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Abstract  

The surface integrity and machining accuracy of thin-walled micro parts are significantly affected by 

micro-milling parameters mostly because of their weak stiffness. Furthermore, there is still a lack of 

studies focusing on parameters optimization for the fabrication of thin-walled microscale parts. In 

this paper, an innovative approach is proposed for the optimization of machining parameters with the 

objectives of surface quality and dimension accuracy, which integrates the Taguchi method, principal 

component analysis method (PCA) and the Non-dominated sorting genetic algorithm (NSGA-II). In 

the study, surface arithmetic average height Sa, surface root mean square height Sq, and 3-D fractal 

dimension Ds are selected to evaluate surface quality. Then micro-milling experiments are conducted 

based on the Taguchi method. According to the experimental results, the significance of machining 

parameters can be determined by range analysis. Besides, regression models for the responses are 

developed comparatively, and the PCA method is employed for dimension reduction of the 

optimization objective space. Finally, two combinations of machining parameters with the highest 

satisfaction are obtained through NSGA-II, and verification experiments are carried out. The results 

show that the surface quality and dimension accuracy of the thin-walled microscale parts can be 

simultaneously improved by using the proposed approach.  

Keywords: thin-walled microscale parts; micro-milling; fractal dimension; principal component 

analysis; advanced optimization algorithms. 

 

 

 

 

 

 



1. Introduction 

Usually, the microscale is defined as 1μm-1000μm in the field of mechanical processing [1]. Thin-

walled microscale parts refer to the component structures with characteristics of microscale size and 

a height-to-thickness ratio greater than 5. Thin-walled microscale parts are increasingly in demand in 

many fields, including microelectrodes, microfluidic devices, micro/miniature dies and moulds [2, 3]. 

Micro-milling has the advantages of high production efficiency and high processing accuracy. 

Therefore, it is increasingly used in the processing of thin-walled microscale parts. However, both 

the thin-walled microscale part and micro-milling tools have weak stiffness, which brings challenges 

for its fabrication, especially for difficult-to-machine materials like Ti-6Al-4V alloy [4]. So, it is 

necessary to further investigate the machining process of thin-walled microscale parts. 

Low surface quality and dimensional error are common problems in the processing of thin-

walled microscale parts. An effective way to address these problems is to investigate the effects of 

machining parameters on processing quality and obtain the optimal parameters using an appropriate 

optimization method. Based on finite element analysis and response surface method (RSM) 

experiments, the effects of machining parameters were analyzed, and spindle speed and radial depth 

of cut were found as the most important factors for the burr height in micro-milling of thin-walled 

structure [5]. In thin wall fabrication, the effect of the axial depth of cut on the surface quality was 

found nonlinear [6]. Previous research showed that the interaction of radial cutting depth and axial 

cutting depth significantly influences surface roughness [7]. However, Kant [8] pointed out the feed per 

tooth is the most important machining parameter to reduce surface roughness and power consumption, 

followed by the depth of cut and cutting speed. To characterize the surface quality comprehensively, 

the fractal dimension method is employed. It was found that the fractal dimension measured by the 

mechanical method and the optical method can characterize the surface topography well, and it had 

a good correlation with the roughness value [9]. The surface of thin-walled microscale parts analyzed 

by three-dimensional fractal dimension Ds had better results than the surface roughness Sa and Sq [10]. 

Many researchers have endeavored to obtain optimal machining parameters. For improving 

machining quality, an optimization procedure based on the genetic algorithm and neural network was 

proposed to minimize surface roughness [11]. A method for simultaneous optimization of the burr 

width and surface roughness was also proposed using Taguchi-based grey correlation analysis [12]. 

Sahu and Ballav [13] performed optimization balancing surface roughness and cutting force of the 

turning process. Artificial neural network and particle swarm algorithm were used for optimizing 



cutting force and surface roughness at the same time, and verification tests were carried out. The 

results showed that both the cutting force and surface quality were improved significantly [14]. For 

machining efficiency and cost, a method integrated Taguchi method, response surface method and 

multi-objective particle swarm optimization algorithm was present for the objectives of specific 

energy consumption and processing time [15]. The machining parameters of the multi-pass turning 

operation were optimized by the genetic algorithm. The constraints of the model include tool life, 

cutting power consumption and cutting force. This method generated lower unit production costs 

compared with the previous results from the literature [16]. Cutting energy and material removal rate 

were optimized based on Taguchi's experimental design and signal-to-noise ratio [17]. The optimal 

parameters combination was determined for the minimum unit production cost through the colony 

algorithm [18]. In multi-objective optimization problems, different objectives are conflicting in nature. 

Optimizing one of the objectives may cause the deterioration of the others, and multi-objective 

optimization methods are easily trapped in local optimal solutions. NSGA-II is widely used for its 

good robustness and global search capabilities. Qu et al. [19] found that the NSGA-II has the best 

optimization performance in the multi-objective problem in the milling process of thin-walled 

structures. NSGA-II was used for minimizing the tool life and processing cost in the micro-milling 

process, and the obtained results were better than those in the previous literature [20]. For cutting 

Inconel 718, a method for the selection of optimal process parameters was proposed based on NSGA-

II [21].  

Due to the microscale size and low stiffness of thin-walled microscale parts, the errors of 

machine tools and cutting tools are more likely to be reflected on the workpiece, which makes the 

machining quality is more sensitive to the selection of machining parameters. However, most 

previous studies on the optimization of machining parameters focus on macroscale thin-walled parts. 

And fewer researches are performed with consideration of more than four objectives simultaneously 

in the micro-milling process. This paper firstly conducts orthogonal experiments for micro-milling 

thin-walled microscale parts. Then the effects of machining parameters on the optimization objectives 

are analyzed according to the obtained results. Besides, a method for the optimization of machining 

parameters using PCA-based NSGA-II is proposed. The optimal parameters for the best surface 

quality and dimension accuracy can be obtained through this method. Finally, micro-milling 

experiments are performed to verify the effectiveness of the proposed method. 

2. Method and experiments 



2.1 Procedure for the optimization of machining parameters 

Fig. 1 depicts the flowchart of the machining parameters optimization for the thin-walled 

microscale parts. Dimensional error De, arithmetic average height Sa, root mean square height Sq, and 

surface fractal dimension Ds are considered simultaneously in this work. The thin-walled part shown 

in Fig. 2 is fabricated by dry micro-milling.  The workpiece material is Ti-6Al-4V, and the values for 

b, h and l are 100 μm, 600 μm and 5 mm, respectively. Firstly, experiments based on the Taguchi 

method are carried out. The surface topographies and dimensions of the machined parts are measured 

by white light interferometer (WLI) and coaxial image instrument (CII), respectively. Then multiple 

regression models are developed based on stepwise regression. Besides, the PCA is performed for 

dimension reduction. After that, cutting parameters are optimized by NSGA-Ⅱ and the Pareto optimal 

solution set is obtained. Finally, two combinations of machining parameters with the highest 

satisfaction are selected for the verification experiments.  

 
Fig. 1 Flow chart of machining parameters optimization 

 

Fig. 2 The schematic of the micro-milling process 



2.2. Optimization objectives 

2.2.1 Surface roughness 

The surface arithmetic average height Sa and the surface root mean square height Sq are selected 

to reflect the surface roughness. Sa represents the average geometric error of the milled surface and 

Sq represents the root mean square of the geometric error of the milled surface respectively. The 

calculation methods are shown as follows. 
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Where Φ(x,y) denotes the height information of the surface, and ξ(x,y) corresponds to the 

reference plane of the surface. 

2.2.2 3-D surface fractal dimension 

The characteristics of the machined surface cannot be fully present by surface roughness. 

Therefore, the 3-D fractal dimension Ds is employed to characterize the machined surface from the 

perspective of the surface structure. Among the 3-D fractal dimension calculation methods for the 

mechanical machining surface, the box-counting method has the best accuracy [22]. So, it is adopted 

as one of the key objectives of optimization. The box-counting method uses cubes with the same side 

length to segment the three-dimensional surface topography, and the minimum number of boxes 

covering the image surface is employed for calculating the fractal dimension. The fractal dimension 

can be expressed as Eq. (1).  
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Where ε represents the side length of the box, and N(ε) represents the number of boxes. 

2.2.3 Dimension error 

The dimension error is the deviation between the actual dimension and the design dimension of 

the thin-walled structure in the thickness direction. As shown in Fig.3, deflection is inevitable due to 

the weak stiffness of the thin-walled micro part and micro-milling tool. The dimension error De can 

be expressed as. 

 
e a iD D D   (3) 

Where Da is the actual dimension, and Di is the design dimension. 



 
Fig. 3 The deflection of thin-walled micro part and micro-milling tool  

2.3 Experimental design 

As shown in Fig. 4, the micro-milling experiments are carried out on the KERN Evo five-axis 

vertical machining center. The cutting tool is a four-edged carbide end mill with a diameter of 1 mm 

and 45° helix angle, and the cutting strategy is dry milling. Tool wear has a significant influence on 

the machining process [23,24], in order to avoid the effects of tool wear on the machining results, a 

fresh tool is used in each experiment. The workpiece material is Ti-6Al-4V alloy. 

 
Fig. 4 Micro-milling system 

In order to analyze the effects of machining parameters (spindle speed n, feed per tooth fz, axial 

milling depth ap, and radial milling depth ae) on machining quality, an orthogonal experiment is 

designed, ignoring the interaction among all the parameters. The Taguchi experiment table L16 (44) 

is chosen for experiment design, and the process parameters and their levels are shown in Table 1. 

Table 1 Machining parameters used in the experiment 

Symbol Process Parameters Units Level 

   1 2 3 4 

A Spindle speed (n) r/min 15000 20000 25000 30000 

B Axial depth of cut(ap) μm 50 60 100 150 

C Radial depth of cut(ae) μm 20 30 40 50 

D Feed per tooth (fz) μm/tooth 0.5 1.5 2.5 3.5 

2.4. Multi-objective optimization method using PCA-based NSGA-II 



The non-dominated sorting genetic algorithm with elite strategy (NSGA-II) is a multi-objective 

evolutionary algorithm based on the non-inferior solution (Pareto) set. It has the characteristics of 

high optimization efficiency and good global searchability. Therefore, it has been widely used in the 

optimization of process parameters. But for the high-dimensional optimization objectives space with 

more than four functions, NSGA-II is incapable. Meanwhile, the visualization of results for high-

dimensional objective space is rather difficult. So, the key step is to reduce the dimension of the 4-D 

optimization objectives space by means of principal component analysis (PCA). 

3. Results and discussion 

The results of the orthogonal experiments are shown in Table 2. When performing measurements, 

the results are averaged at three locations on the thin-walled parts. 

Table 2  Results of the orthogonal experiments 

No. Symbol Control factors Responses 

  A B C D Sa(μm) Sq(μm) Ds De(μm) 

1 A1B1C1 15000 50 20 0.5 0.3153 0.4363 2.4534 1.4 

2 A1B2C2 15000 60 30 1.5 0.4617 0.5600 2.4083 9.5 

3 A1B3C3 15000 100 40 2.5 0.6920 0.9067 2.3982 4.6 

4 A1B4C4 15000 150 50 3.5 0.3433 0.4420 2.4174 3.3 

5 A2B1C2 20000 50 30 2.5 0.4087 0.5157 2.4119 11.2 

6 A2B2C1 20000 60 20 3.5 0.1120 0.1563 2.5037 3.9 

7 A2B3C4 20000 100 50 0.5 0.2270 0.2867 2.5012 3.3 

8 A2B4C3 20000 150 40 1.5 0.3217 0.3873 2.4509 4.2 

9 A3B1C3 25000 50 40 3.5 0.3337 0.4477 2.4112 8.7 

10 A3B2C4 25000 60 50 2.5 0.3873 0.5103 2.4070 4.1 

11 A3B3C1 25000 100 20 1.5 0.3670 0.4717 2.4085 2.1 

12 A3B4C2 25000 150 30 0.5 0.2327 0.3083 2.4762 0.1 

13 A4B1C4 30000 50 50 1.5 1.3740 1.8307 2.3968 2.1 

14 A4B2C3 30000 60 40 0.5 0.1823 0.2350 2.4557 8.4 

15 A4B3C2 30000 100 30 3.5 0.4407 0.5537 2.4149 3.6 

16 A4B4C1 30000 150 20 2.5 0.4987 0.6200 2.4100 11.5 

3.1 Effects of machining parameters on surface roughness  

Fig. 5 shows the variations of the three-dimensional roughness with machining parameters. The 

surface roughness decreases when the spindle speed increases from 15000 r/min to 20000 r/min. 

While, as the spindle speed exceeds 20000 r/min, the surface roughness shows an increasing trend. 

Generally, high spindle speed can lead to more heat generation, which can cause the thermal softening 



effect on the Ti-6Al-4V material. However, the continuous spindle speed increase can cause rapid 

tool wear and enlarge cutting tooltips, which can change the material removal mechanism and 

deteriorate surface quality. The minimum surface roughness is found when the axial cutting depth is 

60 μm. When the axial cutting depth is less than this chip thickness, the obvious ploughing and 

extrusion effect between the cutting edge and the workpiece can damage the surface quality. The 

surface roughness shows an increasing trend as the radial depth of cut increases. And a significant 

rise is observed when the radial depth of cut drops from 40 μm to 50 μm. In addition to the rise in 

cutting force, the stability of the tool-workpiece system goes down when the radial depth of cut 

increases, which can cause chatter and a significant deterioration of surface quality. The surface 

roughness reaches the largest value at 1.5 μm/tooth and it has a rapid decrease when the feed per tooth 

reaches 0.5 μm/tooth. The change in surface roughness presents an opposite trend compared to macro-

scale milling when the feed per tooth increases from 1.5 μm/tooth to 3.5 μm/tooth. In Fig. 4, the 

change of Sq is greater than that of Sa, which means that Sq is more sensitive to the variations of 

machining parameters. And a combination of machining parameters for minimum surface roughness 

is obtained: n=20000 r/min, ap= 60μm，ae=20 μm, and fz=0.5 μm/tooth. 

 

Fig. 5 Main effects plot for Sa & Sq 

3.2 Effects of machining parameters on 3-D fractal dimension 

In Fig. 6, the variations of surface fractal dimension Ds with machining parameters show an 

opposite trend with the surface roughness. In order to further discuss the relationship between the 

fractal dimension and surface roughness, the linear fit is performed between Ds and Sa. Fig.7 shows 

the correlation between Ds and Sa. An obvious negative correlation can be observed, which is 

consistent with the conclusions in previous literature [22]. Therefore, a good surface quality means a 

small surface roughness and a big fractal dimension value. 



 
Fig. 6 Main effects plot for Ds 

 

       Fig. 7 Relation between Sa and Ds 

However, the negative correlation between Ds and Sa is not a one-to-one correspondence. Fig. 8 

shows four selected surface topographies in all the experimental results. 

Comparing the surface topographies of the 7th and the 12th experiments, a conclusion can be 

drawn that when the surface roughness is close, the fractal dimension of the machined surface with 

defects is smaller. Surface topographies of the 3rd and the 13th experiments show that when the fractal 

dimension is close, the surface roughness may have an obvious difference. It can be seen, compared 

with the surface roughness, the surface fractal dimension is more sensitive to the defects of the 

machined surface. Therefore, the combination of surface roughness and surface fractal dimension has 

a better characterization performance. 



  
a) Exp No.7 b) Exp No.12 

  
c) Exp No.3 d) Exp No.13 

Fig. 8 3-D surface profiles obtained for selected cutting conditions 

3.3 Effects of machining parameters on dimension deviation 

Fig. 9 shows the effects of micro-milling parameters on the workpiece actual size. As can be 

seen, the actual size of the thin-walled parts is greater than 100 μm, except for one group of the results. 

This is caused by the deflection during the machining process due to the weak stiffness of the micro-

milling cutter and the thin-walled structure.  

 
Fig. 9 Main effects plot for Ae 

Fig. 10 shows the largest dimension error is at 30000 r/min. A larger spindle speed can cause 

rapid tool wear and increase the micro-milling force, which can enlarge the deflection of the thin-

walled structure.  



 

Fig. 10 Main effects plot for De 

When the axial depth of cut is less than 60 μm, the ploughing and extrusion effects can lead to 

an increase in dimensional error. The radial depth of cut and the feed per tooth have similar effects 

on the dimension error. When the radial depth of cut reaches 50 μm and the feed per tooth reaches 

3.5 μm/tooth, severe chip bending may produce a lot of heat. Then the temperature rise can lead to a 

thermal softening effect on the workpiece material. Therefore, the micro-milling force may decrease, 

so do the deflection and dimension errors. And a combination of machining parameters for minimum 

dimension error can be obtained as n=25000 r/min, ap=100 μm, ae=20 μm and fz=0.5 μm/tooth. 

3.4 Range analysis of optimization objectives 

The significant contributions of the effects of machining parameters on the optimization 

objectives can be evaluated by range analysis value. Larger range values promise a more significant 

effect. And it can be calculated by Eq. (4). 

 
1 2 3 4 1 2 3 4max( , , , ) min( , , , )jR k k k k k k k k   (4) 

Where ki is the mean value of the i-th level of factor k, i =1, 2, 3, 4. Rj is the range value of the 

j-th factor. Table 3 shows that the significance of machining parameters is Rfz > Rn > Rap > Rae for Sa, 

Sq, and Ds. But for De, there is Rfz > Rae > Rap> Rn. The effects of the parameters are different from 

results in previous studies [25,26]. 

Table 3 Range Analysis the results of orthogonal experiments 

Rj n ap ae fz 

Sa 0.3556 0.3221 0.2596 0.3918 

Sq 0.4734 0.4422 0.3464 0.4958 

Ds 0.048 0.025 0.016 0.065 

De 2.650 3.075 3.275 4.550 



3.5 Multiple regression analysis 

Polynomial regression has the advantages of simplicity, intuition, and low computational cost 

among many linear regression methods. Therefore, we choose the polynomial regression method to 

perform the regression analysis for the four optimization objectives. Meanwhile, a comparison is 

made between the quadratic fitting model using stepwise regression analysis and the model 

considering all the quadratic terms. The fitting performance of the model is evaluated by the 

significance of p value, adjusting coefficient of determination R2 (adj), and Bayesian Information 

Criterion (BIC). The comparison results are shown in Fig. 11. For Sa, Sq, and De, the stepwise 

regression model has a smaller p value, i.e., better significance, and a smaller BIC value, i.e., avoiding 

overfitting. For Ds, the regression model with all quadratic terms has a larger R2(adj), but the R2(adj) 

of the stepwise regression model is also more than 90%.  

   
a) Sa b) Sq 

  
c) Ds d) De 

Fig. 11 Significance, adjusting R2 and BIC criterion of regressions 

From the analysis above, the complexity of the regression model does not guarantee good fitting 

performance. Therefore, the stepwise regression method is used in our work. The regression models 

are Eqs. (5)-(8):  
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Fig. 12 shows the consistency evaluation between the calculation results of regression models 

and the experimental results. The results show that the regression models present a good predictive 

ability. 

3.6 Dimension reduction analysis of optimization objectives 

Fig. 13 is the correlation matrix of optimization objectives. The correlation coefficient between 

the dimension error De and the surface roughness Sa is only 0.292, and the correlation between the 

dimension error and other optimization objectives is also very low. Therefore, the dimension error 

can be considered as an independent optimization objective. 

  
Fig. 12 Pearson correlations Fig. 13 Relation matrix of the objective function 

Table 4 shows the KMO and Bartlett test results of principal component analysis. The Kaiser-

Meyer-Olkin measurement value is 0.564, which is greater than 0.5.  
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Table 4 KMO and Bartlett’s test 

Sampling adequacy Bartlett’s test of sphericity 

KMO measure Approximate chi-square df Sig. 

0.564 86.194 3 0.000 

That means PCA analysis for Sa, Sq, and Ds has a good dimension reduction effect. The p value 

of Bartlett's test is less than 0.01, which proves that the optimization objectives have a good linear 

relationship. Therefore, PCA analysis can be employed to perform dimension reduction analysis on 

the selected optimization objectives. Fig. 14 shows the common factor variance in PCA analysis.  

  

Fig. 14 Common factor variance Fig. 15 Explained total variance 

Unlike the initial variation, all the explanation degree of surface characteristics variables is less 

than 100%. The variation of fractal dimension can be explained only by 61.4%. Fig. 15 is the total 

explained variance of the PCA analysis. The analysis results show that the first principal component 

contains the most surface characteristics variation data, accounting for 87.871% of the total 

accumulation. Combining with the analysis results in Fig. 16, only one principal component has an 

eigenvalue greater than 1. Therefore, only one principal component needs to be retained. 

  
Fig. 16 Scree plot  Fig. 17 Component matrix 

Fig. 17 details the component matrix, which represents the factor loading matrix A in the PCA 

analysis. The transformation matrix in PCA analysis can be obtained by the principal component 
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loading matrix U and the factor loading matrix A. The relationship is shown as follows: 

 
iii AU /

 
(9) 

Where ߣ୧ is the eigenvalue. Only one principal component is extracted, so, i =1. According to 

Eq. (9), the principal component PC1 is: 

 
1 0.970 0.965 0.781PC SA SQ DS  

 
(10) 

Where SA, SQ, and DS are the standard scores of the original optimization objectives after 

standardization. The relationship between the standardization process and the original optimization 

objective is: 
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Where 		ܺ௠௡ᇱ   represents the n-th sample of the m-th objective after normalization, and 	ܺ௠௡ 

represents the n-th sample of the m-th original objective. And the remaining variable formulas are: 
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Where p is the total number of samples. The calculated mean value matrix and standard deviation 

matrix are: 
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Then the principal component PC1 can be expressed as: 

 -1

1 4.108 3.2975 +29.6657 -16.8614a q sPC S S D   (16) 

3.7 Multi-objective optimization results 

In the calculation, multi-objective optimization for the smallest roughness, the largest surface 

fractal dimension, and the smallest dimension error is carried out. According to the constructed 

constraint equation and the value range of each machining parameter, the optimal combinations of 

machining parameters can be obtained. On the basis of the analysis in section 3.6, optimization 

objective functions after dimension reduction can be expressed as: 



  1 1

2

min ( )
( )

i

e

f X PC
f X

f X D

  
   

 (17) 

The decision variable is X = [n ap ae fz] T. And the range of their constraints is 20 μm≤ae≤50 μm, 

50 μm≤ap≤150 μm, 15000 μm≤n≤30000 μm, 0.5 μm/tooth≤fz≤3.5 μm/tooth. 

 NSGA-II is employed for the optimization of machining parameters. The initial population 

number is set as 500, and the evolutionary generation is 1500. The Pareto front and the Pareto optimal 

solution set are obtained, as shown in Fig. 18.  

Fig. 18 Pareto front of optimized results 

A function evaluating the membership degree is proposed for the selection of machining 

parameters in the Pareto solution set, as shown in Eq. (18). 
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max min

i i
i

i i

f f
p

f f





 

(18) 

Where fimax and fimin are the maximum and minimum value of the i-th objective function, 

respectively, and fi is the value of the i-th objective function. 

The standardized satisfaction degree of each solution in the Pareto optimal solution set can be 

obtained from Eq. (19). 
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The parameters with the top two largest P values in the Pareto optimal solution set are selected. 
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3.8 Optimization results verification 

In order to verify the effectiveness of the solutions obtained in the multi-objective optimization, 



comparison experiments are carried out. The optimal combinations of machining parameters and the 

combinations of machining parameters for the best surface quality and minimum dimension error in 

previous single factor experiments are also selected for the comparison. The levels of machining 

parameters are shown in Table 5, in which Case 1 and Case 2 are the optimal results and Case 3 and 

Case 4 indicate the parameters obtained in single factor experiments 

Table 5 Machining parameters of the validation experiments 

Symbol Case 1 Case 2 Case 3 Case 4 

 Optimal Optimal Sa (Sq) Min./Ds Max. De Min. 

A 27880 24230 20000 25000 

B 115 131 60 100 

C 50 50 20 50 

D 0.525 1.18 0.5 0.5 

The actual size of the workpiece is measured by the coaxial image instrument and 3-D 

topography is measured by the white light interferometer after conducting experiments. The results 

are shown in Fig. 19 and Fig. 20, respectively. 

    

a) Case 1 b) Case 2 c) Case 3 d) Case 4 

Fig. 19 Dimensions of the thin-walled micro parts  

  
a) Case 1 b) Case 2 

  
c) Case 3 d) Case 4 

Fig. 20 Surface topographies of the thin-walled micro parts 



Table 6 lists the results of validation experiments. The surface roughness and surface fractal 

dimension of Case 2 are only inferior to the results of Case 3, and the dimension error of Case 2 is 

only inferior to the results of Case 4. So, the rationality and effectiveness of the proposed machining 

parameters optimization method are proved by the results of the validation experiment.  

Table 6 Results of validation experiments 

Symbol Case 1 Case 2 Case 3 Case 4 

 Optimal Optimal Sa(Sq)Min./Ds Max. De Min. 

Sa 0.117 0.113 0.106 0.226 

Sq 0.192 0.141 0.136 0.283 

Ds 2.4886 2.5032 2.5086 2.4406 

De 3.7 2.8 5.2 0.8 

4. Conclusions  

This paper provides a strategy for the determination of optimal parameters in micro-milling thin-

walled microscale parts using PCA-based NSGA-II. The dimension error De, the arithmetic average 

height Sa, the root mean square height Sq, and the surface fractal dimension Ds are considered as 

optimization objectives simultaneously. The combinations of optimal machining parameters can be 

acquired by this method. Finally, the optimized machining parameters are verified by micro-milling 

experiments. 

(1) The significance contributions of machining parameters for Sa, Sq, and Ds are Rfz > Rn> 

Rap >Rae by order and the significance contributions for De are Rfz > Rae > Rap > Rn by order.  

(2) The surface fractal dimension Ds and the arithmetic average height Sa show a negative 

correlation. And Ds is more sensitive to surface defects than Sa, according to the results of 

orthogonal experiments. 

(3) Regression models of stepwise regression analysis have a good performance on fitting Sa, 

Sq, Ds, and De for its better significance, smaller BIC values, and bigger adjusting coefficient 

of determination compared with regression models with all the quadratic terms. 

(4) The verification experiment results prove that the proposed method is effective, which can 

obtain optimal parameters for high surface quality as well as dimension accuracy in the 

micro-milling of thin-walled microscale parts. 
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