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Abstract: Deep learning techniques have recently shown promise in the field of anomaly detection,
providing a flexible and effective method of modelling systems in comparison to traditional statistical
modelling and signal processing-based methods. However, there are a few issues that Neural
Networks (NN)s face, such as generalisation ability, requiring large volumes of labelled data to
train effectively, and understanding spatial context in data. This paper introduces a novel NN
architecture to tackle these problems, which utilises a Long-Short-Term-Memory (LSTM) encoder
and Capsule decoder in a multi-channel input Autoencoder architecture for use on multivariate time
series data. Experimental results show that using Capsule decoders increases the resilience of the
model to overfitting and improves training efficiency, which is shown by the improvement of Mean
Squared Error (MSE) on unseen data from an average of 10.61 to 2.08 for single channel architectures,
and 10.08 to 2.05 for multi-channel architectures. Additionally, results also show that the proposed
model can learn multivariate data more consistently, and was not affected by outliers in the training
data. The proposed architecture was also tested on an open-source benchmark, where it achieved
state-of-the-art performance in outlier detection, and performs best overall with a total accuracy of
0.494 over the metrics tested.

Keywords: anomaly detection; fault detection; capsule network; lstm; neural networks; unsupervised
learning

1. Introduction
1.1. Motivation and Incitement

Time Series data analysis is a prominent field of research due to the significant demand
stemming from increasingly larger datasets being acquired in industrial and commercial
environments. The automation of this analysis has been integral to the advancement of
Industry 4.0 [1], which refers to the automation of industrial processes. One important use
case for time series analysis is outlier detection, which is an important part of the function
of intelligent systems in the context of fault diagnosis.

There have been numerous approaches that aim to be effective in detecting different
types of faults in different systems, due to the nature of the usage of the system or other
reasons relating to the susceptibility of the system to certain faults. Some approaches
for fault detection have involved using methods and techniques such as hardware-based
redundancy for sensors, sometimes paired with analytical redundancy methods [2–4].

1.2. Literature Review and Research Gaps

A rising need in industry for a lightweight and cost-effective solution to fault detection
as a result of Industry 4.0 has encouraged the development of soft sensing systems, which
use the existing sensors in a system to infer further information regarding the system. Sta-
tistical analysis and signal processing are frequently used methods in the field of anomaly
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detection. As a method of soft sensing, they are able to overcome the drawbacks of phys-
ical hardware monitoring and provide a robust method of data inference. For instance,
in Ref. [5] a dynamic model is proposed that is able to utilise the existing Supervisory
Control And Data Acquisition (SCADA) system in wind turbines to dynamically model
the relationship between the sensor readings by a parameter estimation process for the
purpose of fault detection. A frequency domain analysis is used to determine damage
sensitive indices, which are then compared to the model sensor. The technique is tested
on a 5-year wind turbine dataset where the system was able to detect faults as well as
perform fault prognosis. Whilst the method is clearly effective in the specified use case, the
flexibility of the method for other use cases comes into question as in-depth knowledge
about the system and the relationships between the variables being analysed was utilised
to be able to create the initial model. This issue is also mentioned in Ref. [6], where the
authors concluded from their survey of outlier detection techniques that model-driven
methods are heavily dependent on the understanding of the data being analysed. The lack
of flexibility of such techniques is also mentioned, due to the heavy tailoring that must
be made to the models for each dataset. This is a trend across many signal processing
techniques, including for motor condition monitoring, where Gangsar [7] noted in their
state-of-the art review of outlier detection techniques the lack of flexibility of data analysis
techniques such as acoustic analysis and motor current signal analysis (MCSA) in detecting
a wide range of faults that could occur within the system.

More recently, machine learning (ML) has been heavily utilised in literature for the
modelling of such systems. As well as being a soft sensing technique, ML is able to provide
a higher degree of flexibility in terms of application as well as being generally easier to
implement than the aforementioned techniques. Specifically, Neural Networks (NNs) have
been identified as an effective tool in data analysis and fault detection due to their unique
ability to be trained to identify numerical relationships in different forms of data [8]. They
provide an advantage over traditional signal processing and statistical techniques due to
the level of complexity that they can model the data, as well as being generalizable to
similar types of data. Various examples of literature can be found that utilise proposed
NN models in multiple use cases and datasets [9,10]. However, this is not to say that
generalisation is still not an issue with NNs. The main issue found in literature with NNs
is the importance of data volume and representation in being able to train NNs effectively.
Most NN types such as the CNN and the LSTM require large quantities of data to effectively
learn the shape and features of the data, and some methods even require the labelling of
the data before training, known as supervised learning [11], which is very time-consuming
and costly as this is usually a manual process. Furthermore, with some types of data it is
very difficult to distinguish faults and anomalies in raw sequential format.

To address these discussed issues with NNs, researchers have opted to combine
signal processing techniques with NNs where applicable in order to utilise the advantages
provided by the former with data representation and the latter in flexibility and ease of
use. This approach has seen great success in motor fault detection [12,13], where in these
cases frequency domain transformations were used to enhance the representation of the
data for use with LSTM networks. Additionally, the use of various types of CapsNets in
numerous cases was found to improve training and classification performance over smaller
datasets [14,15]. As well as hybridising signal processing and ML, many literatures also
propose the hybridisation of NN types to take advantage of their advantages with different
types of data; one popular hybridisation for TS data is RNNs and CNNs [11].

For TS analysis, Recurrent Neural Network (RNN) based models are generally used due
to their ability to identify dependencies in sequential data using their internal memory [9,16].
The LSTM network [17] is an RNN variant that was proposed to overcome the vanishing
gradient problem [18] encountered by the traditional RNN architecture, which causes learning
long-term dependencies of a TS feature. In recent times, LSTM has been a highly popular
research topic due to the overwhelming demand for time series analysis and forecasting in
commercial environments, hence fuelling the demand for more research into the improvement
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of its performance. One recently proposed method in [19] explored the usage of the LSTM
layer in an Autoencoder architecture. The authors correctly identified that a large number of
the current machine learning methods that are used are unsuitable for use practically, as they
usually require the use of labelled data, which is impractical with time series data due to the
large volumes being constantly produced. Furthermore, the authors go on to evaluate classical
anomaly detection methods such as Support Vector Machines and Isolation forests as being
flawed since they fail to account for the temporal aspect of the time series data and only take the
current data into account. The proposed approach shows promise with the accuracy of detection
and the wide application of its usage, however, the authors selectively used data that was loud
enough to be detected by the autoencoder and did not explore the sensitivity of detection in
the study. Furthermore, the authors assumed that the training data acquired was “clean” of
any anomalies, which could be a reasonable assumption to make since the data was taken from
an established dataset, but in a real-life use case, this may not be the case. However, since this
is an unsupervised approach, it is expected that all initial errors will not be identified unless
extensive data analysis is carried out before training the system, or if previous knowledge about
the operation of the system being analysed is acquired. One main issue that the LSTM faces is
its overfitting when used with gradient descent learning optimisation algorithms. Although
very careful tweaking of the hyperparameters can help to reduce this issue, this is often highly
inefficient and time consuming and is sometimes unavoidable with complex datasets.

Recent studies have utilised the Convolutional Neural Network (CNN), which has
proved to be a powerful tool in image classification [20,21], in time series forecasting and
outlier detection tasks [22,23]. Furthermore, the hybridisation of the CNN and LSTM layers
has also been shown empirically to be a proven method of improving outlier detection
performance [11,24]. However, it is well documented that the CNN has a fundamental flaw
in understanding spatial context in data and suffers from a loss of information due to the
pooling layer; this is most prominently demonstrated in image classification tasks. The
Capsule Network (CapsNet) [25] was proposed to address this flaw by “encapsulating”
the entity being described in a vector format, where the length describes the probability
of existence and the orientation of the vector describes the entity’s characteristics, such as
orientation and the special context that other traditional neural networks cannot capture.
The CapsNet has successfully shown state-of-the-art performance in image classification
tasks as demonstrated in Ref. [26] for brain tumour classification using MRI images and [27]
for Hyperspectral Image Classification, and moreover variants of the network have been
proposed to utilise gradient descent, as opposed to the dynamic routing algorithm [15].
Combining CapsNet models with LSTM models was also found to be effective for use cases
such as transportation network forecasting [28]. However, not much work has been done
utilising the CapsNet for use on time series data, and a minimal number of approaches
are applied on time series data in its raw format [29]; most approaches use an image
representation of the data as the CapsNet has been proven to improve performance in this
context. For example, one proposed approach [30] aimed to utilise capsule networks to
address an issue with the detection of short circuit faults in a power network transmission
line, using a Gramian Angular Field (GAF) representation [31].

An increasing number of modern approaches to anomaly detection have started to
tend towards using Autoencoders, to be able to take advantage of the flexibility of a
NN whilst maintaining the simplicity of application and simultaneously minimising the
need for large volumes of labelled data. One such approach [32] proposes a recurrent
autoencoder with multi-resolution ensemble decoding, to overcome overfitting during
training, as well as increase patterns captured using different resolutions. Tested on EEG
data as well as other time series data from different domains such as power consumption,
website traffic and hand gesture data, the model is able to outperform the compared
approaches consistently, and the proposed multi-resolution decoding proves to be effective
empirically. However, the performance of the model can be improved, since on one EEG
dataset the best F1 score is 0.2, and there is no explanation as to how the false positive
and false negative rates have affected the results, which could indicate model sensitivity
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issues. Another approach [33] proposes a variational quasi-recurrent autoencoder, and a
bi-directional variant of the latter which aims to improve computational efficiency through
convolutions and pooling, and improve the generalisation ability through enhanced latent
space learning. The bi-directional model outperforms all other tested methods on five
datasets from different domains. However, the authors note that they did not consider the
detection of non-statistically separate anomalies. One proposed approach [34] utilises a
hybrid LSTM and Convolutional Autoencoder to detect anomalies in advance from a high
voltage converter modulator, achieving a precision score of up to 91% and a recall up to
88%. However, with the well-publicised issues with Convolutional NNs, Capsules could
significantly improve this score.

Concluding the findings from the literature review, it is clear that soft sensing methods
of anomaly detection are more efficient and effective methods than hardware redundancy.
However, with traditional methods it is difficult to accurately model systems without in
depth knowledge of their dynamics and parameters, creating a barrier to flexible and accu-
rate system modelling, which is the basis of many anomaly detection systems. However,
NNs provide a solution for this issue, providing a method of easily modelling system
behaviour based on previously encountered data. Using NNs such as LSTM NNs for
time series data learning, researchers have been able to accurately account for long term
dependency in temporal data and create robust anomaly detection systems. However,
this creates another issue with requiring access to large amounts of labelled data, which
is expensive and time consuming to produce. To avoid labelling data, some literatures
have proposed unsupervised learning techniques such as the autoencoder, which is able to
learn data features by transforming it into a latent space representation. However, a large
volume of data is still required to utilise this technique, and generalisation performance is
weak in many these methods. The Capsule was proposed to address issues with training
efficiency and the shortcomings of traditional NNs with learning spatial context of data.
This paper further explores these qualities found in Capsules by hybridising them with
LSTMs in a NN, and addresses issues found with learning multivariate data with single
channel NNs.

1.3. Major Contribution and Organization

In the present study, we propose the hybridisation of the CapsNet and the LSTM
network in a novel multi-channel input Autoencoder architecture for use on raw time series
data. The contributions of this paper are summarised as follows:

• A Novel Hybridisation of the LSTM and Capsule layers is proposed using LSTM
layers as encoders and Capsules as decoders;

• The hybridisation is implemented in a novel multi-channel input, merged output
model architecture for use on raw multivariate time series data;

• The model is tested on a real-world dataset and benchmarked on another real-world
dataset against prominent detection methods in the field.

This article is organised as follows: Background theory relating to the proposed
method will first be provided. Following this, the proposed method will be introduced.
The experimental design on the first dataset used, a drone dataset, will be briefly explained,
then the experimental work completed on the dataset will be presented and analysed. The
second dataset, a benchmark motor dataset, will then be introduced, and results from the
experiments on the latter will be provided. A discussion as well as the conclusion will
follow the experimentation.

2. LSTMCaps Autoencoder Network
2.1. Long Short-Term Memory Network

The LSTM network, proposed initially in 1997 by Hochreiter and Schmidhuber [17]
but popularised recently by its widespread usage in commercial environments, is a popular
iteration of the RNN that can overcome the vanishing gradient issue and allows for the
learning of long-term dependency. The vanishing/exploding gradient problem commonly
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occurs in RNN architectures when training, using the backpropagation through time
algorithm due to the depth of the unrolled RNN as well as the shared weights across the
RNN cells. The calculated derivatives during training are prone to exponentially increasing
or decreasing as the calculation progresses through the network. This results in either a
lack of change or extreme changes to the RNN weight values, which in the very worst
cases means that the model stops training completely in the case of a vanishing gradient,
or trains erratically and fails to converge to a minimal error.

The LSTM architecture addresses this by using a specialised architecture that integrates
“gates” to the architecture to allow the cell state to forget values and replace values, then
decide which values to output and send to the next cell. The forget gate uses a sigmoid layer
on the input xt and previous hidden cell state ht−1 to output a vector ft that determines
which irrelevant data from the previous cell state, Ct−1, to remove from the current cell state.

ft = σ
(

W f × [ht−1, xt] + b f

)
(1)

The input gate determines the information from the candidate values that is stored
in the cell state by using a sigmoid layer on the input xt and previous hidden cell state
ht−1 to decide which values to update, it, and a tanh layer to create a vector of candidate
values, C̃t, to add to the cell state; the Hadamard product of which is used as the values to
be added to the new cell state.

it = σ(Wi × [ht−1, xt] + bi) (2)

C̃t = tanh (WC × [ht−1, xt] + bC) (3)

Ct = ft × Ct−1 + it × C̃t (4)

The output gate determines which part of the previous hidden cell state ht−1 to output
to the next cell by applying a sigmoid function on the input xt and previous hidden cell
state ht−1, then calculating the Hadamard product between the tanh of the current cell state
Ct and the output of the sigmoid gate ot.

ot = σ(Wo × [ht−1, xt] + bo) (5)

ht = ot × tanh (Ct) (6)

A visualisation of this architecture is illustrated in Figure 1.

Figure 1. Visualisation of the LSTM cell [17].
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2.2. Capsule Network

The Capsule network (CapsNet) [25], is a novel neural network architecture designed
to address the issues the convolutional neural network has with spatial context. It does
this by “encapsulating” the spatial information between the variables using vectors, which
allows the neural network to learn the distances between the identified features as well as
the classification of the features. A capsule differs from the traditional artificial neuron in
various ways: A traditional neuron receives scalar inputs; performs the weighted sum of
the aforementioned scalars; applies an activation function and outputs a scalar dependant
on the weights and biases that it has adopted through training. A capsule on the other
hand, whilst operating in a similar fashion, slightly differs from the internal operation and
the representation of the values that it receives. A capsule receives a vector input, where the
input denotes the probability of occurrence as well as orientation and other spatial features
not captured by a scalar value. It applies an “affine transformation” which is essentially a
transformation matrix weight that replaces the traditional scalar weight; this operation is
formally defined in Equation (7) [25]:

ûj|i = Wijui (7)

This transformation matrix is used to represent the spatial context that is missing
from the traditional method of weight application. The weighted sum of these vectors is
calculated using Equation (8) [25]:

sj = ∑
i

cijûj|i (8)

In order to preserve the vector information that is input to the capsule, a new type of
activation is proposed, known as the non-linear “squashing” function. This operates similar
to the normal activation functions discussed previously by squashing the output between 0
and 1 but does so in a way that is able to preserve the length and spatial information of the
input values, so that a long vector will shrink to a value just below 1 and shorter vectors
are shrunk to near 0. Equation (9) [25] formally defines this operation:

vj =
||sj||2

1 + ||sj||2
×

sj

||sj||
(9)

2.3. Autoencoder

An Autoencoder (AE) is a variant of neural network architecture that aims to learn
a compressed representation of the input data and copy it to the output. A compressed
representation is used so that the model does not learn the noise in a data representation
but only the main shapes and features of the data. A visualization of this can be seen in
Figure 2.

An AE is composed of two sections: An encoder and a decoder. The encoder part is
used to transform the input data into a latent space representation through dimensionality
reduction, which the decoder part then learns and decodes back into the input data with
reduced accuracy and hence noise. A formal definition of the AE operation is provided in
Equations (10) and (11) (courtesy of Ref. [35]).

Z = e(X) (10)

X′ = d(Z) (11)

There are various different configurations for an AE that are employed in different use
cases. An undercomplete AE, which is the configuration used in the present study, encodes
the input values to a compressed latent space representation. However, learning data that
is too compressed would reduce the accuracy of the reconstruction, so when training the
network, the aim is to balance the denoising ability with the accuracy of reconstruction.
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This is determined by the reconstruction loss, and the aim of training this type of network
is to minimise this loss whilst maintaining a good generalisation performance. This type of
neural network is typically used for unsupervised deep learning, as the inputs are being
copied to the outputs with no labelling required, which is suitable for the use case that this
paper explores.

Figure 2. Autoencoder architecture visualised (courtesy of Ref. [35]).

2.4. Proposed Model Architecture

The dataset is first checked for the number of features to be used in the model; this will
determine the number of input branches as each signal is input in a single branch. The data
is fed into the network using a sliding window, where the size of the window is referred to
as the “time steps” or lookback of the network; how many datapoints in time the NN uses
to make a prediction. This value is constant and determines the shape of the network, and
is thus a hyperparameter that is optimised during model training.

Each individual feature is first encoded through an LSTM layer using dimensionality
reduction and is thus output as a 1D vector. This dimensionality reduction is carried out
to reduce the number of degrees of freedom in the model so that the risk of overfitting
on data is reduced, and the most prominent features in each signal are highlighted. The
strength of the LSTM in identifying long-term dependency of TS features is utilised here in
order to capture the univariate temporal features in each input feature. Each feature is then
separately decoded using a Capsule layer for univariate spatial feature learning, where the
number of Capsules in the layer is dependent on the “time steps” of the input data. The
2D vector output of each Capsule layer is then concatenated as a 3D vector into a single
channel, which is passed through a single Capsule layer so that multivariate spatial feature
learning between the previously separated input features is undertaken. A fully-connected
layer is then applied to each temporal slice in the data, where the number of temporal slices
is the window size of the input or the time steps. The resulting output is the reconstruction
of the separate 2D input vectors in a single 3D vector where the third dimension is the
number of input features. The proposed model architecture is illustrated in Figure 3.

The number of input branches and therefore the trainable parameters scale with the
number of features present in the dataset. Whilst this can be seen as a disadvantage of such
an approach, the increased volume of data will generally result in the need for a larger
model with more training parameters, otherwise the model may run the risk of underfitting
on the data if there are too few trainable parameters to accurately model the data sufficiently.
Furthermore, we show empirically during experimentation that the number of trainable
parameters in the proposed model can be reduced to a value comparable to that of a single
channel NN and still outperform the latter.
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Figure 3. Proposed model architecture.

2.5. Model Training and Anomaly Detection Method

This section will explore the method of training the proposed model on a dataset for
the purpose of anomaly detection.

2.5.1. Data Preprocessing

Data pre-processing is an integral part of any model application due to the effect it can
have on model performance. One important pre-processing step is data scaling, which has
shown to have a significant impact on performance across literature. However, the type
of scaling used has been shown to be dependent on the dataset as well as the model type
used [36] and therefore should only be decided during model testing, as there is no specific
approach that yields better results than others. Therefore, the present study will address
the scaling later during experimentation.

The proposed model requires a specific data shape to be input to the NN due to
the layer types used. As the data is fed into the NN in “time steps”, which refers to a
window of time that advances by a datapoint for each sample, the data shape must reflect
this. This can be represented mathematically with the following: A dataset with shape
(samples, f eatures) will be reshaped to (samples− time steps, time steps, f eatures) where,
for a sample tn, each time step will contain the list of values (tn−time steps , . . . , tn−1, tn). The
number of samples will be reduced by the size of the time steps as the first sample will
include the first nt values that constitute a single time step.

2.5.2. Training

In order to be able to detect anomalies in a dataset, the proposed model must be trained
to reconstruct data that is known to be “healthy”. This requires some domain knowledge in
order to verify what is defined as “healthy” but can be done relatively simply nonetheless
by using a device or system that is known to be operating in a “healthy” condition as a
reference point. In the case of anomalies appearing in the healthy data, the model will
need to exhibit a resilience to learning these anomalies in order for the anomaly detection
performance to not be affected. In order to investigate this, an experiment will be conducted
to observe the effect of anomalies in the training data.

As the model takes in each feature separately, the 3D array (samples − time steps,
time steps, f eatures) will then be split into multiple 2D arrays where the number of arrays
is equal to the number of features in the data, and each array will be input into the
relevant input channel. The model output will be a reconstruction of each 2D array
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input (samples, time steps, f eatureA), (samples, time steps, f eatureB) . . . (samples, time steps,
f eatureN) as a single 3D array (samples− time steps, time steps, f eatures). This is visually
represented in Figure 3.

2.5.3. Anomaly Detection

The reconstruction error can be found using the Mean Absolute Error (MAE) of the
training predictions. The maximum prediction error for the training set can be used as the
reconstruction error threshold, which essentially means that the worst prediction case is
being used as the threshold initially so that when applying the system to more data from
the system being analysed, any predictions outside this value will be more likely to be
an anomaly. The sensitivity of the anomaly detection can be adjusted by changing the
threshold value; however, this value will not be adjusted in the present study. Furthermore,
each data feature will have its own error threshold to maximise the accuracy of detection as
the model may reconstruct less complex features more accurately than others. An example
of a threshold calculation can be seen in Figure 4. The main aim of the training process
is to minimise the standard deviation of this plot so that the system is able to make more
confident anomaly predictions.

2.6. Experimental Results
2.6.1. Experimental Design

Each of the following experiments will aim to provide insight into different aspects of
the proposed approach: Training performance, anomaly detection performance, resilience
to noise in the dataset, and comparison with popular and state-of-the-art anomaly detection
methods. Due to this, each experiment design will be different and will therefore be covered
in the relevant section. However, each experiment will always be repeated five times for
experimental rigour. This will also allow for an analysis of the stability of the approach, as
well as the statistical significance of the results for each experiment. This is essential for the
replicability and reliability of the results.

The statistical method that will be used to analyse each experiment is the one-way
Analysis of Variance (ANOVA) [37], which is a test used to determine whether two or
more population means are equal, which is the null hypothesis, or not equal, which is
the alternative hypothesis. The p-value of the scores will be evaluated based on a 95%
confidence interval, which is the conventionally accepted value in science. Therefore, if the
p-value of an experiment is calculated to be >0.05, the null hypothesis will be rejected, and
it can be said that the results of the experiment are statistically significant. The ANOVA
will be calculated using the ANOVA source table, shown in Table 1 (Courtesy of [37]).

Table 1. One way ANOVA source table, courtesy of [37], where: X = individual observation,
X̄j = sample mean of jth group, X̄ = overall sample mean, k = number of groups, N = number
of observations per group.

Source Degrees of Freedom (DF) Sum of Squares (SS) Mean Square (MS) F-Ratio p-Value

Between Groups DFb = k− 1 SSB = ∑ nj(X̄j − X̄)2 MSB = SSB
DFw

F = MSB
MSE Right tail F(DFb, DFe)

Error DFe = N − k SSE = ∑ ∑(X− X̄j)
2 MSE = SSE

DFb

Total DFt = N − 1 SST = ∑ ∑(X− X̄)2

2.6.2. Drone Dataset Anomaly Detection

The drone dataset was acquired from previous work conducted on Virtual Sensing
fault detection [38]. The datasets consists of 3 subsets of data sampled at 150 Hz: 2 subsets
of data are taken from a fully functional drone, where 1 subset is sampled for a duration
of 600 s, giving 90,000 samples, and the other for 30 s, giving 4500 samples. These subsets
will be used for the training and validation sets, respectively. The third subset is acquired
from a drone with faulty controls and is recorded for a duration of 30 s, similarly giving
4500 samples. This subset will be used as the test data. From this dataset, 3 features are
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being used. Feature 1 represents the pitch, feature 2 represents the roll, and feature 3
represents the throttle of the drone. These features overall represent the input signals to
the drone, so anomaly detection on these signals will serve the purpose of detecting any
abnormal control issues on the drone. More details on the acquisition of this data can be
found in Ref. [38]. A visualisation of the training data, the validation data, and the test
data with various anomalies outlined is provided in Figure 4. As the data is unlabelled, the
anomalies were manually labelled so that a measure of the anomaly detection performance
of each NN model could be attained. The metric used for this is the F1 score, which is
defined in Equation (12) [39].

F1 =
TP

TP + 1
2 (FP + FN)

(12)

(a) Training data

(b) Validation data (c) Testing data (anomalies in red)

Figure 4. Visualisation of the drone dataset.

The F1 score can also be expressed in terms of Precision, Equation (13), and Recall,
Equation (14). The F1 score expressed in these terms is described in Equation (15).
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Precision =
TP

TP + FP
(13)

Recall =
TP

TP + FN
(14)

F1 = 2 · precision× recall
precision + recall

(15)

where TN = True positive, TN = True negative, FP = False positive and FN = False negative.
For this dataset, it was found to be advantageous to normalise the data before using the

Z-Score normalisation to improve the performance of the models. This operation transforms
the mean of the sample to 0 and the standard deviation to 1. This is accomplished using
Equation (16).

z =
(X− µ)

σ
(16)

This experiment aims to explore the training capability of the proposed NN architec-
ture (Design D) by making a comparison with a non-hybridised single channel LSTM NN
model (Design A), a single channel hybridised LSTMCaps NN model (Design B) and a
multi-channel non-hybridised LSTM NN model (Design C). A visualisation of the models
is provided in Figure 5.

Since the trainable parameters of the proposed model, Design D and the multi-channel
LSTM, Design C, will scale with the number of features in the data, the size of each model
was adjusted so that all networks being trained have a similar number of parameters. This
is done to show the difference in performance of each NN model variant regardless of the
number of parameters, which will result in a fairer comparison of the variants. The trainable
parameters for each model variant are shown in Table 2. The models were optimised for
the drone dataset using the F1 score as the target variable to be optimised. The optimal
hyperparameters found for the models are found in Table 3.

Each model was trained 5 times on the 5-minute subset from the reference device to
observe consistency and determine statistical significance of the training and validation loss
values. Table 4 depicts the average and best loss scores as well as the percentage difference
in the training and validation scores, referred to as “% Overfitting” and the improvement in
training performance with the inclusion of the Capsule Layer. For each individual training
procedure, the overall prediction MSE for the validation set was also calculated. A training
plot from one training run from each model is also illustrated in Figure 6.

Table 2. Trainable parameters for each NN model variant, which were kept as similar as possible for
experimental rigour.

Model Trainable Parameters

Design A: single channel LSTM 25,338
Design B: single channel LSTMCaps 25,248

Design C: multi-channel LSTM 25,473
Design D: multi-channel LSTMCaps (proposed) 24,663

Table 3. Hyperparameter values used across the models for the drone dataset experimentation.

Hyperparameter Value Hyperparameter Value

Epochs 20 Loss Function Huber
Batch size 1024 Optimiser Adam [40]

Learning rate 0.0003 LSTM Activation tanh
Time Steps 4 Capsule Activation relu
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(a) (b)

(c)

(d)

Figure 5. Visualisation of models used for experimentation. (a) Design A: single channel LSTM;
(b) Design B: single channel LSTMCaps; (c) Design C: multi-channel LSTM; (d) Design D: multi-
channel LSTMCaps (the proposed model).
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Table 4. Results for training for each NN model in Figure 5 using the hyperparameters from Table 3.

Model Score Final
Training Loss

Final
Validation Loss Training Time (s) MSE % Overfitting % Val Loss Improvement

from Non-Caps

Design A
Average over 5 runs 0.00591 0.00639 37.75 10.37 7.45

N/A - Non-CapsBest over 5 runs 0.00589 0.00614 43.42 10.10 4.09
Standard Deviation 0.00034 0.00046 3.22 0.85 0.04953

Design B
Average over 5 runs 0.00158 0.00157 50.44 2.12 −0.27 3.07

Best over 5 runs 0.00164 0.00159 50.71 2.15 −3.15 2.87
Standard Deviation 0.00006 0.00008 0.58 0.10 0.00005

Design C
Average over 5 runs 0.00575 0.00620 56.52 10.08 7.28

N/A - Non-CapsBest over 5 runs 0.00610 0.00709 56.09 12.41 14.01
Standard Deviation 0.00034 0.00074 0.83 1.89 0.00034

Design D
(proposed)

Average over 5 runs 0.00162 0.00161 143.34 2.14 −0.69 2.84
Best over 5 runs 0.00168 0.00172 142.59 2.32 2.52 3.12

Standard Deviation 0.00005 0.00006 1.63 0.11 0.00005

(a) (b)

(c) (d)

Figure 6. Training plot comparison for best models in Table 4. (a) Design A; (b) Design B; (c) Design
C; (d) Design D (proposed).

The MAE thresholds were calculated using the maximum MAE values on the valida-
tion set prediction. The NN models then ran inference on the test data, and any predictions
exceeding the thresholds set were outlined as anomalies. The predicted anomalies were
then compared to the real anomalies labelled during data analysis, and the precision, recall,
and F1 scores for single datapoint outliers were calculated for each NN. The best and
average score attained by each NN model variant over five runs is depicted in Table 5, and
a visualisation of the anomalies detected on the best iteration for each model is shown in
Figure 7. The ANOVA source table for the F1 scores is depicted in Table 6.
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Table 5. Best and average test results out of five runs for anomaly detection using optimised
hyperparameters in Table 3 for each NN Design, where MAE is Mean Absolute Error, F1 is F1

Score (Equation (15)).

Model Score MAE Threshold 1 MAE Threshold 2 MAE Threshold 3 Precision Recall F1

Design A
Average over 5 runs 6.13 6.06 10.81 0.37 0.59 0.45

Best over 5 runs 5.60 6.70 11.90 0.40 0.63 0.49
Standard Deviation 0.63 0.49 0.75 0.03 0.04 0.03

Design B
Average over 5 runs 4.27 4.12 9.98 0.51 0.41 0.45

Best over 5 runs 4.31 4.08 10.62 0.57 0.51 0.54
Standard Deviation 0.15 0.06 0.59 0.06 0.11 0.08

Design C
Average over 5 runs 7.96 6.87 9.88 0.54 0.50 0.52

Best over 5 runs 7.70 6.92 11.22 0.58 0.50 0.53
Standard Deviation 0.71 0.64 1.01 0.05 0.01 0.02

Design D
(proposed)

Average over 5 runs 4.37 4.20 9.79 0.53 0.54 0.54
Best over 5 runs 4.50 4.21 9.81 0.61 0.59 0.60

Standard Deviation 0.15 0.07 0.61 0.06 0.06 0.05

The results in Table 4 show that the proposed additions result in an overall better
training performance. The addition of the Capsule layer to both the multi-channel and
single channel variant of the model architecture shows a clear improvement of the training
and validation losses over the same number of training epoch in comparison to the variants
without Capsules. Furthermore, whilst all architectures did not significantly overfit on
the training data, the architecture variants with Capsules exhibited no difference between
the training and validation losses and in some cases, the validation loss was marginally
below the training loss, which indicates strong generalisation ability when using Capsules.
The training plots in Figure 6 also show that the architecture variants with Capsules
converge to low loss values significantly faster than the variants without Capsules, which
means that without a fixed number of training epochs, the Capsule based models will
require less training epochs to converge to the same loss values as the model variants
without capsules. One drawback that can be observed however is the longer training times
for the variants using Capsules, which is expected as Capsule-based Networks require
more complex calculations than traditional NN architectures due to the dynamic routing
algorithm. However, due to the faster convergence, reducing the number of epochs on
the model variants with Capsules is feasible and will reduce the training time to a period
comparable with the variants without capsules.

The anomaly detection results in Table 5 show that both the inclusion of Capsules
and a multi-channel input architecture result in stronger anomaly detection performance.
Both variants with multi-channel inputs, Designs B and D, are able to perform more
confident predictions, as shown by the MAE thresholds for each feature in the data. Due
to this, the model variants with Capsules also achieve better F1 scores than the single
channel variants. The proposed model, Design D, outperforms the other models tested
with anomaly detection with an average F1 score of 0.53, and a best F1 score of 0.60, which
supports the conclusion that both the inclusion Capsules and the multi-channel input
architecture play an important role in improving the performance of the model.
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(a) Design A: single channel LSTM

(b) Design B: single channel LSTMCaps

(c) Design C: multi-channel LSTM

(d) Design D: multi-channel LSTMCaps (Proposed model)

Figure 7. Visualisation of anomalies detected in test data by the best iteration of each design.
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Table 6. ANOVA source table for the F1 score of the drone experiment.

Source Degrees of Freedom (DF) Sum of Squares (SS) Mean Square (MS) F-Ratio p-Value

Between Groups 3 0.0331 0.011 3.8412 0.0302

Within Groups 16 0.0459 0.0029

Total: 19 0.079

The plots in Figure 7 show that each model was able to detect all the anomalies in
the data. However, Figure 7b,d demonstrate that using by Capsules, less False Positives
are flagged in the data in comparison to Figure 7a,c, the plots for the non-capsule model
variants. Due to the method of calculation, the F1 scores achieved by each model may not
be fully representative of the abilities of each model. This aspect can be further explored
and improved in future works.

The results attained give evidence to show that both the hybridisation of the Capsule
and LSTM layers and the multi-channel input model structure are both effective methods
for improving the performance of the neural network with multivariate data, especially
when used in conjunction with each other. Furthermore, the results also show that the
proposed model is superior during training in terms of convergence and resilience to
overfitting. Additionally, the p-value of 0.0302 calculated from the ANOVA source table in
Table 6 suggests that the means of the experiment are statistically different, and unlikely to
be a result of randomness as is the case with some NN models due to their stochastic nature.
The next section will explore the effect of “unclean” training data on the performance of
the model variants.

2.6.3. Drone Dataset Outlier Resilient Anomaly Detection

This experiment aims to explore the resilience of each model variant in Figure 5
with outliers in the training data. To prepare the training data, a total of 200 anomalous
points were randomly inserted into the training set and the same experiment, as previously
outlined in Section 2.6.2, was conducted. Figure 8 illustrates a visualisation of the training
set with anomalies, Table 7 shows the best and average training results for each model
variant, and Table 8 shows the anomaly detection scores for each model variant. The
ANOVA source table for the F1 scores is depicted in Table 9.

Figure 8. Visualisation of the training set with artificial outliers.
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Table 7. Results for training for each NN model in Figure 5 using hyperparameters from Table 3.

Model Score Final
Training Loss

Final
Validation Loss Training Time (s) MSE % Overfitting % Val Loss Improvement

from Non-Caps

Design A
Average over 5 runs 0.00626 0.00667 35.89 10.61 6.12

N/A–Non-Caps VersionBest over 5 runs 0.00614 0.00653 36.53 10.19 5.98
Standard Deviation 0.00024 0.00035 0.41 0.71 0.00035

Design B
Average over 5 runs 0.00188 0.00155 49.77 2.08 −21.24 3.31

Best over 5 runs 0.00194 0.00158 49.62 2.09 −22.59 3.14
Standard Deviation 0.00004 0.00003 0.23 0.04 0.00003

Design C
Average over 5 runs 0.00575 0.00620 56.52 10.08 7.28

N/A–Non-Caps VersionBest over 5 runs 0.00610 0.00709 56.09 12.41 14.01
Standard Deviation 0.00052 0.00071 0.83 1.13 0.00071

Design D
(proposed)

Average over 5 runs 0.00162 0.00161 143.34 2.14 −0.69 2.84
Best over 5 runs 0.00168 0.00172 142.59 2.32 2.52 3.12

Standard Deviation 0.00007 0.00007 0.76 0.084 0.00007

Table 8. Best and average test results out of five runs for anomaly detection using optimised
hyperparameters in Table 3 for each NN Design.

Model Score MAE Threshold 1 MAE Threshold 2 MAE Threshold 3 Precision Recall F1

Design A
Average over 5 runs 6.34 6.65 10.91 0.37 0.59 0.45

Best over 5 runs 6.20 7.56 10.87 0.37 0.67 0.48
Standard Deviation 0.20 0.63 0.56 0.02 0.05 0.03

Design B
Average over 5 runs 4.09 4.11 9.61 0.46 0.47 0.46

Best over 5 runs 3.92 3.97 9.77 0.49 0.52 0.50
Standard Deviation 0.17 0.10 0.61 0.05 0.04 0.04

Design C
Average over 5 runs 7.73 6.10 9.25 0.54 0.50 0.52

Best over 5 runs 7.10 5.57 9.41 0.49 0.51 0.50
Standard Deviation 0.47 0.36 0.39 0.03 0.01 0.01

Design D
(proposed)

Average over 5 runs 4.44 4.15 9.58 0.52 0.53 0.53
Best over 5 runs 4.19 4.08 10.36 0.60 0.65 0.62

Standard Deviation 0.24 0.17 0.52 0.05 0.07 0.06

Table 9. ANOVA source table for F1 scores of the drone experiment with outliers in the training data.

Source Degrees of Freedom (DF) Sum of Squares (SS) Mean Square (MS) F-Ratio p-Value

Between Groups 3 0.0219 0.0073 5.526 0.0085

Within Groups 16 0.0211 0.0013

Total: 19 0.043

The results in Table 8 show that all the tested models have resilience to “non-ideal”
training data that contains anomalies. In fact, results show a marginal improvement in
performance on average for every model tested in comparison to the results in Table 5. As
found in the previous experiment, the proposed model, Design D, still outperforms all
models tested. The p-value of 0.0085 calculated from the ANOVA source table in Table 9
suggests that the means of the experiment are significantly statistically different, and
unlikely to be a result of randomness.

There are various factors that contribute to this resilience. One aspect to consider is
the anomalies that occur as a result of faults will most likely be different to the anomalies
that appear during “healthy” condition, and thus such anomalies from the latter category
can be learned during the training of the model without significant impact on the anomaly
detection ability as they could be considered as part of the “healthy” condition. Another
aspect considered during model training was the use of the Huber loss function, which uses
a combination of Mean Absolute Error (MAE) and Mean Squared Error (MSE) depending
on the magnitude of the loss value. This results in a model that is more robust to outliers
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than the most commonly used MSE, but considers them to some extent. In the case of
extreme outliers in the training data or outliers that correspond to faulty operation, this
data cannot be used, and is easily distinguished from this kind of data in either the data
collection phase or the data analysis phase that precedes model fitting, and thus it is easy
to avoid using such data to train a NN model.

2.6.4. SKAB Anomaly Benchmark

The SKAB anomaly detection benchmark [41] is a public benchmark available online
used for offline outlier detection and changepoint detection testing. The benchmark consists
of 35 subsets of data from a water circulation system, which contain 8 features, each from
different sensors in the system. The test is conducted by looping through each subset,
training the neural network on a slice of clean data from the subset, and then testing it
on labelled anomalies that were simulated with the test rig. The metric used to gauge
the performance of the outlier detection is the F1 score (Equation (12)), and the NAB
Changepoint Metric [42] was used to measure the changepoint detection ability of each
model. Figure 9a illustrates a subset of data from the benchmark, and Figure 9b shows the
plot for the anomalies in the data.

(a) A subset of preprocessed data

(b) Plot representing the respective anomalies and changepoints in (a)
Figure 9. Visualisation of the SKAB Dataset.

This experiment aims to compare the anomaly detection and changepoint detection
performance of popular and state-of-the-art unsupervised anomaly detection methods with
the proposed NN model. A selection of NNs and ML-based fault detection methods were
chosen to compare on the benchmark with minimal hyperparameter optimisation applied.

During model testing it was found that there were different hyperparameter values
that could be used to optimise the proposed model for the outlier detection and changepoint
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detection tasks, respectively. This meant that hyperparameters optimal for a good F1
score would not necessarily perform as well on the NAB score. To demonstrate this, the
hyperparameters of the LSTMCaps NN were optimised for each score separately in order
to achieve the maximum score for each metric. The different hyperparameter settings used
are shown in Table 10. Furthermore, Z-score normalisation (Equation (16)) was used in this
case as it was found to improve the performance for the proposed method.

Table 10. Optimal hyperparameters used to maximise outlier detection (left) and changepoint
detection (right).

Hyperparameter LSTMCaps Optimised for Outlier Detection
(LSTMCaps Outlier Detector)

LSTMCaps Optimised for Changepoint Detection
(LSTMCaps Changepoint Detector)

Optimiser Amsgrad [43] Adam [40]
MAE Threshold Multiplier 0.925 0.99

Epochs 100
Learning rate 0.003

Time steps 3
Capsule activation relu
LSTM activation tanh
Validation split 0.2

Batch size 128
Branched layer width 32

Full layer width 256
Loss function huber

The same testing procedure utilised in the SKAB benchmark’s GitHub repo [41]
for each model already tested on the benchmark was used to test the proposed model
architecture. The model was trained with 100 epochs on a subset from each dataset with
early stopping set at a patience of 20, and then tested on the remainder of the dataset. The
F1 scores and NAB scores achieved for each dataset are averaged, which gives the final
score of the benchmark. Each model compared was also tested on the same hardware for a
fair comparison. To gain a better understanding of the effectiveness of each method tested
as a hybrid solution for both outlier and changepoint detection, a scaled average of both the
F1 and NAB metrics was calculated to represent the overall accuracy of the model over both
outlier detection and changepoint detection tasks. This was done by scaling the NAB score
between 0 and 1, then averaging it with the F1 score. Equation (17) was used to calculate
this score. The results in Table 11 depict the average outlier detection score, the changepoint
detection score, and the scaled average score over five test iterations, respectively, and the
results in Table 12 detail the best score achieved in a single test iteration over the outlier,
changepoint, and scaled average scores, respectively. A scatter plot of the average F1 scores
against NAB scores for each model tested is illustrated in Figure 10. The ANOVA of the
overall accuracies of each model is calculated in Table 13.

Overall Accuracy =
F1 +

NAB
100

2
(17)

Table 11. Comparison of the average scores out of five runs for each metric tested.

Algorithm F1 FAR, % MAR, % NAB (Standard) NAB (LowFP) NAB (LowFN) Overall Accuracy

Perfect score 1 0 0 100 100 100 1
LSTMCaps Changepoint Detector (Proposed) 0.71 14.45 30.86 27.39 17.08 31.13 0.49195

MSCRED [44] 0.7 16.82 31.28 26.13 17.81 29.53 0.48065
LSTMCaps Outlier Detector (Proposed) 0.74 21.66 18.74 21.58 5.12 27.49 0.4779

LSTM [45] 0.65 14.89 39.4 26.61 11.78 32 0.45805
LSTM-AE [46] 0.64 14.81 39.5 22.97 20.95 23.93 0.43485

MSET [47] 0.73 20.82 20.08 12.71 11.04 13.6 0.42855
Isolation forest [48] 0.4 6.86 72.09 37.53 17.09 45.02 0.38765

Conv-AE [49] 0.66 5.57 46.16 11.12 10.35 11.77 0.3856
LSTM-VAE [50] 0.56 9.04 54.75 21.09 17.52 22.73 0.38545

Autoencoder [51] 0.45 7.52 66.59 15.65 0.48 21 0.30325
Null score 0 100 100 0 0 0 0
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Table 12. Comparison of the best score out of five runs for each metric tested.

Algorithm F1 FAR, % MAR, % NAB (Standard) NAB (LowFP) NAB (LowFN) Overall Accuracy

Perfect score 1 0 0 100 100 100 1
LSTMCaps Changepoint Detector (Proposed) 0.71 14.51 30.59 27.77 17.14 31.59 0.494

LSTMCaps Anomaly Detector (Proposed) 0.74 21.5 18.74 24.02 8.14 29.6 0.490
MSCRED [44] 0.7 16.2 30.87 24.99 17.9 27.94 0.475

LSTM [45] 0.67 15.42 36.02 26.76 12.92 31.93 0.468
LSTM-AE [46] 0.65 14.59 39.42 24.77 22.69 25.75 0.449

MSET [47] 0.73 20.82 20.08 12.71 11.04 13.6 0.429
LSTM-VAE [50] 0.56 9.2 54.81 21.92 18.45 23.59 0.390

Isolation forest [48] 0.4 6.86 72.09 37.53 17.09 45.02 0.388
Conv-AE [49] 0.66 5.58 46.05 11.21 10.45 11.83 0.386

Autoencoder [51] 0.45 7.55 66.57 16.27 1.04 21.62 0.306
Null score 0 100 100 0 0 0 0

Figure 10. Visualisation of SKAB results: NAB score plotted against the F1 score.

Table 13. ANOVA source table for the overall accuracy scores of the SKAB benchmark.

Source Degrees of Freedom (DF) Sum of Squares (SS) Mean Square (MS) F-Ratio p-Value

Between Groups 9 0.1537 0.0171 238.2433 0

Within Groups 40 0.0029 0.0001

Total: 49 0.1565

The results in Tables 11 and 12 show that the proposed method optimised for outlier
detection outperforms all other methods tested, achieving the best F1 score and the lowest
False Negative rate out of the models tested. It also achieves the second highest False
Positive rate out of the models.

With regards to changepoint detection, the proposed method optimised for outlier
detection does not perform as well. However, the proposed method optimised for change-
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point detection was able to outperform all ML-based methods and the majority of other
methods, but is outperformed by the Isolation Forest algorithm due to the low False Nega-
tive rate of the Isolation Forest on the test data. However, Isolation Forest performs poorly
with regards to outlier detection, making the algorithm unsuitable as a balanced solution
for both problems. Similar outcomes can be seen for the best performing test iteration, with
no improvement in relation to the other NNs and ML methods.

As a balanced solution to both outlier detection and changepoint detection, the pro-
posed model outperforms all other tested methods when optimised for changepoint de-
tection. The main change that is made to optimise the proposed model for each detection
task is a change in the threshold multiplier. With a more sensitive threshold, the proposed
model is able to display strong performance in outlier detection at a cost to the changepoint
detection performance. Decreasing the sensitivity of the threshold to a value close to the
maximum prediction MAE of the validation set allows the model to perform stronger
on changepoint detection to the detriment of outlier detection ability. The loss of outlier
detection performance in the configuration optimised for changepoint detection is com-
parably less in comparison to the loss in performance on changepoint detection when
optimised for outlier detection. The p-value of 0 calculated for the means of the overall
accuracy of the methods tested suggest that there sufficient evidence to state that the results
of this experiment are highly unlikely to be due to random chance. Such a low value is
due to some of the tested methods being deterministic and thus having no variance in the
sample, and the stochastic methods such as ML-based method converging consistently to
the same minima.

From this test, it can be concluded that for single datapoint outlier detection, the
proposed LSTMCaps multi-channel architecture provides state-of-the-art performance.
However, while the changepoint detection performance is superior to other ML-based
methods with the right adjustments to the hyperparameters, the Isolation Forest algorithm
is found to be advantageous for this benchmark. As a balanced solution however, the
proposed model outperforms all other methods, and would be the preferred solution for
strong performance in both outlier detection and changepoint detection simultaneously.

3. Discussion

Across the experiments conducted, it is clear to see that both the inclusion of the
Capsule Network and the multi-channel input architecture is integral to the improvement
of the performance of the proposed method in terms of training and anomaly detection.
The evidence for this is shown clearly across the experiments, where with standard LSTM
AEs, the training and anomaly detection performance is significantly weaker than with the
proposed NN.

With regards to the scalability of the proposed method, whilst it is true that when
keeping the model parameters constant and increasing the number of branches to account
for more features results in a larger and more computationally complex model to train, the
experimental results in Sections 2.6.2 and 2.6.4 have empirically shown that the model size
can be reduced to a number of trainable parameters similar to single input NN architec-
tures and still outperform the latter with both training efficiency and anomaly detection.
This gives flexibility with regards to the size of the proposed model depending on the
complexity of the data being applied on, but mitigates the effect of additional features on
model complexity.

The experimental results further suggest that models which included Capsules were
training more efficiently, reaching the local minima at a faster rate in relation to networks
without Capsules. Most importantly, the results in Table 4 for training suggest that with
the use of Capsules, the model training procedure can be simplified considerably due to
the lack of overfitting during training on the NN models with Capsules integrated. It
was also found during hyperparameter optimisation that even without fully optimised
hyperparameters, the model variants that included Capsules were less susceptible to
overfitting in comparison to the model variants without Capsules.
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One significant strength of the proposed LSTMCaps NN is the ability to learn separate
data features effectively in comparison to a standard single channel NN. Evidence of
this is seen in Table 8, where both multi-channel input architectures with and without
Capsules perform better with anomaly detection. This is further substantiated with the
anomaly detection performance on the SKAB anomaly benchmark, which contains a larger
number of more complex features than the drone data. Whilst literature mentions that
correlation dependencies between features are not considered when learning each feature
separately [52], the proposed model overcomes this potential drawback by concatenating
the internal feature representations and utilising a layer of Capsules to learn the spatial
features of the multivariate data, which includes the correlation dependencies. Evidence of
this is also clearly shown empirically through the experimentation conducted on the drone
dataset where the proposed model outperforms the multi-channel input variant without
Capsules with standard training data and training data with outliers.

The proposed model tackles overfitting with its various aspects of operation. In
the experiments completed on the drone dataset, each model tested uses a comparable
number of trainable parameters. However, since the multi-channel models contain an
encoder for each feature as opposed to a single encoder, more layers are used. This is a
result of each input channel encoding the data separately at first, which means that less
trainable parameters are needed for each input channel. Previous research clearly shows
that increasing the number of parameters allows for a NN model to be able to model more
complex functions and relationships, but at the risk of overfitting on the distribution of
the training set. The proposed approach shows that by using the multi-channel input
approach, the model can maintain the number of parameters as the single channel variants
outperform the latter in both training—but more importantly anomaly detection—due
to the enhanced generalisation ability achieved through more robust training. The drone
dataset experiments in Section 2.6.2 do not show this behaviour, but this is due to the
lack of complexity in the dataset. On the other hand, the benchmark on the SKAB dataset
in Section 2.6.4 shows this behaviour clearly, due to a significantly increased number of
features, signal length, and complex signal behaviour.

In addition to this, by comparing the results in Tables 4 and 7, the models using
Capsules are clearly able to train more effectively, and in some cases perform slightly better
on the validation set in comparison to the training set, showing strong generalisation ability.
Since the generalisation ability of a NN is directly correlated with the training performance,
there is clear evidence to say that the Capsule directly contributes to the strong training
performance of the proposed model, and reduces the overfitting generally encountered
when training autoencoders. In comparison to recent state-of-the-art approaches, the
proposed method overcomes the limitations found in each work. For example, the use
of Capsules instead of traditional Convolutional layers used in [34] is shown empirically
on the SKAB dataset to improve performance, and reduce overfitting without additional
measures. Furthermore, the multi-channel input architecture is rarely used in anomaly
detection tasks, and not used in any of the literature reviewed in the present work. However,
it is empirically proven in all experiments in the present work that by using this approach,
the model is able to learn the features more effectively when using the LSTM univariate
encoders and Capsules for univariate decoding and multivariate spatial feature learning.
With the proposed approach, there is potential to use heterogeneous input data with
minimal modifications to the model architecture.

4. Conclusions and Future Work

This paper proposed a novel hybridisation of the LSTM and Capsule Networks in
a multi-channel architecture to address the issues found in the literature review with
the training performance of NNs, specifically on multivariate data. The motivation for
this research stemmed from the growing demand for more effective unsupervised data
analysis techniques regarding outlier and anomaly detection for use in industrial and
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commercial environments with large datasets to assist in the advancement of Industry
4.0—the automation of industrial processes.

The proposed NN architecture was first tested on a drone dataset to observe the
training and anomaly detection performance improvements with regards to non-hybridised
and single channel variants of the NN, where it was found that, due to the inclusion of
Capsules, the proposed NN can train more efficiently over a smaller number of epochs by
converging at a faster rate in comparison to the variants with no Capsules integrated in
the NN, and shows evidence of a resilience to overfitting. The tested NN models detected
anomalies in the test data through an unsupervised method of reconstructing the validation
data and using the maximum prediction MAE of the subset of data as a reference point for
the confidence of prediction in any unseen data, so any data outlying from the expected
shape in the training data would be flagged due to high prediction error. The results
of this test concluded that the proposed NN architecture performs better than the other
variants tested as a result of the proposed additions and changes to the NN architecture.
The model variants were also tested on imperfect training data with outliers present, and
all variants were found to be robust to outliers in the data due to the loss function used.
Furthermore, due to the outliers present in the data not corresponding to faulty operation,
the performance of the models on detecting faulty drone operation was not affected. It was
also noted that training data that contains fault data would be easily spotted during the
data collection or data analysis stages, and would therefore be easy to avoid when used to
train the model.

The proposed NN was also tested against other popular and state-of-the-art anomaly
detection methods on the SKAB anomaly detection benchmark, where with slight hyper-
parameter adjustments the proposed method was able to adapt effectively to both outlier
detection and changepoint detection, performing better than all other methods tested for
outlier detection. Whilst the proposed method performed better than most methods in
changepoint detection, the model was outperformed by the Isolation Forest algorithm.
However, the Isolation Forest performed poorly with outlier detection, making it highly un-
suitable as a hybrid solution for outlier and changepoint detection simultaneously. On the
other hand, the proposed model, when optimised for changepoint detection, outperformed
all other methods as a hybrid solution to both outlier and changepoint detection problems.

Whilst the proposed NN operated exclusively on raw data, it was found in the litera-
ture review that with different representations of data, the prominence of data features can
be increased, which in turn can help to improve the performance of unsupervised anomaly
detection. However, feature representations would be based on the problem domain that
the proposed model is being applied to and data collection specifications such as sampling
frequency. Furthermore, the method of single datapoint outlier detection was found to have
drawbacks to practical application due to single datapoint outliers being weighted equally
to clustered datapoint outliers, which results in high False Positive rates for the model.
Future works can address this by considering an approach for differentiating between
different size clusters of outlying points, and the use of different data representations in
multi-channel variants of the proposed network to enhance the prominence of anomalous
features for stronger anomaly detection performance.

Another interesting observation that can be made from Tables 4 and 7 is the increase in
training time with the approaches using capsules, in comparison to just LSTM layers. This
is a clear indication of the increase in computational power required to train the Capsule,
and is mainly due to the dynamic routing algorithm. Whilst being a main driver of the
strong feature and spatial learning performance of the Capsule layers, the algorithm is very
intensive and thus uses more processing power. Recent work has shown that this is not
the only approach to spatial learning, and strong performance can still be obtained with
other architectures such as the Homogeneous Vector Capsule (HVC) [15]. In addition to
this, whilst a comparison was not made, the LSTM cell structure is also computationally
intensive to run, in comparison to more modern approaches such as the Gated Recurrent
Unit). Whilst not an issue in the present study, the inefficiencies may be more of an issue
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in larger datasets. Future works could try to investigate and address this computational
power issue with the use of more modern and power efficient architectures.
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