No. methods for the Xerces system (UQ vs. LQ) 
 
For the ApacheAnt system, a similar trend was observed as that 
in Figure 1. The average number of methods for the UQ was 82.86 
(median 44) and for the LQ the average was 106.10 (median 121). 
In other words, the size of classes was again generally lower in 
the UQ where LCOM was higher and hence cohesion lower. 
Finally, for the ArgoUML system, the average number of methods 
in the LQ was 9.00 (median 4) and for the UQ, average 35.78 
(median 19). For two of the systems therefore, the number of 
methods in the LQ was much higher than for the UQ.   
 
 

4. C3 REFACTORING ANALYSIS 
 
Just as we analyzed the LCOM metric in the previous section, we 
next compare the results for the C3 metric. Since LCOM and C3 
compute cohesion in very contrasting ways, we might expect to 
see different results from our analysis in terms of what 
refactorings are applied to classes with high and low cohesion. 
The C3 metric produces a different range of values (all lay 
between 0-1) and the C3 metric does not use instance variables as 
a basis of its computation. Table 6 shows the C3 data for the 
Xerces system (same format as produced for LCOM). The data 
mirrors that in Table 3, but is clearly very different in terms of the 
most popular five refactorings.  
 

Table 6.  Refactoring data for the Xerces system  

Refactoring C3-UQ % C3-LQ % 

Add Parameter  (AP) 459 21.56 162 9.90 
Remove Parameter  (RP) 236 11.09 108 6.60 
Move Method (MM) 233 10.94 209 12.78 
Rename Method (RM) 230 10.80 471 28.79 
Replace Magic Number (RMN) 198 9.07 132 8.07 
Totals 1356 63.46 1082 66.14 
Move Field (MF) 138 6.48 193 11.80 

 

The most marked difference between the UQ and LQ data is again 
for the RM refactoring. Nearly 29% of the top five refactorings in 
the LQ were accounted for by RM (numbering 471), the largest of 
any percentage in the data thus far, whether in the UQ or LQ.  A 
low value of C3 represents low cohesion and so we see exactly 
the same result occurring as was found in Tables 3-5 for the 
LCOM metric; namely, that classes with low cohesion attract 
large numbers of RM refactorings. Clearly, there is something that 
links classes with low cohesion and the propensity for applying 
the RM refactoring and this may have important implications for 
maintainability – perhaps proper naming of methods, one of the 
clean code principles impacts class erosion more than we think it 
does [18].  It is also interesting that the AP and RP refactorings 
are again the most prevalent in the UQ of the C3 data representing 
highly cohesive classes and reflecting the result that we also found 
for LCOM. Table 7 shows the data for the ApacheAnt system. The 
most popular refactoring in the UQ was for the RMN refactoring 
(accounting for nearly 40% of refactorings). While the RM does 
not figure in the top five refactorings in the UQ, it does appear to 
be the most popular refactoring in the LQ data, by a considerable 
margin. Nearly 35% of all refactorings in the LQ were RM 
refactorings.  
 

Table 7.  Refactoring data for the ApacheAnt system  

Refactoring C3-UQ % C3-LQ % 

Replace Magic Number (RMN) 145 38.29 15 4.55 
Remove Assign. to Par. (RAP) 35 9.23 0 0.00 
Cons. Dup. Frag. (CDCF) 30 7.92 0 0.00 
Introduce Expl. Variable (IEV) 28 7.39 39 11.82 
Add Parameter (AP) 26 6.86 39 11.82 
Totals 264 69.69 93 28.19 
Rename Method (RM) 9 2.37 114 34.55 
Move Field (MF) 6 1.58 43 13.03 
Remove Parameter (RP) 22 5.80 39 11.82 

 

The result for the RMN refactoring in Table 7 is also interesting. 
One of the advantages of applying this metric is that it improves 
maintainability, since you only have to change a constant’s value 
once if it is declared and set in one place. The majority of the 
RMN refactorings were in the UQ, i.e., for highly cohesive 
classes. One possibility why so many of these refactorings were 
applied was because declaring a const and then using it many 
of the methods of a class adds to the textual similarity between 
methods. In other words, the C3 metric would see application of 
this refactoring as something that contributed positively to the 
cohesion of a class; the LCOM metric would not, since it uses 
instance variables only and is not based on patterns of similarity 
in other parts of the class.  Finally, Table 8 shows the data for the 
ArgoUML system. Nearly a third of refactoring (29.78%) were 
accounted for by the MF refactoring. Again, we need to look to 
the way that the C3 metric is calculated to provide an explanation 
for this result. Moving a field to where it is used more from 
outside immediately raises the textual similarity within the class, 
since, by definition, you would only move a field to a class where 
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it is being used most. If many elements of the class use that data, 
then that raises the textual similarity of the elements in the class 
and hence the value of the C3 metric. It is another case of where 
reducing coupling would have the positive side-effect of raising 
cohesion in the target class.  The RM is the second highest of 
refactorings in the LQ and did not feature in the top five 
refactorings of the UQ. Only Replace Method with Method Object 
was applied more times. The motivation for using the RMwMO 
refactoring is when [13]: “You have a long method in which the 
local variables are so intertwined that you can’t apply Extract 
Method”. The mechanics of this refactoring are: “Transform the 
method into a separate class so that the local variables become 
fields of the class. Then you can split the method into several 
methods within the same class”.  
   

Table 8.  Refactoring data for the ArgoUML system  

Refactoring C3-UQ % C3-LQ % 
Move Field (MF) 279 29.78 46 10.11 
Move Method (MM) 143 15.26 52 11.43 
Add Parameter (AP) 123 13.13 38 8.35 
Remove Parameter (RP) 111 11.85 45 9.89 
Replace Method with Obj. 90 9.61 59 12.97 
Totals 746 69.63 240 52.75 
Rename Method (RM) 32 3.42 56 12.31 

 
Clearly, the C3 metric showed similar results to that of LCOM.  

 
4.1 Does class size matter? 

 
The same result was found for the C3 metric as for the LCOM 
with respect to RM - significantly more were applied to classes 
with low cohesion than with high cohesion. The same question 
has to be asked as to whether the size of the class in terms of 
number of methods may have been a factor in attracting that 
number of RM refactorings. Looking at the C3 values for Xerces, 
the average number of methods for the UQ was 67.16 (median 47) 
and for the LQ the average was 227.11 (median 244). In other 
words, the size of classes was generally lower in the UQ where 
C3 was higher and hence cohesion higher. This contradicts the 
view that the size of the classes in the system may have been the 
reasons for the large number of RM refactorings. For the 
ApacheAnt system, the average number of methods for the UQ 
was in 39.99 (median 23) and for the LQ the average was 117.49 
(median 121), again contradicting the view about large classes. 
Finally, for the ArgoUML system, the UQ the average number of 
methods was 31.96 and median 16; for the LQ the average was 
32.52 and median 25. For the ArgoUML system, the method sizes 
were comparable. Again, we can say that the pattern in number of 
methods from a summary analysis does not suggest that it was a 
factor in the RM refactoring trend.  
 
As a final aspect of the analysis, it is worth considering the 
(correlational) relationship between the LCOM and C3 for the UQ 
and LQ set of values, since that might inform our understanding 
of the results. Table 9 shows the Spearman (Sp.), Kendall (Kn.) 

and Pearson (Ps.) correlation coefficients for LCOM versus C3 in 
the UQ and LQ (in that order). Spearman and Kendall are both 
non-parametric measures making no assumption about the 
distribution of the data; Pearson’s measure however assumes a 
distribution in the data (usually normal). We include both all types 
for completeness. Here an ‘*’ indicates statistical significance at 
the 0.01 level; we note that in the LQ of ArgoUML, all LCOM 
values were zero, hence correlation coefficients could not be 
computed.   
 

Table 9. Correlation values between LCOM and C3 
System UQ (Sp., Kn., Ps.) LQ (Sp., Kn., Ps.) 
Xerces  -0.62* -0.44* -0.50* -0.31* -0.22* -0.29* 
ApacheAnt 0.56* 0.31* 0.22* -0.37* -0.27* -0.32* 
ArgoUML 0.16* 0.11* 0.03 - - - 

 
The most striking aspect of Table 9 is the difference in the UQ 
between the three systems. For the Xerces system, the correlation 
values are highly significant (negatively), while for ArgoUML 
they are significant (positively). Reasonably, we may expect a 
negative correlation between the two metrics, since one measures 
the strength of cohesion and the other the lack of cohesion. The 
explanation for this data is relatively straightforward: values of 
the LCOM metric increase exponentially with the number of 
attributes, while the range of the C3 metric is 0-1 and where lower 
values represent low cohesion (the opposite to LCOM). The 
correlations demonstrate that the Xerces system may have a 
different, yet more “conformant” set of classes when compared to 
that of ApacheAnt and ArgoUML, at least for the UQ. 
 
 

5. RELATED WORK/DISCUSSION 
 
Cohesion has been the subject of numerous empirical studies, yet 
remains, in many ways, one of the most controversial topics in the 
software metrics community. Although cohesion as a concept was 
first introduced in the 1970’s and for the procedural paradigm 
[25], these days it is more often than not seen as part a study of 
the OO paradigm. The gold standard of cohesion metrics is still 
the LCOM, even though numerous attempts have been made to 
study and/or improve on it in the past twenty-five years [5, 12, 
24]. This includes revisions of the original metric itself and claims 
by other metrics that they are an improvement. The reasons why 
it has persisted is manifold; however, the two key reasons that we 
believe it persists are that most OO data collection tools collect 
the C&K metrics as standard and those tools have enjoyed and 
will continue to enjoy widespread use; secondly, because of the 
large number of previous studies that have used LCOM, it is 
difficult to justify using any other cohesion metrics without a 
sound empirical grounding showing demonstrably that it is better 
or more useful in some sense. That in itself is problematic since 
the LCOM has been used for over twenty-five years. What we 
have tried to do in the paper presented is to highlight the links 
between two cohesion metrics and refactoring. We make no 
judgment on either metric as to which is better since they are both 
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founded on reasonable assumptions and theory. The original 
paper in which the C3 metric paper was first published was later 
applied to defect-proneness [17]. In that later paper, it was shown 
how the C3 improved upon current measures of cohesion. The 
study also showed how combining C3 with existing structural 
cohesion metrics was a better predictor of defective classes when 
compared to different combinations of structural cohesion 
metrics. The problem with adopting the metric is that very few 
other studies have used the metric.   
 
The work in our paper was inspired by previous work of the same 
authors [8], where coupling levels in the same three systems were 
analyzed. The Coupling between Objects (CBO) metric of C&K 
and the Conceptual Coupling between Classes (CCBC) metric of 
[23] were compared from a refactoring perspective. The thrust of 
the research was whether coupling levels given by the two metrics 
were influenced by specific refactoring effort. Results showed no 
significant difference in the types of refactoring applied across 
either coupling for both metrics; refactorings usually associated 
with coupling removal were actually more numerous for classes 
with low levels of coupling in some cases. A lack of inheritance-
related refactorings across all systems was also noted. The over-
riding message was that developers were largely indifferent to 
classes with high coupling when it came to refactoring types – 
they treat classes with relatively low coupling in almost the same 
way. It is interesting in this paper that through the C3 metric 
especially, cohesion can improve if class features are moved 
around since they add to the textual and hence semantic similarity 
of methods. Another relevant and interesting study on refactoring 
is by Du Bois et al., [11]. The paper explored different types of 
refactoring and their relevance in the improvement of cohesion 
and coupling in systems. Rationale for using a subset of 
refactorings was provided in the context of why and why they 
would help improve cohesion and/or coupling. Results from their 
analysis showed that for cohesion and coupling, the best 
refactoring was the Move method refactoring [27]. “Good” results 
were provided by the guidelines on, amongst others, the Replace 
method with method object and Extract class refactorings. For the 
last two refactorings, the authors point out that “These guidelines 
are a good help in improving cohesion, yet provide only limited 
help in resolving coupling issues”. On the down side, the paper 
did not use any empirical system data for the analysis and did not 
consider a wide range of refactorings. The RM refactoring was 
excluded from their analysis, which, on the evidence of the work 
presented, seems to be inextricably linked to low cohesion and we 
found no examples of the Extract class refactoring across the data 
we used. In the paper presented herein, we implicitly provide a 
comparison of the LCOM and C3 metrics. Briand et al., present a 
comprehensive appraisal and comparison of the different forms of 
the LCOM metric and interpretations from an empirical and 
theoretical standpoint [5]. In a similar way, Counsell et al. [7] also 
explored three cohesion metrics from a theoretical and empirical 
standpoint. One of their conclusion resonates with the work we 
present: “…While it may be true that a generally accepted formal 

and informal definition of cohesion continues to elude the OO 
software engineering community, there seems considerable value 
in being able to compare, contrast, and interpret metrics which 
attempt to measure the same features of software”.   

  
5.1 Discussion  
 
The preceding analysis raises a number of questions about the 
results. Firstly, as found in Bavota et al., [3], and supported in this 
paper, developers only seem to use a limited number of 
refactorings extensively. To put this into perspective, from our 
analysis of the five most popular refactorings in the upper and 
lower quartiles, only thirteen distinct refactorings can be 
identified from the sixty-three that Ref-Finder is capable of 
extracting. It may be true that there are many other refactorings 
embedded in the code that are not part of the tool and exploring 
this aspect of the data is  a topic of future work. Conspicuous by 
their absence are any inheritance-related refactorings in the top 
five of either the upper or lower quartiles, a trend also identified 
in the previous coupling analysis [8]. Secondly, we have to 
consider what the analysis means for the two metrics studied. 
Clearly, both metrics are connected to a common core of 
refactorings. If we consider the set of thirteen refactorings across 
all Tables 3-8, there is only one refactoring, i.e., Remove 
Assignment to Parameters in Table 7 that is not common to either 
of the LCOM and C3 metrics top five (upper or lower quarter). 
The question, again a topic for future work, is to establish whether 
the two metrics essentially measure the same thing. Our analysis 
has not shown any significant or obvious differences, although for 
some refactorings that we’ve highlighted the approach that the C3 
metric takes with respect to method textual similarity would likely 
make a difference to its value compared with LCOM. Thirdly, we 
need to consider the implications of the results of our analysis on 
the developer. It is clear that the Rename method refactoring is 
different in terms of how often it is applied compared with other 
refactorings – this is reasonably clear. We have to consider the 
possibility that it is the simplicity of this refactoring that makes it 
an easy target for developers and the fact that many tools support 
the refactoring; the same refactoring also poses a low test burden 
[10] compared with other refactorings and this may also make it 
an appealing refactoring if it is being applied manually.                     
 
Our study also needs to consider the threats to the validity of the 
work presented. Firstly, we have only considered three open-
source systems and this poses a validity threat since it brings into 
question the generalizability of the work. Secondly, we have only 
considered the top five refactorings in our analysis; while we 
could have considered every refactoring, this would have diluted 
the message of the paper and made the analysis excessively 
cumbersome. It would also have made the message that were 
trying to convey less focused. A third threat is that we have not 
included information about the effect that each refactoring has on 
the class where it is applied. Put another way, we know that, for 
example, a method has been renamed, but we don’t know whether 

97



that refactoring had a positive effect or not on the cohesion of the 
class. We have assumed that refactorings have been applied in a 
remedial sense. In the case of Rename method we have posited 
that it was done to make the method and class more readable and 
hence more maintainable. Perhaps this was the first step in tidying 
up classes and making them more cohesive in the long run (again 
in accordance with the notion of clean code [18]. Finally, without 
experimenting with actual developers to find out how their 
decision-making processes work and on a scale that can be 
generalized, our conclusions will always be speculative.  
 
 
6. CONCLUSIONS AND FURTHER WORK 
 
In this paper, we analyzed large set of refactorings to understand 
the characteristics of two cohesion metrics (the LCOM [6] and the 
C3 [16]) from a refactoring perspective. Our main research 
question was whether, when we decomposed the metric data into 
quartiles, different sets of refactorings would be identified in the 
lower and upper quartiles for each metric. Results showed that the 
set of refactoring types across both upper and lower quartiles was 
broadly the same, although in actual numbers the refactorings 
differed widely. The Rename method refactoring stood out from 
the rest for both metrics. It was applied over three times as often 
to classes with low cohesion than classes with high cohesion. This 
suggests that it may be a useful tool in making classes more 
cohesive for long-term maintainability, although a more in-depth 
study would need to establish how that would work in practice. 
We believe that the study is interesting since it tells us something 
about the relationship between the concept of cohesion and 
refactoring, an under-researched, yet important aspect of systems. 
There are many other avenues for further work. Firstly, it would 
be useful to include defect data in a similar analysis to establish 
whether low or highly cohesive classes as we have portrayed them 
influence the type of refactorings applied to a class. It is also 
planned to undertake experiments with industrial developers to 
determine the motivation for why developers refactor and when. 
It would also be interesting to measure the post-impact of 
renaming refactorings on the comprehension of classes, since our 
study suggests that it may be a significant factor. Finally, we want 
to expand the analysis to other open-source systems and to include 
industrial systems to see how the two compare.     
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