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ABSTRACT 

There is growing number of research efforts in developing auto-scaling algorithms and tools for cloud 
resources. Traditional performance metrics such as CPU, memory and bandwidth usage for scaling up or 
down resources are not sufficient for all applications. For example, modeling and simulation 
experimentation is usually expected to yield results within a specific timeframe. In order to achieve this, 
often  the quality of experiments is compromised either by restricting the parameter space to be explored 

or by limiting the number of replications required to give statistical confidence. In this paper, we present 
early stages of a deadline-based simulation experimentation framework using a micro-services auto-scaling 
approach. A case study of an agent-based simulation of a population physical activity behavior is used to 
demonstrate our framework. 

1 INTRODUCTION 

Recently there is growing number of research efforts in developing auto-scaling algorithms and tools for 

cloud resources. Usually, traditional auto-scaling performance metrics such as CPU, memory and 
bandwidth usage are used as an indication for scaling up or down resources. However, these metrics are not 
sufficient for all applications. For example, modeling and simulation experimentation is usually expected 
to yield results within a specific timeframe. In order to achieve this the quality of experiments is 
compromised either by restricting the parameter space to be explored or by limiting the number of 
replications required to give statistical confidence. In this paper, we present early stages of a deadline-based 

auto-scaling algorithm implemented in a generic framework for distributed computing resources auto-
scaling. The Microservice-based Cloud Application-level Dynamic Orchestrator (MiCADO) framework 
supports optimal and secure deployment and runtime orchestration of cloud applications. 
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The motivation for extending MiCADO to enabling deadline-based simulation experimentation is 
business-driven (Taylor et al. 2018). However, the implementation supports general Bag-of-Tasks (BoT) 
applications auto-scaling. 

A deadline-based experiment (denoted 𝐸) can be defined by the 3-tuple: 
 

𝐸 = (𝑆, 𝑡𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒 , 𝑡𝑠_𝑒𝑠𝑡) where, 
 

 𝑆 is the set of simulations 𝑠 in the experiment, thus 𝑠 ∈ 𝑆 
 𝑡𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒 is the desired duration of the experiment, and 

 𝑡𝑠_𝑒𝑠𝑡 is the runtime estimation of a single simulation 𝑠 run 
   
We must note here that in the experiment definition the deadline is the desired duration of the 

experiment. Whether it is a hard constraint, it is not a concern of the experiment definition but of the policy 
description. Preliminary results show the behavior of the algorithm in restricted and relaxed conditions. 

The paper is organized as follows. Section 2 presents related work. Section 3 presents the MiCADO 

framework and its extension for deadline-based simulation experimentation. In Section 4 preliminary 
results are presented and finally Section 5 concludes the paper. 

2 RELATED WORK 

Literature in distributed computing infrastructures show a growing interest in cloud resources orchestration 
and auto-scaling. Especially, with the growing rate of cloud computing applications (it is estimated that by 
2020 83% of enterprise workloads will be in the cloud (Forbes 2018)) and the associated cost in using 

computing resources as a utility, there is an imperative market need for optimizing the usage of leased 
resources. 

In the realm of deadline-based auto-scaling, a recent survey by Thai et al. (2018) identified that the 
most popular requirement for BoT applications, including simulation parameter sweep applications, is the 
deadline constraint with the objective to minimize cost. Cai et al. (2017) performed experiments with 
deadline-based workflow applications on cloud resources. They have shown that when task execution time 

is stochastic, the cost of leased resources is increased and often the deadline constraint is violated. They 
therefore developed a simulator for evaluating deadline-based workflow applications with stochastic task 
execution time that can be used to evaluate the infrastructure performance. Mao et al. (2010) and Vecchiola 
et al. (2012) discussed deadline-based cloud auto-scaling in the level of hardware virtualization. They both 
developed algorithms and implemented them in Azure and Aneka platforms respectively. The literature 
shows interesting implementations however these are very limited yet.  

MiCADO provides functionalities such as virtual machine and container level auto-scaling, 
programmable scaling logic, standardized application, policy and experimentation descriptions, and 
resource optimizer. Further, MiCADO provides APIs for various cloud middleware and HPC resources. 

In the next section we introduce the MiCADO framework and explain its extension to support deadline-
based applications. 

3 MICADO TOP-LEVEL ARCHITECTURE 

The top-level architecture of the generic MiCADO framework is shown in Figure 1. The architecture is 
organized in layers based on the concept of microservices as defined in Balalaie et al. (2015) providing 
decoupling of independent components of monolithic applications. Starting from the top, the Application 
layer contains the actual application code (e.g. simulator) that requires resources on demand. The 
Application definition layer contains application description templates that define the application 
requirements in terms of infrastructure, security and connectivity. These templates are application agnostic 

and can be reused by any application with the same requirements. The Orchestration layer is padded by the 
Coordination interface API and the Cloud interface API. These two APIs decouple the Orchestration layer 
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from the layers above and below, respectively. The Microservices discovery and execution sublayer is 
responsible for starting and stopping microservices execution and keeping reachability information at 
runtime such as IP address and port number. The Microservices coordination logic sublayer is responsible 
for the operations of running infrastructure such as starting and stopping instances and microservices 
migration. The Security, privacy and trust services vertical layer provides security management across the 
Orchestration layer. The required security services are defined at the Application definition layer. The two 

lower layers, Cloud interface layer and Cloud instance layer, support access to cloud resources. The first 
provide interface that supports different cloud middleware APIs for direct access to cloud resources. Further 
it can interface with Platform as a Service (PaaS) APIs so as additional services, such as billing and account 
management, can be provided. The second layer contains the actual cloud instances provided by 
Infrastructure as a Service (IaaS) providers and can be private or public infrastructures. The cloud instances 
can support both hardware virtualisation and Operating System (OS) virtualisation. In the latter case, many 

containers can run in the same cloud instance. MiCADO supports both Docker Swarm and Kubernetes 
container orchestration. More details on MiCADO and its implementation can be found in Kiss et al. (2017). 

In the following subsection we describe the general MiCADO design as well as the components that 
support the deadline-based functionality. 

3.1 MiCADO Design 

In this section, we provide the high-level design of the core MiCADO framework and its extension to 

support deadline-based simulation execution. That is, the Orchestration layer and the application specific 
external components that belong to the Application layer. At this level of abstraction, we mention the 
components’ functionality rather than the tools used to implement these functionalities. It is worth 
mentioning however that all components are implemented using open source tools. Figure 2 shows the 
MiCADO design, which consists of the MiCADO core and the deadline-based simulation experimentation 
application specific components. The functionalities denoted with dotted boxes belong to MiCADO core 

while the ones denoted in clear boxes belong to the simulation application plane. Further, the red outlined 
components constitute the extension for supporting deadline-based applications. 

 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 

 

Figure 1: MiCADO top-level architecture 
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3.1.1 MiCADO Core  

This is the heart of the Orchestration layer. It mainly consists of two logical components: the MiCADO 
Master node and the MiCADO Worker nodes. Worker nodes are volatile components where the applications 
microservices are executing. They are attached to the cluster dynamically and are detached when they are 
not needed. Decisions on Worker nodes allocation are taken in the Master node. 

The functional components of the MiCADO Master node are: MiCADO submitter receives the 
application description (e.g. TOSCA specification), interpreters it and creates the infrastructure. Cloud 

orchestrator allocates and releases virtual machines by communicating with the cloud APIs and 
starting/stopping Worker nodes. Container orchestrator allocates applications to containers in the Worker 
nodes, track their execution and destroys them when needed; it is also responsible for scaling at the 
container level. Monitoring system collects information on resources utilization from the Worker nodes and 
creates alerts if appropriate. Policy keeper implements the application policies; it makes decisions on 
starting/stopping cloud resources and on scheduling containers to Worker nodes; importantly it keeps Cloud 

and Container orchestrators synchronized. Optimizer is always running in the background, performs 
optimization calculations on demand and informs Policy keeper on optimized setup of cloud resources and 
container infrastructure. In the deadline-base implementation, the generic Policy Keeper and MiCADO 
Submitter are replaced by the Job Queue Manager and its components. 

In the MiCADO Worker nodes there are three functional components: Node/container monitor 
measures the performance metrics and informs the Monitoring system in the Master node of these attributes. 

Container executor receives instructions from Container orchestrator in the Master node to create or 
destroy containers. Finally, Container components realize the applications execution as defined in the 
container infrastructure description. 

3.1.2 MiCADO deadline-based components for simulation experimentation 

As mentioned above the deadline-based simulation experimentation application specific components are 
denoted in the red outlined boxes in Figure 2 and span in the Orchestration and Application layers. In 

MiCADO core there are two logical components: Job queue manager and Job queue agents. There are also 

 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 

 

Figure 2: MiCADO high-level design for deadline-based simulation experimentation 
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supporting components in the application layer: Simulation manager, Simulation repository and Simulation 
experiment submitter. All components are explained below. 

Job queue manager communicates with components in both the Orchestration and the Application 

layers. Importantly, Job queue manager should be able to control the services of the Container 
orchestrator. Job queue manager is the component that allocates jobs to containers. It also communicates 
with the Monitoring system to receive runtime metrics and decide whether to scale up/down. Information 
about the status of each job running in Worker nodes is taken from Job queue agents. Job queue agents are 
responsible for keeping track of the jobs running in each container in the Worker nodes, checking whether 
there are more jobs to be executed in the Job queue manager, fetching new jobs and updating the 

Monitoring system. 
Two very important subcomponent of the Job queue manager are the Experiment receiver and the 

Container autoscaler. Experiment receiver is a RESTful web service providing a standard API for 
experiment submissions. When an experiment is received, an experiment ID is assigned to it. The ID is then 
sent as a response to the external submitter. Container autoscaler is the actual implementation of the 
deadline-based auto-scaling algorithm. Container autoscaler calculates the number of containers needed in 

order to achieve the experiment deadline and instructs the Container Orchestrator to scale up/down. The 
pseudocode for monitoring the container counter is shown in List 1. The counter checks first whether there 
are more simulation runs to be executed in the job queue. Then the remaining time to the defined deadline 
is calculated. Lines 3 and 4 deal with estimating the single simulation run time based on the updated runtime 
on the cloud resources. Lines 7 to 14 calculate the number of containers needed, restricted by the 
infrastructure specification (i.e. the minimum and maximum number of containers for the whole 

experiment), and notify the Container autoscaler to start up or shut down containers. The process is 
repeated in specified time intervals. 

 

List 1: Pseudocode for monitoring the container counter 
  

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

WHILE jobQueue > jobAccomplished 

 CALCULATE remaining time 

 IF jobAccomplished NOT ZERO 

    taskDuration = estimated taskDuration 

 ELSE 

    taskDuration = average taskDuration 

 UPDATE container counter 

    IF containerCount > JobQueue 

       containerCount = JobQueue 

    IF containerCount > maxContainer 

       containerCount = maxContainer 

    IF containerNeeded < minContainer 

       containerCount = minContainer 

 SEND to Container Autoscaler 

 WAIT n sec  

END WHILE 

  

 
The Application layer components of the deadline-based simulation experimentation system are: 

Simulation manager, Simulation experiments repository and Simulation experiment submitter. Simulation 
manager is responsible for uploading experiment details (e.g. simulation model, input data, etc.) to the 

Simulation experiments repository, downloading the results from the repository and creating experiment 
descriptions that then are communicated with the Simulation experiment submitter. The experiment 
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description is a JSON schema providing global experiment data (i.e. experiment deadline, single simulation 
runtime estimation, URLs for simulation executables, credentials if needed and minimum required 
resources (i.e. processor, memory)) and specific data (i.e., model, input parameters, output path) for each 

simulation run. Simulation experiments repository keeps all experiments data and files (or URLs to data 
and files). Job queue manager also communicates with the Simulation experiments repository for fetching 
the experiment files and uploading the results. Simulation experiment submitter receives the JSON 
simulation experiment description from the Simulation manager and submits the experiment to Job queue 
manager using Experiment receiver’s REST API. It then gets back the experiment ID and in turn sends it 
to Simulation manager. 

More technical details about the Job Queue system can be found in Abu and Kiss (2018). 

4 EXPERIMENTATION AND PRELIMINARY RESULTS 

In this section, we report preliminary results on evaluating the deadline-based auto-scaling algorithm. We 
conducted tests with an Agent-Based Simulation developed to study the physical activity behavior of a 
population. The model takes into account individual characteristics and their effect on physical activity over 
time. Health conditions risks, such as risk for cardiovascular diseases, diabetes, depression and 

musculoskeletal incidents, are estimated at a baseline and then are adjusted to reflect the relative risk of the 
physical activity level on these conditions. of the individual over time. The simulation is built in the 
REPAST Simphony open source tool (https://github.com/Repast/repast.simphony). 

The aim of this paper is to demonstrate our deadline-based simulation experimentation framework that 
extends MiCADO. We therefore focus on this aspect of the experimentation rather than results related to 
the physical activity impact on the population health. The runtime of the simulation depends on the 

simulated population. For our experimentation, we aimed for as short runtime. Therefore we ran the 
simulation with 15,000 initial population which runs for approximately one and a half minutes. 

The cloud resources were provided by CloudSigma (www.cloudsigma.com), an SME cloud provider. 
Our test model runs for 93 sec on a local Windows PC (i5 3.2GHz CPU, 8GB RAM). For cloud type 
selection, we first ran the simulation on different instance types aiming to match the execution time of the 
local PC. The results of the type selection exercise are shown in Table 1. Cloud B is the minimum instance 

size that gives comparable performance with our local PC, thus we selected this instance for the first 
performance evaluation. Interestingly, bigger instances show worse performance. We assume that this 
behavior is due to time-sharing since our resources are not dedicated. 

 

Table 1: Instance type selection 

Instance CPU (GHz) RAM (GB) Runtime (sec) 

Local PC 3.2 8 93 

Cloud A 1 1 440 

Cloud B 2 2 96 

Cloud C 2 3 92 

Cloud D 3 3 175 

 

 
We then performed experiments for different scenarios combining underestimation and overestimation 

of single simulation runtime and tight and relaxed deadlines. The number of simulations included in the 
experiment was 20. We selected a non-scalable hardware virtualization, that is min = max 4 𝑉𝑀𝑠 and a 
scalable OS virtualization of min = max = 6 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑠. In theory we can run 6 simulations in parallel. 
However, the selected instance type 2GHz/2GB was too small to run more than one container with our 

REPAST simulation and its JAVA runtime dependencies. Therefore, the theoretical minimum experiment 

https://github.com/Repast/repast.simphony
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time is (96 sec 𝑥 20) / 6 =  320 𝑠𝑒𝑐. Based on the above analysis the experiments 3-tuple elements are 
shown in Table 2. 

 

Table 2: Experiment scenarios 

Scenario 𝒔 ∈ 𝑺 tdeadline (sec) ts_est (sec) 

A 20 300 60 

B 20 1,200 60 

C 20 300 90 

D 20 1,200 90 

E 20 300 120 

F 20 1,200 120 

 
 
Figure 3 shows the timeline of the numbers of containers indicated as needed by the algorithm and the 

actual running containers after this suggestion for scenarios B and D (scenarios A and C are not plotted 
since due to the very short deadline all six containers were running as well as indicated as needed). As we 
can observe, there is a time elapse between the suggestion and actual scaling. This is to avoid unnecessary 
starting up and shutting down containers. Another observation is the variation of runtime on the cloud 
resources we used. For example for scenario D, the average runtime of a single run was 230 sec with a 
maximum of 543 sec. This behavior caused violation of the deadline. 

We should mention here that we do not report on delays of redeployment due to container failures. We 
plan to include these results in future publications. 

5 CONCLUSIONS 

In this paper, we presented the implementation of an auto-scalable framework for simulation 
experimentation. The novelty of our framework is the ability to scale at both the hardware and the OS level. 
At this early stage, we evaluated the deadline-based scaling algorithm using small-scale experimentation 

with limited resources. Interesting conclusions have been drawn from the preliminary results that led to our 
future directions. A very important observation is that the selection of the instance size as per application 
requirements is critical for optimizing resource sharing. 

Our next steps are to evaluate the infrastructure performance with bigger simulations and large-scale 
experimentation in bigger infrastructures and to automate the generation and execution of experiments. The 
next version of MiCADO is already implemented and currently is beta testing phase where Ansible 

playbook is used to orchestrate multi-machine deployment of the parallel infrastructures. 
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Figure 3: Scenario B & D – Number of containers suggested by algorithm and running in MiCADO 
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