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Abstract

In unresolved flow CFD-DEM simulations, the porosity values for each CFD cell are determined
using a coarse-graining algorithm. While this approach enables coupled simulations of representative
numbers of particles, the influence of the porosity local to the particles on the fluid-particle interaction
force is not captured. This contribution considers a two-grid coarse-graining method that determines
a local porosity for each particle using a radical Voronoi tessellation of the system. A relatively fine,
regular point cloud is used to map these local porosity data to the CFD cells. The method is evaluated
using two different cases considering both disperse and tightly packed particles. The data show that
the method conserves porosity data, is reasonably grid-independent and can generate a relatively
smooth porosity field. The new method can more accurately predict the fluid-particle interactive force
for polydisperse particle system than alternative methods that have been implemented in unresolved
CFD-DEM codes.

Keywords— Radical Voronoi tessellation, CFD-DEM, Coarse-Graining, Fluid-particle interactive
force

1 Introduction

Coupled computational fluid dynamics - discrete element method (CFD-DEM) simulations can provide
valuable insight across a range of applications including the granulation of pharmaceutical products
(Heinrich et al., 2015), mining/mineral extraction (Han et al., 2003), debris flows and internal erosion
of dams and flood embankments (Hu et al., 2019). A common approach to CFD-DEM is based on
an Eulerian-Lagrangian framework, where the fluid phase is simulated using a fixed Eulerian grid with
grid spacing that is larger than the particles (unresolved approach) or measurably smaller than the
particles (resolved approach) (Zhou et al., 2010). One resolved CFD-DEM approach is the immersed
boundary method (IBM) (Peskin, 2002) in which the points on the surfaces of particles are inserted in the
fluid region as additional no-slip boundary conditions, and a source term representing the fluid-particle
interaction is added into the Navier-Stokes equations to describe the fluid flow that is solved on the
fixed Eulerian grid. In unresolved CFD-DEM, a porous version of the Navier-Stokes equations is solved
(Anderson and Jackson, 1967); the presence of particles in the fluid is accounted for by including the
porosity value. The particle-fluid interaction forces are estimated by empirical drag correlations (Ergun,
1952; Gidaspow, 1994; Tenneti et al., 2011; Tang et al., 2015) and included in the CFD equations as a
source term. On the DEM side the particle-fluid interaction force is considered alongside the inter-particle
contact forces and any gravitational forces (Zhou et al., 2010; Kloss et al., 2012) when determining the
resultant forces acting on the particles. CFD-DEM is a coupled simulation process and the DEM and
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CFD solvers can be executed either concurrently or sequentially. After a specified number of time-steps,
relevant variables such as porosity, drag force and velocity of each phase are exchanged between both
solvers.

In an unresolved CFD-DEM simulation, the coarse-graining stage is very important. In this stage, the
relevant coupling data, including the porosity, solid velocity and the momentum source terms for each
CFD cell, are determined. The coarse-graining approach used must satisfy several requirements (Sun and
Xiao, 2015; Clarke et al., 2018), most significantly it must (1) conserve relevant physical quantities such
as the total particle volume; (2) be able to achieve relatively grid-independent results, and (3) be able to
produce smooth coarse-grained fields without large jumps existing between the neighbouring CFD cells.

The simplest coarse-graining method adopted in unresolved CFD-DEM is the particle centroid method
(PCM) (Tsuji et al., 1993). PCM estimates the volume of the particles within a CFD cell by summing
up the volume of the particles whose centres are located in that cell. This method is fast but can be
only applied in cases where the cell-to-particle size ratio is large. Large jumps in the porosity values may
occur and lead to big oscillations and high-frequency peaks in the simulation results (Peng et al., 2014).

In the divided method (DM) (Kloss et al., 2012; Wu et al., 2009) the proportion of each particle is assigned
to the CFD cell is based on the actual overlap volume between the particle and the cell boundary; this is
more accurate than the PCM approach. There are many strategies to estimate the overlap volume. For
example, the particle can be first resolved by a series of distributed marker points to evenly apportion
the particle’s volume to all cells that are (partly) covered, and then the relevant particle sub-region is
assigned to the CFD cell using PCM (Kloss et al., 2012; Peng et al., 2016). Where the particle size
is approximately equal to or even larger than the grid size, the large particles can be represented by a
number of small particles (Tsuji et al., 2014). DM can generally eliminate the jumps in the porosity field
between the neighbouring CFD cells and provides smoother porosity field than PCM.

The porous sphere (Jing et al., 2016) or porous cube (Link et al., 2005) methods represent the particles
as porous elements and then distribute the volume of the elements to the CFD cells within a region that
is larger than the particle size to avoid extreme porosity values in the CFD cells. To further improve
the smoothness of the porosity field, the statistical kernel method (Glasser and Goldhirsch, 2001) or
the diffusion-based coarse-graining method (Sun and Xiao, 2015) can be used. These methods apply a
statistical kernel or a diffusion source to the centre of each particle, and the volume of the particle is
distributed to the calculation domain. In these approaches, a portion of the particle’s volume can be
assigned to a fluid cell, even though the particle does not intersect or overlap with that cell. Therefore, a
smooth porosity field can be obtained even when the CFD cell size is smaller than the particle diameter
(Sun and Xiao, 2015).

The general approach adopted in the above-mentioned methods is to firstly bin or assign a proportion
of each particle’s volume to the predefined fluid cells, and then calculate the porosity of each fluid cell.
Accordingly, the porosity data are “grid-dependent”. The CFD grid employed should be chosen to
maintain the smoothness of the porosity field and the resolution of fine-scale fluid features is limited
(Deb and Tafti, 2013). A two-grid method has been proposed by Deb and Tafti (2013) and Su et al.
(2015), in which the porosity is calculated based on a coarse grid (grid size larger than particles) and
mapped to a finer grid that is used by the CFD solver. However, a key issue with this type of two-grid
method is how to select an appropriate grid size. The shape and size of the coarse grid selected seems
arbitrary, for example, a cube with three times the particle diameter as the length was used by Deb and
Tafti (2013) and no data to support decisions around the choice of grid spacing is available.

A Voronoi tessellation can be used to identify a local porosity for each particle in the system. A Voronoi
tessellation divides the particle domain into a unique space filling set of polyhedral cells (Fig. 1a). In
case of monodisperse particle systems, only the coordinates of the particle centre are used as the input;
the planes of the polyhedral Voronoi cells are located at the midpoints of the lines (Delaunay tetrahedra
edges) connecting adjacent particles. For polydisperse particle systems, if this basic partitioning approach
is adopted the polyhedral planes defining the Voronoi cells can intercept the particles. The radical
Voronoi tessellation was developed to solve this problem (Gellatly and Finney, 1982). In a radical
Voronoi tessellation, the space between particles is partitioned based on radical planes, i.e., the planes
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(a) Conventional Voronoi tessellation (b) Radical Voronoi tessellation

Figure 1: Schematic of the conventional and radical Voronoi tessellation

formed between pairs of particles for which the tangent lines from a point in the plane to both particles
are of equal length. Voronoi tessellations can be implemented in DEM codes using existing libraries
(Rycroft, 2009). This approach has been used in previous DEM simulations to quantify the void space
(Frenning, 2015). By comparing with IBM simulations, Knight et al. (2020) showed that, in principle, this
local porosity could be used to calculate the drag force on individual particles in polydisperse systems.
However, there are no published studies documenting a successful implementation of this approach in an
unresolved CFD-DEM simulation framework.

The objective of this paper is to introduce a new CFD-DEM coarse-graining method and evaluate its
performance. Following an overview of unresolved CFD-DEM, Section 3 describes how the local porosity
of each particle is calculated based on the particle volume and the volume of the surrounding Voronoi
cells, and then mapped to the CFD grid using a point cloud method. In Section 4 two validation cases
which represent typical applications of CFD-DEM are considered, and the simulation data generated
are compared to previously generated IBM data from Knight et al. (2020) as well as to appropriate
experimental data.

2 Governing equations in CFD-DEM

CFD-DEM typically involves coupling an established DEM code with an established CFD solver (Sun
and Xiao, 2016; Goniva et al., 2010; Kloss et al., 2009). In the current study, the open-source code
CPL-Library (Smith et al., 2020) was used to couple the open-source codes LAMMPS and OpenFOAM.
All coupling in CPL-Library is handled through shared libraries which use the message passing interface
(MPI) to facilitate information exchange between software. Fig. 2 shows the flowchart of the CFD-DEM
coupling in CPL-Library; the Navier-Stokes equations are solved in the CFD solver, while the DEM
solver simulates the motion of and interaction between the particles.

In unresolved CFD-DEM simulations, the porosity (εf ) is included in the system of equations considered
in the CFD solver. For incompressible flow, the volume-averaged continuity and momentum equations
are written as:

∂εf
∂t

+∇ · (εfuf ) = 0 (1)

∂

∂t
(εfρfuf ) +∇ · (εfρfuf ⊗ uf ) = −εf∇p+ εf∇ · τ − Spf + εfρfg (2)

where ρf and uf are the fluid density and velocity, τ is the viscous stress tensor, g is gravity. Spf is the
momentum source term resulted from the fluid-solid interaction; for reasons of numerical stability, it is

3



Figure 2: CFD-DEM coupling in the CPL-Library

split-up into an implicit and an explicit part (Kloss et al., 2012; Sun and Xiao, 2016) and is written as

Spf = Kpfuf −Kpf 〈up〉 (3)

where 〈up〉 is the cell-based ensemble-averaged particle velocity, uf is discretised implicitly in the CFD
solver; the (scalar) coefficient Kpf is a function of the drag force on particles, which is estimated by

Kpf =
|
∑
iFd,i|

Vcell|uf − 〈up〉|
(4)

where Fd,i is the drag force acting on a single particle i. There are many empirical drag correlations
available to estimate Fd,i. In the validation examples below the Ergun (1952), Tenneti et al. (2011)
and Wen and Yu (1966) drag models are considered. The PISO (Pressure Implicit with Split Operator)
pressure–velocity coupling algorithm (Issa, 1986) is adopted to solve the above continuity and momentum
equations.

In the DEM solver the motion of particle i is calculated by the total force and torque acting on it:

mi
dui
dt

= mig +
k∑
j=0

(Fn,ijn + Ft,ijt) + Fd,i + Fp,i + Fτ,i (5)

Ii
dωi
dt

=

k∑
j=0

[r× (Ft,ijt)] (6)

where Fn,ij and Ft,ij are the normal and tangential contact forces associated with contact between
particles i and j, k is the total number of contacts involving particle i, Fp,i and Fτ,i represent the
pressure gradient force and the viscous force respectively, which are exerted by the surrounding fluid; Ii
is the moment of inertia of the particle. The magnitudes of the contact force are calculated based on a
spring-dashpot soft sphere contact model with a “history” effect (Cundall and Strack, 1979):

Fn = −knδn + cn∆un (7)

Ft =

{
kt
∫ t
t0

∆utdt+ ct∆ut for |Ft| < µFn

µFn for |Ft| ≥ µFn
(8)

where kn and kt are the normal and tangential spring stiffnesses, cn is the normal viscous dashpot
coefficient and ∆ut is the incremental tangential displacement. Here kn and kt are determined using the
simplified Hertz-Mindlin contact model (Che et al., 2020).
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The coupling loop proposed here includes 4 main steps: Step 1 : The DEM and CFD solver are executed
concurrently; Step 2 : A radical Voronoi tessellation is carried out based on the current particle positions
so that the local particle porosity can be evaluated; Step 3 : The fluid fields are mapped to each particle
and the drag force acting on each particle is calculated; Step 4 : The particle porosity, velocity and the
drag force are mapped to the CFD side; Step 5 : Based on the updated fluid information for coupling,
the routine is repeated from Step 1. The tessellation used in Step 2 and the mappings used in Steps 3
and 4 are described in the following sections.

3 Two-grid, Voronoi tessellation-based coarse-graining method

The two-grid coarse-graining method proposed here comprises two main steps: (1) Radical Voronoi
tessellation of the particle system to assign a local porosity to each particle; (2) Field mapping to the
CFD grid using a point cloud.

3.1 Voronoi tessellation of the particle system

Fig. 3 is a schematic of the Voronoi tessellation of the particle system. In the case of a uniformly
distributed particle system in a predefined domain, use of a Voronoi tessellation to obtain representative
local porosity values is straightforward (see Fig. 3a). However, in many applications, such as fluidised
beds, there are regions with dilute particle flow. In these regions the Voronoi cells become large and
would give unreasonable estimates of the local porosity. To resolve this problem, a bounding cuboid
which is larger than the particle is generated. If the boundaries of the particle’s Voronoi cell stretches
beyond the initial bounding cuboid, they are replaced by the cuboid boundaries (see Fig. 3b). The size
of the bounding cuboid is controlled by a parameter (θ1), which equals the cuboid-to-particle size ratio
(θ1 = B/D). The cuboid bounding box gives an upper bound to the calculated porosity, for example, for
θ1 = 2, 3 and 4, the maximum local porosities for individual particles are 0.93, 0.98 and 0.99, respectively.

The local porosity of an individual particle is simply the volume of the void space within the particle’s
Voronoi cell divided by the total volume of the particle’s Voronoi cell, i.e.,

εVf,i =
Vvoro,i − Vp,i

Vvoro,i
(9)

where Vp,i and Vvoro,i are the volumes of particle i and the surrounding Voronoi cell, the superscript V
represents the porosity is in a Voronoi cell.

Here the Voronoi tessellation of the particle system was carried out by adding voro++ library to LAMMPS
as a user package (Rycroft, 2009), and it can be compiled with the CPL-Library for the CFD-DEM
coupling.

3.2 Field mapping using the point cloud

As noted above, CFD-DEM requires a field mapping to exchange key information between the DEM and
CFD solvers. Due to the complex geometric structure of the Voronoi cells, the field mapping of the particle
data to the fluid grid is achieved by mapping data to a point cloud. This method uses a fine uniform grid
of discrete points (termed a point cloud) to identify (with some approximation/discretization error) the
region that is common to a particular Voronoi cell and the CFD cell that overlaps it. As shown in Fig. 4,
a regular grid of sampling points is generated that is evenly distributed across the whole computational
domain. The density of the point cloud is denoted by the parameter θ2, which equals the ratio of the
smallest particle diameter and the point cloud grid spacing (θ2 = Dmin/Spc). A systematic inspection
of the sampling points in the cloud (with given position vectors) is carried out to identify which particle
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(a) Uniform particle packing (b) Dilute particle flow region

Figure 3: Schematic of the Voronoi tessellation of the particle system (the Voronoi cells are built in 3D
space)

Voronoi cell and which CFD cell contain the point. This exercise generates two one-dimensional arrays
(vectors); these store (1) the number of sampling points lying within Voronoi cell i (N total

i ) and (2) the
number of sampling points in CFD cell n (N total

n ). Then a 2D sparse array that stores the number of
sampling points shared by specific Voronoi cell i and CFD cell n (Nshare

i,n ) is populated. The arrays N total
i ,

N total
n and Nshare

i,n are updated whenever the Voronoi cells are rebuilt and are used in the subsequent
field mapping procedures.

(a) Field mapping from Voronoi cells to a CFD cell (b) Field mapping from CFD cells to a Voronoi cell

Figure 4: Schematic of the field mapping method using point cloud.

Fig. 4a shows the schematic of the forward mapping step, i.e., the mapping from a “source” Voronoi
cell to the overlying “target” CFD cell. For a given porosity field εVf,i in the Voronoi polygon i, the
magnitude of the porosity mapped to target CFD cell n is given by

εCf,n =

Np∑
i=1

(
εVf,i

Nshare
i,n

N total
n

)
(10)

where Np equals the total number of particles in the simulation domain and the superscript C indicates
that the calculated porosity relates to the CFD grid. For the particle velocity, the mapping scheme is

uCs,n =

∑Np

i=1

(
1− εVf,i

)
uVs,iN

share
i,n∑Np

i=1

(
1− εVf,i

)
Nshare
i,n

(11)
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where uVs,i and uCs,n are the particle velocities in Voronoi cell i and CFD cell n, respectively. If Kn

represents either the implicit or explicit part of the momentum source term in a CFD cell (Equation 3),
and Fi represents the corresponding part of the drag force acting on particle i, then the forward mapping
of the drag forces from the DEM solver to the CFD solver is

Kn =

Np∑
i=1

Nshare
i,n Fi

N total
n Vvoro,i

(12)

The schematic of the backward mapping (from CFD to DEM) is shown in Fig. 4b. For the field of χCn ,
which can be the fluid velocity, pressure gradient force or viscous force, in CFD cell n, the mapping
scheme adopts a similar logic as the forward step so that

χVi =

Nf∑
n=1

χCn
Nshare
i,n

N total
i

(13)

where Nf is the total number of the CFD grid cells and χVi is the field variable mapped to Voronoi
polygon i.

To improve the calculation efficiency in both the forward and backward mapping, the field mapping
procedure loops over the cells in a linked list (a “neighbour list”), which records the cells in the other
grid that have a non-zero Nshare

i,n with the target cell (i.e. for each fluid cell there is a neighbour list of
Voronoi cells). In this way, less than 1% of the total number of cells in the other grid are need to be
considered for a given target cell.

In the current version of CPL-Library, only uniform (regular) block meshes are available in the CFD
solver (see Fig. 4), and so the field mapping procedures proposed here were implemented and tested for
the case of uniform (regular) meshes. However, the generalization of the method proposed here to a
non-uniform CFD mesh topology is straight-forward.

The distance between the neighbouring sampling points should be smaller than the edge length of a
hexahedron inscribed in the smallest particle (θ2 < 0.577Dmin), so that each Voronoi cell contains at
least one sampling point. The effect of the point cloud density on the field mapping is considered below.

There are two main advantages to this approach. Firstly, the volume of the Voronoi cell is always larger
than the particle, so that all of the CFD and Voronoi cells will have non-zero porosity. Secondly, as the
field mapping procedure generates volume-weighted field values using data from several adjacent cells
in the other grid, a smooth field can be obtained, which is also a merit of the conventional two-grid
methods.

3.3 Simulation data assessment method

To quantitatively assess the porosity field obtained from different coarse-graining methods, three mea-
sures are considered. The first is the relative error (Er) of the total particle volume that is mapped onto
the CFD grid, V Cp,total, to the real solid volume, Vp,total, (i.e. the total volume of particles in the DEM
solver),

Er =
V Cp,total − Vp,total

Vp,total
(14)

The second measure is the standard deviation (SD) of the porosity distributions which is defined as

SD =

√√√√ 1

Nocc − 1

Nocc∑
n=1

(
εCf,n − εCf

)2
(15)

where Nocc is the total number of CFD cells that are occupied by the particles. Following Xie et al.
(1994) and Yang and Peng (2002), the third measure considered is the residual image error (γ) which
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compares the difference between two similar images in terms of pixel intensity level and is given by

γ =
|ε̂f − εf |
|εf |

(16)

where ε̂f and εf are the calculated and the reference image vectors of the porosity, respectively. In the
following section, the image error considers γ for neighbouring frames in a sequence of porosity images
obtained from the calculation.

The Pearson correlation coefficient (ρ) was introduced to assess the relationship between the individual
particle drag forces obtained from different calculation methods. The Pearson correlation coefficient
between two variables X and Y is calculated by (Zaiontz, 2020)

ρX,Y =
E
[(
X −X

) (
Y − Y

)]
SDXSDY

(17)

where SDX and SDY are the standard deviation of X and Y , X and Y are mean values, and E represents
the expectation.

4 Results and discussion

Two typical but contrasting cases were selected to assess the performance of the proposed method. Case
1 is a uniformly packed polydisperse particle assembly with periodic boundaries, this type of assembly
can be used to evaluate the fluid-particle interactions in the field of soil mechanics (Hu et al., 2019;
Huang, 2014). Case 2 is a spouted fluidised bed, which involves the flow of monodisperse particles
with distinctive solid concentration distributions. This type of fluidised bed is frequently seen in the
pharmaceutical industry to coat particles (de Freitas, 2019). The new method proposed here is denoted
2GVM (Two-grid Voronoi Method) and the calculation results are compared to those obtained using
PCM and DM (Link et al., 2005).

4.1 Validation Case 1: flow through particle assembly

An immersed boundary method (IBM) investigation of fluid-particle interactions in fluid-saturated poly-
disperse granular materials was carried out by Knight et al. (2020). One of the cases considered included
497 particles with a linear grading and the particle diameters range from 0.5 to 1.7 mm. To create
the samples, particles were randomly placed within cubic periodic boundaries. After that, the sample

(a) Particle assembly in the CFD grid (b) Voronoi tessellation of the particle assembly

Figure 5: Particle assembly in the CFD grid and Voronoi cells.

8



Table 1: Particle properties and numerical settings in the simulation Case 1

Property Value Unit

Number of particles (Np) 497 -
Density (ρp) 2470 kg/m3

Diameter (D) 0.5 ∼ 1.7 mm
Coefficient of restitution (e) 0.95 -

Coulomb friction coefficient (µ) 0.3 -
Inlet velocity (U) 2× 10−4 m/s

Time step of CFD solver (∆t1) 5× 10−6 s
Time step of DEM solver (∆t2) 5× 10−8 s

Coupling interval (M) 100∆t1 s
Point cloud density (θ2) 0.5 ∼ 7.7 -

was subject to increasing isotopic compression up to an effective stress of 100 kPa in the DEM solver
using servo-controlled periodic boundaries (Thornton, 2000). Six snapshots with global porosity values
ranging from 0.319 to 0.602 were taken of the system during compression, and the fluid-particle inter-
actions during laminar flow were determined by IBM simulations using the Multiflow code (Denner and
van Wachem, 2014; Azis et al., 2019). The IBM-generated data is used to validate the proposed 2GVM
approach in unresolved CFD-DEM method using the Ergun (Ergun, 1952) and Tenneti (Tenneti et al.,
2011) drag correlations. The Ergun and Tenneti drag expressions were chosen as they previously have
been applied to consider this system (Knight, 2018).

Fig. 5 shows the particle assembly along with the CFD grid and Voronoi cells in the coupling. In the
CFD solver, the boundaries in the y and z direction are periodic. In the x-direction, the inlet boundary
was set to have a fixed fluid velocity and zero pressure gradient, and the outlet was set to a fixed pressure
of zero. Periodic boundaries are applied in the DEM solver, and the domain for Voronoi tessellation is
restricted to the box that is occupied by the particles. The sample was fixed in space and not moving with
the simulation. Table 1 lists the particle properties and numerical settings in the unresolved CFD-DEM
simulations.

Fig. 6 shows the porosity distributions on cross-sectional slices in the x-z plane for different CFD grid
configurations. The CFD grid configurations considered are 10×10×10, 7×7×7 and 9×1×1, (number
of fluid cells along x × number of fluid cells along y × number of fluid cells along z). These scenarios
represent cases where the grid size is slightly smaller than, approximately equal to and larger than the
mean particle size of 1.1 mm. Results from 2GVM are compared with results obtained using PCM and
DM. For 2GVM, three different values of θ2 were selected for each grid configuration to investigate the
influence of point cloud density.

Figure 6: Cross-sectional view of the porosity of the particle assembly in the CFD grid.
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(a) (b) (c)

Figure 7: Variation of SD, Er and γ with θ2.

While some conclusions can be drawn from Fig. 6 alone, a comprehensive discussion requires additional
analyses. Fig. 7 plots the variation in the SD, Er and γ with θ2 for the three CFD grid configurations
considered. When θ2 exceeds 3.5, the SD curves converge to specific values, Er converges to zero, and γ
converge to a value lower than 3%. These data indicate that, for this system, the porosity fields do not
measurably change with any further increase in θ2 for θ2 > 3.5. All subsequent analysis of this particle
assembly is conducted with θ2 > 3.5.

Fig. 8 shows the histogram of porosity values obtained from the 2GVM (with θ2 > 3.5), PCM and DM.
Consideration of the combined data on Fig. 6 and Fig. 8 shows that the porosity values obtained from
the PCM and DM have non-physical porosity values (approximating 0 or 1.0) and large jumps between
the neighbouring cells in the 10 × 10 × 10 and 7 × 7 × 7 grid cases. The non-physical features are not
observed in the 2GVM approach and the porosity field becomes smooth, which is consistent with the
uniformity of the particle assembly in this case. For the one-dimensional (1D) case (9× 1× 1 grid), each
grid cell contains around 42 particles, the effects of coarse-graining approaches on the porosity field are
not obvious.

10× 10× 10 grid:

(a) 2GVM (θ2 = 3.9) (b) PCM (c) DM

7× 7× 7 grid:

(d) 2GVM (θ2 = 3.8) (e) PCM (f) DM

Figure 8: Histograms of the porosity from different coarse-graining methods.
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Figure 9: Comparison of the SD of the porosity values and the Er of solid volume for difference CFD
grid configurations and coarse-graining methods.

(a) PCM (b) DM (c) 2GVM

Figure 10: Local particle porosity against the normalized particle diameter for different coarse-graining
methods. The global porosity is indicated by the red line.

Fig. 9 provides bar charts illustrating the SD of the porosity distributions and the Er of V Cp,total to the
real solid volume. When coarse-graining, the porosity of a CFD cell must be between 0 and 1. However,
in both PCM and DM, the particle volume can exceed the the CFD cell volume if the particle is larger
than the CFD cell. In these instances, the excess volume must be discarded to ensure that the porosity
lies between 0 and 1, resulting in an error in the total particle volume exchanged with the CFD solver.
Fig. 9 shows that 2GVM gives the lowest SD and Er values amongst the three approaches, and thus the
porosity field generated by the 2GVM is the most uniform and best able to conserve volume. On the
other hand, PCM and DM provide results in which volume is conserved only in the 1D case, in which
each CFD grid cell contains more than 40 particles.

In Fig. 10, the local particle porosities calculated from the three coarse-graining methods are plotted
against the normalized diameters for the case where the global porosity is 0.319. It is clear that as the
particle diameter increases the porosity calculated by the 2GVM decreases significantly, which is to be
expected as (relatively) larger particles are known to experience greater local solid fractions (Knight
et al., 2020). On the other hand, all the porosities from the PCM and DM are assigned to one of a finite
number of fixed levels. This is because each particle is assigned the same porosity value of the specific
CFD grid cell in which it is positioned and each cell contains multiple particles.
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Table 2: Pearson correlation between the individual particle drag forces from the IBM and unresolved
CFD-DEM cases. The global εf = 0.319.

Drag correlation PCM DM 2GVM

Ergun 0.61 0.78 0.82
Tenneti 0.62 0.78 0.81

(a) PCM, Ergun (b) PCM, Tenneti

(c) DM, Ergun (d) DM, Tenneti

(e) 2GVM, Ergun (f) 2GVM, Tenneti

Figure 11: Individual particle drag forces against diameter at global εf = 0.319 with the drag forces
extracted according to PCM, DM and 2GVM (9× 1× 1 CFD grid, θ2 = 3.6).

Due to the small number of particles in the sample, simulation cases with the PCM and DM could only
be reasonably run using the 1D CFD grid (9×1×1). For this case, the magnitude of the drag force acting
on each particle normalized by the Stokes force (Fd) is plotted against normalised particle diameter (D)
in Fig. 11. The local porosity is indicated by the colour of the data points. In Fig. 11, the individual
particle drag forces calculated using the PCM and DM approaches are distributed along several straight
lines. Each line represents data for particles with the same porosity values (in the same CFD cell). The
reason the correlations between Fd and D are linear can be understood by reference to the analytical
forms of the normalised drag forces provided in Knight (2018). At a given porosity, the Fd calculated
from the Ergun correlation is linearly proportional to the Reynolds number which in turn is linearly
dependant on the particle diameter. The normalised Tenneti drag expression is more complex involving
Re0.687 and Re terms, and so Fd is approximately linearly dependent on the particle diameter when 0.10
¡ Re ¡ 0.33. In contrast, the drag forces calculated from 2GVM show a different, nonlinear trend, and
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are clearly dependent on the particle diameter. The Tenneti correlation provides slightly greater drag
forces than those predicted using the Ergun correlation. The individual particle drag forces are plotted
against the drag forces obtained from IBM simulations (Knight et al., 2020) considering the same particle
assembly in Fig. 12, the corresponding Pearson correlation values are list in Table 2. The data on Fig. 12
and Table 2 clearly show that the drag force predictions obtained using the 2GVM more closely follow
the trends observed in the IBM data than the predicted values obtained using PCM and DM. Since PCM
and DM neglect the effect of particle size on the local particle-scale porosity, the predictions from these
methods slightly overestimate the drag force acting on small particles and underestimate the drags for
large particles. This is significant as any relative movement between particles may be underestimated.
In unresolved CFD-DEM, the fluid flow around an individual particle is not accurately simulated and
the drag force is estimated by empirical models. Thus, it is not expected to achieve results that exactly
agree with the IBM. However, these data indicate that a significant improvement in the prediction of the
drag force on the individual particle can be realised by applying the 2GVM with a relative computational
cost significantly lower than required for resolved CFD-DEM approaches such as the IBM.

(a) PCM, Ergun (b) DM, Ergun (c) 2GVM, Ergun

(d) PCM, Tenneti (e) DM, Tenneti (f) 2GVM, Tenneti

Figure 12: Individual particle drag forces against those from IBM simulations. The global εf = 0.319.
Note that the data points are transparent – the darker shading indicates overlapping data points.

Fig. 13 considers the sensitivity of the performance of 2GVM to packing density and grid configura-
tion, Table 3 lists the corresponding Pearson correlation between the data from 2GVM and IBM. The
individual particle drag forces calculated using 2GVM are plotted against the local particle drag forces
from IBM simulations for 4 porosity values ranging from 0.319 to 0.602. For each porosity considered,
data obtained with grid densities of 4 × 4 × 4, 7 × 7 × 7 and 10 × 10 × 10 are compared. In all cases
the Ergun drag correlation was applied. Relatively low Pearson correlation values can be seen in the
cases with low global porosities, which indicates the prediction is less accurate in the case of densely
packed particle assemblies. This can most likely be attributed to the fact that the overall porosity of
densely packed case is slightly out of the recommended scope of the Ergun (0.320 ≤ εf ≤ 0.470) and
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Tenneti (0.350 ≤ εf ≤ 0.90) expressions which have an empirical basis (Knight, 2018). For cases with
the same global porosity, the distribution of the drag force from different CFD grid densities are in close
agreement, thus data from CFD-DEM simulations using the 2GVM are relatively independent of the
CFD grid density.

Table 3: Pearson correlation between the individual particle drag force from IBM and unresolved CFD-
DEM.

Grid Density εf = 0.319 εf = 0.478 εf = 0.551 εf = 0.602

4× 4× 4 0.83 0.86 0.91 0.92
7× 7× 7 0.83 0.87 0.92 0.93

10× 10× 10 0.84 0.88 0.92 0.93

(a) εf = 0.319 (b) εf = 0.478

(c) εf = 0.551 (d) εf = 0.602

Figure 13: Local particle drag forces from 2GVM with different mesh densities against the local particle
drag forces from IBM simulations.

The overall drag force applied to the assembly was divided by the total volume of the assembly to
obtain the volume-averaged drag force which is shown in Fig. 14. The results calculated from different
approaches are in a close agreement. Combing Fig. 11, Fig. 12 and Fig. 14, it can be concluded that
the 2GVM provides excellent prediction in the individual particle drag force and the overall drag force
of the particle assembly. The PCM and DM provide a good prediction of the overall drag force of the
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Figure 14: Variation in volume averaged drag force with global porosity.

particle assembly even though the data presented above showed they are unable to predict individual
particle drag forces correctly. Therefore, 2GVM is a better choice in the case of polydisperse systems, to
ensure that relative particle motion is accurately captured.

4.2 Validation Case 2: Spouted fluidised bed

To evaluate the ability of 2GVM to predict the dynamic mechanisms associated with fluidisation pro-
cesses, the second validation case considered published experimental data for a pseudo-2D spouted flu-
idised bed documented in Link et al. (2005). Fig. 15 shows the dimensions of the targeted spouted
fluidised bed, which has two inlets and one outlet. The inner inlet and outer inlet introduce the upward
fluidisation air for spout fluidisation and background fluidisation, respectively. CFD grids with two den-
sities, i.e., a coarse and a fine grid, were used. Each CFD cell contains around 2 and 25 particles for the
fine and coarse grid cases, respectively. 2.5mm diameter glass beads were used in these experiments. The
particle properties (Link et al., 2005) and numerical settings for the simulations are listed in Table 4. In
these simulations, the drag force model proposed in Gidaspow (1994) is employed, which applies the Wen
and Yu (1966) and Ergun (1952) drag correlations for the dilute (εf > 0.8) and dense (εf < 0.8) regions,
respectively. The Ergun (1952) and Wen and Yu (1966) models are used as they have been widely used
to simulate the fluidization process (Zhu et al., 2007).

In contrast to validation Case 1, there are regions of very low packing density in this system and so
a bounding cuboid was applied to each particle and the sides of the Voronoi cells were not allowed to
extend beyond the cuboid boundaries, as illustrated for a representative particle distribution in Fig. 16a.

The effectiveness of different coarse-graining approaches in capturing the spatial distribution of porosity
is shown in Fig. 16b-16c for the fine and coarse grid configurations. 2GVM produces a substantially more
smoother porosity field, which is most evident when considering the fine grid in Fig. 16b. Quantitative
assessment of the differences between 2GVM, DM and PCM are presented in Fig. 17 and Fig. 18. Fig. 17
shows the variation in SD and γ for increasing θ1, while Fig. 18 shows the variation in SD, Er and
γ with increasing θ2. This analysis indicates that the spatial distribution of porosity is insensitive to
changes for θ1 > 3.0 and θ2 > 3.0, which is in alignment with the observations for validation Case 1. By
comparing Fig. 7a with Fig. 18a, it is clear that the two figures indicate different initial trends in the SD
variation with θ2. These differences arise because when θ2 is small (θ2 . 1.5), the point cloud density
is low, therefore not all of the Voronoi cells may be detected by the point cloud. The resulting porosity
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Figure 15: The dimensions and grid of the spouted fluidised bed.

Table 4: Particle properties and numerical settings in the simulation Case 2

Property Value Unit

Number of particles (Np) 24500 -
Density (ρp) 2505 kg/m3

Diameter (D) 2.5 mm
Coefficient of normal restitution (e) 0.97 -

Coulomb friction coefficient (µ) 0.1 -
Coarse CFD grid 2× 30× 80 -
Fine CFD grid 6× 60× 300 -

Inner inlet velocity (Usp) 30.0 m/s
Outer inlet velocity (Ubg) 1.5 m/s

Cuboid-to-particle size ratio (θ1) 1 ∼ 6 -
Point cloud density (θ2) 1 ∼ 5 -

Time step of CFD solver (∆t1) 5× 10−5 s
Time step of DEM solver (∆t2) 5× 10−7 s

Coupling interval (M) 100∆t1 s

field does not then correctly represent the true solid distribution, and the Er in the total particle volume
is high (see Fig. 18b). In these scenarios, the SD of the porosity field can be either higher (Fig. 7a) or
lower (Fig. 18a) than the final values (θ2 > 3.0), resulting in different trends in the SD curves. These
data confirm that the method is not effective if a θ2 value less than 1.5 is selected.

In order to compare the porosity fields calculated from 2GVM, PCM and DM, Fig. 19 shows the histogram
of the porosity from these methods, while the SD and Er of the porosity values are shown in Fig. 20.
Only the CFD cells occupied by particles were included in the statistics. From Fig. 19, the distributions
of the porosity predicted from PCM and DM are not continuous for the fine CFD grid case, as indicated
by the relatively large jumps that exist between cells. In addition, particle volume is not conserved
when PCM is used with a fine grid (see Fig. 20). The nonuniformity and jumps in the porosity field
from PCM and DM can be confirmed by the visual inspection of Fig. 16. A coarse CFD grid produces
more similar results between the various methods. As the CFD grid size is increased, the three methods
provide SD values for the porosity field that are very close to each other and the total solid volume is
now effectively conserved in all cases (Er ≈ 0). Owing to the low cell-to-particle size ratio in the fine grid
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case, the accuracy of porosity field predicted by PCM and DM is low. By a similar logic, the differences
in the porosity distributions estimated from the three coarse-graining methods are not expected to be
pronounced for the coarse grid case. The above trends were also observed in validation Case 1.

Fig. 16d shows the porosity differences, which are obtained by subtracting the porosity values in each
CFD cell obtained using the PCM and DM from the 2GVM values, for the fine and coarse CFD grid
cases. From Fig. 16d, the porosity differences in the fine CFD grid case are evident in the dilute particle
region between the solid and fluid phase. For the coarse CFD grid case, the magnitude of the image
difference is obviously lower and is uniformly distributed in the region that occupied by the particles. As
mentioned above, PCM and DM have limitations when calculating porosity for the fine CFD grid but
are suitable for the coarse CFD grid cases, 2GVM is suitable for both fine and coarse CFD grid cases.
Accordingly, Fig. 16d indicates that 2GVM mainly improves the porosity field in the dilute flow regions
of fine CFD grid case.

(a) The real particle distribution (θ1 = 3.0) (b) Porosity distributions for fine CFD gird

(c) Porosity distributions for coarse CFD gird
(d) Difference between porosity values calculated using
2GVM and those obtained using PCM & DM

Figure 16: Plots of the same solids distribution with different coarse-graining methods.
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Figure 17: Variation of SD and γ with θ1 (θ2 = 3.0) for the coarse CFD grid

(a) Standard deviation (b) Relative error (c) Residual image error

Figure 18: Variation of SD, Er and γ with θ2 (θ1 = 3.0).

Fine CFD grid:

(a) 2GVM (θ1 = 3.0, θ2 = 2.0) (b) PCM (c) DM

Coarse CFD grid:

(d) 2GVM (θ1 = 3.0, θ2 = 2.0) (e) PCM (f) DM

Figure 19: Histogram distributions of the porosity values in CFD grid from different coarse-graining
methods.
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Figure 20: Comparison of the SD of the porosity distributions from different coarse-graining methods

Fig. 21 compares the particle flux profiles obtained from the experimental image analysis of the CCD
camera and the CFD-DEM simulations. The particle flux is the averaged value over 5 seconds of physical
time in the simulations. A good agreement is observed for all of the simulation cases. In validation Case
1, we were able to demonstrate that 2GVM both provides a smooth porosity field as well as a correct
estimation of the individual particle drag forces at the particle-scale. For this validation case, only the
particle flow information at the macro-level (such as the particle flux) are extracted from experimental
measurements and available for the comparison with numerical simulation. The advantage of 2GVM is
not obvious in such conditions as the conventional PCM and DM are able to give a reliable prediction
of the macro-level flow dynamics. The objective of the current study was to validate/benchmark the
methods using data from a well-constrained problem for which reliable experimental data are available.
Future studies will consider application of the 2GVM model to polydisperse systems involving fluidised
beds.

Figure 21: Comparison of the particle flux profiles from the experiment and simulations

5 Conclusions

This study introduced a new coarse-grained approach for CFD-DEM simulations (2GVM). The new
approach used a radical Voronoi tessellation so that the fluid-particle interaction force can be calculated
using local porosity data. A point cloud is used to map field variables between the CFD and DEM solvers.
Two different, but typical validation cases were used to evaluate the performance of the proposed method.

The following main conclusions are drawn based on the two verification studies considered:

1. The new coarse-graining method (2GVM) conserves data, is grid-independent and can generate
smooth porosity field in the CFD side without using any smoothing or thresholding method.
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2. 2GVM provides a more reasonable estimation of the individual particle porosity for polydisperse
systems, and results in an accurate prediction on the individual particle drag when compared with
data obtained using a fully resolved IBM simulations.

3. The approach taken to modify the Voronoi tessellation with an outer bounding cuboid can be easily
applied to the applications of the fluidised bed, where the solid concentration is non-uniformly
distributed.

This new coarse-graining approach is particularly relevant to cases where the variation in the fluid-particle
interaction force with particle size is important, for example in the simulation of internal instability in
the embankment soils or any application where particle segregation occurs.
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