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Summary: Ovarian cancer is one of the most lethal forms of female cancers. Cell culture is often the 19 
go to model to study the molecular processes of cancer. However, this is an oversimplification of the 20 

reality. 3D tissue culture has been developed to address the cell culture limitations and to provide a 21 

more realistic model of the system studied. Cells grown in 3D represent better the human tumour 22 

microenvironment. This meta-analysis is exploring the use of 3D tissue culture as a model of ovarian 23 

cancer. Our analysis shows that ovarian cancer cells grown in 3D exhibit enhanced regulation in 24 

processes pertinent to tumour development and progression. We identify a panel of genes associated 25 
with specific 3D growth conditions that could be used as conditional markers. Finally, we present an 26 

overview of the state-of-art of 3D culture with an extensive profile of the genes and pathways en- 27 

hanced in ovarian cancer models.  28 

Abstract: Three-dimensional (3D) cancer models are revolutionizing research, allowing for the recapitulation 29 

of in vivo like response through the use of an in vitro system, more complex and physiologically relevant than 30 

traditional mono-layer culture. Cancers such as ovarian (OvCa), are prone to developing resistance and are 31 
often lethal, and stand to benefit greatly from the enhanced modelling emulated by 3D culture. However 32 

current models often fall short of predicted response where reproducibility is limited owing to the lack of 33 

standardized methodology and established protocols. This meta-analysis aims to assess the current scope 34 

of 3D OvCa models and the differences in genetic profile presented by a vast array of 3D cultures. A meta- 35 

analysis of the literature (Pubmed.gov) spanning 2012 – 2022, was used to identify studies with comparable 36 

monolayer (2D) counterparts in addition to RNA sequencing and microarray data. From the data 19 cell lines 37 
were found to show differential regulation in their gene expression profiles depending on the bio-scaffold (i.e. 38 

agarose, collagen or Matrigel) compared to 2D cell cultures. Top genes differentially expressed 2D vs. 3D 39 
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include C3, CXCL1, 2 and 8, IL1B, SLP1, FN1, IL6, DDIT4, PI3, LAMC2, CCL20, MMP1, IFI27, CFB, and 40 

ANGPTL4. Top Enriched Gene sets for 2D vs. 3D include IFN-α and IFN-γ Response, TNF-α signalling, IL- 41 

6-JAK-STAT3 signalling, angiogenesis, hedgehog signalling, apoptosis, epithelial mesenchymal transition, 42 

hypoxia, and inflammatory response. Our transversal comparison of numerous scaffolds allowed us to high- 43 

light the variability that can be induced by these scaffolds in the transcriptional landscape as well as identify- 44 
ing key genes and biological processes that are hallmarks of cancer cells grown in 3D cultures. Future studies 45 

are needed to identify which is the most appropriate in vitro/preclinical model to study tumour microenviron- 46 

ment.    47 

Keywords: Ovarian Cancer; High Grade Serous Ovarian Cancer (HGSOC); Monolayer; 2D; 3D; Scaffold; 48 

Tumour Microenvironment (TME); Extra cellular matrix (ECM); collagen; Matrigel; agarose. 49 

 50 

1. Introduction 51 

Ovarian Cancer 52 

Ovarian cancer (OvCa) is one of the most lethal gynaecological malignancies of the 21st century. Affecting 53 

over 313,000 women worldwide, OvCa typically presents at a late stage with non-specific symptoms, causing 54 

a detriment to survival outcomes, which fall as low as 20% [2]. The metabolic processes involved in OvCa 55 

aetiology however remain poorly understood. There are three main histological types of OvCa. Epithelial 56 
OvCa, accounts for 90% of all cases, with high grade serous ovarian cancer (HGSOC – 70%) being the most 57 

prevalent of the five subtypes as well as the most lethal [2]. Other subtypes include low grade serous ovarian 58 

cancer (LGSOC – 5%), endometrioid adenocarcinoma of the ovary (EAC – 10%), clear cell carcinoma (CCC 59 

– 10%) and mucinous adenocarcinoma (MAC < 3%). The least common are germ line and stromal sex cord 60 

tumours which cover 10% of cases [3]. 61 

In order gain a better understanding of the events that take place within the tumour microenvironment (TME), 62 
a model capable of emulating the in vivo milieu is required. The use of conventional monolayer cell culture 63 

(two-dimensional; 2D) allows for analysis using a controlled in vitro environment to investigate physiological, 64 

morphological, and biochemical properties of biological systems [4]. Monolayer culture has served as an 65 

integral foundation of biological research since the introduction of immortalised HeLa in 1951 paving the way 66 

for thousands of subsequent cell lines [5]. Cell models have since proven invaluable in the modelling of 67 

normal physiology and diseases including cancer [6].  68 

Nevertheless, monolayer culture has translational limitations, with differences in gene expression, drug re- 69 

sponse and cell signalling evident when compared to in vivo models [7]. Many processes related to tumor- 70 

igenesis and metastasis are often over-simplified in monocultures [8]. As a result, monolayer culture often 71 

fails to recapitulate the complex microenvironment, diffusion gradients and cellular characteristics associated 72 

with in vivo systems. Thus, leading to variation from predicted response in animal and computational model- 73 

ling, as well as clinical testing [7], [9].  74 

As global research efforts strive to answer increasingly complex biological questions, there is a greater need 75 

for a representative system capable of physiological emulation. Many studies show that the complexities of 76 

tissue organisation, differentiation, and gene expression are demonstrated at higher levels in three-dimen- 77 

sional (3D) cell cultures [10], [11]. This set up allows for cells to be grown in an environment that sustains 78 
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spatial complexities representative of in vivo allowing cells to differentiate and interact in a tissue specific 79 

manner [12]. Key differences between monolayer and 3D cultures are summarised in Table 1 [6]. 80 

 81 

Table 1. Differences between 2D and 3D cell culture systems [13]. 82 

2D - Culture 3D - Culture 

Cells grown in monolayers – bi-
ologically simple 

Cells form differentiated aggregates, 
spheroids, or organoids – biologically 
complex 

Gene and protein expression 
differ from in vivo 

Expression closely mimics in vivo 

Uniform exposure to chemical 
stimuli; drugs often appear af-
fective  

Nonuniform growth results in toxicity 
profiles and diffusion gradients 
closely related to in vivo 

Oxygen diffusion is uniform and 
higher than many in vivo struc-
tures; thus, augmenting mito-
chondrial function and ROS pro-
duction 

Oxygen distribution varies, hypoxic 
cores are evident; closely mimicking 
in vivo variations of many complexes 

Long term culture can result in 
genetic drift with epigenetic and 
morphological changes evident 

Growth is typically short term, mini-
mizing genetic drift 

Can be cheaper and less com-
plex, therefore easily recapitu-
lated in a lab  

Requires additional nutrients and biologi-
cal scaffolds, and can therefore be more 
expensive and time consuming  

Established protocols  Limited established protocols  

 83 

Further evidence emphasises the importance of the TME for maintained cancer stemness, exerting a signif- 84 

icant effect over gene expression [14]. The integration of an extracellular matrix (ECM) i.e., a scaffold, pro- 85 

vides the necessary environment for this 3D cellular growth and differentiation [15]. Scaffolds emulate the 86 

tissue-tissue interfaces and chemical gradients required within a living system. Recent advancements include 87 

3D organoid systems capable of sustaining a vast array of tumour models including glioblastoma, colon and 88 
lung as well as ovarian [16]–[18]. 89 

Epithelial OvCa cells grown in 3D, often present with histological features characteristic of the original tumour 90 

in situ [19]. 3D epithelial OvCa cell lines also present with reduced proliferative rate thought to be enabled by 91 

the synthetic ECM [20]. An enhanced response to external stimuli is also evident within OvCa cultures. Thus 92 

far 3D OvCa cultures have proven particularly useful as a model of therapeutic resistance; capturing devel- 93 

oped resistance to platinum-based therapeutics similar to in vivo OvCa response. The OvCa cell line SKOV- 94 
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3, for example demonstrates a higher degree of chemoresistance to both cisplatin and paclitaxel when cul- 95 

tured in 3D [21]. Moreover, colorectal and pancreatic cancer cells grown in 3D exhibit differential gene ex- 96 

pression that is associated with augmented ATP production within 3D cultures. Subsequently, amino acid 97 

production and metabolomic activity of glycolytic intermediates are increased when compared with monolayer 98 

substrates of the same cell line [22], [23]. 99 

A wide array of scaffolds can be used to recapitulate the TME and support differentiation of 3D culture, given 100 

that TME is pivotal for the regulation of a diverse array of processes including, migration, proliferation, differ- 101 

entiation, and cell-cell communication [24]. Often interchangeable within the literature, spheroids and organ- 102 

oids differ in complexity. Typically, spheroids are rounded and are comprised of cells grown initially in 2D, 103 

and as such retain some simplicity of gene expression. Growth is often achieved using hanging drop method 104 

or an ultra-low attachment plate and is ideal for the study of diffusion gradients and core hypoxia [25].  105 

Given the current trajectory of 3D cancer models and their appeal to support the reduction of animal research, 106 

it is therefore safe to assume that a complex OvCa on a chip model will soon be achievable. This meta- 107 

analysis aims to evaluate the current landscape of OvCa cell models to elucidate differences presented in 108 

their genetic profile and associated signalling pathways, when grown in 3D compared to 2D monolayer cul- 109 

ture.  110 

2. Materials and Methods 111 

Study Design 112 

The review was designed with the intent to search current literature for studies modelling OvCa using 3D 113 

culture techniques and assess the differences in gene regulation between 2D and 3D cultures. The National 114 

Centre for Biotechnology Information (NCBI) PubMed data base was searched for studies relevant to the 115 

scope of the review between the years 2012 and 2022. No limitations to original language were applied, as 116 

long as English translations were available. The filter for human studies was utilised. Search terms applied 117 
include: “cancer” AND “ovar*” AND “3d” NOT “sound” NOT “ultra” NOT “imaging” NOT “Ultrasound” NOT 118 

“Review”. Literature that was inaccessible via the university institutional access were also removed. Addi- 119 

tional searches through NCBI, Sequence Read Archive (SRA) and Gene Expression Omnibus (GEO) acces- 120 

sion platforms were also utilised.  121 

Inclusion criteria: Studies were included if they encompassed 3D OvCa models as well as 2D comparisons. 122 

In addition, those with associated data from sequencing arrays and RNA sequencing, accessible through 123 
GEO or SRA, were also sought. 124 

Exclusion criteria: Studies were discarded if they did not meet the original search criteria. Additional studies 125 

that were excluded comprised of those with a lack of comparative 2D culture, no open access and no human 126 

samples i.e., the use of animal (usually murine) cell lines. Final exclusion criteria for enrichment encom- 127 

passed studies with no associated data.   128 

 129 

 130 
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 131 

Figure 1. Search Criteria workflow. Studies accessed through Pubmed.gov on the 25/06/2022. Using pre- 132 

defined search terms. Articles were subjected to 2 rounds of screening by two independent reviewers. Addi- 133 

tional data sought through Sequence Read Archive and Gene Expression Omnibus 07/2022. Studies were 134 
split into two groups: those suitable for the background summary (N = 50) and those containing associated 135 

data (N = 5).   136 

Cell Culture and 3D modelling  137 

Unless otherwise stated all reagents were purchased from Thermofisher Scientific. The serous ovarian ade- 138 

nocarcinoma cancer cell line SKOV-3 (ECACC 91091004) were seeded in conventional culture-treated pol- 139 

ystyrene T75 flasks. Cells were grown in Dulbecco modified eagle’s medium (DMEM), supplemented with 140 
10% foetal bovine serum and 1% penicillin-streptomycin. Media changed every 2 – 3 days with experimental 141 

work proceeding after 3 passages. Cell suspension concentrations were calculated using trypan blue exclu- 142 

sion method. For monolayer substrate comparison, cells were seeded in triplicate, at a density of 5x106 in an 143 

Ibidi 8-well chamber (Ibidi, Munich, Germany) with complete medium. 3D cultures were generated using a 144 

1:12 ratio of cells suspended in medium mixed with GelTrexTM (batch: 2158356). Each well contained a final 145 
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concentration of 300μl. The chamber was left to incubate at 37°C for 30 minutes to allow for gelation, 100μl 146 

of media was then added to each well. Media changes took place every 2 – 3 days up to day 10. Images 147 

were captured each day using a Nikon TS100 Inverted Phase Contrast light microscope (Nikon, Tokyo, Ja- 148 

pan).  149 

Certificate of analysis and declaration of mycoplasma free cultures were provided upon receipt of cells from 150 
PHE and validated in house with DAPI staining; cells were used following 3 passages from purchase. 151 

Immunofluorescent imaging  152 

On day 10, media was removed. Both 2D and 3D cultures were fixed with 4% paraformaldehyde in PBS for 153 

10 and 30 minutes respectively. Chambers were washed x3 with PBS following incubation with 0.1% triton- 154 

x, for 10 minutes. Chambers were again washed prior to blocking with 10% bovine serum albumin (BSA) 155 

(Sigma Aldrich, Burlington, MA, USA), for 1 hour at room temperature. BSA was then removed for phalloidin 156 
(ATTO-TEC, Siegen, Germany) actin staining, using a 1:1000 dilution in 1% BSA for 30 minutes at room 157 

temperature. Chambers were again washed x3 with PBS before the administration of a final DAPI (Invitrogen, 158 

Massachusetts, USA) nuclear stain for 10 minutes. Samples were washed to remove residual DAPI and kept 159 

hydrated in PBS prior to imaging. 160 

Laser Scanning Confocal Microscopy   161 

Laser scanning confocal microscopy (LSM780, Carl Zeiss, Oberkochen, Germany) was used for 3D imaging 162 
of cells cultured in a glass substrate and encapsulated in 3D Geltrex hydrogel. The cell samples were subject 163 

to excitation\emission wavelength at 405 nm\410 nm- 495 nm and 488 nm\495 nm – 620 nm, for imaging of 164 

nuclei (DAPI) and actin (phalloidin), respectively. The emitted fluorescence signal was recorded using pho- 165 

tomultiplier tube (PMT) detectors. The optical Z-stacks were acquired using 63x objective (A plan-Apochro- 166 

mat 63x/1.4 Oil immersion, Carl Zeiss). The laser power, detector gain, and scan speed were optimized to 167 

avoid photobleaching. The image size was 2048 pixels x 2048 pixels, with a voxel size of 40 nm x 40 nm in 168 
the XY-plane, and 250 nm in the Z-direction. The images were deconvoluted using automatic deconvolution 169 

mode with theoretical point spread function using Huygens Essential software (Scientific Volume Imaging, 170 

The Netherlands). Avizo software (Thermo Fisher Scientific, Waltham, MA, USA) was used for 3D visualiza- 171 

tion. 172 

RNA Sequencing – Sequence Read Archive (SRA) 173 

NIH Sequence Read Archive (SRA) data were found using the same search terms outlined in the study 174 
design. SRA data in the form of RNA sequencing reads produced with Illumina NextSeq 500 and Illumina 175 

HiSeq 2500 were acquired for re-analysis, accession IDs are outlined below in table 2. Briefly, relevant data 176 

in the form of FASTQ files were transferred from the SRA data base via Amazon Web Services for in house 177 

analysis (Table 2) – full list can be seen in (Supplementary Table 1). The corresponding scaffold used within 178 

each study are as follows. PRJNA472611, 3D cells were embedded within agarose; PRJNA564843 cells 179 

were grown upon a layer of onmental fibroblasts embedded within Collagen; PRJNA530150 3D cells were 180 
grown in Matrigel.  181 

Table 2. Accession codes from RNA sequencing of 2D and 3D OvCa cell models.  182 
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Accession Platform 
Paired 
Reads 

PRJNA472611 Illumina HiSeq 2500 24 

PRJNA530150 Illumina NextSeq 500 32 

PRJNA564843 Illumina NextSeq 500 36 

 183 

The raw RNAseq data was produced using the pipeline previously described to standardise the results for 184 
comparison [26]. Briefly, TopHat2 (v.2.1.1) was applied to align reads to the reference human genome, 185 

GRCH38 (hg19) using the ultra-high-throughput short read aligner Bowtie2 (v.2.2.6). Where applicable rep- 186 

licates were merged according to a selection criterion taking only high-quality mapped reads (<30), using 187 

Samtools (v.0.1.19). Subsequent transcript assembly and quantification followed using Cufflinks (v.2.2.1). 188 

Finally, differential expression profiles were obtained for further analysis using Cuffdiff (v.2.2.1). 189 

RNA Sequencing – Statistical Analysis 190 

The expression data was analysed in R (v. 4.1.0, The R Foundation for statistical Computing, Vienna, Austria) 191 

with R studio desktop application (v.2022.07.2, RStudio, Boston, MA, USA) using specific libraries for mod- 192 

elling, visualisation, and statistical analyses for the identification of differentially expressed genes (DEGs). 193 

Similar to our previous work, Pearson correlation coefficient was applied for the estimation of gene expression 194 

patterns and student’s t-test was utilised to assess statistical significance between expression profiles (i.e., 195 

2D vs 3D). Significance thresholds were set for a p-value < 0.05. For identification of enriched pathways in 196 
omics data pathfindR was employed. Volcano plots for visualisation were generated using R package ggplot2 197 

(v.3.3.5). DEGs were identified and isolated for subsequent enrichment analysis. Furthermore, we have used 198 

the OmicsPlayground online application for exploring the transcriptional landscape of ovarian cancer cells 199 

grown in 2D and various 3D systems using as scaffolds agarose, collagen and Matrigel [27].   200 

Gene Expression Omnibus (GEO) Array – Statistical Analysis 201 

Genomic data sets (accession numbers: PRJNA232817 and PRJNA318768) were downloaded from NCBI 202 
public repository GEO archive. These OvCa cells were grown using ultra-low attachment and hanging drop 203 

techniques. The GEO2R web application was accessed to re-analyse the expression data in line with the 204 

research questions within this study (control 2D samples vs. control 3D samples). Thresholds were again set 205 

at p-value < 0.05 and LogFC2 > 1 with applied Benjamini & Hochberg (False discovery rate). Volcano plots 206 

were generated through GEO2R (https://www.ncbi.nlm.nih.gov/geo/geo2r/).   207 

Functional Enrichment Analysis 208 

Differentially expressed genes (DEGs), identified through GEO2R and SRA analysis, were then subjected to 209 

functional enrichment analysis. Funrich (v.3.1.3), was accessed to provide a functional annotation including 210 

associated sites of expression, biological processes, and pathways. Enrichment Analysis was performed 211 

using Omics Playground for the functional comparison of OvCa genes in 2D vs. 3D [27].  212 

Presentation of Data and Statistical Analysis  213 
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Global distribution infographics were generated using R (v.4.1.0) with R studio (v.2022.07.2) along with 214 

ggplot2 (v.3.3.6), maps (v.3.4.0) and world map data from natural earth (0.1.0). Subsequent comprehensive 215 

background analysis and graphs pertaining to publication data, cell line frequency and associated character- 216 

istics were generated using GraphPad Prism9® (v.9.4.1 - GraphPad Software, Inc.). Statistical reliability of 217 

Omics Playground data are ensured through the incorporation of Spearman rank correlation, GSVA, 218 
ssGSEA, GSEA and Fisher extract test [27].  219 

3. Results 220 

3D Ovarian Cancer models  221 

Literature overview 222 

The geographical spread of the fifty studies selected suggests that the United States of America (USA) are 223 

the top publishers of 3D OvCa modelling with over 50% of the research accessed originating within the USA. 224 
China, Italy, Korea and the UK follow, with the majority of the work originating from Europe or North America 225 

(Figure 2A, B).  226 

 227 

 228 
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 229 

 230 

Figure 2(A) Gradient map depicting the global spread of publications 2012 – 2022; (B) Chart showing no. of 231 

publications per country 2012 – 2022; (C) Top cell lines used in 3D Ovarian cancer (OvCa) within the litera- 232 

ture; (D), Trends between the distribution of cell models against actual global rates (white) pertaining to OvCa 233 

subtype (grey); (E), Genome ancestry of cell lines used (grey), contrasted with actual global OvCa ethnicity 234 

rates (white) (2012 – 2022); (F) The ten most frequently used scaffolds for supporting growth of OvCa cells 235 
(circa 2012 - 2022) selected from the publication corpus analysed. 236 

 237 
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To achieve 3D culture, cell lines are grown within a fabricated ECM also known as a scaffold. Within the 238 

literature the most commonly used scaffolds for 3D OvCa growth were pre-coated low attachment plates, 239 

followed by Matrigel, hanging drop method and plant-based hydrogel (Figure 2C). Over 43 unique OvCa cell 240 

lines were utilised throughout the studies. The top 10 represent an array of OvCa subtypes (Figure 2D). The 241 

ovarian carcinoma cell line SKOV-3 was the most frequented within the literature, appearing on 19 instances. 242 
The trend of studies focusing on OvCa subtypes was compared with the actual global incidence rates. For 243 

epithelial OvCa the cell models used followed a similar trend in frequency to actual global incidences, with 244 

HGSOC being the most prevalent form of OvCa and also the most studied. Of note sex cord stromal and 245 

granulosa OvCa comprises 10% of global cases, however no 3D models were found within the studied liter- 246 

ature. The genome ancestry of the cell lines is often overlooked, however given the disparity in care the 247 

background of the cell lines used was also sourced (Figure 2E). A disproportionate number of cell lines used 248 
are either White (N = 80) in origin or are considered unclassified i.e. no available data (N = 30).     249 

Differentially Expressed Genes  250 

Data accessed through SRA and GEO were screened for OvCa cells grown in 2D and 3D under similar 251 

conditions. Three separate studies were chosen encompassing 19 cellular models grown under normal con- 252 

ditions in agarose, Matrigel and collagen-based scaffolds. All cell lines grown in 3D showed differential gene 253 

expression when contrasted with the same cell lines under the same conditions but grown in 2D (Figure 3). 254 
The number of statistically significant differentially expressed genes (DEGs) with p < 0.05, between the 2D 255 

and 3D cultures ranged between 234 in PEO1, to 1429 in OVCAR5 cell line.  256 

 257 
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 258 

Figure 3. Differentially expressed genes (DEGs) detected by RNA sequencing analysis of OvCa cell lines 259 
grown in 2D contrasted with 3D. (A)–(Q) show data extracted from RNAseq experiments (R)–(S) show data 260 

extracted from microarrays. Significance thresholds for (A)–(Q) are set at NS > 0.05 = grey/black, *p < 0.05 261 

= blue, **p < 0.01 = red, ***p < 0.001 = green and ****p < 0.0001 = purple. (R)–(S) p-value threshold = 0.05, 262 

NS data is shown in black. (A) – (L) have agarose as scaffold, (M) – (N) are Matrigel, (O) – (Q) are collagen, 263 

(R) is hanging drop and (S) is low attachment. (A) A1847 - Endometrioid Carcinoma of the Ovary (EAC); (B) 264 

A2780 - EAC; (C) C30 - carcinoma; (D) C70 - carcinoma; (E) OVCAR3 - HGSOC; (F) OVCAR4 – HGSOC; 265 
(G) OVCAR5 - HGSOC; (H) OVCAR8 - HGSOC; (I) OVCAR10 - HGSOC; (J) PEO1 - HGSOC; (K) SKOV-3 266 

- Carcinoma; (L) UPN275 - Mucinous adenocarcinoma (MAC); (M) Kuramochi - HGSOC; (N) OVCAR4 Col- 267 

lagen - HGSOC; (O) OVCAR8 Matrigel 1 - HGSOC; (P) OVCAR8 Matrigel 2 - HGSOC; (Q) OVCAR8 Colla- 268 

gen - HGSOC. (R) HEY – HGSOC; (S) IGROV1 – EAC. 269 
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 270 

The HGSOC OVCAR8 appeared in all three studies with different accompanying scaffolds: Matrigel, agarose 271 

and collagen. Therefore, additional analysis explored the effects of different scaffolds on the genetic profile 272 

of these cells (Figure 4). All conditions influenced differential regulation of OVCAR8’s transcriptional profile. 273 

13 DEGs were identified (Table 3) based on their common dysregulation between scaffolds when grown in 274 
3D. Similarly, these genes were seen to feature highly throughout the other 3D models i.e., dysregulation of 275 

ANGPTL4 appeared in 12/19 of the studies. When comparing DEGs identified between OVCAR8 cells grown 276 

in 2D and 3D, eight were found to be common regardless of their scaffold type (Figure 4 and Table 3).  277 

 278 

Figure 4. Differentially expressed genes seen in OVCAR8 grown in 3D. (A) Agarose vs. Collagen; (B) Mat- 279 
rigel vs. Agarose; (C) Matrigel vs. Collagen. Threshold set at p < 0.05. (D) Common genes between (A - C); 280 

(E) Common genes seen between OVCAR8 grown in 3D vs. 2D. M: Matrigel, C: Collagen, A: Agarose. 281 

 282 

Table 3. OVCAR8 genes commonly differentially regulated in 3D conditions grown on agarose, collagen and 283 

Matrigel compared to 2D cultures 284 

Common  
3D vs. 2D 

Data sets Scaffold 
Specific 

Data sets 

DDIT4 12 RP11-13K12.2 0 
ANGPTL4 15 EEF1A1P9 0 
SELENBP1 7 EEF1A1P12 0 
SULF1 6 TENM2 5 
GAL3ST1 7 RP11-297P16.4 3 
TNFAIP3 9 GGT1 1 
LLNLR-263F3.1 4 IFI44 5 
MUC12 4 CXCL2 3 
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  KIF1A 2 
  AC003092.1 3 
  INHBA 6 
  RP13-143G15.4 7 
  GREM1 3 

 285 

 286 

The impact of scaffold and 3D set up as compared to 2D culture on the genetic profile of OvCa cells  287 

We explored the transcriptional landscape in 2D and 3D cultures in 3 different scaffolds (agarose, collagen 288 

and Matrigel) for the OVCAR8 cell lines.  289 

 290 

 291 

 292 

Figure 5. OVCAR8 transcriptional profile in 2D v 3D. (A) Top 150 differentially regulated genes from OVCAR8 293 
grown under 2D and 3D conditions. Data originating from 3 unique studies, encompassing 4 growth condi- 294 

tions. 3D cells grown in Matrigel, Collagen and Agarose. 2D cells grown under standard lab conditions as 295 

matched controls to each 3D experiment. The gene name list is available in Supplementary Table 2; (B) T- 296 

SNE plot of the genetic profiles of the HGSOC OVCAR8 grown in Matrigel (at 7 and 14 days – triangle), 297 
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Collagen (square), Agarose (circle) and Monolayer (stars); (C) Functional analysis of the top 150 differentially 298 

regulated genes between 2D and 3D growth conditions showing key biological pathways associated with 299 

them.   300 

 301 

The cells grown in 3D on Matrigel, agarose and those grown on a basement layer of normal omental fibro- 302 
blasts embedded within collagen, were compared with standard 2D monolayer cultures (Figure 5). The ex- 303 

pression profiles of the top 150 DEGs with respect to growth conditions are shown in Figure 5A (Supplemen- 304 

tary Table 2). This gene set shows a large variability across the four growth conditions. Initial observations 305 

reveal a high degree of similarity in gene expression between samples grown in agarose and Matrigel. Col- 306 

lagen samples however show an expression profile that diverges from the 2D expression profile to a lesser 307 

extent than OVCAR8 grown on other scaffolds. T-SNE analysis (Figure 5B) recapitulates these observations 308 
showing a partial clustering of the 3D profiles, with the collagen 3D culture standing out and showing the 309 

highest level of similarity with the 2D culture experiments. The top functional groups of the differentially reg- 310 

ulated genes included key metabolic pathways such as glycolysis (Figure 5C). 311 

 312 

Next, we explored the genes transcriptional signatures in the three scaffolds and in the 2D control experi- 313 

ments. We clustered the genes based on pairwise coexpression scores and visualised them using a uniform 314 
manifold approximation and projection dimensionality reduction technique (UMAP) (see Figure 6A). We found 315 

localised phenotypic clustering patterns in OvCa embedded in collagen and agarose with less variance in 316 

phenotypic expression recorded for samples grown in Matrigel, when compared with 2D. Moreover, Matrigel 317 

culture showed an inverted gene expression signature compared to 2D control experiments. Similarly, we 318 

analysed cancer hallmark sets with the DEGs of OVCAR8 grown in 2D compared to 3D data (see Figure 6B). 319 

Processes with high covariance include: K-Ras signalling, angiogenesis, interferon alpha and gamma re- 320 
sponse, TNF alpha signalling as well as epithelial to mesenchymal signalling. 321 

 322 
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 323 

Figure 6. Gene and phenotypic hallmark signature profiles. (A) UMAP clustering of genes coloured by rela- 324 

tive log-expression in four growth conditions: agarose, collagen, Matrigel and 2D controls. The distance met- 325 

ric is covariance. Genes that are clustered nearby have high covariance. (B) UMAP hallmark covariance 326 

using OVCAR8 grown in 2D and combined 3D data. Clustering of associated hallmarks. Processes upregu- 327 
lated in 3D are indicated in red. Downregulated are indicated in blue.  328 

 329 

Functional Enrichment – 2D vs. 3D  330 

A panel of genes were identified as commonly disregulated in 3D cultures compared to 2D growth conditions. 331 

The cumulative 3D data encompasses OVCAR8 grown on Matrigel, agarose and collagen, while the control 332 

data is composed of the experiments using 2D growth conditions. The following genes showed statistically 333 
significant differential expression (p < 0.05): C3, CXCL1, CXCL8, IL1B, SLPI, FN1, IL6, DDIT4, PI3, LAMC2, 334 

CCL20, MMP1, IFI27, CFB, ANGPTL4 and CXCL2 (Figure 7). 335 

 336 

 337 

Figure 7. Top Genes Differentially Expressed 2D vs. 3D. Cumulative data for 3D taken from OVCAR8 em- 338 

bedded within Matrigel, Agarose and Collagen. Significance threshold *P < 0.05. 339 
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Scaffold Specific Biomarkers – 2D vs. 3D 340 

Next, we examined the transcriptional landscape to identify potential biomarkers of growth conditions (Figure 341 

8). For this we have used a variety of machine learning algorithms as implemented in the OmicsPlayground 342 

v2.8.10 to compute a cumulative importance score for all DEGs. The results highlighted 8 key genes that can 343 

be used as predictive scaffold biomarkers (Figure 8A). Specifically, cells grown in agarose show condition 344 
specific expression for 4 genes: C3, MMP1, IL1B and CCL20. Three potential markers of cells grown in 345 

collagen were identified namely: the interferons IFI44L and IFI27 as well as COL3A1. Matrigel was repre- 346 

sented with only one significant growth marker: DDIT4. While these 8 biomarker candidates show the highest 347 

importance scores, a variety of other genes show scaffold specific expression as well (Figure 8H), suggesting 348 

that a number of gene panels can be created to evaluate the impact of growth conditions on the genome 349 

biology.  350 

 351 

  352 

 353 

Figure 8. Scaffold specific biomarker identification. (A - H), The top 8 genes implicated with expression spe- 354 

cific profiling for each condition; (I), Biomarker Heatmap: expression heatmap of top gene features according 355 

to their variable importance score. Importance scores are calculated based on multiple machine learning 356 

algorithms including LASSO, elastic nets, random forests, and extreme gradient boosting.  357 

 358 

 359 
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Cell line specificity impact on scaffold selection 360 

Following the analysis of the impact of scaffold and the 3D v 2D environment on the transcriptional landscape 361 

of the ovarian cancer cell line we looked at differential expression patterns between various cells lines grown 362 

on agarose and collagen scaffolds. As expected, we found a good separation of the cell line gene expression 363 

characteristics on both scaffolds (Figure 9A,B) using the top 150 differentially expressed genes. Most cell 364 
lines have also shown a fair discrimination between the 2D and 3D cultures on agarose, and also a good 365 

segregation between cancer subtypes (Figure 9C). However, A1847, OVCAR3, OVCAR4 and SKOV3, on 366 

agarose and all cells on collagen (Kuramochi, OVCAR4, and OVCAR8) show poor differentiation between 367 

the growth conditions suggesting that these scaffolds are potentially not optimal for recapitulating the tumour 368 

environment more accurately than classical 2D cultures in these cell lines.  369 

Functional analysis reflects the diversity of the cell lines grown on each scaffold (Figure 9D). With sex hor- 370 
mones specific pathways characterizing the agarose cultures while cell growth and development pathways, 371 

as well as fatty acids metabolism being the dominant features of the collagen grown cell lines. The scaffold 372 

impact on cell line specificity was explored by comparing the differentially expressed genes between 373 

OVCAR4 and OVCAR8 in agarose and collagen (Figure 9E). We found that there is a good level of correlation 374 

between gene expression fold change in the two cell lines for agarose and collagen. Of the top differentially 375 

expressed genes, three, SLC34A2, LY6K, BMP7, show the same level of dysregulation between OVCAR8 376 
and OVCAR4 in both growth conditions. However, we also identified 13 genes that show a scaffold specific 377 

differential expression pattern between the two cell lines: MMP7, LAMA3, IGFL1, S100A14, ELF3, CYGB, 378 

ITGB6, DKK1, TACSTD2, IL7R, LGALS13, IFI6, FOXD1 being collagen specific, and IL1B, MMP1, CP, UBB, 379 

NUPR1, SCGB2A1, GPNMB, IGFBP2, GDF15, CCL20, CYP1A1, VTCN1, KRT19 agarose specific.  380 

Finally, the differential expression patterns identified a number of genes that show both a cell, tumour sub- 381 

type, and scaffold specific behaviour and can be used as environment biomarkers (Figure 9F-H). 382 
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 383 

Figure 9. Cell line specific transcription in agarose and collagen. (A) and (B), T-SNE plot of the genetic 384 

profiles of cell lines grown in agarose and collagen respectively against a 2D control. (C) Umap plot of the 385 

transcriptional profile of cancer subtypes in agarose vs 2D control, (D) Functional analysis of the top 150 386 
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differentially regulated genes between 2D and 3D growth conditions showing key biological pathways asso- 387 

ciated with them for agarose and collagen, (E) Similarity of gene differential expression in OVCAR4 v 388 

OVCAR8 in collagen versus agarose, (F) – (H) The top 8 environment biomarkers for cell lines grown in 389 

agarose (F) and (H), and collagen (G).   390 

 391 

Recapitulation of 3D OvCa using GelTrex  392 

Leveraging the lessons learned from the study of the transcriptional landscape of OvCa cell lines in different 393 

conditions, we attempted to capture the changes in the phenotype between the 2D and 3D cultures. For this 394 

we grown SKOV-3 cells, in 3D using the hydrogel-based scaffold GelTrexTM. Hydrogel was chosen as it 395 

encompasses one of the most common scaffolds within the literature and is not animal derived. In addition, 396 

this work sought to assess the ease of using non-established methodology for in house recapitulation. As 397 
such hanging drop and ultra-low attachment plates were not included as their use with OvCa is well estab- 398 

lished within the literature.   399 

 400 

Figure 10. SKOV-3 cells grown for 9 days in conventional monolayer formation compared with those em- 401 

bedded in GelTrexTM. (A – C) Monolayer cells: nuclei (pink), phalloidin (green) and overlay, showing a single 402 
plane of cells across a flat glass substrate; (D – F) 3D cells: nuclei (pink), phalloidin (green) and overlay, 403 

showing aggregated spheroids with multiple nuclei.  404 

 405 

Figure 10 shows the growth of cells over the course of a 9-day period. Here we adopted a simplistic approach 406 

and used a previously tried and tested gel known as GelTrex. Following the embedding process cells began 407 

to aggregate and form spheroid like structures [28]. These structures-maintained circularity and continued to 408 
expand in volume as time progressed. The results suggest that the changes at genomic level have a direct 409 

impact on the 3D aggregation of cells.  410 
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 411 

4. Discussion 412 

As OvCa is one of the most lethal gynaecological malignancies, there is a clear need for robust models that 413 

will help uncover the molecular mechanisms underpinning the disease development, growth, metastasis, and 414 

even potential therapeutic responses. Cancer modelling over the decades has progressed from crude anat- 415 
omy to in vitro cultures, in vivo animal models and now to in vitro 3D cultures capable of recapitulating in vivo 416 

systems and associated TME. In this meta-analysis, we have examined the impact of various scaffolds on 417 

the transcriptomic landscape of ovarian cancer cell lines as well as the differences arising from the 3D culture 418 

as compared to the classical 2D approaches.  419 

Initial literature survey has pointed out USA as the spearhead of 3D culture research in cancer, covering over 420 

50% of published output in the field. Similar to what is observed in 2D cultures, immortalised cell lines take 421 
the forefront with SKOV-3 as the most frequently used option, while primary patient samples are used at a 422 

reduced rate. Additional cell lines used are OVCAR3, A2780, PEO1 and OVCAR8. The cell line distribution 423 

highlights a strong bias towards White European Ancestry. The percentage of East Asian 3D models in the 424 

literature are even lower despite associations with early disease onset in Asian women [29], recapitulating 425 

the need for engaging ethnic population in cancer research.  426 

Further analysis shows that the associated subtypes of the cell lines used, align closely with the trend seen 427 
in actual global incidence rates of OvCa subtypes. HGSOC is the most frequent of epithelial OvCa subtypes 428 

encapsulating 70% of global cases [30], making this subtype a prime dataset to study in this work assessing 429 

the variability in 3D culture with respect to classic 2D experiments. It must be noted though, that in vitro work 430 

requires long-time investment, with relevant models, especially in OvCa, a commodity. With the advance of 431 

tissue culture techniques towards more physiological relevant systems however, researchers must strive to 432 

use validated and up to date cell lines or note their limitations in disease modelling to maintain reliable and 433 
repeatable data.    434 

In this study, we also demonstrate how scaffolds recapitulate the ECM necessary for cell differentiation and 435 

the growth of 3D structures [24]. In OvCa modelling, where a 2D counterpart has been used for comparison 436 

the most frequent scaffolds utilised by researchers are Matrigel, hanging drop, low attachment plates and 437 

hydrogel. 438 

Hanging drop is particularly useful for assessing diffusion gradients in an accessible format [31]. In terms of 439 
OvCa this method has been utilised in toxicity screening assays for monitoring chemoresistance in drugs 440 

such as cisplatin and Niraparib [18], [32]. Grown in ultra-low attachment plates, OvCa cells show altered 441 

mitochondrial function through augmented extracellular acidification rates [33]. Re-sensitisation to treatments 442 

in cell lines previously thought resistant are also evident using this method, with a number of BRCA wildtype 443 

epithelial OvCa cell lines responding to platinum-based therapeutics and showing an increased rate in apop- 444 

tosis [34]. Cultures, such as those arising from ovarian malignancies, grown in Matrigel often maintain histo- 445 
logical features, genetic profiles, and intra-tumoral heterogeneity, similar to the in vivo tumour [35]. Matrigel 446 

has also proven an effective model of early-stage angiogenesis in an array of cancers including HGSOC [17]. 447 

It must be noted that 3D cultures are often chosen to support the principles of the 3Rs (Replacement, Re- 448 

duction and Refinement) towards more ethical use of animals [36], [37]. Interestingly, OvCa cell migration, 449 

cell communication, and chemotherapeutic response have all been successfully modelled using hydrogel, a 450 
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plant-based alternative to animal-derivative scaffolds. Here cultures show greater similarity to in vivo mouse 451 

models and clinical data than that of 2D cultures [37]. 452 

Genetic profile of cells grown in 2D vs. 3D 453 

Leveraging the data from the Gene Expression Omnibus (GEO) and the Sequence Read Achieve allowed 454 

us to create a detailed picture of the genomic landscape of ovarian cancer cell lines in 3D cultures using 455 
three distinct scaffolds: Matrigel, agarose and collagen. All OvCa cell lines showed a high level of differential 456 

regulation with an average of 551 DEGs per data set ranging from 234 DEGs as the minimum and 1429 457 

DEGs as the maximum. The HGSOC cell lines OVCAR8 used across multiple studies allowed us to identify 458 

key genes and biological process that are hallmarks of 3D culture as well as potential biomarkers of growth 459 

environment for the examined scaffolds. Specifically, our analyses highlight a set of 8 genes, namely DDIT4, 460 

ANGPTLA, SELENBP1, SULF1, GAL3ST1, TNFAIP3, LLNLR-263F3.1, MUC12 that show statistically signif- 461 
icant differential expression patterns in 3D systems as compared to 2D irrespective of the scaffold used. 462 

Furthermore, 13 genes have shown an environment specific expression pattern. The top 16 DEGs between 463 

3D and 2D OVCAR8 were also identified. Of note many of the genes identified are key regulators of inflam- 464 

mation and immune response such as C3, CXCL8 (IL-8), SLPI, CXCL1, CXCL2, ILI beta, IL6, CCL20, IFI27 465 

and CFB [38]–[40]. Furthermore, many of the top genes also show structural importance within the ECM i.e. 466 

LAMC2, PI3, FN1, and MMP1. Dysregulation of the matrix metalloproteinase, MMP1, is associated with 467 
basement membrane degradation and subsequent peritoneal dissemination in OvCa and is correlated with 468 

poor patient prognosis [41]. The remaining DEGs, DDIT4 and ANGPTL4, were recently identified as candi- 469 

date genes for prediction of survival out comes in lung cancer and OvCa patients [42], [43]. Elevated levels 470 

of these glycolysis related genes were also seen to negatively affect progression free survival in patients with 471 

OvCa [43].  472 

The functional enrichment scores of OVCAR8 cells grown in Matrigel, agarose and collagen, compared with 473 
standard 2D mono-layer controls presented a unique expression profile with close relation seen between the 474 

2D samples. However, the 3D collagen OVCAR8 cells expressed a higher degree in variability compared 475 

with the other 3D OVCAR8’s which show comparatively similar profiles. Earlier studies have suggested that 476 

this model is more similar to the in vivo environment as it captures 3D growth alongside omental fibroblasts 477 

[44].  478 

The top biological processes associated with the DEGs identified between the 2D and 3D include glycolysis, 479 
KRAS signalling, coagulation, TNF alpha signalling via NF-κB, complement and inflammatory response. 480 

These processes are frequently altered in cancer and are often difficult to model in 2D systems [45]. Glycol- 481 

ysis in particular is often augmented in cancer cells with increased utilisation of this pathway indicative of the 482 

Warburg effect [46]. Similar metabolic changes are also evident in 3D colorectal cancer cells when compared 483 

to 2D [47]. The inclusion of these processes in the data verifies numerous studies where 3D cells are shown 484 

to express more biological relevance to in vivo systems than 2D cell cultures, through the expression of 485 
pathways typically associated with in vivo environments [45], [47]–[51].  486 

Furthermore, some cancer related hallmarks were also highlighted as differentially regulated in the 3D OvCa 487 

cells when compared with the 2D samples. Hallmarks of particular interest include apoptosis, oxidative phos- 488 

phorylation, MYC pathways, ROS, EMT, KRAS signalling, angiogenesis and hypoxia. Numerous studies 489 

show that the 3D environment influences these key cancer pathways [45], [47]; here we show that regardless 490 
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of scaffold the processes are still heavily influenced when grown in 3D. Apoptosis, EMT, KRAS signalling 491 

and hypoxia as well as angiogenesis were some of the key cancer associated processes enhanced in 3D 492 

growth. Additional processes included complement and inflammatory response pathways which are im- 493 

portant factors of tumour immune evasion. Another pathway often seen in cancers was IL6-JAK-STAT3, 494 

which is a proliferative driver often implicit with OvCa angiogenesis and tumour metastasis [52].  495 

Moreover, based on the expression profile of OVCAR8 cells grown in 3D vs. 2D, we identified a panel of 496 

genes specific to OVCAR8 when grown in different gel-based scaffolds using Omics Playground importance 497 

score ranking [27]. The expression profile of these genes was unique to the specific scaffold when compared 498 

with the 2D OVCAR8. Biomarkers specific to OvCa cells grown in agarose compared with 2D include: C3, 499 

MMP1, ILIB and CCL20. The three biomarkers identified for collagen include: IFI27, COL3A1 and IFI27. 500 

Matrigel however only showed one unique marker, DDIT4 a stress included regulator of mTOR previously 501 
mentioned for its association with progression free survival in OvCa [43]. Future work should explore the 502 

relevance of these markers and the influence they hold within the OvCa TME.  503 

Next, we explored the impact of cell line on various scaffolds and showed that there is a close relationship 504 

between the two suggesting that in order to recover the tissue specific behaviour in a model 3D culture, a lot 505 

of care must be given to the choice of cell line and scaffold, in order to remove potential experimental biases. 506 

Furthermore, the condition specific gene expression patterns suggested that a number of genes can be used 507 
as environment biomarkers.  508 

Finally, we explored the impact of transcriptional changes in real time by looking at phenotypic changes of 509 

cells grown in 3D vs 2D cultures. Our experiment have shown that SKOV-3 cells grown in hydrogel are 510 

clustering in the simple spheroids, precursors of higher order organoid formations.    511 

In summary this meta-analysis assessed the current landscape of 3D OvCa within the literature and provided 512 

a complex expression profile of OvCa cells grown in 3D. Our transversal comparison of various scaffolds 513 
allowed us to highlight the variability that can be induced by various scaffolds in the transcriptional landscape 514 

as well as identifying key genes and biological processes that are hallmarks of cancer cells grown in 3D 515 

cultures. Moreover, the identification of growth environment biomarkers will allow us to monitor in the future 516 

the suitability of 3D culture to recapitulate tissue complexity. 517 

Supplementary Materials: The following supporting information is available: Figure S1: Top Enriched Gene 518 

sets for 2D vs. 3D OVCAR8; Table S1: Cell line information and associated accession codes. 519 
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 538 

Appendix A 539 

Supplementary Table 1. Cell line information and associated accession codes 540 

Accession 
Number 

SRA code Cell line Subtype Condition Scaffold 

PRJNA472611 SRR7204219 A1847 Carcinoma 3D Agarose 

 SRR7204220 A1847 Carcinoma 2D / 

 SRR7204221 A2780 HGSOC 3D Agarose 

 SRR7204222 A2780 HGSOC 2D / 

 SRR7204223 OVCAR3 HGSOC 3D Agarose 

 SRR7204224 OVCAR3 HGSOC 2D / 

 SRR7204225 OVCAR4 HGSOC 3D Agarose 

 SRR7204226 OVCAR4 HGSOC 2D / 

 SRR7204227 OVCAR5 HGSOC 3D Agarose 

 SRR7204228 OVCAR5 HGSOC 2D / 

 SRR7204231 OVCAR10 HGSOC 3D Agarose 

 SRR7204232 OVCAR10 HGSOC 2D / 

 SRR7204233 OVCAR8 HGSOC 3D Agarose 

 SRR7204234 OVCAR8 HGSOC 2D / 

 SRR7204235 SKOV-3 HGSOC 3D Agarose 

 SRR7204236 SKOV-3 HGSOC 2D / 

 SRR7204237 PEO1 HGSOC 3D Agarose 

 SRR7204238 PEO1 HGSOC 2D / 
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 SRR7204229 C30 Carcinoma 3D Agarose 

 SRR7204230 C30 Carcinoma 2D / 

 SRR7204242 C70 Carcinoma 3D Agarose 

 SRR7204241 C70 Carcinoma 2D / 

 SRR7204240 UPN275 MAC 3D Agarose 

 SRR7204239 UPN275 MAC 2D / 

PRJNA530150 SRR8823257 OVCAR8 HGSOC 2D / 

 SRR8823258 OVCAR8 HGSOC 2D / 

 SRR8823259 OVCAR8 HGSOC 2D / 

 SRR8823260 OVCAR8 HGSOC 2D / 

 SRR8823265 OVCAR8 HGSOC 3D Matrigel 

 SRR8823266 OVCAR8 HGSOC 3D Matrigel 

 SRR8823267 OVCAR8 HGSOC 3D Matrigel 

 SRR8823268 OVCAR8 HGSOC 3D Matrigel 

 SRR8823273 OVCAR8 HGSOC 2D / 

 SRR8823273 OVCAR8 HGSOC 2D / 

 SRR8823273 OVCAR8 HGSOC 2D / 

 SRR8823273 OVCAR8 HGSOC 2D / 

 SRR8823280 OVCAR8 HGSOC 3D Matrigel 

 SRR8823281 OVCAR8 HGSOC 3D Matrigel 

 SRR8823282 OVCAR8 HGSOC 3D Matrigel 

 SRR8823283 OVCAR8 HGSOC 3D Matrigel 

PRJNA564843 SRR10096845 OVCAR8 HGSOC 2D / 

 SRR10096844 OVCAR8 HGSOC 2D / 

 SRR10096843 OVCAR8 HGSOC 2D / 

 SRR10096841 OVCAR8 HGSOC 3D Collagen 

 SRR10096842 OVCAR8 HGSOC 3D Collagen 

 SRR10096840 OVCAR8 HGSOC 3D Collagen 

 SRR10096839 OVCAR4 HGSOC 2D / 

 SRR10096838 OVCAR4 HGSOC 2D / 

 SRR10096837 OVCAR4 HGSOC 2D / 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 8, 2022. ; https://doi.org/10.1101/2022.12.05.519144doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.05.519144
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 SRR10096836 OVCAR4 HGSOC 3D Collagen 

 SRR10096835 OVCAR4 HGSOC 3D Collagen 

 SRR10096834 OVCAR4 HGSOC 3D Collagen 

 SRR10096828 Kuramochi HGSOC 3D Collagen 

 SRR10096829 Kuramochi HGSOC 3D Collagen 

 SRR10096830 Kuramochi HGSOC 3D Collagen 

 SRR10096831 Kuramochi HGSOC 2D / 

 SRR10096832 Kuramochi HGSOC 2D / 

 SRR10096833 Kuramochi HGSOC 2D / 

PRJNA232817 GSM1300206 IGROV-1 EAC 2D / 

 GSM1300207 IGROV-1 EAC 2D / 

 GSM1300208 IGROV-1 EAC 2D / 

 GSM1300209 IGROV-1 EAC 3D 
Low Attach-
ment 

 GSM1300210 IGROV-1 EAC 3D 
Low Attach-
ment 

 GSM1300211 IGROV-1 EAC 3D 
Low Attach-
ment 

PRJNA318768 GSM2125384 HEY HGSOC 2D / 

 GSM2125385 HEY HGSOC 2D / 

 GSM2125386 HEY HGSOC 2D / 

 GSM2125387 HEY HGSOC 2D / 

 GSM2125388 HEY HGSOC 3D 
Hanging 
drop 

 GSM2125389 HEY HGSOC 3D 
Hanging 
drop 

 GSM2125390 HEY HGSOC 3D 
Hanging 
drop 

 GSM2125391 HEY HGSOC 3D 
Hanging 
drop 

 541 

 542 

 543 
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Further gene set enrichment analysis revealed that when grown in 3D many processes associated with hall- 544 

marks of cancer were also differentially regulated. Of note key processes that often show enhanced presen- 545 

tation in 3D growth such as angiogenesis, apoptosis and hypoxia all exhibit enrichment.  546 

 547 

 548 

 549 

Supplementary Figure 1. Top Enriched Gene sets for 2D vs. 3D OVCAR8. Combined panel of enrichment 550 

curves showing processes associated with cancer hallmarks. (A), Interferon Alpha Response; (B), TNF-a 551 
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signalling; (C), Interferon Gamma Response; (D), IL-6-JAK-STAT3 signalling; (E), Complement; (F), Coagu- 552 

lation; (G), Angiogenesis; (H), Hedgehog signalling; (I), Apoptosis; (J), Epithelial Mesenchymal Transition; 553 

(K), Hypoxia; (L), Myogenesis; (M), KRAS signalling; (N), Inflammatory Response; (O), IL-2 STAT3 signalling 554 

and. Black vertical bars represent gene rank using shorted list metric. Green curve corresponds to “running 555 

statistics” of the enrichment score (ES).  556 

 557 
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