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Abstract

Additive manufacturing (AM) is becoming an increasingly popular manufacturing process due
to its design freedoms and material efficiency. However, the use of AM in industry is limited
by the reliability of the deposited parts. Process-microstructure-property relationships are of
paramount importance to increasing understanding and consistency within additive

processes.

Within this work, thermal and microstructure modelling methods are investigated to develop
an efficient approach to the simulation of solidification microstructure. Finite element thermal
models are considered as well as the implementation of analytical solutions. Cellular automata
methods are used to simulate grain growth, 2D models are implemented for computational

efficiency.

The established approach is applied to three case studies within this work. The first is the
application to laser scans on a bare nickel superalloy substrate, followed by the application to
direct energy deposition technigues. Within the second study the capability of the modelling
approach to capture changes in microstructure as a result of a change in process parameters
is investigated. Finally, the modelling approach is applied to functionally graded materials

through in situ changes in process parameters.
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1 Introduction and Background
1.1 Additive Manufacturing

Additive manufacturing (AM) is the process of creating products by depositing material in a
layer-by-layer manner. It is officially defined as “a process of joining materials to make objects
from 3D model data, usually layer upon layer, as opposed to subtractive manufacturing
methodologies” (ASTM International, 2013). The process works by breaking down 3D
geometries into 2D layers or slices. Each layer is then deposited sequentially to build the full
part. There are numerous methods that can be used to deposit each layer, with varying heat
sources and material feedstocks. For additive manufacture of metals, these techniques can

be broken down into two main groups, direct energy deposition and powder bed fusion.

Experimental examples of both of these types is shown in Figure 1.

Figure 1: Images of the experimental set up for powder bed fusion (left) and direct energy deposition (right).
Images courtesy of TWI Ltd.

Powder bed fusion (PBF) methods take place within a build chamber. A thin layer of powder
is spread across the build plate (or substrate) within the chamber, from the material reservoirs
within the AM machine. Throughout the build of the geometry, the required 2D geometry of
each layer is traced within the powder using the heat source (laser or electron beam). Upon
completion of each layer, the build plate is lowered by the specified layer height and another
layer of powder is swept across the top of the previously deposited material. A number of
process parameters, including hatch spacing, scan speed and layer height, need to be
specified for each deposition. The two main powder bed fusion techniques include laser-
powder bed fusion (L-PBF), also referred to as selective laser melting (SLM), and electron
beam melting (EBM). The heat source for each method is a laser and an electron beam
respectively. The inert atmosphere when using a laser heat source is normally nitrogen or

argon gas (Yap, et al., 2015), whilst a vacuum is normally used when working with an electron



beam (Gibson, et al., 2015). PBF is more suitable for small scale parts, as it usually uses
reasonably small layer heights on an order of 10um (Gibson, et al., 2015). This means a good
resolution of geometry can be achieved, at a cost of longer build times. Furthermore,

limitations on geometry size are imposed by the size of the build chamber.

Direct energy deposition (DED), on the other hand, refers to AM techniques that deposit
molten material directly from a nozzle on to a substrate. The ASTM standard defines them as
“an additive manufacturing process in which focused thermal energy is used to fuse materials
by melting as they are being deposited” (ASTM International, 2013). Popular DED methods
include laser metal deposition (LMD) and wire-arc additive manufacturing (WAAM). As
expected, the heat source used within LMD is a laser, whilst WAAM applies traditional welding
techniques in an additive way and therefore an arc is used as the heat source, similar to that
in Gas-Metal Arc Welding (GMAW) (Williams, et al., 2016). Additionally, a wire feedstock is
used in WAAM, whereas LMD can be performed using both a powder or wire feedstock. DED
methods offer higher deposition rates and component size than PBF, but this is normally at
the expense of part resolution. In particular, WAAM can produce parts with build rates up to
10kg/hr (Williams, et al., 2016) and with sizes on the order of metres. Moreover, due to the

increased freedom of the procedure, techniques such as LMD can be used for part repair.

Over recent years, additive manufacturing has seen high levels of interest from industries such
as aerospace, automotive and biomedical. There has seen a number of successful
applications within the aerospace industry including the GE LEAP fuel nozzle and GE9X
engines, both now in service (Sher, 2020; GE, 2018) As an industry, AM is expected to be
worth $21.5 billion by 2025, after reaching $7.336 billion in 2017 (AM-motion, 2016). This is

due to the wide range of benefits that AM processes can offer.

One of the most attractive benefits of AM is the more efficient material usage. As the process
is based on the principle of depositing material in the required location, this means that there
is significantly less waste material compared to more conventional subtractive methods, such
as machining. Consequently, this results in a higher buy-to-fly ratio for industries, making the
parts more cost efficient and economical. Furthermore, AM offers more customisation options
as the need for costly moulds and dies is no longer required, as well as the ability to create
more complex geometries. As a consequence of removing the need for component dies, a
number of constraints on the geometry imposed as a result of using a die are also removed.
For example, through the use of PBF one can create lattices and complex internal channels.
This also presents opportunities for part consolidation, leading to simplified production lines
and optimised geometries. Other benefits include, part repair opportunities presented by DED

techniques, topology optimisation and tailoring of material properties. Functionally graded



materials are materials that are tailored for specific purposes, be that through the deposition
of multiple materials or the tailoring of microstructure to induce certain material properties.

This adds another element of customisation and design to additive processes.

However, as with any relatively new technology there are a number of challenges and
disadvantages. These can be things as small as the constraints posed by build chamber size
or limitations on deposition speed. Furthermore, stair stepping effects can be introduced to
the geometry. This is as a result of discretising 3D geometries into a number of 2D slices. If
the layer height is not suitably small, the geometry cannot be resolved well and stair like effects
may be seen on the surface as a result. Consequently this can lead to surface roughness, and
subsequently fatigue initiation sites, and can be limited by the control of layer height. This
effect can be visualised in Figure 2.

Figure 2: Demonstration of the stair step effect.

Further challenges include lack of fusion and porosity. Lack of fusion can be caused by
unsuitable process parameters, meaning that not all of the required material is fully-fused
within each layer. Although most AM processes achieve a nearly fully dense component,
porosity can also be caused as a result of entrapped gases during the build process. Part
distortion is also experienced within AM processes, caused as a result of the rapid heating
and cooling cycles the material is subjected to. The thermal process, inherent to the layer-by-
layer deposition, results in the build-up of residual stress within the component and
consequently part distortion, particularly upon removal of the build plate.

One of the more significant challenges for industries looking to implement AM technologies is
the repeatability and reliability of the process. Reliability and structural integrity is obviously of
paramount importance for all industries from biomedical to aerospace, without this assurance
components cannot be used with confidence within their designed roles. Lack of knowledge
surrounding the resultant properties of additive manufactured parts is at the root of this



challenge. Furthermore, the level of repeatability of parts between machines and even
between each individual builds with a given machine is not fully understood (Dowling, et al.,
2020). All of this means that there is a significant uncertainty to whether each AM part that is
designed and manufactured will be fit-for-purpose. Recently, there has been a focus on
increasing understanding of links between process parameters, microstructure and material
properties to try and address these problems. A full review of the research gaps in the field of
additive manufacturing will take place in the literature review in Chapter 2.

1.2 Metals for AM

A number of materials can be used in the additive manufacturing process including ceramics,
plastics and metals. However, throughout this work, the focus will solely be on metal AM.
Metals for additive manufacture need to have good weldability (Bourell, et al., 2017). This is
because, as AM is a joining process, many of the same properties are required as those that
are required for welding. According to ISO/TR 581 a material is said to be weldable, for a
specific process, when subject to a suitable weld procedure, metallic continuity can be
achieved and metallurgical and mechanical properties comply with specified requirements
(ISO, 2005) . A material’s weldability is therefore affected by a number of properties including
its melting point, conductivity and thermal expansion, as well as its susceptibility to cracking
and behaviour within the heat affected zone (Dwivedi, 2022). For this reason, the list of metals
currently used within AM is reasonably limited. Common materials include, titanium alloys,
stainless steels, aluminium alloys and nickel alloys. In particular there has been significant
focus on Ti-6Al4V, AISi10Mg and nickel superalloys, such as Inconel 718 and 625 (Bourell, et
al., 2017).

Superalloys are specific metal alloys that have had their alloy composition chosen in order to
achieve increased performance. Nickel superalloys is a term used for alloys whose base
element is nickel (Ni). These were initially developed for use in gas turbines (McLean, 1995),
but are of particular interest in the aerospace industry. This is due to their increased
performance at high temperatures (Andersson, 2011; Debroy, et al., 2018). Specifically, nickel
superalloys boast increased strength as well as corrosion and oxidation resistance, increased
creep strength and wear resistance (Attallah, et al., 2016; McLean, 1995; Graybill, et al.,
2018). Examples of common nickel superalloys include Inconel alloys, Hastelloy-X and
Waspaloy. Inconel 718 and 625 have become increasingly popular in relation to additive

manufacturing. The nominal composition of each of these can be seen in Table 1.

Although it has been shown that some mechanical properties of additively manufactured nickel
superalloys surpass those of their cast counterparts, after heat treatment (Xu, et al., 2019),

there are still a number of challenges with processing nickel superalloys using additive



methods. These include the build-up of residual stress and poor surface finish (Seetharaman,
et al., 2016). Moreover, nickel alloys can be susceptible to defects and cracking, due to their
alloy composition (Tang, et al., 2021; Attallah, et al., 2016). It has been observed, that there
is also significant anisotropy of mechanical properties within additively built Ni-superalloy
components. This is as a direct result of anisotropy within expitaxial solidification
microstructures (Attallah, et al., 2016). Until these problems are understood, nickel superalloys
cannot be used confidently within industry (Graybill, et al., 2018).

Composition (%) Alloy 718 Alloy 625

Ni (Plus Co) 58.0 min
50.0-55.0

Cr 17.0-21.0 20.0-23.0

Fe Bal. 5.0 max

Mo 2.8-3.3 8.0-10.0

Nb (plus Ta) 4.75-5.5 3.15-4.15

C 0.08 max 0.1 max

Mn 0.35 max 0.5 max

Si 0.35 max 0.5 max

P 0.015 max 0.015 max
0.015 max 0.015 max

Al 0.2-0.8 0.4 max

Ti 0.65-1.15 0.4 max

Co 1.0 max 1.0 max

B 0.006 max N/A

Cu 0.3 max N/A

Table 1: Nominal composition of popular Inconel alloys, 718 (Special Metals, 2007) and 625 (Special Metals,
2013).

1.3 Numerical Modelling Methods for Additive Manufacturing

Numerical modelling methods are becoming increasingly popular, especially with the birth of
industry 4.0 and digital manufacturing (Rodic, 2017). Industry 4.0 focuses on the digitalisation
of industry, with key areas of interest including data analytics, autonomous systems, additive
manufacturing and the internet of things (Rodic, 2017). Inherently, simulation is also of high
interest in relation to industry 4.0, through its application of digital technologies to develop and

progress industrial processes.

Modelling methods make use of underling physical equations to simulate and predict physical
scenarios, including manufacturing processes such as additive manufacturing. By modelling

a situation by its fundamental laws, this allows one to predict and gather required information,



and provide understanding to complex systems (Velten, 2009). This can significantly reduce
costs and lead times by reducing the number of experimental tests that would otherwise be
required (Rodic, 2017). Furthermore, simulation can be used as a tool for optimisation to
improve part performance or the manufacturing process itself. This could be achieved through
process parameter optimisation, design optimisation or even operations optimisation (Cruz-
Mejia, et al., 2019; Hinsen, 2020).

There are a number of various modelling methods, typically these can be stochastic or
deterministic (Marion, 2008). Stochastic methods include statistical or probabilistic features,
resulting in varying results for each run. On the other hand, deterministic results have no
statistical dependence and therefore produce a single, repeatable outcome. Examples of
stochastic models include Monte Carlo and Cellular Automata methods, which can both be
used to simulate microstructure growth and are explained in further detail later on in this work.
Furthermore models can be mechanistic or empirical - mechanistic models take into account
underlying causes directly, whereas empirical models use mathematical relationships to

approximate any changes that may take place.

When modelling industrial manufacturing processes, mechanistic models are normally
implemented. This involves solving the underlying partial differential equations (PDESs) that
define the problem, such as the heat transfer equation, mass conservation and conservation
of momentum. PDEs can be extremely complex to solve analytically, especially when there
are a large number of variables. However, they can be solved using a variety of techniques
based on discretisation and approximation, namely finite difference, finite volume and finite
element methods. Whilst these methods are similar in that they all use discretisation methods
to approximate PDEs, they have some distinctive differences. The finite difference method is
by far the easiest to implement and most suited to uniform meshes (Tadmor, 2012). The
method makes use of Taylor series to approximate the solution. An example of the application
of this to the heat equation can be found here (Recktenwald, 2011). On the other hand, finite
volume methods use conservation equations to monitor the flux in and out of a volume
surrounding each node (Versteeg & Malalasekera, 2007). This technique is closely linked with
computational fluid dynamics (CFD) and best suited for determining fluid flow. The final
approach is the finite element method, which is the most popular method within industry and
one of the main numerical modelling methods that will be implemented within this work. It
allows application to more complex geometries with irregular meshes and advanced problems
that require multi-physics approaches (Tadmor, 2012). Further detail on the finite element
method is given in the next section, as the method will feature heavily within the work

presented here.



1.4 The Finite Element Method

The finite element method (FEM) has been used frequently throughout the engineering
industry since its implementation at Boeing between 1950 and 1962 (Felippa, 2004). It was
originally established for use in structural analyses and is widely used throughout the
engineering industry today. The theory used within FEM dates back as early as the 1800’s
with connections to work developed by Raleigh and Ritz (Pepper & Heinrich, 2017). A brief
overview of the theory of the finite element method is given here. A number of resources can
be used to understand the theory of the finite element method including (Fish & Belytschko,
2007; Moatamedi & Khawaja, 2018; Rao, 2005)

The main aim of the FEM (with regard to linear elastic static mechanics) is to solve the
equilibrium equation, given in Equation 1. Here F is the external loads, K the global stiffness
matrix and u the resulting displacements. The displacements are the degrees of freedom
within this problem. A degree of freedom is a variable of interest within the analysis. This
eqguation ensures internal and external loads are balanced and can be compared to the spring

equation.

F =Ku

Equation 1: Finite element method equilibrium equation.

The first step of the FEM is to discretise the computational domain into a number of elements.
This will define the shape of the elements and the nodal connectivity used within the
computation. Furthermore, Gaussian quadrature is used to determine a number of integration
points, with weightings, within the element. These integration points are a fundamental aspect
of the finite element method for two reasons. Firstly, through the use of Gaussian quadrature
they allow a simple and convenient calculation of integrated components over the whole
element through the use of weightings and summation. Furthermore, they provide a
convenient location for the calculation of derivatives, for example when calculating strain, as

the derivatives are not necessarily continuous at the nodes.

After discretising the domain and determining the element and nodal connectivity, the next
stage is to decide on the order of the elements, usually linear or quadratic. This will determine
the shape functions which define how values are interpolated within the element. Shape
functions are determined as polynomials of the required order that are equal to 1 at the node

in consideration and 0 everywhere else. Figure 3 shows an example of a 2D fully integrated,



linear quadrilateral element, with the corresponding shape function for each node. These
shape functions can then be used to interpolate between nodes and the integration points

within the elements through the use of Equation 2, where N; represents the shape function for

node i.

1 (_1:1) (111) 2 .
N1=Z(1—x+y—xy)
x x N2=%(1+x+y+xy)

1
Ny=2(1+x-y—xy)

X X 1
Ny=71-x=y+xy)

4 (11 @ 3

Figure 3: Example linear quadrilateral element and corresponding shape functions.

u(xy) = ) NiGoyy

Equation 2: Use of shape functions to interpolate displacement.

The other two key components required to solve the problem statement and complete the
system of equations are the compatibility and constitutive equations. The compatibility
equations define the relationship between strain and displacement, whilst constitutive provide

the relationship between stress and strain.

Equation 3: Strain-displacement relationship in 2D.

The compatibility equations are closely related to the shape functions as the shape functions
describe the displacement across the element. The relationship between strain and
displacement within a 2D analysis is given in Equation 3, where u and v are the displacements
in the x and y directions respectively. The derivatives of u and v are calculated through the
use of the shape functions and the chain rule as demonstrated in Equation 4a. This allows us

to construct the compatibility matrix, B, seen in Equation 4b.
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Equation 4: Compatibility equations, (a) using shape functions and chain rule and (b) in matrix form
(Moatamedi & Khawaja, 2018).

Equation 4 gives the compatibility matrix, B, with respect to the global coordinate system (x,y).
However, chain rule can be used to more easily calculate this with respect to the local

coordinate system (,n), through the transformation shown in, where J is the Jacobian.
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Equation 5: Coordinate transformation through the use of the Jacobian (Liu & Quek, 2014).

Once the compatibility matrix is determined, the constitutive matrix can then be calculated.
This is done using the stress-strain relationship defined by the problem statement and material
properties. The general relationship between stress and strain can be seen in Equation 6,
where D is the constitutive matrix, whilst Equation 7 shows an example constitutive matrix for

plane stress and plane strain.
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Equation 6: General stress-strain relationship.
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Equation 7: Example constitutive matrices for (a) plane stress and (b) plane strain (Fish & Belytschko,
2007).

Once the compatibility and constitutive matrices have been determined, these can be used to
calculate the local stiffness matrix for the element. This is defined by Equation 8, further
background on the formulation of this equation can be found here (Fish & Belytschko, 2007).
However, as a consequence of the Gaussian quadrature implemented to define the integration
points, the integral can be determined by computing the matrix multiplication at each

integration point and summing the resulting matrices with appropriate weightings.
K¢ = f BTDB
4

Equation 8: Calculation of elemental stiffness matrix.

Again, this integration can be made simpler by performing this with respect to the local
coordinate system. This can be done through the application of the Jacobian using the

relationship shown in Equation 9 (Liu & Quek, 2014).

dv = det(J) dédndg

Equation 9: Transformation of integrals to the local coordinate system.

Finally, the global stiffness matrix can be found by combining all of the elemental stiffness
matrices. The global stiffness matrix has dimensions NxN, where N is the number of degrees
of freedom within the system. Any boundary conditions are then applied to the problem

statement and Gaussian elimination can then be used to solve Equation 1.

1.5 Heat Transfer

Heat transfer mechanisms are extremely important in any experimental process where large
temperature changes occur. In particular, within additive manufacturing concentrated heat
sources are used and rapid heating and cooling is experienced throughout the course of the
build. For this reason understanding the heat transfer mechanisms that take place is key to

understanding AM processes.



Heat transfer can take place in any physical scenario through three mechanisms; conduction,
convection and radiation. Each of these mechanisms follows certain physical laws that can be
described by mathematical equations. Firstly, conduction is the process of heat energy
transferring from particle to particle through vibrations of these particles, and hence
undertaking a transfer of kinetic energy (Annaratone, 2010). It can be represented by Fourier’s
Law, as seen in Equation 10. Here, q represents the heat flux, k the materials thermal
conductivity and T the temperature.

q = —kVT

Equation 10: Fourier’ law for conduction of heat (Lienhard IV & Lienhard V, 2019).

On the other hand, convection is the transfer of heat between a solid and a fluid. It can be
thought of as conduction in the presence of fluid motion (Lienhard IV & Lienhard V, 2019).
Heat transfer due to convection can be determined using Newton’s law of cooling, given in
Equation 11, where h represents the heat transfer coefficient of the solid, and T,,,;, the

temperature of the surroundings.

q = h(T — Tamp)
Equation 11: Newton’s law of cooling.

The final heat transfer mechanism is radiation. This term refers to heat transfer through
electromagnetic waves and is determined using Stefan-Boltzmann’s law. This is presented in
Equation 12. Here, ¢ is the emissivity of the material and ¢ the Stefan-Boltzmann constant. All

other variables remain as previously defined.
q= SU(T4 - T;mb)

Equation 12: Stefan-Boltzmann law for radiation (Jiji, 2009).
All three mechanisms must be taken into consideration when considering a system in which
heat transfer plays a key role. The overall heat transfer equation can be seen in Equation 13.

aT Q
— = alAT +—
at cp

Equation 13: Overall heat transfer equation (Han, 2012; Naterer, 2022)

Within the heat equation, ¢ and p represent the materials specific heat and density respectively
and «a represents the materials thermal diffusivity, which can be calculated as k/cp. The
equation is derived by determining the total amount of energy coming in and out of the domain
and using the values of specific heat and density to calculate the corresponding changes in

temperature. Fourier’s law is used directly in the derivation to determine how much heat is



being conducted into and out of the region under consideration. Meanwhile, the Q in Equation
13 represents any external heat sources or sinks, and therefore any convective or radiative

heat losses are accounted for within this term.

1.6 Solidification

The thermal profiles experienced by additive manufactured material are unique when
compared with traditional manufacturing methods, and consequently unconventional
microstructural features occur (Attallah, et al., 2016). In order to help understand these
concepts throughout this work, some basic solidification theory is presented here. A lot of the
understanding here was taken from (Kou, 2003) and (Dantzig & Rappaz, 2016). These
sources can be referred to for further detail.

Most solidification within materials, and metals in particular, takes place by nucleation and
growth. Nucleation is the establishment of a collection of particles within the molten material
that is above a critical size, so as to be energy preferential. There are 2 main methods of
nucleation; homogenous and heterogeneous. Homogeneous nucleation refers to nucleation
that takes place within the molten region of pure material, whereas, heterogeneous nucleation
takes place in the presence of foreign particles such as the mould wall or particles present
within the material. The critical size of a nucleus depends on temperature, or more specifically

undercooling. This is the temperature below the liquidus point (T¢) as shown in Equation 14.

AT =T; =T

Equation 14: Calculation of undercooling.

Athermal nucleation assumes that there exists a predetermined amount of nuclei that all have
a required undercooling to form. Upon reaching the required magnitude of undercooling for a
certain nucleus, that nucleus is created instantaneously. This is often demonstrated with a
Gaussian distribution, defined by the critical undercooling and the standard deviation (Dantzig
& Rappaz, 2016; Rappaz, 1989).

Once a nuclei is formed, the nuclei continues to grow within the molten material. If stable, a
grain continues to grow spherically until impinged upon by other grains, this is equivalent to a
planar microstructure. Other structures include cellular and dendritic. These are formed when
the interface becomes unstable as a result of constitutional supercooling due to solute
redistribution. This is common in alloys, as the material composition is effected upon
solidification, this is known as solute redistribution. When this takes place this means there is

a local effect on the local undercooling, as a result of alterations in composition, known as



constitutional supercooling. This leads to instabilities within the interface allowing for the
formation of dendrites. The total undercooling, as shown in Equation 15Equation 14, can be
broken down into a number of different components namely, concentration-induced,

curvature-induced, thermal and kinetic undercoolings, respectively.
AT = ATC + ATR + ATT + ATK

Equation 15: Equation for undercooling (Kou, 2003).

The solidification microstructure is highly dependent on the magnitudes of the thermal
gradient, G, and the solidification velocity, R. As discussed by Kou, the type of structure is
determined by the ratio G/R and the product of G and R, which is actually the cooling rate.
This can be represented by a solidification diagram, or G-R diagram (Kou, 2003), such as that
shown in Figure 4. This gives a graphical representation of when a material forms columnar,
equiaxed or mixed grain structures based on the values of G and R. Typically for large thermal
gradients a columnar structure is formed as the solidification takes place more rapidly than
bulk nucleation can take place, and epitaxial growth occurs instead. Similarly, at lower thermal
gradients it is more likely that equiaxed grains will form as sufficient time for nucleation and
growth takes place.

DI T

106 Begining of Solidification
(High G and Low R)

E

K

< 10

o

-] > i

3 Columnar—" \

= -

< 4 /// / ’

s 10 = " T End of Solidification
;‘ = Biixed (Low G and High R)
< -

E S a

= Equiaxed

v

E 10 / il 5

/ B 20mA lms
2 /
L R L e T e
(b) 10° 10" 10°  10° 10" 10°
Interface Velocity R (m/s)

Figure 4: Example G-R diagram for IN718, taken from (Debroy, et al., 2018).

Metal alloys tend to exhibit dendritic microstructures. The dendrite tip velocity, determines the
rate of solidification of each grain, and is again dependent on the local undercooling. Metals
solidify as crystalline structures. Depending on the alloy in consideration, a number of different
structures are observed. The most common are face-centred cubic (FCC), body-centred cubic
(BCC) or hexagonal close packed (HCP) crystals (Groover, 2020). These are shown in Figure
5.
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Figure 5: Common crystallographic structures, image from (Engineer Educators, 2022) .
1.7 Objectives and Aims

This chapter has highlighted the benefits that additive manufacturing processes have to offer
for industry. However, it has also summarised some of the main challenges being faced in the
AM industry. In order to increase the potential for the adoption of AM within industry these
challenges must be addressed, particularly the part reliability and repeatability. It is thought
that this could be achieved through the increased understanding of the thermal history of AM
processes, as well as the resulting microstructure and mechanical properties, as it is
understood that mechanical properties are directly related to the microstructure which is in
turn related to the thermal profile (Malinov, et al., 2001; Malinov, et al., 2001). Modelling
methods are presented, within this work, as a cost effective solution to investigating these
types of physical phenomena. A more detailed review of the research gaps in AM and the
modelling methods available is presented in the following chapter, along with the research

objectives of this project.



2 Literature Review

This chapter starts by identifying the research needs and challenges within the industry of
additive manufacturing, focusing on those addressed within the current work. Following this,
existing modelling approaches are reviewed for both thermal and microstructure prediction

within AM processes. The chapter concludes by outlining the aims and objectives for this work.

2.1 Research Needs in Additive Manufacturing

Developments in additive manufacturing have been of great interest in recent years. As
discussed in section 1.1, AM offers a wide variety of benefits for industry and it is for this
reason that AM is a key component in the development of industry 4.0 (Khanpara & Tanwar,
2020). However, the lack of understanding regarding certain aspects of the process, mean
that the current applications of additive manufacturing in industry are limited. A number of
roadmaps and reviews have been developed to help identify and address the key challenges
in the manufacturing process (Fielding, et al., 2016; Energetics Incorporated, 2013; Lloyd's
Register Foundation, 2016; Additive Manufacturing Center of Excellence, 2020; AM-motion,
2016). Amongst these reports there are a large number of research gaps and challenges
presented, however they are frequently grouped into smaller topic groups relating to specific

stages of the manufacturing process, such as:

e Design
e Materials
e Process

e Post-processing
e Non-destructive evaluation (NDE)
¢ Knowledge transfer

e Standardisation and qualification

Firstly, there are a number of challenges presented relating to the design process of additively
manufactured parts, in particular the desire for clear design guidelines, including the
determination of whether AM is a suitable manufacturing method for a given component and
application, and if so, which process would be most advisable along with guidelines
surrounding process parameters and features such as support structures (America Makes &
ANSI Additive Manufacturing Standardization Collaborative (AMSC), 2017; Additive
Manufacturing Center of Excellence, 2020). This also includes design guidelines for more
complex structures and functional materials. In general, readily available guidelines describing

suitable approaches for additive methods would significantly help increase the use of AM in



industry. The roadmap presented by LRF discussed the benefits of design optimisation and
the need for further work to maximise the benefits and ensure safe implementation (Lloyd's
Register Foundation, 2016). Furthermore, there is currently a limitation on the materials
available for AM processes and consequently there is a desire within industry to expand this
range. Moreover, it is clear that there is a need to understand the properties of AM materials
and how certain properties, such as spreadability (for power bed processes) and flowability
(for powder based, direct energy deposition processes), impact the build. Specifications and
standards for raw materials are also required if AM is to become widely adopted. With regards
to the added concept of materials-by-design and functionally graded materials, it has been
observed that further research is required to fully understand and most efficiently utilise the
additional design capabilities AM offers (National Institute of Standards and Technology,
2013). This relates closely to the process-structure-property relationships that will be

discussed later.

The next range of challenges relate to the additive process itself. They include parameter
control and machine calibration. In particular, it has been highlighted by a number of sources
that there is a significant requirement for in-situ monitoring and control throughout AM builds
(Additive Manufacturing Center of Excellence, 2020; AM-motion, 2016). The aim of this would
be to reduce variability with additive builds and increase reliability. Similarly, there is a need
to understand and address the variations introduced between different machines in order to
further increase part repeatability. There is also a substantial need for standards on post-
processing, as well as non-destructive evaluation methods (Additive Manufacturing Center of
Excellence, 2020; National Institute of Standards and Technology, 2013). NDE plays a vital
role in validation of part quality, but suitable NDE methods and standards are required for this.
In addition, understanding of the impact of defects and their implications on part quality is

crucial to determining a part’s safety and suitability.

A key step in the adoption of AM in industry is knowledge dissemination. This includes
development of training courses to ensure there is a suitably qualified work force to undertake
the required tasks. This is already being introduced through projects such as CLLAIM
(CLLAIM, 2021). Furthermore, knowledge transfer and education is an important part of
initiating the cultural changes that are instrumental to any wide spread adoption of new
technologies. Both companies and consumers need to be assured of functionality and safety

before AM can truly be accepted as a reliable manufacturing process.

A common goal that appeared amongst the majority of the reviews and reports cited here was
the need for reliable, certified parts that are fit for purpose. Standards play a large role in the

achievement of this goal, by ensuring safe, dependable procedures are available for all



aspects of the additive manufacturing process (Additive Manufacturing Center of Excellence,
2020). The core task that needs addressing in order to produce these standards is an increase
in the fundamental understanding of the intricate mechanisms and relationships involved. This
was captured by a number of the reports reviewed as part of this work (Energetics
Incorporated, 2013; Lloyd's Register Foundation, 2016; Bourrel, et al., 2009). The additive
manufacturing roadmap presented by the Lloyd’s Register Foundation in 2016, in particular,
discussed how an increase of understanding, resulting in the development of new standards
could lead to a reduction in the excessive testing currently needed for the implementation of
AM parts. The roadmap also highlighted the importance of developing an understanding of
AM materials and their behaviour for the safety of AM components. One area, specifically, that
has consistently been identified as requiring a significant increase in understanding is the
resultant material properties of additively manufactured parts. The work presented here aims
to contribute to the understanding of this by establishing methods of investigating relationships

between process parameters and the resultant microstructure.

A discussion of the anisotropy and heterogeneity of the material properties in AM parts was
undertaken within the work completed by Kok et al. (Kok, et al., 2018). As determined within
their work, such material properties can be induced as a result of the complex thermal histories
imposed upon the material during additive processes, which are significantly different to those
experienced in other manufacture methods. In a recent review of metal additive manufacturing
in aerospace, Zhang and Liang identified one of the primary challenges to be the stability of
mechanical properties (Zhang & Liang, 2019). Ngo et al. also identified anisotropic
microstructure and mechanical properties as a key challenge in their review of AM (Ngo, et
al., 2018). Further works also investigated the resultant microstructure of additively
manufactured including the work by Parimi et al (Parimi, et al., 2014) and Alhuzaim et al
(Alhuzaim, et al., 2021), both undertaken at the University of Birmingham. The prior work
presented by Parimi et al investigated the influence of deposition strategy and power on laser
DED processes. The influence of power was further investigated by the Alhuzaim et al. The
results of this study showed that the laser power had significant influence on both the

morphology of the grains and their size.

A number of reports have identified the development of comprehensive relationships between
process parameters, microstructure and mechanical properties as an important aspect for the
advancement of AM. A review of additive manufacturing for aerospace by Singamneni et al.,
identified a number of key aspects that require further development (Singamneni, et al., 2019).
These included further evaluation of the physics involved within additive manufacturing
processes as well as the development of material-process-structure-property relationships.

These relationships between raw material, manufacturing process, microstructure and



resultant properties are also in the technical focus areas given in (Additive Manufacturing
Center of Excellence, 2020). Bourrel et al. also presented the need for understanding these
relationships and being able to use these predictively, possibly with the assistance of
multiscale modelling (Bourell, et al., 2009). Likewise, it was established by ASTM, among
others, that simulation of AM processes to establish material-process-structure properties is
an area that needs further development in order to establish suitable standardisation
techniques (Additive Manufacturing Center of Excellence, 2020).

Many of the challenges discussed here can be addressed or supported through the use of
numerical modelling. As discussed in section 1.3, simulations are a useful tool to provide
insight and increase understanding on the mechanisms involved in the process. As noted in
the work by Ghobakhloo (Ghobakhloo, 2018), numerical modelling will play a key role in the
successful implementation of industry 4.0, by providing capabilities of efficient design and
optimisation, as well as digital twins and in-situ monitoring. The metal based additive
manufacturing review presented by the National Institute of Standards and Technology in
2013, also discussed the need for simulation methods in order to increase design capabilities
and part certification (National Institute of Standards and Technology, 2013). Moreover, the
need for microstructure models as well as both low and high fidelity physics based models. A
similar AM roadmap also highlighted the need for modelling and simulation methods for AM

in order to help additive processes reach their full potential (AM-motion, 2016).

2.2 Advances in Numerical Modelling for Additive Manufacturing

As noted, numerical modelling and simulation techniques are vital to the advancement of AM.
A significant increase in the number of published papers related to models in additive
manufacturing has been seen in recent years (Figure 6). This is owing to the ability of
modelling methods to provide insight and understanding, with a significant reduction in
experimental testing. This is particularly useful in AM due to the large amount of process
parameters involved. Simulation and modelling methods have been used within additive
manufacturing to investigate, predict and understand a wide variety of different phenomena,

from defect and melt pool geometry prediction to residual stress and distortion simulations.
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Figure 6 Frequency of published papers relating to modelling of additive manufacturing over recent years (when
using the search “Additive Manufacturing” + Model on Web of Science).

An extensive review of the modelling progress within additive manufacturing was given in the
open source report produced by Wei et al. (Wei, et al., 2021). The report was extremely
thorough and presented a great deal of insight on the modelling of AM processes from residual
stress to microstructure predictions. Research gaps for each topic were discussed, including
the need for efficient models and open access models, as well as the wider integration of
certain complex physical laws. This built on the modelling aspects of the additive
manufacturing review presented by the same team (Debroy, et al., 2018). Within this report a
thorough review of both experimental and modelling aspects of the process, structure,
property links in additive manufacturing was given. Here, the need for openly available
modelling methods was identified to help improve the understanding surrounding these
relationships ultimately leading to increased reliability and part validation. Other modelling
needs, such as access to temperature dependent material properties are also identified. A
collection of the literature undertaken within modelling of AM, for various processes, with
varying objectives can be seen in the review presented by (Stavropoulos & Foteinopoulos,
2018).

Furthermore, Peter et al. provided a comparison of a number of specifically designed additive
manufacturing software tools (Peter, et al., 2020). The capability of each package to predict
and suggest a humber of different features was assessed, including; orientation and support
optimisation, part distortion and recoater contact. This was done through the comparison of
simulated parts against experimentally manufactured IN718 parts built using the EOS M290
system. Three numerical methods were presented as the underlying mechanisms used within

the software packages discussed; namely, the finite element, inherent strain and thermal



circuit network methods. Each method was used in an attempt to allow computationally

efficient part scale models.

Recently, in 2018, an additive manufacturing benchmark was held by the National Institute of
Standards and Technology (NIST) in order to accelerate the development of additive
manufacturing models. The benchmark consisted of a number of challenges with extensively
measured experimental tests. Each was then opened to blind simulation submissions. A
thematic series relating to the challenges within this benchmark was published in Integrating
Materials and Manufacturing Innovation (IMMI). A number of the papers within this series will
be discussed later on within this work, when individual challenges within the benchmark are
discussed in more detail. The organisers of the benchmark also published a paper reviewing
the overall outcomes (Levine, et al., 2020). A subsequent benchmark is to be undertaken in
2022.

More specific examples of the literature for thermal and microstructure modelling within

additive manufacturing are given in the subsequent sections.

2.3 Review of Thermal Modelling for Additive Manufacturing

Thermal modelling of additive manufacturing processes has been a topic of great interest over
the past years. This is owing to the multiple uses of the thermal profile from process parameter
optimisation to residual stress, distortion and microstructure prediction. Thermal models play
an extremely important role in microstructure prediction and must be as accurate as possible
to ensure the best simulation of grain growth achievable (Li, et al., 2020). In order to accurately
represent the process there are a number of features that need to be accounted for within the
simulations. These include moving heat sources, material deposition and heat loss.
Furthermore, due to the intensity of the heat source within AM builds, AM thermal models can
be highly computationally expensive and therefore this also has to be taken into account within
the modelling approach. How all of these factors are taken account within the current literature
is detailed below. Within this section an overview of the current literature available on thermal
models in additive manufacturing is provided. Due to the large amount of literature available
for AM models, as can be seen in Figure 6, it is unfeasible to review all the relevant papers
here. Instead a selection of relevant papers highlighting the important features will be
presented. The literature discussed will be broken down into powder bed fusion and direct
energy deposition processes, owing to the different approaches that need to be undertaken

as a result of the physical processes involved in the respective manufacturing methods.

Firstly, a review of some of the work undertaken in the simulation of thermal history for powder

bed fusion processes is covered. A 3D thermo-mechanical model of laser powder based



processes with metals and ceramics within the dental industry was presented by Dai and Shaw
(Dai & Shaw, 2004). Most notably within this work, there was a significant focus on the
adaptation of material properties to account for the transition of material from powder to solid
material. Equations were provided to determine the effective thermal conductivity of the
powder bed as well as the contributions to heat loss from the powder material. The
implementation of material properties for powder as well as solid material is one of the aspects
of thermal models of particular interest for powder bed fusion processes. Huang et al. also
provided similar equations for the effective thermal conductivity in their work on selective laser
melting of Ti-6Al-4V (Huang, et al., 2016). However, much simpler relationships between
material properties of the solid and powder materials are found elsewhere within literature. In
particular, Foroozmehr et al. utilised a scaling factor of 0.01 to convert between bulk and
powder material properties (Foroozmehr, et al., 2016). Moreover, within the work presented
by Roberts et al the level of porosity within the powder bed was used to determine the scaling
factor for material properties (Roberts, et al., 2009). The same approach was applied by
Hussein et al. in their sequentially coupled thermo-mechanical models of single layers,

representative of overhangs within complex geometries (Hussein, et al., 2013).

Roberts et al. presented a 3D thermal model for the simulation of L-PBF with Ti6AI4V. A
Gaussian heat source was implemented, along with element birth techniques to simulate
material deposition (Roberts, et al., 2009). This is by far the most common material activation
method within powder bed fusion processes, as it is a convenient method to activate a layer
of material at a given time. The model proposed within the work by Roberts et al. utilised
guarter symmetry, for efficiency, to validate the modelling approach against experimental data
within literature. The approach was then applied to a multilayer model. The same experimental
results were used to validate the modelling approach developed by Huang et al. also (Huang,
et al., 2016). The authors within this work also implemented a Gaussian heat source, within
their simulation of a single layer deposition process. The validated approach, developed within
this work, was then used to investigate the influence of process parameters on the predicted
thermal history and melt pool dimensions. Fu and Guo also used a Gaussian heat source in
their simulation of a 5 layer, Ti6Al4V, SLM build (Fu & Guo, 2014). The models were validated
against experimental melt pool measurements, and used to investigate the influence of laser
power. Similarly, the modelling approach presented by Foroozmehr et al was used to
investigate the effect of the scanning speed on the melt pool shape (Foroozmehr, et al., 2016).
However, this work presented an alternative heat source method based on the optical
penetration depth, in which a uniform flux was applied over a volume. On the other hand, a
Goldak heat source was used by Song et al. within their 2D fully coupled, thermo-mechanical

simulations. Although it was unclear if any of the surrounding powder bed was accounted for



within this model. Denlinger et al. also used the implementation of a Goldak heat source
(Denlinger, et al., 2017). A sequentially coupled thermo-mechanical model was undertaken,
with a combination of quiet and element birth techniques being applied to simulate material
activation, with respect to the mechanical properties. Mesh coarsening was also used to

increase efficiency of the approach.

A wide range of work has been undertaken at Lawrence Livermore National Laboratory, on
the modelling of powder bed fusion models (King, et al., 2015; Khairallah & Anderson, 2014;
Hodge, et al., 2014). Typically this was done on a multiscale approach, where by 2 in house
software packages, ALE3D and Diablo were used. First ALE3D was used to model the
process on the melt pool scale. The information from this was then transferred into the part
scale models in Diablo. However, the software used within these works will not be considered
any further here.

Within DED processes, as with the PBF models, a number of attributes must be taken into
account within the thermal modelling process, including material deposition, dynamic heat
sources and temperature dependent properties. Firstly, whereas the material in PBF models
is deposited as a layer of powder and then selectively melted according to the geometry, with
either the laser or electron beam, the material in WAAM is deposited as a molten melt bead
at the location of the heat source. Therefore, it is not as physically representative to initiate
material on a layer by layer manner as in the PBF simulations. Both element birth/ death
techniques and quiet element methods can be used as a method of representing this
alternative deposition technique. However, if element birth techniques are implemented,
elements are often activated within smaller sub regions in a layer, to try and more accurately
replicate material deposition with the moving heat source. Michaleris provided a
comprehensive comparison of both the quiet and inactive element activation methods
(Michaleris, 2014). Furthermore, different heat sources are typically used for DED processes
to the common Gaussian heat source seen in the PBF models. Various different heat sources
were discussed by Wei et al (Wei, et al., 2021), and also within the review of heat sources
which covers Gaussian surface models as well as both Gaussian and Goldak volumetric
models (Hamahmy & Deiab, 2020). Moreover, temperature-dependent properties and heat
loss boundary conditions must still be taken into account, however the models are made
simpler by the lack of powder in the process. A review of some of the current literature, for

DED applications, is given below.

There are a number of papers that look at the finite element simulation of the thermal history
of WAAM processes. Element birth and death techniques were implemented along with a

Goldak heat source by Xiong et al. (Xiong, et al., 2017), as part of their work looking at the



effects of substrate preheating on the resultant thermal profile within a cylindrical build. As
previously stated, Goldak heat sources are a popular choice of heat source model for wire-arc
processes and have been used multiple times within WAAM thermal simulations and can be
seen in work such as (Ding, 2012; Li, et al., 2019) as well, whilst some other authors still
implement a Gaussian distribution (Bonifaz, 2018; Hejripour, et al., 2019). Montevecchi et al.
looked at the development of a new heat source that takes into account both the heat
dissipated from the molten metal as well as the welding arc (Montevecchi, et al., 2016). This
was done through the combination of both a body and surface heat flux and was implemented
along with the quiet element approach for material deposition. The model was experimentally
validated for a single bead wall and showed much better agreement with experimental
displacement results than a model using the more traditionally used Goldak heat source. More
recently, Hejripour et al. (Hejripour, et al., 2019) studied the effect of cooling rate on phase
formation through the use of thermal modelling in duplex stainless steel WAAM builds using a
Gaussian heat source. A domain activation technique, similar to element birth, was
implemented within this work to account for material deposition. Heat loss due to radiation and
convection are often taken into account through the implementation of boundary conditions
on exposed surfaces, however Bonifaz et al. (Bonifaz & Palomeque, 2020) made use of a
FILM subroutine within their stress analysis of a single bead wall. This was to replicate the

heat loss effects within the bead caused by the arc (Bonifaz, 2018).

Furthermore, another feature of interest within WAAM is the shape of the deposited weld bead.
In contrast to the finite domain of a powder bed, as molten material is deposited with the heat
source in WAAM the geometry is much less predictable. The work carried out by D. Ding et
al. (Ding, et al., 2015) focused on a model to accurately represent the bead shape through the
use of mathematical functions such as parabolic and cosine equations. However, this work
focused purely on shape and did not give any insight into the thermal profile of the bead.
Similarly, Bai et al. (Bai, et al., 2018) also predicted the bead geometry through the use of a
fluid flow model. Within most finite element thermal models, a layer within the WAAM build is
represented as an idealised division of the geometry, ie. a rectangle within a wall or circle
within the cylindrical builds (Hejripour, et al., 2019; Montevecchi, et al., 2016; Bonifaz &
Palomeque, 2020), although some alter the geometry to try and account for the bead
curvature. For example Graf et al. (Graf, et al., 2018) modelled the weld beam by semi-circular
and sickle shaped layers, within their thermo-mechanical finite element model. A similar shape

was undertaken in the work by Wang and Wang (Wang & Wang, 2016).

A project that focused on the development of a more computationally efficient steady state
thermal model, was presented by Ding (Ding, 2012). However, he also successfully

implemented a detailed Lagrangian approach achieving a strong agreement with



experimentally obtained thermal data. The steady state model has since been used in their
subsequent publications, but will not be used here due to the assumption of a continued steady
state. Symmetry has been used in multiple papers as an alternative method to reduce
computational cost, by reducing the size of the computational domain (Ding, 2012; Ou, et al.,
2018). Fluid flow models are taken into account by both Ou et al. and Ogino et al (Ogino, et
al., 2018). However, these are beyond the scope of this work as fluid flow models will not be
incorporated as they are generally too computationally expensive and complex to model the

thermal history on larger domains, such as the full size of the build part.

A review of modelling approaches for laser metal deposition processes, up to 2015, was given
by Andrew Pinkerton (Pinkerton, 2015). It summarised the then current modelling approaches
being undertaken to simulate the LMD process on a range of scales from the powder stream
to final build properties. Furthermore, it highlighted the ultimate goal of modelling in AM which
is to be able to predict the resultant properties of the build. Some of the current work in LMD

modelling is discussed here.

Zhan et al. presented a recent study on the application of LMD processes to the repair of a
trapezoidal groove in a 316L stainless steel plate (Zhan, et al., 2019). Within this study a
Gaussian conical heat source was applied along with modified thermal conductivity to account
for Marangoni effects. Whilst the model predicted melt pool geometry reasonably well, when
compared to an experimental macrograph, there was a lack of experimental validation for the
transient temperature values. The report concluded by considering the effect of the thermal
history on microstructure and consequently microhardness. Whilst this does not seem like a
typical AM application, the ability for part repair is one of the benefits of DED processes and
a lot of the principles required to model the process is the same as the deposition of a new
part. Additive manufacturing simulations, and in particular DED processes, involve a lot of the
same principles as those involved in traditional weld simulations (Lindgren, et al., 2016) and
so we can also consider the established methods for welding and cladding applications, when
simulating AM methods. Nevertheless, these will not be covered here as the review focuses

on work within AM.

A multi-physics approach was undertaken by Zhang et al. to simulate the thermal history of
thin walls produced by LMD, and investigate the effects of certain process parameters
including deposition strategy, deposition velocity and laser power (Zhang, et al., 2017). The
approach involved a number of complex physical laws and considered both a simulation of
the laser-powder interaction zone and the full 3D geometry. A multilayer build, with a total of
6 layers was simulated and a strong level of agreement was obtained for the predicted shape

of the build for 4 different sets of process parameters. However, a quantitative comparison of



thermal history values was not given. The bead geometry is of great interest within LMD
processes, and the accurate prediction for this features heavily across literature. The shape
of the bead surface was also predicted by Peyre et al. and compared against in-situ melt pool
imaging (Peyre, et al., 2017). Also within this work, different values of travel speed and power
were investigated and the thermal gradient and solidification rates were evaluated to
determine columnar or equiaxed growth. Whilst the thermal models were validated with
experimental data, the microstructure morphology predictions were not accurate for all
process parameter combinations. Ahsan and Pinkerton implemented an iterative analytical
model to predict thermal history, bead shape and cooling rate, as well as a prediction of grain
size based on the cooling rate values (Ahsan & Pinkerton, 2011). The analytical model
implemented is the Cline and Anthony’s equation based on the Gaussian heat source. Varying

values of flow rate and power were investigated.

A 3D sequentially coupled thermo-mechanical analysis was undertaken by Mukherjee et al.,
however fluid flow aspects were also accounted for within this work (Mukherjee, et al., 2017).
Nevertheless, contrarily to the works presented previously that focused on bead shape, flat
surfaces were assumed for the bead deposits. Half symmetry was also implemented as single
track walls were simulated. Despite the assumption of flat surfaces, a good level of agreement
was achieved between the simulated and experimental thermal measurements. Knapp et al.
also considered the effect of assuming a flat bead geometry (Knapp, et al., 2017). This was
shown by comparing the flat surface model to a curved surface model with and without the
inclusion of convection within the melt pool. Very little difference was seen between the flat
surface and curved surface models, whilst a much clearer variation was seen by not including
convection. The curved shape of the bead was defined by an ellipsoidal equation and a
combined surface and volumetric heat flux was implemented, similar to that in the WAAM work
by Motevecchi et al. (Montevecchi, et al., 2016). A strong level of agreement was achieved

with experimental images of the melt pool shape.

Heigel et al. investigated the assumption of free convection within finite element models of
direct energy deposition (Heigel, et al., 2015). Sequentially coupled thermo-mechanical
models of the deposition of Ti-6Al-4V walls were compared against experimental results. The
Goldak heat source was assumed and a forced convection model, based on measured heat
transfer coefficient values, was suggested. It was determined that the forced convection model
proposed achieveed more accurate results, for both the thermal and residual stress
predictions, than the common assumption of free convection. In the thermo-mechanical model
presented by Kumar and Vedrtnam, a combined heat transfer coefficient has been
implemented (Kumar & Vedrtnam, 2018). This has been used widely within literature (Yongjie,

et al., 2012). Kumar and Vedtram implemented a Gaussian heat source for their single track



multilayer model, however they suggested that the use of volumetric heat sources would be
more suitable in future works. Furthermore, it appears there was a lack of inclusion of material
deposition methods within this study. Single track wall deposits have featured prominently
within the literature reviewed here. However, the work presented by Lundb&ck and Lindgren
presented the application to much more complex geometries, with the implementation of a
Goldak heat source and activation based on a defined path for the heat source (Lundback &
Lindgren, 2011).

In more recent works, Doux and Phillipe applied a calibrated Goldak heat source, with the
built-in element progressive activation feature in Abaqus (made available in the 2018 release),
to simulate the thermal history and residual stresses in an IN718 wall (Doux & Philippe, 2019).
Although comparative experimental results for the thermal history were provided at 6
thermocouple positions, it was difficult to draw a direct comparison with simulation results due
to how the two are presented. The comparison presented within the work suggests that the
overall shape of the thermal profile was accurately represented, whilst peak and final
temperature values were under predicted. Experimental data for comparison of residual stress
predictions was not yet provided. Li et al. also made use of a Goldak heat source and
progressive element activation within their recent multi-scale analysis of a 42 layer LMD
deposit in a binary nickel-copper alloy (Li, et al., 2020). The thermal history simulated here
was used to provide both residual stress and microstructure predictions through the
implementation of a multi-phase field model. Whilst the work provided a modelling approach
for the microstructural and residual stress developments as a result of the thermal history, it
did not provide any form of experimental validation for the modelling approach proposed.
Furthermore, thermal modelling approaches have been applied to single track, wall builds with
functionally graded materials within the work by (Li, et al., 2020). Within this work a circular
heat source was implemented and element birth techniques applied, with a single element
width being deposited in each step. This approach could be very labour intensive during the

model development of large AM builds.

Physically representative numerical simulations can be extremely computationally expensive.
Typically, the more physical phenomena accounted for within the model, the more
computationally expensive the model is. On the other hand, computational expense is also
significantly influenced by the size of the simulation domain and the fidelity of the mesh and
incrementation strategies implemented. Certain works have focused on the development of
efficient modelling strategies within AM. As previously discussed, Ding et al presented an
efficient model for the simulation of WAAM (Ding, 2012). Yan et al. also focused on the
development of a computationally efficient model capable of predicting the transient thermal

profile (Yan, et al., 2018). The model used a combination of thermal flux density and volume



heat generation. Both layer based and track based approaches were compared against
experimental results. As is expected, a direct trade-off was seen between the accuracy of the

model and the computational time.

Similarly, Yang et al (Yang, et al., 2021) attempted to address the computational expense of
part-scale additive manufacturing simulations through the implementation of a semi-analytical
heat source model, based on the commonly used Goldak heat source, leveraging the principle
of superposition. Within this study, the significant reduction in computational expense was
largely attributed to the coarse mesh size that could be used, as smaller mesh sizes are not
required to resolve the heat source. Adaptive remeshing is another technique that has been
used within literature to increase computational efficiency. For example, Olleak and Xi
presented a modelling approach that simulated the deposition of a single layer within each
model, allowing for mesh refinement in the layers of interest (Olleak & Xi, 2019). Moreover,
inherent strain approaches have also been used in an effort to increase computational
efficiency of thermo-mechanical models, however this technique is not really applicable to the

application of microstructure simulations.

Analytical solutions have also been applied as an efficient method of approximating thermal
problems. As discussed by Lu, (Lu, 2021), the computational efficiency provided by the
implementation of analytical thermal models allows for a fast and simple approach to
investigate processes at the design level, such as process parameter optimisation. This could
be particularly beneficial for AM, due to the large amount of process parameters and design
freedoms such as functionally graded microstructures. By far, the most popular analytical heat
source used in literature is the Rosenthal solution which has been used widely in welding
applications. This will be the primary analytical solution used within this work, although other
analytical methods such as Green’s function (Steuben, et al., 2019) have been seen within

literature.

Obviously, the efficiency of the analytical solutions come at a cost. Namely, this is due to the
simplification of the physics involved. Physical phenomena such as Marangoni effects and
latent heat of fusion are not typically accounted for within these types of solution. Furthermore,
temperature independent properties are usually implemented, therefore limiting the accuracy
of the predictions. However, a detailed comparison of the application of the finite element
method and this analytical approach, for the simulation of thermal history in L-PBF processes
with IN718, was provided by Promoppatum et al (Promoppatum, et al., 2017). A Gaussian
surface heat flux was implemented within the finite element model. On the other hand, the
Rosenthal solution could only account for a point heat source and temperature-independent

material properties. Influence on the melt pool geometry, thermal history and microstructure



were considered. The predicted melt pool width was compared against experimental data in
literature. A good agreement was achieved by both heat source approaches for small energy
density values. Similarly, both approaches obtained similar thermal gradient values and
predicted columnar grain growth, whilst there was a larger difference in cooling and
solidification rates. The work presented by Steuben et al. aimed to enhance the analytical
methods, for specific use with AM processes, by introducing a number of capabilities to
account for temperature dependent properties, representative computational domains and
accounting for material deposition (Steuben, et al., 2019). The methods developed showed a
significant improvement in the accuracy of the model when compared to a corresponding FE

model, particularly through the inclusion of temperature dependent properties.

One of the benefits of using analytical solutions is the ability to derive other quantities
associated to the thermal model, such as melt pool width and length. A number of these are
given in the works by Tang (Tang, 2017) and Lu (Lu, 2021). Similarly, Bertoli et al, utilised the
Rosenthal solution to determine the thermal gradient and solidification velocity for L-PBF
processes (Bertoli, et al., 2019). This information was leveraged to investigate the expected
grain structure within these AM parts. The prediction of melt pool geometry using the
Rosenthal is validated against experimental measurements in the work presented by Reese
et al. (Reese, et al., 2018). The approach was then used to predict melt pool geometry as a
function of velocity and power. However, very little detail on the modelling approach was
provided, such as material properties and efficiency values. In the works presented by Walker
et al. (Walker, et al., 2019; Walker, et al., 2020) a combined analytical and finite element
analysis was used to predict track profile, thermal history and residual stress in single track
deposits of IN718. The analytical model was based on that presented by Ahsan and Pinkerton
(Ahsan & Pinkerton, 2011), and was used to predict the track profile. In their most recent work
the modelling approach was used to predict these features with an in-situ change of process

parameters within the scan.

2.4 Microstructure Modelling Methods in Literature

There are four primary methods of microstructure modelling seen within literature. These
include empirical, kinetic Monte-Carlo (kMC), Cellular Automata (CA) and Phase Field (PF)

models. A brief overview of each technique and its applications is given here.

Empirical methods include methods such as the Johnson-Mehl-Avrami-Kolmogorov (JMAK)
and Koistinen-Marburger equations (Bhadeshia, 2022). These analytical equations determine
phase fraction based on a given temperature profile and information about the phase
transitions of the material under consideration. Relevant information pertaining to this kind of

phase information is usually found in TTT or CCT diagrams, where the specific phase



transformations of an alloy are displayed as a function of temperature. The JMAK equation is
used to model the diffusional transformation of phase a to 8 under isothermal conditions. The
equation originates from the work performed by Kolmogorov in 1937 and the theory of the
kinetics of phase transformations can be found in the series of works published by Avrami
(Avrami, 1939; Avrami, 1940; Avrami, 1941). An application of the models to isotherm cooling
of Ti6AI4V can be seen in the work by Malinov et al. (Malinov, et al., 2001; Malinov, et al.,
2001). Meanwhile, the Koistinen-Marburger equation is used to model martensitic
transformations. These methods are extremely efficient, however, they can only supply a
limited amount of data. Results from such an analysis would be in the form of a phase fraction
for each representative element. Leblond and Devaux present an adaption of the models for
anisothermal phase transformations in steels (Leblond & Devaux, 1984). These methods have
also seen implementation with manufacturing processes. An example of this is the work
presented by Mi et al. (Mi, et al., 2014). In this paper, IMAK equations were coupled with a
3D finite element model to predict phase transformations in a TIG welding process. However,
one of the main drawbacks of the approach is that it is unable to give any visual representation
of the grain size, morphology or orientation, unlike other methods such as Cellular Automata

and kinetic Monte Carlo simulations.

Cellular automata was introduced as a method of modelling solidification, primarily, by Rappaz
and Gandin in their seminal work for the application of cellular automata methods to casting
processes (Rappaz & Gandin, 1993; Rappaz, et al., 1996; Gandin, et al., 1999; Rappaz &
Thevoz, 1987; Gandin & Rappaz, 1994; Gandin & Rappaz, 1997). The technique is based on
basic principles of nucleation and capture. Rappaz first presented improved models for
nucleation in his preliminary work (Rappaz, 1989). A Gaussian distribution was suggested as
oppose to the almost discontinuous representation used previously. In their more notable
work, a 2D growth envelope model was developed to represent crystal growth within the
material (Rappaz & Gandin, 1993). This was later modified establishing what is now a
commonly implemented modelling method, the 2D decentred square algorithm (Gandin &
Rappaz, 1997). This work also presented the 3D decentred octahedron algorithm for the
representation of 3D FCC crystals. The 2D growth envelope technique was initially applied
with a uniform temperature field. The CA- FE coupling was introduced in later work (Gandin &
Rappaz, 1994), with weak and full couplings being presented here (Gandin, et al., 1999). The
methods developed here are renowned within the implementation of CA for solidification
mechanisms and form the basis for all other CA applications presented within this thesis,
making the work presented by these authors one of the most significant developments for the

simulation of microstructural development.



In more recent work, Guillemot et al. presented an improvement to the CA-FE coupling through
the implementation of a front tracking method and compared this against the coupling
approach presented by Rappaz and Gandin (Guillemot, et al., 2004). This work was developed
further by Carozzani et al. (Carozzani, et al., 2012), where by an iterative 3D fully coupled
model was implemented by reducing memory usage. The authors provided experimental
validation of this approach in subsequent work (Carozzani, et al., 2013), as well as efficient
parallelisation methods for the simulation of large scale parts (Carozzani, et al., 2014).
Furthermore, Chen et al. then presented a detailed description of the application of the 3D
cellular automata finite element coupling for the application of arc-welding (Chen, et al., 2016).
A level-set function was implemented to model the gas-liquid interface, along with a concise
algorithm of five main rules for the implementation of the Rappaz-Gandin growth envelope
algorithm. Moreover, it was also assumed that nucleation was not included within the melt
pool. The work successfully simulated microstructure development for an arc welding process,
but was not supported by experimental validations. Further works have been presented by
Zinovieva and Zinoviev et al. for the application of solidification. In their early work, they
demonstrated a 2D fully coupled cellular automata — finite difference model for the
solidification of a nickel based superalloy (Zinovieva, et al., 2015) . The authors also presented
an alternative approach to the reduction of mesh anisotropy, to the decentred algorithm
suggested by Gandin & Rappaz, using two correction factors, one for the correction of grain
shape and one to remove staggered boundary effects. (Zinovieva, et al., 2015). However,

again, neither work was supported with experimental validations.

The next method, of microstructural prediction, is the kinetic Monte Carlo approach, or Potts
model as it is sometimes referred to. Monte Carlo simulations are statistical models that can
be applied to a wide range of applications. For the application of microstructure predictions,
kMC is very similar to the CA approach in that a discrete grid of cells is used to assign a state
variable, or spin as it is more commonly called within KMC methods. One key difference is the
rules used to update this variable, whilst the CA method uses solidification laws, kMC focuses
on the implementation of the least energy principle. This approach sees a site change grain
ID, with a given probability, if this configuration is more energetically preferential (Holm &
Battaile, 2001). Nevertheless, some work has also demonstrated the incorporation of the least
energy principle within CA methods (Ding, et al., 2006). Spittle and Brown presented some of
the first uses of Monte Carlo methods for the application of solidification (Spittle & Brown,
1989; Spittle & Brown, 1989). Incrementally, Spittle and Brown introduced the effects of
thermal field as well as solute redistribution within their work. The current leader in the
application of the kinetic Monte Carlo is arguably the Sandia National Laboratories, whom

have developed and released open source software, SPPARKS (Stochastic Parallel Particle



Kinetic Simulator), for the implementation of KMC models. Examples of the implementation of
this software for welding applications are given here (Rodgers, et al., 2016; Rodgers, et al.,
2017). Steady state melt pools were implemented to prescribe the temperature profile and
steps were taken to relate the MC simulation to physical measures of both time and space
through calibration. Temperature-dependence of the grain growth was implemented through
the use of a grain boundary mobility function. In their later work, the effects of weld speed and

laser mode (pulsed or continuous) were considered.

The final method discussed here is the phase field method. This is probably the most
physically accurate modelling technique, presented here, but is consequently also the most
computationally expensive method. Phase field methods work by tracking a number of
continuous field variables, known as order parameters, as they vary between 0 and 1 in
accordance with a number of physical laws based on thermodynamics and the conservation
of energy at the interface (Singh, 2015). The common method implemented in phase field
models is the diffuse interface approach, where the order parameter varies continuously
across the interface (Bhadeshia, 2010). This is different from the sharp interface method
where a discrete change in order parameter occurs (ie. the order parameter can take on the
value of 0 or 1). Further details on the phase field method can be found here (Singh, 2015).
These methods generally take place on a much smaller scale, than the other methods
discussed here, simulating microstructure development on the scale of single dendrites. The
approach has been implemented by a number of authors within literature, some of these works
are referenced here (Steinbach, et al., 1996; Fan & Chen, 1997; Krill lll & Chen, 2002).

Each of these established methods have their benefits and limitations. For this reason, all 4
methods have seen exposure to the application of metal additive manufacturing processes.
The next sections focus on presenting the current state of the art for this area, as well as
comparing the positives and drawbacks of each modelling approach in order to assess the

suitability of each technique.

2.5 Literature for Microstructure Prediction in Additive Manufacturing Processes

The interest in microstructure prediction for additive manufacturing has become of increasing
interest in recent years. To that end, all of the mechanisms presented above have been used
to investigate a number of different processes, phenomena and materials, with an aim of

providing a better understanding of solidification mechanisms in metal additive manufacture.

Empirical approaches have been applied by a wide range of authors for the application of AM.
As additive processes involve highly non-uniform temperature profiles, the additivity rule is

implemented for the implementation of the empirical approaches with such complex,



anisothermal temperature histories (Charles Murgau, 2016). This technique essentially sees
the discretisation of the thermal profile into very small individual isothermal segments. Some
of the more important works in this area are presented by Kelly and Charles. Kelly and Kampe
presented an extensive analysis of the resultant microstructure of laser metal deposited Ti-
6Al-4V (Kelly & Kampe, 2004). The authors’ subsequent work presented a modelling approach
that accompanied the experimental investigation (Kelly & Kampe, 2004). A simple 2D thermal
model, perpendicular to the scanning direction, was implemented, whereby each new layer
was deposited at a fixed temperature and the heat source shape was neglected. This thermal
model was then used to determine the phase evolution within the material. Further details can
be found in the thesis completed by Kelly (Kelly, 2004). Similarly, Charles presented a
modelling approach for the prediction of phase composition in TIG wire metal deposition of
Ti6AI4V (Charles, 2008). The approach undertaken is very similar to that of Kelly and Kampe,
and focused on the time and spatial discretisation of the empirical equations. A detailed
description of the JMAK and Koistinen-Marburger equations, as well as the incremental
additivity approach was given in the later work by Charles Murgau et al. (Charles Murgau, et
al., 2012).

There has been a heavy accent on the use of empirical models for the prediction of
microstructure development in the titanium alloy, Ti-6Al-4V. This is likely due to the popularity
of the alloy within AM applications but also as a result of the complex phase transformations
undertaken by the alloy, meaning that empirical approaches are more suitable for capturing
all aspects of the phase transformations involved. The principles developed by Kelly and
Charles have been implemented by a number of subsequent works by other authors. These
include the work presented by Vastola et al. whereby empirical equations accounting for the
formation and dissolution of a phase, as well as martensite were used to predict microstructure
formation for Ti6AI4V produced by both SLM and EBM (Vastola, et al., 2016). The
microstructure model presented here is coupled with a 2D finite element thermal model, and
shows a clear difference in the microstructural phases formed by the two processes. Irwin et
al., similarly, implemented the methodology, suggested by Kelly and Charles, to Ti6AI4V LENS
production (Irwin, et al., 2016). A 3D finite element thermal model was used as the input for
the microstructural model. The work optimised the material properties implemented, through
experimental validation and compared them against the material properties suggested by
Kelly and Charles. However, the model did not consider the effects of martensitic
transformations separately. Both diffusion and diffusionless transformations were accounted
for in the work presented by Suarez et al., for the application of laser metal deposition of

Ti6AI4V (Suarez, et al., 2011). In a more recent work, Yang et al. used similar methods to



simulate phase transformations in powder bed fusion of Ti-6Al-4V but with an added capability

to determine dislocation density within the martensitic phases (Yang, et al., 2020).

Whilst the application to Ti-6Al-4V heavily dominates the current literature, application to other
alloys have also been seen in the literature. Zhang et al. applied similar methods in their recent
work presenting a framework for the simulation of phase transformation in AM (Zhang, et al.,
2019). As the work presented a generic framework that could be applied to alternative alloys
and AM processes, application for steel 5140 was demonstrated, whilst the model was also
applied to powder bed fusion of Ti-6Al-4V, with calibration and validation against experimental
samples. Lindgren et al. also applied empirical methods for the prediction of phase formation
in Ti-6Al-4V and IN718 (Lindgren, et al., 2016). Computational welding mechanics were
exploited within the modelling approach and flow stress models were implemented to
determine mechanical behaviour. Further work was presented by the authors that expanded
on the implementation of the modelling approach with Ti-6Al-4V (Babu, et al., 2019). Similarly,
phase transformation kinetics were implemented within the work by Lu et al to predict the
development of precipitates within IN718 WAAM builds (Lu, et al., 2021).

Furthermore, a number of papers within literature have focused on the assessment of
microstructural development through the quantification of the solidification parameters:
thermal gradient, G, and solidification velocity, R. As discussed within chapter 1, these
parameters control solidification mechanisms and determine the grain morphology. This
phenomena can be exploited through investigation of the thermal history. Firstly, Liu et al.
investigated the effect of laser power and scan speed on the solidification parameters of a
single melt pool in selective laser melting of AlISi1OMg (Liu, et al., 2018). 3D thermal models
were developed using finite element software. This allowed the authors to predict where in the
melt pool columnar to equiaxed transitions were likely to take place. Furthermore, Sabau et
al. also investigated the thermal gradient and solidification velocity distributions in single track
models of laser powder bed fusion with IN625 (Sabau, et al., 2020). Two modelling
approaches were used for the thermal model, heat transfer only and heat transfer coupled
with fluid dynamics. The difference in solidification parameters provided by the two methods
were discussed. Moreover, Hunt's model was also used to predict primary dendrite arm

spacing.

Phase field models can also be used to predict microstructure on the scale of dendrite arm
spacing. Sahoo and Chou modelled the development of a single grain as the result of electron
beam powder bed fusion of Ti6Al4V (Sahoo & Chou, 2016). The model used a 3D finite
element thermal model to calculate the thermal gradient and solidification velocity, which were

then imported into the phase field model. Finite difference methods were implemented to solve



the required phase field and concentration equations on a 100um x 100um domain. Notably,
the effects of thermal gradient and scan speed on the grain growth were investigated. The
results were compared with experimentally and analytically obtained microstructures and a
reasonable level of agreement was achieved, although no quantitative measurements were
obtained experimentally. Similar work for laser powder bed fusion of IN625 was undertaken
by Keller et al. (Keller, et al., 2017). Cellular growth was successfully simulated using a 2D
phase field model following a 3D thermal analysis. However, unlike the nucleation of a circular
seed in the work presented by Sahoo and Chou, Keller et al. initiated a planar solid-liquid
interface. Furthermore, the frozen temperature approximation was implemented, whereby a
linear thermal profile was assumed that moved along the growth direction with a given speed
and maintained a constant thermal gradient. A 2D phase field model was also used by Acharya
et al. due to the computational expense of 3D models, although the model was undertaken in
both the longitudinal and transverse planes to give a more thorough analysis of the
microstructural evolution (Acharya, et al., 2017). A CFD analysis was undertaken to estimate
the melt pool and solidification region, whilst the seeding method applied within this work
allowed for multiple seeds to be applied at both the bottom and top of the melt pool. In the
work by Kumara et al. they also applied multiple seeds with a distance equivalent to the

primary dendrite arm spacing (Kumara, et al., 2019).

Unlike Archarya et al., whom assumed a binary system for IN718, in the more recent works
presented by Kumara et al. the alloy was represented by a seven component system (Kumara,
et al., 2019; Kumara, et al., 2019). This obviously provided a more accurate representation of
the alloy system. Within this work the commercial software MICRESS was implemented to
undertake the phase field models. There were two stages to the phase field model, first the
solidification model and then a subsequent model that simulated microstructure development
as a result of in situ heat treatment. Experimental microstructures were analysed and the
simulation results were also compared with comparative simulations of a casting scenario.
However, unlike other works, a thermal analysis was not undertaken within this work. Instead
a representative cooling rate was assumed, and the heat treatment temperature was taken
from experimental thermocouples. It should be noted that the domain size modelled in each
of the authors works was extremely small, with one being 6um x 6um and another 25um x
25um. This gives the reader an idea of the small scale to which phase field models can be
applied. For this reason other mesoscale modelling approaches need to be applied to give a

more global representation of the grain morphology.

The application of kMC methods to additive manufacturing has also been seen. Ge et al.
presented a process-structure-property modelling approach, that utilised Monte Carlo

methods to simulate the microstructure development in Ti-6Al-4V (Ge, et al., 2019). The kMC



method was used on a multi-scale basis to provide simulation of the development of 3 grains,
whilst a single grain scale model simulated the development of a phase within the prior B
grains. The thermal aspects of this work were discussed in an earlier section. The most
notable work in this area is that presented by Rodgers et al. Building on their application of
kMC to welding, (Rodgers, et al., 2016; Rodgers, et al., 2017), Rodgers et al. used kinetic
Monte Carlo techniques to investigate grain structures in metal additively manufactured parts
(Rodgers, et al., 2017). As part of the Sandia National Laboratories, this was done through
the use of the SPPARKS software. The model was used to simulate microstructural
development within LENS processes and compared against experimental studies in literature.
An idealised melt pool and heat affected zone were used to replicate the thermal field, whilst
this was not exactly representative of the process it was beneficial for the computational
efficiency of the model. Inactive material was hidden from the simulation to replicate material
deposition. Qualitative and quantitative comparisons were undertaken. Results showed how
grain structures could be altered by scanning strategy, although with a reasonably low
resolution. The authors commented on the simplifications made in the model and the need for
future work in this area. In their more recent work, Rodgers et al. applied the developed
modelling approach to investigate the effect of process parameters on mechanical properties
(Rodgers, et al., 2020).

Within the work provided by Rodgers et al., a comparison of microstructure modelling methods
was also given (Rodgers, et al., 2017). Within the comparison CA-FE, CA-Lattice Boltzmann
(CA-LB), Monte Carlo and empirical methods were evaluated. Whilst the benefits of the kMC
method identified included, the availability of the open source software SPPARKS, the ability
to account for solid-state transformations and being slightly more computationally efficient
than both CA-FE and CA-LB, its limitations were also presented. These included the inability
to account for crystal orientation as well as difficulties drawing quantitative links to
experimental conditions. This point was also acknowledged in the comparison of CA and kMC
techniques, for the application of recrystallisation, given by Sieradzki and Madej (Sieradzki &
Madej, 2013). Rodgers et al. also identified empirical methods as the most computationally
efficient, however it was also noted that even this is still relatively expensive for the simulation
of full AM build parts. The overall opinion given within this work is consistent with the
conclusions drawn in a number of other critical reviews of microstructure modelling methods.
Zhang et al. presented a comparison of microstructure models for laser AM and in this work
they considered Monte Carlo, Cellular Automata and Phase field. However, the CA approach
applied in this work was a more probabilistic approach than that presented by Rappaz and

Gandin. In this work, the CA approach presented appeared to be more computationally



efficient than the MC, but will not be considered any further due to the lack of physical

relevance.

More recently, Tan et al. compared phase field, kinetic Monte Carlo and Cellular Automata
approaches, as well as a very recent modified Cellular Automata approach that applied CA
methods on a scale of dendrite shape, akin to the phase field approach. Conclusions drawn
included the necessity of either kKMC or CA modelling for the prediction of material properties,
due to the larger scale of simulation, as well as the more accurate grain size predictions
obtained through CA. Similar work was undertaken by Korner et al. (Korner, et al., 2020). As
in other works, the accuracy of phase field models at the expense of efficiency was highlighted.
However, it was stated that whilst PF methods are computationally expensive, they could be
used to give insight into the dendrite growth velocity for implementation in more efficient CA
models. Furthermore, the review also commented on the inability of Monte Carlo approaches
to simulate grain texture. Similar conclusions can be seen in the work presented by Gatsos et
al. and Li et al. (Gatsos, et al., 2020; Li, et al., 2020). Whilst Rodgers et al. identified the
limitation of CA to be the inability to account for simulation of solid state transformations,
accounting for subsequent work presented by Yang et al. (Yang, et al., 2018), Gatsos et al.
identified this as one of the benefits of CA methods. Moreover, it is established by Korner et
al. that the common challenge across all the modelling approaches is the simulation of new
grain nucleation, as well as ensuring the development of well-established nucleation
parameters for independent alloys. Li et al. also identified nucleation methods as an open
guestion within microstructure simulations and identified the lack of microstructural simulations
that validate thermal/melt pool models prior to the completion of grain growth predictions (Li,
et al., 2020).

Within this work, we will focus on the application of cellular automata methods for metal AM
processes. This choice has been made as it offers a visual representation of the grain
morphology which is not achievable using empirical, transformation kinetics, based models.
Furthermore, it is more physically accurate than kinetic Monte Carlo methods whilst remaining
more computationally efficient than the phase field approach and provides a simulation on a
larger scale. Li et al. drew the same conclusion that these attributes make CA the most suitable
modelling technique for this application (Li, et al., 2020). Figure 7 demonstrates the visual
differences between these three modelling techniques. Moreover, there is a wide range of
literature demonstrating the successful application of CA methods. For example, the work by
Gu et al, presents the application of 3D CA methods to predict grain structure and porosity for
casting applications with a good level of agreement with experimental tests (Gu, et al., 2019).

The following sections aim to present some of the key works in the application of CA for the



prediction of microstructure in metal additive processes and identify current limitations and

possible areas for development within the literature.
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Figure 7: Schematic of different microstructure modelling approaches. Sourced from (Korner, et al., 2020)

2.6 Use of Cellular Automata for Simulation of Microstructure in AM

Following the decision to implement cellular automata methods within this work, an in-depth
review of the current literature on applications of CA within additive manufacturing is provided.
As previously mentioned, cellular automata models are often coupled with a supplementary
modelling approach that provides the thermal results of the analysis. Rai et al. coupled a CA
microstructure model with a lattice Boltzmann model (Rai, et al., 2016). The 2D model was
used to simulate grain development in powder based processing of IN718. The 2D decentred
square algorithm, developed by Rappaz and Gandin, was implemented with automatic
incrementation. A rain drop model was used to generate powder particles. Meanwhile, Lopez-
Botello et al. implemented the more commonly used Cellular Automata — Finite Element
(CAFE) method (Lopez-Botello, et al., 2017). In this particular work an approximation of the
Gaussian heat source was used to simulate the thermal history in a 4 layer SLM build using
the aluminium alloy AA-2024. A weak coupling between the FE and CA models was used with
the Von Neumann neighbourhood condition. A good level of agreement was achieved when
comparing the predicted grain size against those seen experimentally. Powder bed fusion
processes were also considered in the work presented by Yang et al., (Yang, et al., 2018) . A
2D CA model was implemented within the commercial software MATLAB. The prior beta grain
structure in Ti-6Al-4V was simulated as well as the prediction of solid-state transformations. A
good qualitative agreement was achieved between the model results shown and experimental

samples.

On the other hand, Zhang et al. looked at the application of a fully coupled 2D CA-FE method
for the application of LMD. Element activation was achieved through the use of element birth

techniques and a Gaussian heat flux was assumed, although no experimental validation of



the thermal history was undertaken within this work, simulated microstructures were compared
against experimental samples both quantitatively and qualitatively. Both clearly showed
columnar grains of a similar magnitude. This work was built upon in their later work, where
the authors implemented a new growth envelope model, the modified decentred polygon
(Zhang, et al., 2018). This approach was thought to be more suitable for the non-uniform
thermal fields seen in additive manufacturing, as well as being more computationally efficient.
However, the details of implementation were not presented. The study focused on a single
deposition scan and showed good agreement with both experimental thermal measurements

and microstructure. A columnar to equiaxed transition was predicted within the melt pool.

As discussed previously, whilst nucleation methods among models remain reasonably similar,
whether the inclusion of nucleation techniques is necessary, and how they can account for
different aspects, is often in question. The effect of nucleation mechanisms was explored in
the work presented by Li and Tan (Li & Tan, 2018). Within this work a number of simulations
were carried out on both single scans and multiple layer builds to assess the effect of nuclei
density and critical undercooling on microstructure predictions. The modelling approach
undertaken was a weakly coupled finite volume — CA approach. A significant alteration in the
microstructure was seen as a result of the changes in both nuclei density and critical
undercooling. Akram et al. (Akram, et al., 2018) implemented a cellular automata based
microstructure prediction model in order to demonstrate the effects of scanning strategy on
resultant microstructure within additively manufactured parts. A 2D model was implemented
to show the final microstructure in all 3 planar directions. The model only allowed for nucleation
on interface regions, such as the melt pool boundary, and used an alternative model to the
Gaussian approach implemented by Rappaz (Rappaz, 1989). Out of plane nucleation was
artificially accounted for through additional nucleation sites. A good visual agreement was
achieved with experimental images reported in literature and a clear change was witnessed
between the different scanning strategies. However, within this work fixed thermal gradients
were imposed, the microstructure model was not coupled with any thermal models.
Furthermore, the results shown here were independent of any particular alloy. Rolchigo and
Le Sar also suggested that a correction to the nucleation mechanisms within 2D CA models
was required to accurately model the columnar to equiaxed transition (Rolchigo & LeSar,
2019). The adaption of nucleation methods has also been considered by Mohebbi and
Ploshikin, where the authors recently investigated the development of new nucleation
methods to account for specific microstructural features in aluminium alloys (Mohebbi &
Ploshikhin, 2020). This particular study focused on the grain nucleation along the fusion
boundary witnessed in additive manufacturing of AISi1l0Mg and other aluminium alloys. Three

nucleation methods, each with sound justification, were implemented and compared against



experimental images. The most suitable method of nucleation was determined by direct
comparison with the experimentally obtained microstructures. Simulated microstructures have
also been compared against alternative aluminium alloys, although fully calibrated and

validated models have not yet been undertaken on alloys other than AlSi10Mg.

Following on from their early work, Zinovieva and Zinoviev et al. adapted their modelling
approach for the application of powder bed fusion AM in their more recent publications. In
2016 the group presented a study implementing a 2D CA- finite difference (CAFD) method for
the simulation of 316L processed by SLM (Zinoviev, et al.,, 2016). Adaptive time
incrementation was undertaken and it was assumed, within this work, that due to the rapid
cooling within the process, nucleation did not take place within the melt pool. Variations of the
Goldak parameters were investigated and it was determined that the 2D model more
accurately simulated grain growth within shallower melt pools, whilst it would be beneficial to
include 3D aspects for deeper melt pools. The use of 2D and 3D models have both been seen
in literature. It has been identified that 3D models are required to account for all aspects of
microstructural evolution, including out of plane growth and 3D texture (Lian, et al., 2019 ;
Gandin & Rappaz, 1997). However, as expected, a 3D CA model comes with an increase in
computational expense. For this reason, Rolchigo and LeSar investigated the effects of
including the third dimension, in their recent work applying CA to simulate grain growth in
scenarios similar to LENS (Rolchigo & LeSar, 2019). The work concluded that a change from
2D to 3D resulted in a difference in the amount of grain impingement within the model, as well
as the ability to accurately represent the columnar to equiaxed transition. The primary reason
for this is the considerably smaller range of orientations available in the 2D model. It should
be noted that within this work, growth rates were prescribed at a constant rate and as such,
the modelling approach was not strictly representative of the manufacturing process.
However, the literature clearly demonstrated the need for 3D CA approaches to fully capture

microstructure characteristics.

The more recent work, presented by Zinovieva et al., implemented a 3D CAFD model, using
a modified decentred octahedron growth envelope, for the application of Ti6Al4V (Zinovieva,
et al., 2018). A sub volume was modelled in order to reduce computational efficiency. Both
works provided comparisons of the grain structures produced in the CAFD model against
experimentally manufactured microstructures, however, there was no validation of the thermal
profile implemented. Koepf et al. focused on the computational efficiency of 3D powder bed
fusion models (Koepf, et al., 2018; Koepf, et al., 2019). In the earlier work (Koepf, et al., 2018)
the Rosenthal solution was used to analytically represent the thermal profile. This served to
improve computational cost, along with the reduced simulation domain implemented within

this work. Simulations were compared against experimental results of manufactured, cuboid,



samples. A good agreement was seen in both EBSD images and pole figures. In the following
work, a more representative thermal profile was used (Koepf, et al., 2019). A finite element
model was used to model the thermal history of a single layer within the additive process. The
thermal profile was then stored locally and reused, rotated by the required angle for each new
layer. Simulated microstructures were again compared with experimental images, with good
agreement. Whilst these works focused on the improvement of computational efficiency the
3D models still required 200 hours of computing time on 720 cores. This would be an

unfeasible amount of computational power for the majority of industrially relevant applications.

It has been widely recognised that one of the biggest challenges of microstructure modelling
is the trade-off between accuracy and computational efficiency. In an attempt to address this
issue Liu and Shin presented a coupled 2D cellular automata-phase field model (Liu & Shin,
2020). The purpose of the work was to combine the accuracy of a PF approach with the
efficiency of CA methods. A 2D CA model was implemented to model the dendrite growth,
whilst a 1D PF model was used to determine the dendrite growth kinetics. The modelling
approach was applied to DED of Ti6Al4V and was compared against 2D PF and 3D CA models
as well as experimental results. Whilst a good agreement was achieved with experimental
results, some aspects of the grain morphology was lost by the use of the 2D model compared
to the 3D CA. It was also more computationally expensive than the 3D CA model, but more

efficient than the 2D PF whilst still being able to simulate sub grain structure.

Moreover, one of the key reasons for establishing microstructure modelling methods for
additive manufacturing is to be able to understand and predict the effect of process parameters
on the resultant microstructure and hence material properties. Herriott et al. developed a multi-
scale framework for the simulation of material properties in additively manufactured parts
(Herriott, et al., 2019). The framework presented implemented a finite volume - 3D CA method
for the simulation of resultant microstructure. The domain was then split into subvolumes that
were used as input for an elasto-viscoplastic fast Fourier transform (EVPFFT) model, for the
simulation of mechanical properties. The microstructure was simulated using 4 different
nucleation conditions. Each approach returned reasonably different results, accenting the
need for established nucleation parameters as discussed by Korner et al. (Korner, et al.,
2020). Furthermore, whilst the obtained stress-strain curves were compared with experimental
results, simulated microstructures were not compared with those achieved experimentally.
Similar work was undertaken previously by Yan et al. (Yan, et al., 2018). Here, a CFD thermal
model was used to determine the thermal history used as an input for the 3D CA grain growth
model. Microstructure outputs were then used in a self-consistent clustering analysis (SCA)

crystal plasticity model.



A number of works focused solely on the link from process parameters and resultant
microstructure. The authors of the process-structure-property framework proposed by Yan et
al, (Yan, et al., 2018), also presented a subsequent work focusing solely on the grain growth
predictions. Lian et al. presented a recent work that investigated the effects of laser power,
scan speed and scanning strategy on the resultant microstructure of IN718 LMD deposits
(Lian, etal., 2019 ). The model made use of a weakly coupled finite volume — cellular automata
model. A decrease in grain size was observed with an increase in scan speed or decrease in
laser power. Whilst the paper demonstrated the capability of the modelling approach to
capture these changes, the results were not validated with experimental tests. Rolchigo and
LeSar also noted the importance of being able to understand the relationship between process
parameters and microstructure development (Rolchigo & LeSar, 2019). As mentioned earlier,
their work looked at the use of 2D and 3D CA for microstructure predictions in Laser
Engineered Net Shaping (LENS) and demonstrated the effects of thermal gradient and
solidification velocity on the resultant microstructure, as well as solute concentration. In a
similar approach, Shi et al. made use of ALE3D, a hybrid finite element and finite volume code,
along with CA to investigate the effects of beam shape and consequently melt pool geometry
on the resultant microstructure in a single track powder bed fusion deposit. A total of 3 different
beam shapes were explored, and a 3D CA method was implemented with the use of
DREAM3D software to generate an equiaxed initial substrate microstructure. The effect of
beam shape on nucleation and epitaxial growth, as well as its effects on thermal gradient and
solidification velocity were investigated. Among other things, it was concluded that the amount
of nucleation is correlated to the width of the melt pool when the laser is on and depth when
the laser is off. However, both the work presented here and that by Rolchigo and LeSar, lacked
support from experimental investigations. Whilst Shi et al. discussed the calibration of the
thermal model against absorptivity values and melt pool depth, the study was largely a
numerical study of the modelling approach, independent of a physically representative AM
scenario. In particular, the computational domain was reasonably small and nucleation
densities had been artificially increased above those witnessed experimentally in order to
investigate the effects of bead shape on nucleation. Some small comparisons were drawn to
previous experimental work undertaken by the authors (Roehling, et al., 2017). Whilst this
supported some conclusions drawn in the work, other conclusions drawn through the model
investigations were not in agreement with those seen experimentally. Meanwhile, the work
presented by Rolchigo and LeSar was limited by the thermal assumptions made. The work
presented here imposed a frozen temperature approximation, which is more commonly used
in phase field models due to the small domain (Li, et al., 2020). This is where the thermal field
is defined by prescribing a fixed cooling rate and thermal gradient. Therefore, the work was

not representative of an experimentally observed thermal profile.



The most recent works within this area include those presented by Wang (Wang, 2021) and
that by Teferra and Rowenhorst (Teferra & Rowenhorst, 2021). Wang used a 2D CA model
combined with a CFD thermal model to investigate all 3 principal planes, similarl to Akram et
al. (Akram, et al., 2018), for powder bed fusion of IN718 . The effects of scan strategy, laser
power and scan speed were investigated, however, experimental validation of these studies
is required. Similarly, Teferra and Rowenhorst, simulated microstructural developments using
a 3D CA model with an analytical thermal model to simulate powder bed fusion of 316L SS.
Significant effort within this work was taken to investigate parallelisation techniques to improve
computational efficiency. Two different scan strategies were simulated, initially with varying
nucleation densities on a smaller domain, with simulations taking approximately 6.5 hours with
132 cores. The nucleation density was chosen based on experimental results, taken from
literature, and larger domain simulations were undertaken taking approximately 65 hours on

144 cores.

The literature discussed here represents the current state-of-the-art in the use of cellular
automata methods to simulate grain growth in additive manufacturing processes. Whilst it
clearly presents a wide range of applications and developments of the methodology, it also
shows a range of limitations and challenges available within the current scope of work
developed. Below, a table summarising some of the key papers and the limitations and

challenges presented within each work is provided.

Authors Year Key Features Limitations

2018

e Simulation with 3 principal | ¢ Constant thermal gradients/cooling
planes. rates imposed.

¢ Investigates influence of scan | ¢ No association to any particular alloy.
strategy, thermal gradient and

cooling rate.

Zinovivea et | 2018 | ¢ 3D CA finite difference model | ¢ No bulk nucleation.
al. for PBF. e No validation of the thermal model is
e Experimental validation of given.

microstructure.

Koepfetal. | 2019 | ¢ 3D weakly coupled CA-FE | e High performance cluster computers
model for PBF. used, which may not be accessible

e Compared against within industrial application.
experimental microstructures. | ¢ Lack of inclusion of nucleation effects,

¢ |terative use of thermal model other than from the surrounding

for computational efficiency. powder.




3 planes for PBF of IN718,
with CFD thermal model.
Investigates the effects of

various process parameters.

Lian et al. 2019 Application to DED processes Lack of experimental validation for
with IN718 both thermal and microstructure
3D CA and finite volume models.
methods.

Laser power, scan speed and
scan strategy investigated.

Teferra and | 2021 3D CA PBF model with Although computational efficiency is

Rowenhorst analytical thermal model. investigated the hardware used is still
Investigates 2 scan strategies. much more sophisticated than that
Focus on computational typically available in industry.
efficiency. Analytical thermal model

implemented.

Wang 2021 Simulation using 2D CA within Limited experimental validation.

In particular experimental validation for
the effects of process parameters is

required.

Table 2: Table summarising the current state-of-the-art in microstructure prediction for metal AM.

The next section within this work outlines the research challenges and objectives addressed

within the scope of this project.

2.7 Research Aims and Objectives

It is clear from the literature reviewed above that there is a great need for increased

understanding within the additive manufacturing industry. The main aim of this work is to

contribute to this by investigating the link between process parameters and microstructure to

increase reliability of additive manufacturing. Taking into consideration the key features and

limitations of the work available in the current literature, the work presented here aims to

contribute through the following objectives:

¢ Contribute to the smaller catalogue of work available for the application of CA to direct

energy deposition processes, particularly for multi-layer builds.

o Implement cellular automata methods with experimentally-validated thermal models.

e Improve computational efficiency of the required models to achieve sensible run times

with practical hardware requirements, suitable for use in industry.

e Apply CA models to investigate the influence of process parameters, with experimental

validation.







3 Thermal Modelling Activities

The first stage to predicting microstructure development, is to be able to simulate the thermal
history experienced. As discussed within the literature review, there are a number of different
aspects that need to be accounted for when developing a finite element model of an additive
manufacturing process. These include moving heat sources, temperature dependent
behaviour and material deposition. Within this chapter some of the work completed in order to
develop an understanding of thermal models for additive manufacturing, early on within this
project, is presented. We first discuss the work undertaken as part of the additive
manufacturing benchmark study and conclude with other work undertaken as part of projects
undertaken by TWI Ltd and linked to this PhD. Note, the results of this chapter are not directly
relevant to the conclusions and results of this thesis, but are presented here as a background

and examples of development in the field of thermal modelling.

At the start of this project one of the main priorities of the work was to establish the current
state of the art for modelling within the additive manufacturing industry. For this reason, the
2018 National Institute of Standards and Technology (NIST) additive manufacturing
benchmark (National Institute of Standards and Technology, 2018), provided an ideal
opportunity. It was my privilege to work as part of a team with TWI and Dassault Systémes to
complete a submission to the first challenge, for residual stress predictions. Whilst the focus
of this thesis is on thermal and microstructural model development, residual stress predictions
are also highly-dependent on the thermal history. Therefore, this provided a good opportunity
to both familiarise myself with modelling techniques for additive manufacturing as well as test

and validate thermal modelling approaches.

As discussed in section 2.2, the NIST 2018 AM benchmark, gave global access to 4 heavily
monitored, AM based, experimental trials. For each, a challenge outlining a number of
objectives for numerical predictions was given. Submissions of numerical predictions were
entered as blind studies, before the experimental measurements were released. The data
made openly available as part of the benchmark ensured high quality experimental trials were
completed and extensively monitored. Furthermore, this was all completed using equipment
available at a globally renowned laboratory, with resources and associated costs that could
otherwise not have been feasible within the scope of this work. The first challenge, which will
be the subject of this section, requested predictions for the residual stress profile, distortion
measurements and microstructure predictions of the manufactured geometry. Within the
earlier stages of this work, the focus remained on the thermal history predictions prior to the
development and implementation of microstructure codes. Therefore, the numerical

predictions undertaken as part of this challenge were of residual stress and distortion. Data



from this benchmark was used in subsequent work, chapter 5, to test and validate the

microstructure modelling methods.

The test article was manufactured through laser powder bed fusion in both Inconel 625 (IN625)
and stainless steel 15-5; however, only the IN625 samples have been modelled within this
work. This is relevant as nickel-base superalloys feature heavily in this project. The geometry
was designed as single cantilever with additional ridges on the top surface for accurate
measurement of part deflection upon removal from the substrate. This can be seen in Figure
8. A detailed report of the process parameters and scan strategy were provided in the
challenge description (National Institute of Standards and Technology, 2018). This included
details of both contour and infill strategies throughout the total build height of the geometry. A
layer height of 20um was used throughout the manufacturing, meaning a total of 625 layers
were manufactured during the build of the test specimen. For this reason special
considerations need to be made in order to model the geometry at the part scale.
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Figure 8: Geometry specified for challenge AMB2018-01 (National Institute of Standards and Technology,
2018).

As highlighted, there are a wide range of factors that need to be accounted for within thermal
models for additive manufacturing: material deposition, scan strategy, heat source
characteristics and heat loss. During the development of the models, the (then recently
released, beta version) Abaqus AM app, that was made available to TWI, was used for
efficiency. The app combines the ability to apply element birth techniques and a moving heat
source through the definition of an event series. An event series is a table of data defining the
path of the heat source by specifying the power and location of the heat source at various time

points. Linear interpolation is used between the specified points to find the required details



between these times. The AM app utilises this information within user subroutines to activate
the material as specified by the “recoater event series” and apply a moving concentrated point
heat source in accordance with the “laser event series”. A visual representation of the event
series within the AM app is shown in Figure 9. Within the app, the toolpath-mesh intersection
module is used to identify all the elements that are intersected by the heat source within a
given time increment. The energy delivered by the heat source during this increment is then
distributed uniformly over these elements. Heat loss due to convection and radiation were

also accounted for within the model.

7

Figure 9: Visual demonstration of the application of the event series within the AM app (Yang, et al., 2019).

Specifically my role within this work focused on the development of finite element thermal
models utilising the AM app within Abaqus with temperature-dependent material data. The
use of the AM app was beneficial within this work as it removed the need for defining individual
steps for each layer of new material, which would otherwise need to be defined through the
use of a model change. Furthermore, the development process also involved calculation of an
event series, for the geometry, based on the details of the scan strategy given as part of the
challenge description. The models created were then compared to similar thermal models
developed by other team members, and ultimately a more efficient technique of layer

aggregation was implemented due to the large number of layers.

Layer aggregation is a method where multiple layers are deposited in the model at once, as if
they are a single layer. The final models represented averagely 10 layers within each individual
element. The layer aggregation technique applied here is an acceptable approach when
simulating residual stress due to the resolution needed on the part scale as opposed to the
macro or micro scale. However, this would not be a suitable technique when trying to simulate
the solidification microstructure. Similarly, the fidelity of the heat source model for this
simulation would not be appropriate when looking on at the micro scale; however the work
provided a good demonstration of both the use of moving heat sources and event series.
Temperature-dependent material properties were used for both the thermal and mechanical
models. As the focus of this thesis is thermal and microstructural modelling for any further



details of the mechanical model the reader is asked to refer to the resulting paper (Yang, et
al., 2019).

The resulting submission to the challenge was completed by a team from Dassault Systemes
and TWI and ultimately received 1%t place for residual stress predictions out of a total of 6
submissions for this category worldwide. The team were invited to write a journal article
detailing the model as part of a special issue on the AM benchmark, which one contributed to
significantly within the writing and submission procedure (Yang, et al., 2019). The resulting
residual strain predictions and corresponding experimental measurements can be seen in
Figure 10 and Figure 11 respectively. As presented by Levine et al in the review of the
benchmark outcomes (Levine, et al., 2020), the distortion predictions submitted for this
challenge worldwide were consistently over or under predicted. Interestingly, half of the
submissions predicted extremely similar results above the experimental distortion values and
the other half provided very similar predictions below the experimental curve, highlighting that
despite significant efforts within literature to predict part level distortions, accurate models for

additive manufacturing are still required.
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Figure 10: Predicted residual strain profiles a) EE11, b) EE33 (Yang, et al., 2019).
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Figure 11: Experimentally observed residual strain profiles a) EE11 b) EE33 (National Institute of Standards
and Technology, 2019).

Subsequent work was undertaken as part of another project within TWI, involving the thermal
modelling of L-PBF of AISi1OMg. This was performed as part of the European Comission-
funded project PASSPORT (European Commission: CORDIS, 2020). This was done in order
to determine the effectiveness of using the specific point energy and power factors as design
parameters in laser powder bed fusion. Modelling work was used to support these

investigations, by using thermal models to predict the influence of various process parameters.

Within this work | worked closely with colleagues to develop finite element models involving
the development of user defined subroutines to prescribe moving heat sources. The use of an
event series to define the heat source location was also leveraged within this work and
material activation was modelled through the use of the model change function within Abaqus
to define element birth within various steps. Further detail on the outcomes of this work can
be found in the paper, published in 2019, summarising this work (Zavala-Arredondo, et al.,
2019).

Overall, the work completed within both of these exercises provided an opportunity to gain
familiarity and knowledge of specific techniques required for thermal modelling of AM
procedures, in order to establish modelling methods to produce thermal profiles which can be
used to drive the solidification models. Whilst the results from these studies will not be used
directly within this work, they have provided a means to implement and validate the use of
certain approaches, such as the implementation of event series and the use of user
subroutines to define heat source movement, which can be carried forward and adapted into
subsequent thermal models within this work. Particularly, the methodology used within the
Abaqus AM app, is useful when considering efficient modelling approaches later on within this



work. Nevertheless, fine scale models, with higher fidelity, need to be undertaken for the
simulation of solidification microstructure. For example, implementing Goldak or conical
Gaussian heat source models in order more accurately predict the melt pool, as seen in more
detail within later sections of this work. This level of fidelity cannot be achieved using the
Abaqus AM app implemented within the NIST benchmark study. The corresponding papers,
for works discussed here, can be found within the Appendix.



4 Microstructure Model for AM Processes

Within this chapter we will discuss the background behind the modelling methods implemented
in this work. This will include an overview of the Cellular Automata (CA) technique as well as
detailed information regarding its application to grain growth predictions and the
implementation methods used within this work. The chapter will conclude with a discussion of
techniques that can be used to determine the success of the model.

4.1 Cellular Automata

Cellular Automata is a modelling technique that was developed in the 1940’s by John Von
Neumann and Stanislaw Ulam (Shiffman, 2012). One of its initial implementations was actually
for the simulation of grain growth as well as self-replicating robots. This application eventually
lead to the most famous application of the CA modelling technique - James Conway’s game
of life created in 1970 (Shiffman, 2012). This is a zero-player game that uses CA to determine
if a cell is living or dead. The notable feature of the game is that, no matter the initial
configuration of the game, a number of specific shapes and images are produced within the
simulation. Cellular automata is an efficient way of simulating complex phenomena by
discretising a spatial domain. It has numerous applications and can be tailored to a wide range
of phenomena, including the simulation of growth of numerous substances; leaves, shells and
snowflakes (Andrews, 2008; Wolfram, 2002), fluid flow models , application in intrusion
sensors (Navid & Aghababa, 2013) as well as uses in cryptography (Wolfram, 1994). Within

this work we focus solely on the application of CA to the simulation of crystal growth.

The technique makes use of a grid of cells, or elements, the two terms will be used
interchangeably throughout this work due to the coupling with finite element models. The gird
of cells is usually a uniform structure, however techniques can also be applied to irregular
grids (Navid & Aghababa, 2013). The cells, within a uniform CA grid, can be any regular,
tessellating shape for example, squares, triangles or even hexagons. For simplicity throughout
this chapter we will assume each cell to be a square. Each cell, within the domain, is assigned
a number of state variables. These are updated throughout the analysis using a set of
prescribed rules. Colours or shading can be assigned to variables allowing for visual
representations of the scenario. The rules are typically dependent on the value of state
variables within previous steps of both the cell of interest and its neighbouring cells. Therefore,
we must also define the neighbourhood of each element at the beginning of the analysis.
There are two common types of neighbourhood; Moore’s and Von Neumann’s. The Von
Neumann neighbourhood was established in 1952 by John von Neumann himself, whilst
Edward Moore developed the Moore neighbourhood in 1962 (Wolfram, 2002).

Representations of these two neighbourhoods can be seen in Figure 12. Whilst these are two



of the more common neighbourhood definitions, the neighbourhood of a cell can in fact be

defined in any manner that the user so wishes.

a) b)

Figure 12: Diagrammatic representation of a) Von Neumann and b) Moore neighbourhoods.

Every individual cell is updated at the same time using the state variables from previous steps.
Each time this occurs, this is known as a CA step. The step is typically time independent, but
depending on the application it can be associated with real time increments. The concepts
described here can be seen in the following simple example (Figure 13). Imagine we have a
domain that has been divided into 25 uniform cells and the state variable applied to each cell
(v) is its colour (C,); B (blue) or O (orange). We assign the rule that if a blue cell has an orange
neighbour then the cell also becomes orange. This can be written in an algorithmic form, using
standard mathematical notation, as below, in Table 3. Within this formulation we describe the

cell under consideration as v and its neighbourhood as Q.

Initial State Final State Condition

C, = C, = 3 pues.t.C, =0

Table 3: Example formulation of a CA rule.

Within this example, we will show the effects of applying the same CA rules to the same initial
configuration, but applying different neighbourhood definitions. Figure 13a) shows the
application of the rules with the implementation of the Von Neumann neighbourhood and
Figure 13b) with the Moore neighbourhood.
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Figure 13: Example of a CA process with a) Von Neumann and b) Moore neighbourhoods.
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As you can see the neighbourhood chosen has an obvious impact on how the CA model
develops. Within the work of this thesis, the Moore neighbourhood will be implemented as it
best represents the continuous surroundings experienced within solidification mechanisms.
This is also demonstrated through an analytical comparison in the work by Rappaz and
Gandin, (Rappaz & Gandin, 1993). The modelling techniques and transition rules used to

replicate physical solidification mechanisms are explained below.

4.2 Nucleation Mechanisms

Solidification, within metals, takes place through nucleation and growth mechanisms. A
detailed description of the background of solidification laws and mechanisms can be found in
section 1.6. The rest of this chapter focuses on the modelling techniques used to replicate
these solidification mechanisms. One of the first cellular automata grain growth models was
developed by Rappaz and Gandin for the application of castings (Rappaz & Gandin, 1993),
and many of the techniques presented herein have been developed from their seminal work.
Firstly, the modelling mechanisms used to replicate physical nucleation processes will be
examined. The following section will then describe the techniques employed to simulate grain
growth.

Heterogeneous nucleation is modelled by Rappaz in his early work (Rappaz, 1989) where he
presents a nucleation model, for the application of equiaxed casting. The model represents
the rate of change in nucleation density as a function of the undercooling. In this paper, the
author summarises why the previous model suggested by Turnbull and Fisher insufficiently
represents the complexities of nucleation mechanisms and fails to predict grain size correctly.
The main reason for the discrepancies in the Turnbull and Fisher method originates from the

extremely rapid increase in nucleation density for a significantly small interval in undercooling.



Consequently, due to the discreteness of the distribution, the majority of nucleation sites would
be initiated within the same increment. The work presented by Rappaz proposed a new
nucleation model that more accurately represented physical nucleation mechanisms. The
work utilised the theory suggested by Oldfield and has been widely accepted as well as
implemented successfully within the large majority of cellular automata microstructure models.
Within the model, nucleation probability is described as a Gaussian distribution. Figure 14
shows diagrammatic representations of the nucleation model proposed.
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Figure 14: Gaussian nucleation model (Rappaz, 1989).

Figure 14a) represents the rate of change in nucleation density as a function of undercooling.
It assumes a Gaussian distribution where AT, represents the critical undercooling, the mean
of the distribution, and AT, the standard deviation of the distribution. The same model is shown
in Figure 14b) as a cumulative distribution, where n,,,, is the maximum grain density of the
material. The 3 parameters (AT¢, AT, nymqax), Can be determined experimentally. The model
can be adjusted to account for different sites of nucleation by assigning two different nucleation
models with different parameters to allow for the difference in critical undercooling required for
a nucleus to form in the bulk liquid or the mould wall (Rappaz & Gandin, 1993). This is more
appropriate for casting applications, but less so for additive techniques and hence only a single
distribution will be modelled in this work. This is common in other cellular automata models for
additive manufacturing. It is a reasonable assumption as there is no mould wall within additive
manufacturing applications and other rules are applied to account for epitaxial growth from

existing crystal material, as can be seen in Section 4.3.

The modelling approach described above can be implemented within the cellular automata
through a number of different mechanisms. The first is by calculating the change in nucleation
density that occurs as a result of undercooling for each time increment and then distributing
the required number of nucleation sites within the domain. This method is implemented by

(Zinovieva, et al., 2015; Zhan, et al., 2018). However, it poses issues within processes such



as additive manufacturing where a non-uniform thermal profile is experienced. This is
because, at any given time the molten region is moving or changing profile and a different
degree of undercooling is seen throughout, making it difficult to determine an exact value of
nucleation density throughout the domain. In order to resolve this problem another method is
employed within papers such as (Lopez-Botello, et al., 2017; Lian, et al., 2019 ; Li & Tan,
2018). This technique involves prescribing a probabilistic undercooling to a number of cells at
the start of the analysis.

The latter method of applying the nucleation model was applied within this work. At the start
of each analysis each cell is given a value of probabilistic undercooling. Once the undercooling
of the cell exceeds this value, the cell is nucleated. An initial approach was implemented
whereby every cell within the CA domain was assigned a probabilistic undercooling from the
Gaussian distribution at the beginning of the analysis or whenever a cell became liquid.
However, this method is not physically representative of the nucleation density as the density
becomes dependent on mesh size. As a consequence of this, this method introduces a degree
of mesh dependency into the model. For this reason, other methods were considered,
throughout the course of this project, which were physically representative of the
experimentally determined nucleation density. In order to do this the required number of
nucleation sites was calculated at the start of the analysis. The sites were then assigned
randomly among the CA cells within the domain. Each nucleation site was prescribed a
random probabilistic undercooling from the Gaussian distribution as before. However, all cells
which were not a nucleation site were assigned atrtificially large probabilistic undercooling

values to prevent them from nucleating within the analysis.

Within additive manufacturing, there is a common assumption made within solidification
models that nucleation does not occur within the melt pool during these processes. This
assumption has been made in a large number of papers (Akram, et al., 2018; Chen, et al.,
2016; Zinoviev, et al., 2016). Zinoviev et al. explain the reasoning behind this assumption, by
arguing that due to the large thermal gradients, experienced in additive manufacturing,
epitaxial growth from existing grain structures will occur before a high enough degree of
undercooling is reached to initiate bulk nucleation. However, Li and Tan investigated the
effects of bulk nucleation in such models and found it can have a large effect (Li & Tan, 2018).
Whilst there is an obvious influence on the final microstructure, the comparison to
experimental processes is less clear, whilst highlighting there is a strong need for calibration
of nucleation parameters against experimental results. Within the earlier parts of this work we
will undertake the assumption that nucleation does not occur within the melt pool. In later

studies the inclusion of nucleation and necessary nucleation densities are investigated.



4.3 Solidification and Growth Techniques

Once a nucleus has been generated within the molten region, growth mechanisms then
determine the development and expansion of the grain. In order to replicate solidification
mechanisms within cellular automata grain growth models, Rappaz and Gandin developed
the growth envelope mechanism (Rappaz & Gandin, 1993). This involves assigning an
intrinsic shape, representative of the materials crystal structure, to each growing cell. For
example, within this work we will focus primarily on FCC crystals which can be represented
by a regular octahedron in 3D or a square in 2D, the 2D projection of an octahedron. The
geometry is used to model the development of the envelope, or convex hull, formed by the
dendrite tips within the crystal. Once the centre of a liquid cell falls within the growth envelope
of a neighbouring growing cell, the cell is captured and becomes part of the growing crystal.
A growth envelope is then associated with the captured grain to ensure the continued
development of the crystal. To explain the concept behind the growth envelope, we will first
discuss the most simple 2D case available and then discuss adaptations that have been made
in order to make the method more physically representative.

Figure 15: Example of centred 2D grain capture.

For 2D applications, the growth envelope is represented by a square, as this is the 2D
projection of an octahedron (FCC crystals) or cube (BCC crystals), as mentioned previously.

The square is geometrically defined by two parameters; orientation and size, seen in Figure

15. In 2D, orientation can be described by a single angle, 6, intherange 0 < 6 < % due to the



quarter symmetry of the geometry (Rappaz & Gandin, 1993). This defines the preferential
growth directions of the crystal. The size of the shape is defined using the kinetic growth laws
given by Kurz, Giovanni and Trevdi (Kurz, et al., 1986). As shown in Equation 16, the envelope
size can be determined from the integral of the dendrite growth velocity, with respect to time,
from the time of nucleation to the current time. Here, L., represents the envelope size at time
t as shown in Figure 15, t,, is the time of nucleation and v is the dendrite growth velocity.
Dendrite growth velocity is given as a function of the local undercooling. This function is often
approximated by a polynomial function. This can be seen in a number of works using third
order polynomials (Lian, et al., 2019 ; Li & Tan, 2018; Yang, et al., 2018). Rappaz and Gandin

(Gandin, et al.,, 1996) use the approximationv = A-AT?, where A=10"* (%) this

S 2
representation has been successfully used within other works (Rai, et al., 2016; Koepf, et al.,
2019) and will be used here.

t

L, = % v[AT,(7)] dt
tn

Equation 16: Grain growth kinetics in 2D (Gandin & Rappaz, 1997).

In 3D, the same principles can be applied, only in this case the envelope is represented by
the full 3D geometry (Figure 16). For the case of an FCC grain this would be an octahedron.
In order to specify this geometry a total of 4 parameters must be given. These describe the
size and orientation of the geometry, as before, however in 3D three Euler angles must be

specified in order to fully define the crystal orientation.

Figure 16: Example of 3D octahedral growth envelope.



Euler angles are used commonly throughout mathematical and engineering disciplines. They
describe a composition of three rotations (6, ¢4, ¢,) that uniquely describe a 3D orientation.
Within this work the Bunge convention is used to describe the Euler angles, as it is a common
definition that is also used within software to produce inverse pole figures from angle data.
This convention is described within the work of H.-J. Bunge (Bunge, 1982). This convention
dictates that the 3 rotations consist of a rotation of ¢, about the z- axis, followed by a rotation
of 8 about the new x-axis and finally a rotation of ¢, about the rotated z- axis. Here ¢, and
@, are in the interval 0 < ¢4, p, < 2m, whilst 8 is limited by 0 and 7, 0 < 8 < m. A visual

representation of these three rotations can be seen in Figure 17.

fﬂl? ‘ y

Figure 17: Bunge Euler angle convention (AZO Materials, 2015).

The size of the envelope is defined in a similar fashion to that of the 2D geometry, using the
kinetic growth laws. This is shown in Equation 17, where L., represents the normal distance
from the octahedron to each face (Figure 16).

t

e - L
Lt = 7 tnv[AT,,(r)] dt

Equation 17: Grain growth kinetics in 3D (Gandin & Rappaz, 1997).

Whilst the work shown by Rappaz and Gandin et al. shows the successful implementation of
the initial 2D methods, there are still a number of discrepancies within the model. A number of
considerations have been made within the seminal work of Rappaz and Gandin, in order to
adjust the physical accuracy of the modelling approach. This includes evaluation of
neighbourhood effectiveness as well as a dendrite tip correction. Their most recent modelling
approach, presented in 1997, introduces a decentred grain growth algorithm (Gandin &
Rappaz, 1997). In initial approaches, the growth envelope associated with a newly captured
cell was the same as that of the capturing cell, only continued growth calculations were
undertaken using the new undercooling values associated with the captured cell. The

decentred method presented here calculates a new growth centre for each captured cell in



order to more accurately represent the crystal shape and reduce mesh anisotropy. Figure 18

represents how the calculations for each cell capture are undertaken.

Figure 18: Decentred growth algorithm (2D) (Gandin & Rappaz, 1997).

We consider a cell, v, which has been nucleated within the molten region. Upon nucleation
the growth envelope is activated. As the cell has been nucleated independently, the growth
centre, ie. the geometric centre of the prescribed shape, is coincident to the cell centre. After
a certain amount of time, t, the growth envelope reaches a size of L, and a neighbouring cell,
u, is captured within the envelope and changed to a growing cell. In order to be able to continue
with the calculations of the growth algorithm, we then need to know the growth envelope
associated with u. This requires an orientation, size and centre. Orientation, as before, is

obtained from the capturing cell. The centre and size must be calculated as below.

Firstly, the capturing face of the envelope is identified. This can be determined reasonably
easily by dividing the square diagonally into quadrants or by identifying the face with the
smallest normal distance to the cell centre. Once this has been determined, the two distances
that are obtained by dividing this edge by the normal to the captured cell centre (Figure 18)
are calculated, Lf; and L. The values are used to determine the size of the growth envelope
associated with u using Equation 18. Here, LZ is the size of the growth envelope associated

with y at time t, whilst [ represents the cell spacing.

1
1t = E[1\/1m(Lfﬂ,\/E- 1) + Min(Lip, V2 - 1)]

Equation 18: Decentred growth envelope size calculation.

The final parameter required to define the envelope is the growth centre. This is determined

by defining a square of side length 2L, with the same orientation as the capturing envelope,



such that the corner of this envelope is coincident to the nearest corner of the capturing
envelope. A diagrammatic representation of this can be seen in Figure 18. The centre of this

square delimits the growth centre associated with y, Lfl denotes the initial envelope size and

additional growth can be calculated, as before, using Equation 16.

The same decentring can be applied to the 3D octahedral envelope. The growth centre of the
captured cell can be calculated in a very similar manner. A detailed algorithm of the

calculations required can be found in the original work (Gandin & Rappaz, 1997).

Whilst the 2D model is efficient and reasonably representative of the in plane crystallographic
morphology, it does make the assumption that all grains are growing perpendicular to the
plane in consideration. This is due to the fact that whilst a square is the 2D projection of an
octahedron, it is only achieved as an intersection of a plane and an octahedron along the
central axis of the octahedron. If an octahedron is intersected along any plane, that is not one
of the 3 principal planes, a hexagon is obtained. Therefore, within this work a code for a 2.5D
model considering only the 8 in plane neighbours, but utilising the 3D growth envelope was
tested, as well as the a code for the 3D model. However both the 2.5D and 3D models proved

to be too computationally expensive and will not be used any further within this work.

4.4 CA Algorithm

In order to simulate the nucleation and growth mechanisms presented in the previous sections
state variables and algorithmic rules representative of the underlying modelling theory must
be used. Firstly, two main state variables are assigned to each cell; physical state, I, and grain
orientation, 6 (or 8, ¢4, @, in the 3D model). The physical state monitors the state of each cell.
This is achieved by assigning a different value depending on the state of the material. Namely,
a value of 0 defines the cell as liquid, 2 a solid cell and 1 a growing cell. For the case of additive
manufacturing we also require a value that assumes a cell is inactive and not to be take into
account within the simulation. That is a cell that exists within the computational domain but
has not yet been deposited within the additive process. In finite element models, this can be
achieved through the implementation of element birth and death techniques. However, for a
CA analysis we require details regarding the neighbours of each element. For this reason, as
well as other meshing limitations described later, it is easier to establish a fixed domain within
the simulation. Therefore, in these CA simulations, material deposition is modelled by
assigning a physical state value of -2 to any inactive material, ie. material that has not yet be
deposited. Furthermore, for processes involving a static powder bed, eg. L-PBF, powder
materials are given a physical state of -1. Grain orientation is a state variable that stores the
angles assigned with the grain envelope. In 2D, a single array is used to store the 6 value

assigned to the square envelope. However, in 3D three separate arrays are used to store the



three Euler angles of the octahedral envelope. The grain orientation variable is also used to
determine which cells belong to the same grain. Any neighbouring cells with the same grain
orientation are assumed to be part of the same grain. This is a reasonable assumption
because, due to the randomness in orientation assignment, it is probabilistically unlikely that
any two cells that have nucleated separately or captured from different growing grains would

have identical grain orientations.

The state variables are then updated according to a number of rules that represent the
nucleation and growth modelling technigues. There are five main rules within the CA algorithm
that can be seen in a mathematical formulation within Table 4. These do not include any
mechanisms with regards to inactive or powder material. These will be discussed separately
further on in the work. The main rules presented here are based on those seen in the work
presented by Chen et al. (Chen, et al., 2016). Within the formulation seen below, v represents
the cell for which the calculations are taking place and u a cell within the neighbourhood of
that cell, Q,. Furthermore, I, and 6, are the physical state and grain orientation of cell v
respectively. Similarly, T, represents the current temperature at the cell, AT, the current
undercooling and AT, the probabilistic undercooling assigned to that cell. Finally, the growth

envelope of cell v, described in Section 4.3, is given here by A4,,.

Rule ‘ Initial State Final State Condition

M1 I, #0 1,=0,6,=0 T, > Tiq

M2 I, =2 I,=1 Jpe,s.t l,=0
N1 I,=0,6,=0 =1 AT, > ATy,

0, = O,qna & A, initiated
L,=1

S1 I,=0,6,=0 6, = 6, & A, initiated JueN,st vel,
S2 I,=1 I,=2 Aue,st I,=0

Table 4: CA algorithm rules.

The first two rules presented within Table 4 describe the methods of melting within the
algorithm, hence the nomenclature M1 and M2. The first of these rules represents the physical
state change experienced by the metal when liquidus temperature is obtained. The rule
specifies that any cell that is not already liquid, becomes liquid upon reaching or surpassing
the liquidus temperature. The second melting rule then states that if any solid cell obtains a
liquid neighbour, the cell becomes growing as it now has a neighbouring liquid region into
which it could grow. This is the key rule that allows for epitaxial growth from existing grains.
Following this, there is a nucleation rule that works by initiating growth within any cell that

surpasses the probabilistic undercooling assigned to it at the start of the analysis. Upon



nucleation the cell is given a random grain orientation and the grain envelope is initiated. For

the 2D implementation this is a value within the range 0 < 6 < g due to the four fold symmetry

of the square envelope. In 3D, three random values are assigned to the three Euler angles

described in Figure 17.

The final two rules in the model implement the solidification mechanisms. The latter of these
rules ensures the termination of a growing cell, by specifying that any growing cell with no
liquid neighbours becomes a fully solid cell. Grain capture using the grain growth envelope
technique is implemented through S1. This rule states that if a liquid cell falls within the growth
envelope of a neighbouring cell then the cell is caught. Grain envelopes are defined
geometrically within the model and Equation 16 is used to determine the grain size. However,
since the analysis is undertaken in discrete steps, the integral must also be discretised.
Therefore, the current envelope size, L;, is determined as follows. Equation 19 represents the
discretisation of the 2D equation for a time increment of length &t from t-8t to t. The same can

also be applied to the 3D equation.

1
L, =L, s +—v(AT,_ - Ot
t=Leset 5 (AT¢_s¢)

Equation 19: Discretised envelope size calculations.

Upon capture, the cell in consideration assumes the grain orientation for the cell it has been
caught by, and the growth envelope for the captured cell is initiated. In the event that a cell is
caught by multiple cells within the same time increment a number of approaches can be
undertaken. Lopez-Botello et al. implemented a random selection (Lopez-Botello, et al., 2017),
whilst Rai et al. compared the difference between three mechanisms, including selection by
greatest undercooling and selection based on iteration order, and showed minimal difference
in results (Rai, et al., 2016). Within this work a random selection between any capturing grains
were assigned. Due to the small size of time increment used throughout the model, this is a
reasonable approximation to make. Furthermore, within some CA work, boundary conditions
are applied to the edges of the domain (Rappaz & Gandin, 1993; Yang, et al., 2018). Boundary

conditions within the CA model are not applied within this work.

In order to model material deposition within the CA models, material can be assigned with an
inactive physical state. As previously mentioned, this ensures that these cells are not taken
into account within any of the CA calculations, until a time when the cell becomes active. The
cells can be activated by assigning an alternative state value within the program to cells on a
time or temperature basis. For example, within an L-PBF simulation like the one shown in

Chapter 7, material is deposited in layers of powder. Therefore, prior to the deposition of any



powder layers, the corresponding cells are all prescribed an inactive cell state, I = —2. Then
each subsequent layer is deposited individually according to the appropriate recoat times
within the scan strategy. This is achieved by changing the physical state from inactive to
powder (-2 to -1) based on a function of time and position. For direct energy deposition
methods where material is deposited in a molten state continuously, within a layer, it is less
feasible to activate material as a function of time and position. Therefore, is it suggested here
that within DED simulations material is activated as a function of temperature. The algorithmic

formulation of this can be seen in Table 5.

Rule Initial State Final State Condition

Al I,=-2 I,=0,0,=0 T, = Tyq

Table 5: CA rule defining temperature-based material activation within DED methods.

The algorithm implemented within microstructure code can be seen as a flow chart in Figure
19. It begins with the assignment of probabilistic undercoolings at the start of the analysis and
then shows the various decision loops that are undertaken within each time increment, at each

element, to implement the various rules that have been detailed within this section.



Assign probabilistic undercooling values, AT,

Access state variables from previous
increment

Call temperature value and calculate
undercooling

Check for grain
Iy,=0,0,=0 capture
Assign

probabilistic

undercooling Caught by

neighbour

Calculate number
of liquid
neighbours, B
L,=1,60,=6,
A, initiated

Bulk Nucleation
I, =1, 08, = Orgna
A, initiated

‘,V :1, 91, = 91_, IV = 2, 91, = 91_1

Update state variables

Figure 19: Decision tree representation of the basic CA algorithm occurring within each element.



4.5 Implementation within Abaqus

The algorithm, described in Section 4.4, is implemented through the use of Fortran subroutines
with Abaqus standard. Abaqus is a useful tool to use for the implementation of the cellular
automata model due to the elemental nature of the software. Firstly, due to the finite element
methods employed within the software, calculations are undertaken at each element before
moving to the next time increment. This is the same mechanism required within the CA
algorithm. In addition, calculations are undertaken independently at each element. More
importantly, by using Abaqus to carry out the CA calculations, this makes the coupling
between the finite element thermal model and microstructure model easier to implement, as
the thermal history can be imported directly from the thermal analysis undertaken in Abaqus.
Linear interpolation is also automatically applied within the CA model to determine the

temperature at each integration point.

Within this work a weak coupling has been used between the finite element thermal and
cellular automata microstructure models. This means that the microstructural developments
explained in Section 1.6, such as solute concentrations, are not accounted for within the
thermal analysis. Strong coupling approaches, whereby microstructural calculations are fed
back into the thermal calculations can be seen in works such as (Zhang, et al., 2018) and a
detailed explanation can be found in (Gandin & Rappaz, 1994). These models involve
curvature calculations based on solid fractions as well as the constitutional effects on
undercooling and more realistically represent all of the physical mechanisms involved within

the solidification mechanisms described earlier (section 1.6).

However, weakly coupled models have also been used in a number of works and offer the
benefit of a simpler and more computationally efficient model, whilst still providing successful
predictions of microstructural features. Computational efficiency of the model is important
when trying to simulate larger domains, such as the full build, in an efficient manner,
particularly at a design level and is part of the reason the CA approach was chosen. The
assumption made here means that the undercooling of each cell is determined as the
difference between liquidus temperature and current temperature, calculated on a continuum

scale as in Equation 20.
AT =T, —-T

Equation 20: Undercooling calculations used within weakly coupled models.

Whilst the fully-coupled approach is the most physically accurate, a weak coupling is a
reasonable assumption to make due to the large thermal gradients within the additive

manufacturing process. Rappaz et al. state that a “semicoupling” can be used, where the



thermal field is pre-calculated, when thermal gradients are particularly large (Rappaz, et al.,
1996) and present such a weak coupling approach in their following work (Gandin, et al.,
1999). The use of a weak coupling also makes the modelling approach simpler to implement
and more computationally efficient. This coupling approach is also seen within the work by
Koepf et al. and their implementation of a more computationally efficient model (Koepf, et al.,
2019) among others (Rai, et al., 2016; Lian, et al., 2019 ; Lopez-Botello, et al., 2017).

The weak coupling approach means that the thermal analysis and microstructure analysis are
undertaken sequentially. Following the completion of the thermal analysis, the microstructure
model is implemented within a static, implicit general step in Abaqus. Although this type of
procedure is typically used for linear elastic stress problems, the use of this procedure here
allows for the prescription of the thermal history as a predefined field. A smaller domain is
normally used within the CA model, by using Abaqus the in-built interpolation and mapping
capabilities can be used to interpolate the thermal field from the coarse thermal mesh onto the
finer CA mesh. Typically this is a 2D cross section of the region of interest, however other
domains can be modelled with the application of the 3D algorithm. 3D elements are used
within the model regardless of whether the CA algorithm is 2D or 3D, as this allows for the
correct interpolation of the 3D thermal field. Reduced integration, 8-node linear stress
elements are used. Reduced integration is necessary for the simulation as they have a single
central integration point at which all the state variables can be calculated and updated, Figure
20. This represents the centre of each cell within the CA grid. This is important because, as
we will describe later, the subroutines used are called at every integration point, and therefore
there needs to be a single integration point at the centre of each element in order for them to

be used efficiently as CA cells.
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Figure 20: Visual representation of C3D8R elements.




In built meshing techniques, within Abaqus, can also be utilised to prescribe a uniform grid of
cells to the domain. Subsequently, Python scripts can be used to determine the
neighbourhood for each element. However, throughout this work the mesh has been
generated manually in order to determine the relevant neighbourhood of cells more efficiently.
In other words, the meshing module within Abaqus/CAE was not used. Instead, by generating
the mesh algorithmically, it was possible to uniquely identify the neighbours of each element
based on a consistent element numbering strategy. This way the neighbours of each cell can
be determined within the calculation of the mesh and stored within a data file. This approach
also ensures a more methodical approach to the elemental/cellular numbering than that
automatically assigned within Abaqus itself. Data files can then be read into the Fortran
subroutines and stored as an array, ensuring the information is easily accessible for every

element throughout the calculations.

User subroutines are implemented to carry out the actual calculation required within the CA
model. A combination of a USDFLD and a UEXTERNALDB subroutine are implemented with
access to a module. The USDFLD subroutine is used to perform the calculations required for
the cellular automata algorithm at the centre of each element, whilst the UEXTERNALDB is
used to store and update all the required data through the use of arrays. Meanwhile the module

allows global access to array data between the two subroutines.

A USDLFD is a subroutine commonly used to allow the definition of a user defined field. It
allows for the creation and calculation of field variables and state variables. State variables
can be updated, stored and output within the Output Database (odb) file. Field variables are
very similar, but can also be used within the analysis to determine a change in the analysis,
such as field-dependent material properties. The field and state variables within this subroutine
are used to output the variables within the CA algorithm to an odb file so they can be visualised
throughout the time step. The subroutine is called for each integration point of each element
(in this instance once, due to the choice of element type) for each time increment. There are
two other features of the USDFLD that have also been exploited within this model, the ability
to access material point data and the ability to specify a new value of time incrementation. The
first of these features is used to access the temperature values at the integration point, at each
time increment. This is achieved through the use of the utility subroutine GETVRM. Time
incrementation can be dictated (Gandin, et al., 1999) through the variable PNEWDT, this is
utilised to allow for automatic incrementation within the model. We can then update time
incrementation based on mesh size and growth velocity through the use of an identity, such
as the one in Equation 21, where « is a scaling factor and [ the cell spacing. Similar

approaches to automatic incrementation can be seen in a number of papers including within



the work by Gandin et al. (Gandin, et al., 1999) among others (Koepf, et al., 2019; Zinoviev,
et al., 2016) .

T =a———
V(AT)max

Equation 21: Automatic time incrementation.

A UEXTERNALDB is an external database subroutine, its primary purpose is for the storage
of arrays that can be accessed in other subroutines, such as the USDLFD. In this case it is
used to store arrays of variables and attributes required to be able to carry out the cellular
automata algorithm. The subroutine is called at the start and end of the analysis and also at
the start and end of each increment. This feature allows us to update all the relevant array
values at the end of each increment prior to the analysis in the next time increment. The use
of the different subroutines and coupling approach is demonstrated in the flow chart in Figure
21. Within the diagram E represents the element being considered, with E;,; representing the
total number of elements within the CA analysis and t,,; the total time of the microstructure
simulation. More details on all of the Abaqus user subroutines can be found in the
documentation (Dassault Systemes, 2015). Within the development of these codes, geometric

aspects were utilised from open source code (Burkardt, 2005).



Finite Element Thermal Analysis

Import ODB file as
predefinedfield.

Start Cellular Automata Analysis

Call UEXTERNALDB - Initiate
required arrays and access data.

Call USDFLD - Carry
out CA calculations.

Call UEXTERNALDB — Update all arrays

Figure 21: Flow chart of overall subroutine approach.



4.6 Analytical Verification

The implementation through Fortran subroutines, described above, has been developed within
this work as open source code is unavailable. Therefore, in order to verify the code developed
within this work, an analytical study was undertaken. Within the model, the 2D decentred
growth envelope code was applied with a uniform thermal boundary condition. A single cell is
assigned with a critical undercooling to allow nucleation of a single crystal. The nucleation,
growth and capture mechanisms are then compared against hand calculations to ensure the

Fortran subroutines are performing as expected.

| . | .

| . | .
Figure 22: Initial stages of the growth of a single crystal within the CA code.
Within this study, the assumption made by Rappaz and Gandin regarding the growth kinetics
were implemented. A cooling rate of 50°Cs™* was imposed. Assuming the domain starts at
liquidus, a critical undercooling of 5°C was applied to the nucleation cell with a grain orientation
of 30°. Fixed incrementation of 0.01s was applied, to simulate the development of the grain
growth. Hand calculations, using the same parameters, were undertaken as a comparison for
the developed CA subroutines. The cell nucleated at the expected frame within the analysis,
and neighbouring grains were captured within the growth envelope at the expected times.
These initial steps can be seen in Figure 22. However, hand calculations become too complex

beyond a certain point, so only the initial steps were involved within the analytical verification.

An example of further growth beyond this point is shown in Figure 23.



Figure 23: Growth development of a single crystal with a grain orientation of 30°.
4.7 Analysis and Comparison Methods

The CA model presented here gives predictions in the form of a visual representation of the
grain structure. In order to be able to validate the capabilities of the model we need to be able
to compare the simulated microstructure to experimental results both gquantitatively and
qualitatively. Qualitative comparisons are relatively easy to undertake as the results show a
visual representation of the physical domain. Grains can be coloured by orientation within
Abaqus or by a grain number attributed during post processing in MATLAB. This allows us to
see the grain boundaries and draw visual conclusions about the morphology of the grains.
However, unless a 3D simulation has been undertaken, comparisons that can be made
regarding grain orientation are limited. Moreover, due to the finite number of colours available
in either Abaqus or MATLAB, a bias of results can be introduced when two similarly orientated
or neighbouring grains are assigned the same colour. This is part of the reason why

guantitative measurements are an important feature of the analysis.

Quantitative comparisons are based around physical, numerical measurements of features
such as average grain size. They allow us to see a numerical measure of how successful the
model is. The traditional method of measuring grain size is through the linear intercept method
presented in the ASTM standard for determining average grain size (ASTM International,
2013). This involves drawing a line, of length L, across the domain, where L should be long
enough to encounter a minimum of 50 intercepts. It is then calculated how many grain
boundaries are crossed by the line, each of these events is an intersection. The total number
of these is represented by N;. A numerical relation between the average value of N, per mm
and the ASTM grain size number, G, is then used to give us a value for the average grain size.
Within the standard the relationship between G and grain area, A, is given via a tabulated set

of values. In order to allow for a continuous set of data a function has been fitted to the set of



the data within Excel. This method of grain analysis is a simple yet effective approach to
evaluating average grain size within a sample. However, it is only an accurate measurement
for equiaxed structures, which is not a true representation for the grain structures witnessed

within some of the additive manufacturing processes seen within this work.

Within the standard (ASTM International, 2013) it is noted that, for non-equiaxed grain
structures, measurements should be undertaken in all principal directions and the average
grain size estimated from these values. This could still be insufficient for the grain structures
experienced within AM, as this would only allow us to determine the average grain size along
a given axis and not for the overall plane of material. For example, for the simulation of a single
melt pool (as will be seen in Chapter 5) due to the thermal processing, grains are often
orientated to the centre of the melt pool as this is the direction of the thermal gradient, Figure
24 . Consequently, there is no one principal direction that would give an overall representation
of the average grain size within the melt pool.

Figure 24: Example grain structure experienced within an AM melt pool (National Institute of Standards
and Technology, 2018).

For this reason, alternative methods of quantitative measurements have been implemented
within some of the studies undertaken as part of this project. The alternative method involves
post processing of the grain structures within MATLAB. Data can easily be extracted from the
Abaqus odb file, using a Python script, and imported into MATLAB. Once in MATLAB, an open
source function is implemented to fit each grain with a minimum bounding ellipse (Moshtagh,
2005). Examples can be seen within Figure 25. The area, length and width of the minimum
bounding ellipse can then be determined and used to give a close approximation of the grain
dimensions, irrelevant of orientation or size. Using this method, the length and width can also
be used to determine the aspect ratio associated with the grain. The aspect ratio is given by
length of the minor axis divided by length of the major axis. This is useful as it provides us with
a numerical value associated to the morphology of the grains. For example a grain with an

aspect ratio of 1 is perfectly circular and therefore equiaxed. Meanwhile, a columnar grain



would have a much greater length than width and therefore a much smaller aspect ratio would

be witnessed.

004 0048 o005 o088

Figure 25: Examples of minimum bounding ellipse fitting.

A comparative study between the linear intercept method and minimum bounding ellipse
approach has been undertaken in order to discuss the differences and effectiveness of each
technique. This has been done on both experimental microstructures and simulated

microstructures.

Three experimental EBSDs were generated from 316L substrate material, an example of one
of these can be seen in Figure 26. The microstructure was analysed using both the linear
intercept method and minimum bounding ellipse method. Firstly, MTEX was used to extra
pixel locations, calculate grain IDs and fill in some of the unindexed data with the EBSD. Once
the required data was extracted, the linear intercept method and minimum bounding ellipse
approach described above were applied, ignoring any remaining unindexed data. Within the
linear intercept method, 500 random lines were applied to each EBSD. The comparison

between the methods can be seen in Table 6.



Figure 26: Experimental EBSD of substrate material for grain analysis.

Linear Intercept Minimum Bounding Ellipse

EBSD# | G A (um?) D (um) Ellipse Area | L (um) |W (um) Aspect
(um?) Ratio
1 8.96 258.52 16.02 1100.82 57.53 16.97 0.429
2 9.11 233.83 15.24 1112.08 35.93 15.73 0.414
3 8.87 275.95 16.55 1228.434 40.70 18.70 0.440

Table 6: Comparison of linear intercept and minimum bounding ellipse analysis methods on experimental

microstructures.

This study was also undertaken on three numerically simulated, reasonably equiaxed

substrates of varying grain size. For the linear intercept approach, a total of 65 random lines

were imposed onto the substrate and extended to reach the limits of the domain. The number

of lines was chosen after witnessing approximately how many lines it took for the average

grain area measurements to stabilise/converge. The results of the comparison of methods for

the simulated microstructures can be seen in Table 7.

Linear Intercept Minimum Bounding Ellipse

# | Cell Area G N, Area D Ellipse L W Aspect
(um?) (mm™)| (pm?) | (um) Area (wm) | (pm) | Ratio
(um?)
1 1109.84 7.753 45.892 598.84 24.40 1656.82 48.991 33.274 0.6704
2 1634.91 7.377 40.287 777.03 27.80 2536.32 61.574 40.085 0.6382
3 2309.02 6.802 33.007 1157.53 | 33.94 3581.09 73.628 48.926 0.6539

Table 7: Comparison of linear intercept and minimum bounding ellipse analysis methods on simulated

microstructures.



This comparison allows us to consider the differences between the two results. Within the
experimental comparisons, the grain width calculated by the minimum bounding ellipse is very
similar to the diameter determined using linear intercept methods. However, the grain area
and length (comparable again to the grain diameter assuming reasonably equiaxed grains)
are largely overestimated. This is similar to that seen in the simulated microstructures, where
the grain area and length are much larger than those calculated via linear intercept methods.
Whilst the width is closer in value to the grain diameter, it is still larger. However, within this
comparison we were also able to compare cell area. This is calculated by multiplying the
number of pixels within a grain by the area of an individual pixel, as such this can be
considered the most accurate measure of grain area for the simulate microstructures. In the
comparison of methods here it is clear that the linear intercept method consistently
underestimates this value whilst the ellipse method overestimates it by a similar amount. Over
estimation of the are a is expected form the minimum bounding ellipse approach, as by nature

the ellipse contains regions of empty space, as can be seen in Figure 25.

From this exercise we can conclude that both methods give different estimations of grain
features such as grain diameter or length. However, while the two methods differ in area
estimations, they both give a similar level of accuracy when compared to cell area. Despite
the variation in estimations, within this work we will be using the minimum bounding ellipse as
it can be applied to non-equiaxed structures, such as those seen within the additive
manufacturing process where columnar anisotropic grain structures are seen. Furthermore, it
is highlighted that the same measurement process, ie. the minimum bounding ellipse method,
will be undertaken on both experimental and simulated microstructures within subsequent
case studies, so that the quantitative measurements can be compared like for like between

the experimental results and predicted microstructures.



5 AMB2018-02 Validation Study

This chapter presents a case study using open source experimental results, that have been
made publically available as part of the National Institute of Standards and Technology (NIST)
AM Benchmark 2018, as validation data. The main aim of this study was to validate the overall
modelling technique for a reasonably simple experimental set up. All of the experimental
details were described thoroughly as part of the benchmark (National Institute of Standards
and Technology, 2018) and an overview of these can be found below. Following this the
thermal modelling approach will be discussed before looking at the use of the cellular
automata models for microstructure prediction. The chapter will conclude with a statistical
analysis of the model and a discussion of the accuracy of the results.

5.1 Challenge Description

The focus of this case study was challenge AMB2018-02 of the open benchmark presented
by NIST. This involved scanning a bare IN625 substrate with 10 laser scans, of varying power
and scan speed. Details of experiments, as well as test data, were found on the Benchmark
website (National Institute of Standards and Technology, 2018; National Institute of Standards
and Technology, 2019). Diagrammatical representations of the experiment, involved within
this case study, can be seen in Figure 27.

The plate is held by 4 pins, -
o E 1 24,08 mm
e e e on
o i SO \

Al scans are performed
from the right to the left

=

Each scan begins outside the field of
view of the NIR camera so that the
«camera observes only the steady
state melt pool.

3 mm diameter

5 mm diameter
Simplified '
fixture

The step on the pins halds the
substrate 2 mm above the fixture.

Ten scan tracks are performed
using 3 different power and
speed combinations,

(1 | T | | & | { 2mm

Figure 27: Diagrammatical representations of the experimental set up within AMB2018-02 (National
Institute of Standards and Technology, 2018).

The substrate used had dimension 24.82mm x 24.08mm x 3.18mm. Each scan was 14mm
with a hatch spacing of 0.5mm between scans. A combination of three different sets of process
parameters were used on two different processing machines. In this work we have focused

solely on the experiments completed using the NIST Additive Manufacturing Metrology



Testbed (AMMT) machine as the experimental results were more readily available for these
tests. The process parameters used with this machine can be seen below in Table 8. Within
this work we focus solely on the process parameters of Scan B and use this example to
validate the modelling approach. The laser used featured 170um and 100um, D4o and FWHM
spot sizes respectively.

Scan Power (W) Scan Speed (mm/s)
A 137.9 400

B 179.2 800

C 179.2 1200

Table 8: Process Parameters for each scan.

The melt pool geometry and cooling rate were measured experimentally for each scan through
a combination of thermal imaging, scanning electron microscopy (SEM) and electron
backscatter diffraction (EBSD) among other techniques. Cooling rate was calculated through
thermal imaging, as it was impossible to monitor the temperature within the melt pool directly.
The image was used to determine the location of the point along the scan direction at which
the temperature was 1290°C (solidus temperature) and 1190°C respectively. The distance
between these two points was then divided by the scan speed to determine the time for cooling
(Figure 28). Similarly, the melt pool length was calculated from these images by determining
the distance between the front and back point of the melt pool at solidus temperature. EBSD
maps and SEM images were taken on a cross section of the substrate, perpendicular to the
scan direction, and were used to determine the melt pool width and depth as well as expose

the resultant microstructure.

Temperature (°C) ,

Camera
saturates

dT 1290 — 1190

1290 °C B ———
dt ~ (d2 —d1)/V

Cooling rate =
1190°C
Minimum

measurable
temperature

»
>

Distance along the scan track (mm)

Figure 28: Calculation of cooling rate (National Institute of Standards and Technology, 2018).



Work on this particular challenge can also be seen within a number of thematic papers
published as part of the Benchmark (Gan, et al., 2019; Kollmannsberger, et al., 2019;
Robichaud, et al., 2019). The work seen in all three of these works varies slightly as each
paper focuses on different aspects of the tasks outline. Gan et al. (Gan, et al., 2019) compared
three types of thermal models and determined that the most accurate modelling method was
the thermal-fluid vaporisation model, accounting for both fluid flow within the melt pool and
heat loss due to vaporisation. They then used this thermal profile to look at surface topography
and dendrite arm spacing. However, this simulated the process using the CBM machine and
not the AMMT machine seen here. Robichaud et al. entered a submission to the benchmark
as a team from Applied Optimization inc. (Robichaud, et al., 2019). Their work focused on the
prediction of the thermal profile and grain structure, and received 2" place for their grain
structure predictions using a cellular automata method, similar to the work within this thesis.
However, their thermal model was also performed using computational fluid dynamics (CFD)
techniques. Finally, Kollmannsberger et al. (Kollmannsberger, et al., 2019) focused solely on
melt pool geometry and cooling rate predictions. Isotropic and anisotropic conductivity were
considered within their work. The anisotropic conductivity appeared to be more successful, as
it partially accounts for the fluid flow within the melt pool. However, it is not used within this

model as it increased computational expense significantly.

5.2 Thermal Models

As detailed in the previous sections, the modelling approach taken within this work involves
two key steps: 1) the development of the 3D thermal model and 2) the application of the
thermal model within the microstructure model of a 2D cross section. A 2D model has been
chosen in order to reduce computational expense and also to allow for a higher resolution
within the plane through the implementation of a finer mesh. The thermal model was calibrated
using the experimental melt pool geometry and cooling rate measurements released after the
Benchmark.

Thermal modelling was undertaken through the use of commercial FE software, Abaqus. A
3D analysis was performed, however due to computational expense a reduced domain was
modelled in order to improve efficiency. The reduced substrate domain focused only on a
single Scan B laser scan. It was stated in the challenge description that the time between
scans was sufficiently long such that the scans were independent of each other, therefore
such a reduction is justified. The reduced domain was representative of the full depth of the
original substrate, 3.18mm, but a smaller substrate width and length were used. The width
measured 1mm and was used in order to capture the full region affected by the melt pool,
whilst minimising excess material. Similarly, the reduced length was taken to be 4mm as to

allow time for the melt pool to reach a stable steady state, which is said within the challenge



description to be achieved after the first 2mm. Furthermore, a biased mesh was used to
achieve a 10um element size within the centre of the domain, where the laser scan takes
place, in order to achieve accurate results within the region of interest, whilst optimising
computational efficiency. Furthermore, a time incrementation of 3.125e-06s was implemented
as the result of a convergence study (Figure 29). This incrementation was chosen as the
thermal profile was suitably close to that of the finer incrementation within the critical cooling
region, but with a reduced run time by approximately half.

Path Plot at t=4e-03

1450.00
1400.00
1350.00
1300.00
1250.00

1200.00

Temperature (°C)

1150.00

1100.00

—8—dT=6.25E-06 —8—dT7=3.125E-06

1050.00

1000.00 —8—dT=1.25E-05 —8—dT=1.5625E-06
3.15 3.17 3.19 3.21 3.23 3.25 3.27 3.29 3.31 3.33 3.35

Distance along path (mm)

Figure 29: Graph representing the convergence study for the thermal analysis within the critical cooling

region.

The moving laser was modelled by a Goldak heat source. The defining equations for this heat

sources are given in Equation 22.
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Equation 22: Goldak heat source (Zinoviev, et al., 2016).



Both radiation and convection boundary conditions were applied to the top and bottom of the
substrate to represent heat loss to the surroundings. No boundary conditions were applied to
the sides of the substrate, as within Abaqus the lack of a boundary condition represents a zero
flux condition, which in turn is representative of a symmetry plane. Therefore, as we are only
modelling a small region of a larger substrate the symmetry boundary condition accounts for
the other material surrounding the smaller domain. Temperature dependent material
properties were used based on those found within a literature review. The material properties
used can be seen in Figure 30. A latent heat of fusion of 227 kJ/kg was used between the

solidus temperature of 1290°C and the liquidus temperature 1350°C (Shrestha & Chou, 2018).
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Figure 30: Temperature dependent material properties used for IN625 a) Thermal Conductivity (Shrestha &
Chou, 2018; Arisoy, et al., 2019) , b) Specific Heat Capacity (Shrestha & Chou, 2018; Gan, et al., 2019), c)
Density (Shrestha & Chou, 2018; Gan, et al., 2019).

The thermal model was calibrated using the experimental measurements. The cooling rate
within each simulation was calculated by extracting the thermal profile along the central path
once the melt pool had reached a stable state. Calculations were then undertaken as in the
experimental analysis with the use of linear interpolation. The length was calculated as in the
experiments according to the solidus temperature, whereas width and depth were calculated
according to liquidus temperature as these experimental values were measured from the
residual melt pool line within the macrographs. An in-depth design of experiments (DoE) was
undertaken using DoE software, Design-Expert 12. The aim of this DoE was to optimise the

heat source input parameters to reduce the error between the simulated and experimental



melt pool dimensions and cooling rate. A total of 5 variables within the model were optimised,
namely; the dimensions of the Goldak heat source (a, b and ¢, where c is assumed to be equal
to crtcy), the ratio between the front and back ellipses within the Goldak heat source (f;) and
the heat source efficiency (A). Suitable intervals for all variables were chosen based on some
preliminary models. An initial 50 models were run, of which, due to the design chosen 7 were
duplicate parameter combinations and could therefore be ignored. Optimised solutions were
then identified. No solutions were found that allowed for a maximum of 1 standard of deviation
for all of the measured variables. Therefore, the equations were set to minimise error for the
melt pool geometry and then minimise cooling rate within these results, as cooling rate was
the property with the biggest deviation from experimental results. The corresponding models
were then run and analysed. If the predicted solutions and simulated solutions were suitably
different the runs were added to the analysis and the analysis was undertaken again. A total
of 60 models were run and the most suitable of the solutions was used as the thermal profile

within the cellular automata analysis.

The final thermal model implemented within the microstructure simulations used the
parameters a=0.117, b=0.05, ¢=0.162, f=0.435 and A=0.357. The relative error between this
thermal model and the average measurements over the 10 experimental tests of scan B can
be seen in Table 9. It is acknowledged that the Goldak parameter b, is on the boundary of its
allowed interval. However, predicted results for an analysis using a larger value than this were
consulted and, if the accuracy of length, width and depth are maintained, the predicted
variation in cooling rate was minimal. Therefore, the original parameters have been used

within the final analysis.

0 O DJep 00 0

Experiment | Average 359 123.5 36 1080000
CoV (%) 5.57 5.26 5.28 54.44

Simulation | Value 360.9 125.4 36.4 3964606
% Error 0.53 1.53 1.04 267.09

Table 9: Error between thermal simulation and experimental measurements.

These results clearly show the close simulation of melt pool geometry using these process
parameters. However, there is clearly a large difference in cooling rates between the
experimental and simulated results. Although the values are of the same order of magnitude
there is a substantial difference in value, with the simulated cooling rate being more than 5
standard deviations faster than that of the experimental measurements. There are a number

of reasons why such a large difference is seen. Firstly, cooling rate is naturally a very difficult



attribute to measure accurately within the melt pool, due to the inability to monitor this using
thermocouples. The method seen in the NIST benchmark uses thermal imaging and therefore
uncertainty errors are introduced by the spatial and temporal resolution of the equipment.
Furthermore, in order to attempt to measure the cooling rate within the simulations in the same
way, linear interpolation was used within elements. This, again, could introduce a degree of
uncertainty within the measurements. However, it is thought that the main source of error
between the results is the lack of inclusion of fluid flow effects within the model. Marangoni
effects are a well-known physical phenomena that take place within molten material. It
accounts for the movement of material within the melt pool and how this alters the effective
conductivity. Within literature, these effects can be taken into account through the artificial
alteration of thermal conductivity values (Safdar, et al., 2013; Lopez-Botello, et al., 2017). This
provides a rough approximation to the effects caused by fluid flow within the melt pool.
However, the discontinuity in material properties that is introduced can lead to a significant
increase in run time. Such methods were attempted within this work, but were found to be too
computationally expensive, with minimal impact on the results. The most accurate results are
suspected to be achieved with a computational fluid dynamics (CFD) model, but this is beyond

the scope of this project.

5.3 Microstructure Predictions

Following the development of the calibrated thermal model, we now move onto the
implementation of the microstructure model. The 3D thermal model is applied to a 2D CA grid,
representative of a cross section, with the same dimensions as the EBSD map, perpendicular
to the scan direction. The corresponding EBSD map was then used to determine the quality
of the final microstructure predictions. Both qualitative and quantitative comparisons were
undertaken using the measurement methods outlined in section 4.7. Note, all grain
measurements made within this study removed any grain with cell area smaller than 10um?,

in order to try and replicate the noise reduction seen in the EBSD map.

A visual representation of the overlap between the 3D thermal profile and the 2D cross section
used for microstructure predictions can be seen in Figure 31. A mesh size of 0.25um is used
within the CA domain with automatic incrementation techniques. The CA model used in this
analysis is a 2D decentred method and does not allow for bulk nucleation within the melt pool,
due to the rapid cooling times. Before applying the cellular automata algorithm to the model,
one must first establish an initial substrate microstructure. This is done by applying an artificial
thermal profile, representative of a casting application, whereby the material is uniformly
cooled from a temperature at or above liquidus. Ideally, the resultant microstructure should be

representative of that used experimentally.



Figure 31: Visual representation of the overlap of 3D thermal and 2D CA models.

Unfortunately, no detail is given within the challenge description regarding the substrate initial
microstructure. Therefore, the most detail we can obtain regarding this is from the grains within
the resultant EBSD that have not been effected by the laser scan. These grains were analysed
within MATLAB and dimensions of the grains were obtained using the minimum bounding
ellipses. Note, the grain length and width have been measured in terms of the major and minor
axes within this study. The parameters within the microstructure model were then altered to
calibrate the initial microstructure. The most suitable parameters for this model were chosen
to be a critical undercooling, y, and standard deviation, v, of 17.5 and 1.0 respectively.
Average dimensions of both the experimental and simulated substrate microstructures can be
found in Table 10. It can be seen that all measurements made within the simulated
microstructure are within 1 standard deviation of those seen experimentally within the EBSD.
Therefore, it is determined that the parameters used to create this substrate are suitably

accurate enough for implementation within the case study.

Cell/Pixel Ellipse Half Length Half Width Aspect
(major radius) (minor radius) Ratio
Average | 91.67 135.61 | 7.91 4.45 0.602
SD 92.47 148.06 | 4.47 2.09 0.145
Simulation Average | 84.74 131.74 | 6.84 4.66 0.677
SD 103.97 168.17 | 3.68 291 0.149

Table 10: Calibration of initial substrate microstructure.

Once the initial microstructure has been developed, the next step of the analysis is to simulate
how this existing structure is altered by the laser scan, through the application of the thermal
model previously developed. A number of incrementation methods were considered for this
application, including 2 values of fixed increment and 2 values of automatic incrementation.
These were applied to the same initial substrate microstructure. The results can be seen in

Figure 32. An automatic incrementation method with a scaling factor of 0.1 (Figure 32d) was



chosen due to its close similarity to the finest increment choice in Figure 32b whilst being more
computationally efficient. For both the simulated and experimental microstructures, in order
to compare the effects of the laser scan, the grains affected by the melt pool are separated

from those that are not. This is done within MATLAB and allows us to focus solely on grains

within the melt pool.

b) Fixed 1e-7

a) Fixed 1e-6

c) Automatic 0.9*CSP*Vmax d) Automatic 0.1*CSP*Vmax

R

Figure 32: Different incrementation methods, tested on the same initial substrate.

Below we see the comparison of the results of the microstructure model and the experimental
EBSD, both qualitatively (Figure 33) and quantitatively (Table 11).

Figure 33: Visual comparison of microstructure predictions (right) against the NIST EBSD (left).
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Experiment | Average 188.06 | 378.15 | 15.56 5.80 0.347
CoV (%) 101.12 | 118.62 | 53.68 76.6 46.86

Simulation | Average 303.35 | 568.93 | 20.28 7.31 0.413
% Diff 61.30 | 50.45 30.33 26.05 18.97




Table 11: Quantitative comparison of predicted vs. experimental microstructures.

Visually a good agreement is achieved between the predicted and experimental
microstructure. There is clear elongated grain growth, within the melt pool, in the direction of
the thermal gradient. The microstructure in the EBSD is slightly more disjoint than that in the
simulation, but this will be contributed to by the sensitivity of the EBSD but also by the lack of
3 dimensional growth within the microstructure model. The simulated microstructure is also
visually affected by the colour scheme used within Matlab or Abaqus, as only a discrete
number of colours are used. This can make grains appear larger than they are by assigning
the same colour to two neighbouring grains. Such is the case for the large orange grain seen
in the simulation results above, this grain is actually made of at least 2 separate grains, which
have unfortunately been given the same colour. For this reason, among others, a quantitative
analysis has also been undertaken so that we can eliminate any bias introduced through the
presentation of the results. It should be noted that this study was undertaken early on within
the thesis, and since alternative contour plots and colour maps have been used within Matlab
to reduce the influence of this. The quantitative results can be seen in Table 11. A clear
increase in the aspect ratio, in both experimental and simulation results, shows a transition
from reasonably equiaxed grains within the substrate to columnar, elongated grains within the
melt pool. Moreover, there is a significant increase in average grain size post laser scan for
both the microstructures, although the average grain dimensions are slightly larger within the
simulated microstructure than those seen experimentally. However, the average values still
remain within one coefficient of variation of the experimental microstructure, so it can be
concluded that it is a successful prediction of the microstructure properties. Some of the
differences of grain structure can be attributed to the uncertainty of the initial substrate

microstructure as well as variation of the thermal profile.

In addition, the microstructure model used within this work features a number of probabilistic
features, namely the probabilistic nucleation and the probabilistic choice of grain capture,
discussed earlier. Within this case study, due to the small time increment used and the lack of
bulk nucleation within the melt pool, the main probabilistic impact comes from the variation in
initial substrates. Due to the lack of information surrounding the initial substrate microstructure
in the experimental studies, it is impossible to replicate the exact substrate and therefore an
approximation has been simulated. When using the model to cast this substrate, probabilistic
nucleation means a different substrate is created each time and consequently different post
melt microstructures. Therefore, a statistical analysis has been undertaken to determine the
impact of the probabilistic aspects of these substrates and determine the average results over

the entire analysis.



5.4 Statistical Analysis

The statistical analysis featured a total of 25 runs of the microstructure predictions, each using
the exact same algorithm parameters, mesh size and incrementation parameters. The
microstructure of each initial substrate and resultant melt pool were analysed and compared
with the results taken from the experimental EBSD. The mean and standard deviation of the
average grain characteristics from each analysis were monitored. A total of 25 runs was
chosen as this allowed sufficient runs such that the average standard deviation of the majority
of the grain dimensions began to stabilise as can be seen in Figure 34. Table 12 presents the

average and standard deviation of the post melt microstructures across the statistical analysis.

Normalised Standard Deviations of Statistical Runs

Normalised standard deviation of running averages

0 5 10 15 20 25
No. of runs completed

—e—Cell Area Area Length Width —e8— Aspect Ratio

Figure 34: Variability of standard deviation throughout statistical analysis.

Cell Ellipse | Half Length | Half Width Aspect
Area Area (major radius) | (minor radius) | Ratio
Experiment Average 188.06 | 378.15 | 15.56 5.80 0.347
SD 190.18 | 448.58 | 8.35 4.44 0.163
CoV (%) 101.12 | 118.62 | 53.68 76.6 46.86
Mean of Average 257.12 | 488.20 | 19.96 6.74 0.366
Simulation % Diff 36.72 [29.10 |28.31 16.29 5.49
Measurements | Sp 219.95 | 418.75 | 8.92 3.79 0.171
Max value | 394.78 | 735.02 | 22.78 9.07 0.443
Min value 158.69 | 295.83 | 17.52 4.87 0.311
Best Simulation | Average 197.94 | 378.88 | 19.12 5.65 0.335
% Diff 5.25 0.19 22.89 -2.54 -3.44

Table 12: Statistical analysis results.



The results, again, show that the mean of the average area, length, width and aspect ratio all
lie within one coefficent of variation of the experimental results. Notably, there is a smaller
difference on all accounts between the mean values across the 25 runs than those seen in
the first simulation (Table 11). As can be seen by the minimum and maximum values for each
dimension, the range of average charactersitics clearly varies greatly depending on the initial
microstructure used. The range of each variable includes the experimental value, except for
that for the grain length. The grain length is consistently predicted longer than seen
experimentally, though not by much. This could be due to the 2D aspects of the model. In 3
dimensions, one could expect some new grains to be dragged into the meltpool from the
scanning direction that here is the out of plane direction. The introduction of these would
hypothetically inhibit further growth of some grains and hence slightly reduce grain length.
Despite this, there is only a minimal difference within the length averages and therefore the
computaional efficency of implementing the 2D model outweighs the slight difference in
measurements. Furthermore, although averages over 10 scans were given for thermal profiles
only a single experimental EBSD map was supplied and therefore more experimental
information would be useful to fully determine the level of statistical variation within

experimental tests.

To summarise, this case study has given us the ability to validate the modelling approach
against detailed experimental data. A strong agreement was achieved between the simulated
and experimental microstructures. Therefore verifying the suitability of the modelling method.
Furthermore, this exercise has highlighted key features within the model that need to be
considered within future analyses. For example, the dependence of results on probabilistic
elements, such as initial microstructure, and hence the importance of performing a statistical

analysis.



6 Direct Energy Deposition (DED) Validations

Following the validation of the sequentially coupled 2D CA-FE modelling approach for a single
laser scan in the previous chapter (chapter 5), the main objectives of this chapter are to
validate the model for a more complex, additive manufacturing application and to determine if
the identified modelling approach is capable of predicting differences in solidification as a

result of changes in the deposition process.

Within this section the microstructure modelling methods will be applied to DED processes.
The main advantage of validating the model using direct energy deposition rather than powder
bed fusion, is the lack of powder deposition. In PBF simulations there is a requirement to
model three material phases: solid, liquid and powder, whilst modelling of the deposition in
DED only utilises two material phases: liquid and solid material. Thus, there is less room for
inaccuracy both in the thermal model through material properties and in microstructure
predictions via the assumptions made regarding nucleation from powder material.
Furthermore, DED structures are typically built with a much coarser deposition strategy than
PBF parts, with fewer layers and larger melt pools. Therefore, thermal models can be used to
model the whole domain with accurate deposition strategies more easily and more efficiently.
Moreover, larger melt pools means that a slightly larger cell size can be used, whilst
maintaining the same level of resolution with respect to the cell size in comparison to the melt

pool size. Hence increasing computational efficiency of the microstructure simulations.

This case study aims to provide the required experimental arrangement to address the

objectives identified in section 2.7:

e Contribute to the smaller catalogue of work available for the application of CA to direct

energy deposition processes, particularly for multi-layer builds.
o Implement cellular automata methods with experimentally-validated thermal models.

¢ Improve computational efficiency of the required models to achieve sensible run times

with practical hardware requirements, suitable for use in industry.

o Apply CA models to investigate the influence of process parameters, with experimental

validation.



Originally, plans were made to undertake extensive wire-arc additive manufacturing
experiments. However, unfortunately, due to the outbreak of COVID-19 within the UK, the
WAAM experiments were suspended due to lack of technical staff. Therefore, due to the loss
of time, the decision was made to go ahead with alternate plans to achieve the desired
objectives of this study. This involved focusing on existing data available within TWI from some
recent LMD experiments.

6.1 Laser Metal Deposition (LMD) Experiments

As discussed above, unfortunately due to staff shortages and the onset of COVID-19,
sufficient resources were not available to carry out the desired WAAM experiments. Alternative
plans were made to replace the experimental data with IN718 laser metal deposition
experiments that had already been carried out as part of another project. Whilst there are
some differences within the scope of the experiments to those that were planned, the main
concepts remained the same as both processes are direct energy deposition techniques using
IN718 as the deposition material. On the other hand, the particular LMD process used within
these experiments used a powder fed nozzle, as oppose to a wire feed. However, this will
have minimal influence on the modelling process as the raw material, in either case, is melted
by the heat source, and is deposited onto the build in a molten form. Other differences include
the deposition strategy implemented along with the approximate dimensions of the build, both
of which can be accounted for within the modelling process. Also, it should be noted that these
samples were deposited on SS 304L substrates, not IN718 substrates as originally planned
when developing the WAAM experiments. Whilst IN718 substrates would have provided
consistency in microstructure between the substrate and the build part, SS 304L is also a face
centred cubic structure and it is expected that this will have little influence on the resultant
microstructure predictions. Within the first layer, the microstructure may be influenced by
dilution of the composition, but it is expected that the influence of this would be negligible
within subsequent layers. Nevertheless, alternative material properties will need to be applied

within the thermal model.

Within the project for which the LMD samples were deposited, a wide range of samples were
built using various sets of process parameters. Specifically, 32 samples were deposited with
varying values of laser power, gas flow rate and powder feed rate, although not all samples
were deposited with thermocouple measurements. For this work, 3 samples were identified
that were completed with full thermocouple measurements and kept all process parameters
consistent except from the travel speed. This was an important choice, as it ensures any
variation in microstructure can be attributed directly to the change in travel speed, as opposed

to a combination of parameters. Upon detailed analysis of the experimental data, it was



established that there were some queries with regards to the data recording and labelling
process, and it was believed that some of the thermocouple labels did not correspond correctly
to those expected. Consequently, the three samples were deposited again with increased
focus on the data records. This time, three repeats of each sample were completed to provide
evidence of repeatability for the samples. The data collected from these nine samples (three
builds, each with three repeats) is used within this work. A full description of the LMD samples

completed is given within this section.

Element %

Al 0.57
B <0.02
Co <0.02
Cr 19.59
Cu <0.02
Fe 19.24
Mn <0.02
Mo 3.18
Nb 5.39
Ni 50.96 (by remainder)
P <0.005
Si 0.03
Sn 0.02
Ta <0.02
Ti 0.94
\% 0.02
\W <0.02
C 0.04
S 0.001
N 0.01
o 0.01

Table 13: Composition of IN718 powder used.

Firstly, each sample was deposited using IN718 powder onto a 304LSS substrate with
approximate dimensions of 200mm x 120mm x 15.75 mm. The powder was characterised, by
an external company, and the composition can be seen in Table 13. A particle size distribution
of approximately 45-90um was seen, along with an apparent density of 4.69g/cms. The
system used for the deposition of the samples was a Trumpf TruLaser Cell 7040+, with a
Trumpf Trudisk 3002 3kW disc laser and an ILT multi-jet powder nozzle with 1.5mm inserts.
A stand-off distance of 10.6mm was applied. The other key build parameters used for each
deposition can be found in Table 14. The z-inc defines the distance in the build direction moved

by the nozzle between layers.



Travel Powder Nozzle Track Tracks Number

speed feed rate gas flow Sep odd/even of layers
(mm/min) (g/min) (I/min) (mm) layers

2000 35 10 24 8/7 0.9
1000 35 10 2.6 716 1.7
1500 35 10 24 8/7 1.2

Table 14: Build parameters used within the LMD samples.

A total of 9 samples were built, 3 variations on the travel speed, as can be in Table 14, and 3
repeats of each sample. The number of tracks and layers within each deposition was chosen
in order to achieve a similar geometry across all samples. By keeping the geometry consistent
as opposed to number of layers and tracks, this is more representative of a scenario where
the same part is manufactured using different process parameters. Furthermore as discussed
earlier, by keeping all other parameters consistent other than travel speed, this allows us to
investigate the ability of the model to capture any variations in microstructure as a direct result
of changes to this variable. The only other parameter that changes within Table 14 is the track
separation. This is larger for sample B than it is for A and C. This is because the lower travel
speed results in a larger melt pool and the overlap between each layer is calculated to be

approximately 33%, therefore the track separation increases with an increase in bead width.

200mm

22.5mm

3mm
1.5mm

200mm

Figure 35: Schematic of thermocouple fixture.



Figure 36: Experimental set up for the LMD samples.

For each build, a thermocouple fixture with 16 channels machined into the surface was used,
with a build substrate clamped on top of the fixture. A schematic of the thermocouple fixture
can be seen in Figure 35, which clearly shows the different lateral and transverse locations of
the channels for thermocouples with respect to the build plate. The experimental set up of the
thermocouple fixture and clamped substrate, prior to the deposition of the build, can be seen
in Figure 36. As in the originally planned WAAM activities, simple wall geometries have been
built. However, the scan strategy used was a bidirectional deposition strategy with an offset
on even layers in order to fill in the troughs created as a result of each odd layer, as this had
already been established within the design of these samples for the corresponding project,
due to manufacturing considerations related to the efficiency of material usage and nozzle
movement. A schematic of the deposition strategy can be seen in Figure 38. The
representative build dimensions of the builds as a result of the change in build parameters
were recorded. These values can be seen in Table 15, along with images of the final builds in

Figure 37.
Build Height (mm) Build Width (mm) Build Length (mm)
A 125 19.1 140.5
B 124 19.0 140.7
C 11.9 19.3 140.7

Table 15: Resultant build dimensions.



Figure 37: Images of deposited samples.

a)

b)

Odd Layer Even Layer

Figure 38: Schematic showing the deposition strategy implemented, a) shows a cross section
perpendicular to the deposition direction, b) shows the deposition direction in the build plane.

Thermocouple results were obtained for all repeats of each of the three samples. One of the
initial steps in the analysis of the experimental results was the assessment of the repeatability
of the thermal profiles for each set of process parameters. Manual post-processing of the data
to align the start times of each repeat was undertaken. Due to a large, unexpected change in
initial temperature samples (as can be seen in the experimental thermocouple results for
sample A in Figure 39), the repeatability of the samples has been compromised. It is expected
that this is due to insufficient time between repeated samples to allow the set up to return to
room temperature. Therefore, samples Al and C1 have been discounted from certain aspects
of this analysis, such as thermal calibrations, as the initial temperature for these samples were
substantially lower than their repeats. Only the two remaining repeats for both samples A and
C will be used throughout the work presented here. The thermocouple data for sample A, B

and C is shown in Figure 39, Figure 40 and Figure 41 respectively. Only a sample of the



thermocouples are shown for each of the three samples for clarity. For sample A and C, a
reasonable level of repeatability is seen within two of the samples, where as one set of data
clearly starts at a much lower initial temperature. A schematic of the corresponding locations
of each thermocouple reading within the fixture is shown in Figure 42. Consistently
thermocouple 0 is lower than the rest of the profiles, which is to be expected as it is the furthest
away from the centre of the build. The hotter thermocouples do not always follow the logic that
the thermocouples closest to the centre, both longitudinally and laterally, will be the hottest. A
level of epistemic uncertainty should be considered due to inability to accurately position the

deposit centrally on the build plate.
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Figure 39: Thermocouple results for sample A.
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Thermocouple results for sample B.
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Thermocouple results for sample C.
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Figure 42: Labelling of thermocouple locations.

6.2 Microstructural Examination

Following deposition, each sample has been cross-sectioned and examined to reveal a
number of features of the builds. Firstly, macrographs have been taken of the cross-section
normal to the deposition direction in order to reveal the melt pool geometry achieved
throughout the build. Figure 43, Figure 44 and Figure 45 show the macrographs for one repeat
of sample A, B and C respectively. These images show the clear changes in bead geometry
as a result of the change in travel speed. Specifically a much shallower bead geometry is seen
for sample A when compared with sample B and C; this is expected due to the higher travel

speed.

Figure 43: Experimental macrograph of sample Al.



Figure 44: Experimental macrograph of sample B2.

Figure 45: Experimental macrograph of sample C2.

Secondly, EBSD images have been taken on the cross section normal to the deposition
direction (XY plane) on each of the 9 samples. This reveals the solidification microstructure of
the as-built geometry parallel to the build direction. By completing this on all 9 samples, this
gives an indication of the repeatability of the grain morphology between repeats of the same
samples. In addition, EBSD imaging was undertaken on both of the other two cross sectional
planes (XZ and YZ planes) for one sample of each set of process parameters. This was not
completed on all 9 samples due to the resources available. In an ideal scenario microstructural
analysis would have been completed in each plane for all 9 samples with additional sections
taken throughout the samples to assess repeatability of the grain structure within each
individual sample. However, the EBSD images obtained still allow for the analysis of
microstructural changes as a result of the change of process parameters within all three

principal planes within the as-built material. As EBSD maps visually show the grain



morphology and texture within a material, they are a good source of experimental data for

comparison with the microstructural simulations.

All EBSD images were taken as close to the centre of the build as possible to ensure they
were taken in a region where the melt pool was relatively stable. Specifically, the XY plane
examinations were undertaken approximately half way through the build length. Similarly, YZ
plane was taken as close to the centre of the sample as possible and the XZ plane was
examined just above mid-point of the build height. In order to achieve large EBSDs that could
analyse large domains, such as the full build height, the EBSDs were completed using a
relatively large step size of 20um and a low magnification of 40x nominal magnification. EBSD
maps were completed in individual strips using Aztec software produced by Oxford
instruments. The final maps were then constructed by stitching individual strips together, such

as that seen in Figure 46. These were all completed by staff at TWI Ltd.

Figure 46: EBSD image of sample Al, XY plane, step size=20um.

The inverse polar figure (IPF) scheme has been chosen for the EBSD images as it showed
more distinctly the crystallographic texture and alignment within the various samples than the
Euler scheme. This is a common attribute of Euler schemes as a result of how the Euler angles
are used to determine the colour of a grain, which can result in similarly orientated grains being

prescribed dissimilar colours. The IPF colouring scheme identifies if the <100>, <101> or



<111> symmetry group is in line with a chosen direction, which defines a reference plane. This
is explained clearly for cubic materials by UC Riverside by discussing when a plane, face or
corner is parallel to the reference plane (UC Riverside, Central Facility for Advance
Microscopy and Microanalysis, 2013). Figure 47 demonstrates the corresponding orientation
of the octahedron for face centred cubic crystals. The EBSDs presented within this work are
consistently displayed using the reference plane normal to the build direction. The legend for
this colouring scheme is shown in Figure 48.
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Figure 47: Octahedral crystal orientations within IPF EBSD images.
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Figure 48: IPF colour scheme legend for EBSD images.



6.3 Planned Thermal Modelling Approach

The finite element methods intended for use in the thermal modelling approach are discussed
here. Unfortunately, again due to events out of our control, the resources required to run these
models were not available and alternate strategies had to be implemented. High power
computing resources were required in order to be able to undertake the 3D finite element
thermal models, with sufficient fidelity for use in microstructures, whilst still being able to
simulate the complete build height. This section presents the intended finite element approach

and preliminary work undertaken.

Finite element models were created in Abaqus 2019 for each sample individually. The
geometry was defined as a cuboid of length 140mm. The specific height for each sample was
determined by calculating the average experimental layer height by dividing the total height
by the number of layers. This varied slightly from the expected z-increment as can be seen in
Table 16. The width of the build was determined by the track separation and the number of
tracks per layer. For sample A and C, 8 tracks were deposited in each odd layer, with a track
separation of 2.4mm. Assuming a bead width of approximately 4mm, as this is the beam
diameter, another 2mm is included on either side of the outer most scan locations to account
for the width of the melt pool. Therefore, a width of 20.8mm was modelled. Similarly, for sample

C a width of 19.6mm was assumed.

Actual Height Expected z- No.layers Modelled Modelled

(mm) inc (mm) layer height | build height
(mm) (mm)
125 0.9 13 0.96 12.48
B 12.4 1.7 7 1.77 12.39
11.9 1.2 9 1.32 11.88

Table 16: Table of calculated layer height and build eight for thermal models.

The assembly was created including the IN718 wall deposit, SS 304L substrate and SS 304
thermocouple fixture. This is shown in Figure 49. It should be noted that a single set of
stainless steel 304 material properties have been used for both the fixture and substrate.
Geometric partitions were created to define individual layers. Similarly, partitions were used
within the build substrate to replicate the thermocouple locations on the bottom surface of the
substrate. Tie constraints were used at the interface between the deposit and substrate, as

well as the interface between the substrate and thermocouple fixture.



Figure 49: Assembly of sample C in Abaqus 2019.

Temperature-dependent material properties were implemented for both materials within this
model. These have been found in literature (Salerno, et al., 2018; Lee & Zhang, 2015;
Venkatkumar & Ravindran, 2016; Vakili-Tahami & Ziaei-Asl, 2013) and are show in Figure 50.
A value of 227kJ/kg was assumed for IN718 (Rai, et al., 2016) with a solidus and liquidus of
1260°C and 1336°C respectively (Special Metals, 2007). Equivalently, a value of 273.79kJ/kg

and a melting range of 1399°C to 1454°C was assumed for the stainless steel (De Moraes &

Czekanski, 2017; AK Steel Corporation, 2007) .
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Figure 50: Temperature-dependent thermal properties (Salerno, et al., 2018; Lee & Zhang, 2015;
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Material activation was achieved within the models using the new functionality within Abaqus
2019 of progressive element activation. This was implemented through the use of a
UEPACTIVATIONVOL subroutine and specific keyword edits that can be found in the Abaqus
2019 documentation (Dassault Systemes, 2019). Progressive element activation allows
elements to be activated or deactivated during a given step. Similar to the AM app utilised in
section 3 this removes the need for individual steps and model changes when trying to
implement element birth techniques. However, LMD models typically require the use of quiet
element methods as material is deposited with respect to the movement of the heat source
and not in easy to define geometric regions such as powder layers within PBF models. Quiet
elements utilise dampened material properties to supress thermal diffusivity within elements
which are technically active within the finite element calculations but represent inactive
material. Consequently, the sudden change in material properties ahead of the heat source
when activating new material can result in convergence errors. The use of progressive
element activation avoids the need for this technique and hence also avoids these
convergence challenges. Within this work progressive element activation has been used
efficiently to combine the highlights of both of these approaches. A new step has been defined
for the deposition of each layer for ease and clarity when defining the scan strategy. Within
each new step the corresponding layer is specified as the region of activation for the specific
step. Activation of elements within the layer is then determined by the value of the heat flux
present, and hence material is activated in coordination with the heat source location as

required by the LMD process.

There are a number of different heat source models available for the simulation of laser AM
processes, as can be seen in some of the presented literature within chapter 2. Within this
work, two heat source model approaches were considered. The first was the conical Gaussian
heat source. The conical heat source still provides the Gaussian profile typically associated
with a laser, but also provides the added benefit of being a volumetric heat source, which is
more suitable for a DED process than a 2D Gaussian surface flux. It also has fewer parameters
for calibration than the volumetric, Goldak, double ellipsoid model. However, for accurate
resolution of this heat source a fine mesh and time increment must be implemented. This is
ideal for trying to resolve the melt pool geometry and thermal profile for microstructure models.
Nevertheless, it is extremely computationally expensive when trying to model a significantly
large domain size, such as the build height and width in consideration here. The model is
shown in Figure 51 (although, the labelling for ro and r; should be reversed) and defined in
Equation 23. Although, the conical model was never validated and implemented within the
completed work presented here, suggested values for the parameters were as follows. The

value of re is taken to be equal to that of the beam diameter, whilst a ratio of 0.6 between re



and r; was to be undertaken, as in the work presented by Shahabad et al. (Shahabad, et al.,

2020) . The difference between z. and z; is assumed to be the layer height.

Figure 51: Volumetric conical Gaussian heat source, taken from (Zhan, et al., 2019).
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Equation 23: Conical Gaussian heat source (Zhan, et al., 2015; Agarwal, et al., 2018).

The second heat source considered within this work was built on concepts used within the AM
app that was utilised in section 3. However, it has been dev eloped within a stand-alone
subroutine within this work to allow flexibility and adaptability within the subroutine. An
integrated heat source approach was used which, in a similar fashion to the toolpath-mesh
intersection module, determines the elements which are intersected by the specified
deposition strategy within a given time increment from a specified event series. The total
thermal energy delivered within this time increment is then determined by the power and
increment duration. This is then applied uniformly as a volumetric heat flux over the region of
newly deposited material. A visual representation of this heat flux model is shown in Figure
52. The primary aim of using this integrated heat source approach was to improve
computational efficiency of the models, particularly for iterative efficiency calibrations. The
efficiency is a scaling factor applied to the power of a heat source, to account for how much
energy is actually absorbed from the source compared to how much energy is delivered by

the heat source. It can be calibrated in thermal models.
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Figure 52: Visual demonstration of the integrated heat source model.

Heat loss is taken into account within the model in two ways — firstly, a user-defined film
condition on the exterior surfaces of the fixture and substrate, as well as the evolving surfaces
of the build part; and secondly, a temperature-dependent surface film condition on the base
of the thermocouple fixture. Film conditions are used within Abaqus to define the heat loss on
surfaces or element sets, by prescribing a heat transfer coefficient and sink temperature. The
film condition on the evolving exterior surfaces is achieved through the use of progressive
cooling by specifying an element based film condition directly within the input file, as described
within the Abaqus documentation (Dassault Systemes, 2019). User-defined settings were
chosen and a UFILM subroutine was used to implement the combined heat transfer equation,
shown in Equation 24, where ¢ is the material emissivity, and, T is the temperature in degrees
Kelvin. This equation has been used in literature (Yongjie, et al., 2012; Hu & Kovacevic, 2003;

Alimardani, et al., 2007), and reduced the number of parameters required for calibration.

h, = 2.41 x 107 3¢T161

Equation 24: Combined heat transfer equation (Yongjie, et al., 2012).

A temperature dependent surface film condition was implemented on the base of the fixture
to account for heat loss from the fixture to the bench. Temperature dependence was eventually
implemented as a result of calibration studies. Initially, constant heat loss coefficients were
implemented, however, this did not show the same concavity of the cooling curve as that seen
experimentally. It is thought the temperature dependence of the film condition accounts for
any variation in temperature within the surface of the bench resulting in how effectively heat
is removed from the fixture. For example, as the build is deposited it is clear from the
thermocouple data that the temperature at the interface between the substrate and fixture can
reach upwards of 200°C. If this influences the temperature of the surface below the fixture, ie.
the bench, and causes this to heat up also, this will change the effective ambient temperature

below the surface, altering the rate of heat loss. The temperature dependent heat transfer



coefficient, was calibrated along with the material emissivity. The final value of emissivity
implemented was 0.3, and the resultant temperature dependent heat transfer coefficient for

the bottom surface of the fixture is shown in Figure 53.
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Figure 53: Temperature-dependent heat transfer coefficient.

Following the establishment of modelling methods presented here, the next stage of the
modelling process was to calibrate the laser efficiency for each sample. Thermal models using
the integrated heat source model were used for this to increase efficiency. Mesh and time
increment sensitivity studies were undertaken to determine the suitability of the fixed time
increment and mesh size choices. Firstly, a time increment sensitivity study was undertaken
to determine a suitable fixed time increment for the integrated heat source model. The results
of the thermal profile, at one of the central thermocouple locations is shown for 4 different fixed
time increments in Figure 54. There is an obvious lack of accuracy for the largest time
increment, however the remaining three are very similar. The model run using the smallest
increment did not complete due to convergence errors. Therefore, the second smallest time

increment of 2.5s has been chosen as the fixed time increment within these studies.
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Figure 54: Time sensitivity study for integrated heat source models.

Subsequently, a variety of mesh sizes were tested for each different component of the
assembly. The combinations investigated, along with resulting run times (undertaken on the
NSIRC-Brunel server with 24cpus) to simulate the full deposition, are shown in Table 17.
Again, the resulting thermal profile at a central thermocouple for each mesh combination is
shown in Figure 55. The mesh combination used for Model 1 was ultimately chosen for use in

the final models.

Wall (mm) | Build Plate (mm) Fixture (mm) Run time (hh:mm:ss)

Model1 |1 4 12 00:34:20
Model 2 | 0.5 4 12 03:32:07
Model 3 | 1 2 12 01:12:18
Model4 |1 1 12 12:26:24
Model 5 | 1 8 12 00:37:00
Model6 | 1 4 8 00:33:40
Model 7 | 1 4 4 00:38:00

Table 17: Mesh combinations investigated as part of the mesh sensitivity study.
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Figure 55: Results of mesh sensitivity study.

Calibration of efficiency was undertaken individually for each step. Upon initial investigations
it was discovered that the use of a single value of efficiency throughout the deposition meant
that the thermal profile was over predicted in certain layers and under predicted in others. This
is sensible as there are a number of reasons absorptivity may differ within the height of the
build. For example, the heat sink effect introduced by the substrate and proximity to the
substrate within lower layers may lead to an increase of energy lost to the surrounding plate.
Furthermore, the material absorptivity may be variable with temperature and therefore, differ
throughout the height of the build as the temperature of the part increases. Therefore, it was
decided that efficiency would be defined as a function of layers. Calibrations were undertaken
with the aid of the design of experiments software, Design-Expert 12 (StatEase, 2022). Five
simulations were run with varying values of efficiency. The regression analysis tools within
Design Expert were then utilised to predict the most suitable value by comparing the simulated
temperature at the end of the layer with the corresponding experimental value for three of the
thermocouple measurements. Initially, layers were calibrated individually. This however
resulted in excessive over prediction of peak temperatures. Ultimately, the first two layers of
each sample were calibrated individually as these were influenced more severely by the
presence of the substrate. Subsequent layers were then calibrated in pairs. Given the scan
strategy involves offsets within the even layers to fill in the troughs of the previous layer it is
natural to consider the layers in sets of 2. The resultant efficiency values are shown in Table
18.



Layer Sample A Sample B ‘ Sample C

1 0.189 0.391 0.329
2 0.253 0.614 0.427
3 0.314 0.523 0.561
4

5 0.457 0.538 0.522
6

7 0.336 0.503 0.532
8

9 0.489 0.515
10

11 0.405

12

13 0.67

Table 18: Calibrated efficiencies as a function of layer for each sample.

The calibrated thermal profiles are shown in Figure 56 to Figure 58. Experimental
thermocouples are labelled ‘TC_x’, simulated thermocouple locations are labelled ‘TCx’. The
results generally show a good agreement between thermal simulations and experimental data.
The rate of increase of temperature at the location of the thermocouples is accurately
represented, and the rate of cooling agrees well, particularly for sample B and C. Whilst some
thermocouples are over predicted and others under predicted, for example thermocouple 2
and 15 in sample C, the overall spread and peak temperatures of the thermocouples are well
represented. Thermocouple 0, is the least accurate amongst the results, but as this is the
thermocouple furthest from the centre of the build, it is less representative of the region of
interest. Some of the inaccuracies seen could also be influenced by experimental uncertainties
such as thermocouple contact, as well as the positioning of the deposition on the build plate.
Whilst efforts were made to make this central, a variation in alignment could lead to uncertainty

of thermocouple locations with respect to the build.
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Figure 56: Calibrated coarse-level thermal models for Sample A compared to experimental data.
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Figure 57: Calibrated coarse-level thermal models for Sample B compared to experimental data.
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Figure 58: Calibrated coarse-level thermal models for Sample C compared to experimental data.

The intended approach for the fine level thermal models as input for the microstructure
simulations, was to combine the two heat source approaches. Within this approach, each layer
would be deposited within a separate model, allowing for refined mesh and incrementation
methods within the region of interest. The integrated model would be used to provide
predefined fields of the thermal field prior to the deposition of the layer of interest. Furthermore,
a coarse mesh was used at either end of the build part, whilst a finer mesh was implemented
within the central region of the build, based on the principle that there would be a weaker
influence, on the region of interest, when the source is further away. Within the coarse region
the integrated heat source was used, with a transition into the conical heat source for finer
resolution within the central region of interest, where 2D planes were to be taken for
solidification predictions. A correction factor would be applied to the calibrated efficiencies
when applied to the conical heat source model, in order to account for the difference in thermal
profile witnessed when simulating the model through the implementation of an integrated heat
source versus a volumetric conical heat source. Preliminary test models were undertaken for
this approach and an example can be seen in Figure 59. Whilst the use of the integrated heat
source increases computational efficiency, these models still took approximately a day to run
a single layer on a computer server with 8 cpus. Whilst this is not uncommon within industry
for numerical models, unexpected problems with the computing resources available to this

project meant that these models were unable to be completed.
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Figure 59: Coarse to fine heat source transition.

6.4 Alternative Thermal Models

Due to a significant lack of available computational resources, simpler, more efficient
modelling methods needed to be implemented. As the computational resources were not
available to run a finite element model with high enough fidelity within the melt pool for use in
the microstructural simulations, an alternative method of predicting the thermal history was
required. Therefore, analytical thermal solutions were implemented. This meant that the main
objective of this work, to demonstrate and assess the capabilities of the microstructural model,
could still be achieved, although more efficiently and with significantly less powerful

computational resources.

The Rosenthal solution is by far the most commonly used analytical solution for thermal
models of welding and additive manufacturing applications. The defining system of equations,
which is given in Equation 25, describes the resulting thermal profile of a stable melt pool
based on a moving point heat source. Within these equations the x-axis is assumed to be scan
direction, and y and z perpendicular to this, whilst V represents the scan speed, P the laser
power and A the efficiency. The material properties required are the thermal conductivity, k
and the thermal diffusivity, a. Finally, the ambient temperature is represented by T,.
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Equation 25: Equations required to define the Rosenthal solution (Promoppatum, et al., 2017).



The use of the Rosenthal solution provides the much required efficiency to undertaken fast
microstructure predictions with limited computational resources. This is because it removes
the need for fine-level finite element thermal models to resolve the thermal history within the
melt pool, and moreover these do not need to be imported into the microstructure models and
interpolated onto the CA mesh. The analytical thermal model can also be implemented in such
a way that is representative of the experimental deposition strategy. Techniques such as
superposition of the analytical solutions can also be used to adjust the melt pool geometry
defined by the model. However, such methods have not been used explicitly within this work,
as limited melt pool information is available for calibration, but also by not extensively
calibrating the melt pool geometry against experimental measurements, one can assess if the
modelling approach could actually be used at the design level, without the need for supporting

experimental trials.

Nevertheless, by using an analytical solution there are obviously a number of simplifications
and assumptions that are made within the model (Hekmatjou, et al., 2020; Eagar & Tsali,

1983). For the Rosenthal solution, these include:

e The heat source is assumed to be a point heat source.

o Temperature-independent material properties are used.

e The heat source is applied to a semi-infinite domain.

e Heat loss due to convection and radiation is not accounted for.

e Temperature changes as a result of latent heat of fusion is not included.

The assumption of a point heat source means that there is no way to account for the
experimental beam diameter or distribution without undertaking calibration of the
superposition of multiple sources as mentioned earlier. Furthermore, the use of constant
material properties is a simplification on the material properties we have previously identified.
Similarly, the lack of inclusion of latent heat of fusion will influence the accuracy of the thermal
profile and melt pool geometry. Despite this, Promoppatum et al. (Promoppatum, et al., 2017)
displayed the similarity between finite element models of laser powder bed fusion and the
Rosenthal solution. Whilst the effects of the assumptions made should be noted and taken
into consideration within any model that uses the Rosenthal solution, it is expected that the
Rosenthal solution will still provide a suitable level of accuracy to determine changes in
solidification grain morphology at the level predicted by the cellular automata approach. This
would probably not be the case for phase field predictions that predict microstructure
characteristics on a much finer scale and require a much more in depth physical basis.
Furthermore, as efficiency is of significant importance, particularly at the design level, this

study will identify if the Rosenthal solution can provide enough accuracy to predict solidification



microstructures and their variations as a result of process parameters, to ultimately determine

if this efficient modelling approach could be used for the design of AM patrts.

An additional benefit of using the Rosenthal solution, is that by the nature of being an analytical
solution, equations for a number of features such as melt pool geometry can be derived. The
derivative equations used to calculate melt pool width, W, depth, D, and length, L, are
presented here within Equation 26. Being able to estimate these characteristics is useful when
determining suitable dimensions for models, as well as comparing various characteristics
between samples when trying to understand the underlying cause of microstructure variations.
In the following equations, in addition to the parameters defined for Equation 25, p and C are
the material density and specific heat respectively, whilst T,,, represents the melt temperature.
8 AP
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Equation 26: Approximation of melt pool width (a) and length (b) (Promoppatum, et al., 2017; Tang, 2017)

Property Value | Units
Conductivity 11.4 W/mK
Specific heat | 435 J/kgK

Table 19: Temperature-independent material properties for IN718.

The constant material properties used for the IN718 deposit are shown in Table 19. These
values were found within literature (Promoppatum, et al., 2017). Room temperature properties
for SS304L were also obtained from MPDB, the material properties database. The melt pool
shape as a result of using SS304L properties within the substrate was investigated. Figure 60
shows the resulting melt pool shape under this assumption compared to the shape when the
IN718 properties are also assumed for the substrate. The change in material properties clearly
results in a disjoint melt pool shape along the interface. Upon implementation of this thermal
profile within the microstructure models, it was found to have an adverse effect on the
microstructure simulations. This was believed to be because of the discontinuous thermal
gradients imposed within the melt pool. Therefore, the final simulations have all been
undertaken assuming all material has the same, IN718, material properties. This assumption
will have some influence on the first layer of deposition, when compared for example to the
equivalent finite element model. However, this influence is expected to be less significant than

the simulation using a discontinuous thermal profile.



Figure 60: Comparison of melt pool shape, with (left) and without (right) inclusion of stainless steel
properties within the build substrate.

The efficiency values determined for the finite element models were considered for the
simulations - however not all were suitable for the application of the Rosenthal solution,
resulting in lack of fusion. Instead, the approximate depth of the melt pool was determined
from the upper most melt pool on each macrograph (Figure 43 to Figure 45). This was used
to calculate the expected efficiency using Equation 26. A value of 0.598, 0.614 and 0.596 were
calculated for sample A, B and C respectively. Consequently, an average value of 0.6 was
used throughout this study. Using this efficiency the resulting approximate melt pool
dimensions for each sample is given in Table 20. Various other quantities such as the ratio
between horizontal overlap to melt pool width are also calculated to help provide insight into

certain aspects of the microstructural development.

Sample Experimental Approx. Approx. Ratio of D  Horizontal Ratio of Vertical

Depth (mm) Depth (mm) Length (mm) to L (%) overlap (mm)  overlap to W | overlap

A 1.64 1.64 19.168 8.57 0.885 26.94 0.683
B 2.35 2.32 19.168 12.12 2.046 44.03 0.563
C 1.89 1.90 19.168 9.89 1.393 36.73 0.577

Table 20: Simulated melt pool dimensions for all samples.
6.5 Microstructure Modelling Approach

As discussed above, due to issues with modelling resources, the developed cellular automata
code was converted from the Fortran user subroutine, implemented within Abaqus, into a
MATLAB script. This allowed the microstructure models to be run locally on a personal pc
without the need for remote servers. Furthermore, due to the matrix and vectorisation
functionalities that can be exploited within MATLAB, this significantly increased the
computational efficiency of the CA code and decreased required run time. It should be

highlighted that similar analytical predictions of a single grain were completed on the



developed MATLAB code as those presented in section 4.6 for the Abaqus subroutine to
validate the implementation of the microstructure model within MATLAB. Typical run times of
each plane for sample A is given in Table 21. These are the run times taken to complete the
simulations on a personal laptop with a 2.5Ghz cpu and 8GB ram. As models were completed
in MATLAB, simulation records detailing run time were not created as with Abaqus files;
however the elapsed wall clock time was recorded for the simulation of each plane for sample
A. It should be noted that as similar approaches were taken for sample B and C, whilst run
times may vary due to differences in travel speeds and cooling rates, they will typically remain

of a similar magnitude.

The dimensions of the 2D domains used within the simulations is given in Table 21. The height
of the domain was taken to be the number of layers multiplied by the layer height, with an
additional two layers included to account for the build substrate. Layer heights were kept as
defined in Table 16 except for the layer height within samples C. This was altered slightly to
account for the mesh size. A mesh size of 40um was implemented across all the
microstructure models presented here. This was chosen as a step size of 20um was used
within the experimental EBSD images, however when preliminary investigations were being
undertaken for the CA simulations within Abaqus, it was determined that at this mesh size for
the full build height and width this would be too computationally expensive. Therefore, the
decision was made that by doubling the step size, a significant increase in computational
efficiency could be achieved for a relatively small loss in resolution. Consequently, for sample
C, the layer height of 1.77mm is not divisible by 0.04mm. In fact, the layer height is not divisible
by any sensible mesh size of similar magnitude. Therefore, the layer height was reduced
slightly to 1.76mm to allow appropriate mesh discretisation. The width of the domain for the
XY and XZ were determined to allow four scans on an odd layer, resulting in three infill scans
within even layers. This was chosen as it was too computationally expensive to complete the
simulation on the full domain, even increasing the domain by an extra scan in each layer
results in a run time increase from approximately 3 hours to approximately 15 hours, whilst
the added width provided little benefit to the prediction of microstructural characteristics. The
run time has since been reduced since this check. Consequently, a four scan width was
implemented as it was determined that this provided sufficient material to simulate the effects
of melt pool overlap and infill, whilst ensuring enough material was sufficiently far from the
boundary to be influenced severely by any boundary effects. A length of 7mm was chosen for
the z direction as this allowed sufficient length to simulate enough material within the scan
direction such that the overall domain was not heavily influenced by boundary effects, whilst

compromising with run time. It should also be noted that run time can be significantly impacted



by the frequency of outputting matrices as images to visually witness the progression of the

simulation.
Plane X (mm) Cell Total no. of Approx.
Spacing elements run time
(hh:mm:ss)
XY 11.2 14.36 0.0 0.04 101441
A Xz 11.2 0.0 7.0 0.04 49456 00:15:29
YZ 0.0 14.36 6.96 0.04 63000 00:30:02
XY 13.0 15.8 0.0 0.04 129422
B Xz 13.0 0.0 7.0 0.04 57376
YZ 0.0 15.8 6.96 0.04 69300
XY 11.2 14.48 0.0 0.04 102284
C Xz 11.2 0.0 7.0 0.04 49456
YZ 0.0 14.48 6.96 0.04 63525

Table 21: Dimensions of model domains for each principal plane within each sample, and approximate run
times.

The models were assumed to be taken from the centre of the build in each direction as
demonstrated by Figure 61. Consequently, within the XY plane models, alternating layers of
4 and 3 scans for the full build height of the geometry were simulated. An offset was applied
on even layers to fill in the troughs of the previous layer as shown by the deposition strategy
demonstrated in Figure 38. The XZ plane was simulated by modelling the deposition of an odd
layer (4 scans) followed by the subsequent two layers, to show the effects of re-melting caused
by the deposition of the following layers. Finally, within the YZ plane it was assumed that the
plane is taken from the centre of the build. Therefore, as 8 scans are present, within the
experimental deposition of sample A and C, within each odd layer two scans, offset on either
side of the plane by the hatch spacing, were simulated travelling in opposite directions. The
subsequent layer then simulates the deposition of a bead centred on the plane. This is

representative of the experimental deposition strategy undertaken.
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Figure 61: Demonstration of various planes for CA models.

Calibration of substrate microstructure was achieved by altering the nucleation parameters
used to initiate the substrate. As experimental data regarding the grain size within the
substrate was not readily available, the nucleation parameters were chosen to achieve a
suitable level of visual agreement with the grain size seen within the substrate present on the
resultant EBSD images. The final parameters used were a critical undercooling of 7.5, a
standard deviation of 1.5 and a nucleation density of 1e4. For the substrate initiation a time
increment of 0.001s was used. The initial microstructure within the XZ plane was introduced
with a much larger grain size, this is because it is assumed that the simulation plane is taken
from the middle of the sample, at which point the microstructure will have coarsened
significantly from the substrate microstructure. A critical undercooling of 17.5 was used for
this.

For the simulation of the actual additive process, a critical undercooling of 9.5 has been
applied with a standard deviation of 2.0, as reported in literature for microstructure modelling
of IN718 (Lian, et al., 2019 ). Various values of nucleation density have been investigated
within the study. The automatic incrementation approach, seen in Equation 21 with a scaling
factor of 1, was applied during deposition, limiting the time increment by growth velocity and

cell spacing whenever liquid cells were present.

6.6 Results

Within this section the results of the microstructure simulations are shown and compared to
the experimental EBSD images. For clarity, the simulated and experimental results for each
of the principal planes will be presented within a separate section. Post-processing of the
simulation results has been undertaken, within MATLAB, to provide the visual results
presented here. Namely, the resulting matrix of grain orientation values has been converted
into a visual representation of the grain structure through the use of the contourf function. The
colour map ‘hsv’, Figure 62, has been implemented, as this is offers a wide range of colours

to help distinguish between various grains. Furthermore, the colouring is similar to that of the



EBSD imaging. However, perhaps most importantly, the colour distribution is continuous and
therefore, the assumption can be made that similarly coloured grains have similar orientations,
within the 2D plane making it easier to draw conclusions based on grain orientation. As the
2D grain orientations vary from 0 to n/2, these will be the approximate limits of the colour
scheme. A total of 314 divisions have been requested for this colour map, resulting in
approximately one colour per 0.005 radians. Within these results, qualitative comparisons will
be undertaken. Quantitative comparisons, such as those given in chapter 5, will not be
undertaken due to the complexity of the grain morphologies and images compared.

Figure 62: MATLAB hsv colour map (MathWorks, 2021).

One of the main objectives within this section is to investigate the capabilities of the 2D CA
model. Solidification, by nature, is a 3D mechanism, however, as discussed, a fully 3D CA-FE
model is too computationally expensive to be undertaken here. For this reason, 2D cross-
sections in all 3 principal planes, similar to that in the work by Akram (Akram, et al., 2018),
are simulated to determine if the 2D approach can be used in this way to capture 3D aspects.
This is particularly important as certain 3D aspects such as out of plane growth cannot be
accounted for intrinsically within the 2D models. Whilst the results of chapter 5 validate the
use of the 2D model without bulk nucleation, the inclusion of nucleation was deemed

necessary throughout this study and results with and without nucleation will be discussed.

6.6.1 XY Plane

Firstly, the simulations of the solidification microstructure within the XY plane are presented
for all samples with and without nucleation (as discussed above). Some regions of the
modelling domain have been cropped from the models shown below, to remove regions
significantly influenced by boundary effects. Approximately the width of one melt pool has
been removed from either side of the domain to focus on the more representative material

within the centre of the domain.



Figure 63: Microstructure predictions in XY plane without nucleation; sample A (left), B (middle), C (right).

The numerical results shown in Figure 63 already show clear changes within the
microstructure as a result of the changes in travel speed. In particular, all samples clearly
demonstrate elongated columnar growth. This occurs through grain growth competition. As
the grains with larger grain envelopes, due to orientation and undercooling, capture
surrounding cells, other grains seize to grow and the number of grains present dramatically
reduces from that seen within the substrate. Whilst in sample A and B these are seen
throughout the entire length of the build height, the columnar grains within sample C are
shorter. Elongated columnar grains are consistent with the experimental images for all three
sample A builds, as shown in Figure 64. The individual images shown here, show a good level
of repeatability of grain structure across the repeated samples of the deposition. However,
elongated columnar grains throughout the height of the build are not witnessed in sample B,
Figure 65, where grains have a smaller morphology typically contained within discrete melt
pools. Sample C, Figure 66, almost shows a combination of the two structures, which is logical
as sample C was deposited using a travel speed that is the mean of the travel speed for
sample A and B.

Throughout all three experimental samples, columnar grains, in red, are shown in vertical lines
throughout the sample. These become more prominent with an increase in scan speed, with
sample A demonstrating large strips of similarly aligned vertical grains. According to the
legend of the EBSD, red denotes alignment of the octahedron with the build direction. Green

shows an orientation approximately at 45 degrees to the build direction. Therefore, it is



expected that the red strips are developed through growth vertically from the base of the melt
pool, whilst the green strips (clearly seen in Figure 64) are a result of growth from the sides of
the melt pool, as the melt pool solidifies radially inwards. Similarly, within the simulated
microstructures, grains displayed in a red tone show grains with an angle close to O degrees
(or /2 by symmetry), in accordance with the colour scheme shown in Figure 62, ie. with the
corner of the grain envelope aligned with the build direction. As can be seen in Figure 63 the
grains that are typically elongated within each of the simulations are red (or similar tones).
This corresponds to grain growth competition - that the grains aligned with the build direction
and hence the thermal gradient, at the centre of the melt pool, are those showing favoured
growth.

Figure 64: EBSD images for sample A in the XY plane; Al (left), A2 (middle) and A3 (right).



Figure 66: EBSD images for sample C in the XY plane; C1 (left), C2 (middle) and C3 (right).

Figure 63 demonstrates excessively large columnar grains within the predicted microstructure

for sample B which is unlike the experimental microstructure witnessed. Repeats have been



run of this particular model to examine if this is due to the probabilistic aspects of the model.
The various results are shown in Figure 67. The first two simulations show very similar
structures, whilst the third shows the central columnar grain being broken up with other
interspersed grains. The probabilistic aspects of the model clearly have some influence on the
results, although over-prediction of the length of columnar grains in the scenario does not

appear to be uncommon.

Figure 67: Effects of probabilistic aspects on sample B with no bulk nucleation.

As part of the comparison between simulated grain structures and those obtained
experimentally, the angles of the elongated, epitaxial, grains that exhibit a zig-zag shape,
within sample A, were measured. An average angle size of 105.9° was determined from the
experimental EBSDs, as seen in Figure 68, compared to a value of 118.8° in the simulated
microstructure, shown in Figure 69. This is an error of 12.1%, which demonstrated the model
is capable of predicting the angle of the grain structure, as a result of the scan strategy and

process parameters used here, to a suitable level of accuracy.



Figure 69: Measurement of the large zig-zag structures within the simulated results for sample A.

Unlike in powder bed fusion process, within direct energy deposition processes, when the
material is deposited on top of existing material it is in a molten state. Hence, when
solidification takes place, there is a lack of surrounding material on some surfaces of the melt



pool, particularly at the edges of the build. For this reason, when nucleation is not included
within the CA models of the deposition process, large boundary effects can be experienced.
This is particularly true when modelling the thermal model with conduction-based, heat
transfer methods. These types of models are not capable of accurately modelling the fluid flow
within the process and therefore do not accurately represent the expected bead shape within
DED processes, especially on the edges of the shape where the molten material often exhibits
signs of tapering. Moreover, due to the specific deposition strategy implemented within this
work, that utilises an offset within the even layers to fill in the troughs of the previous layer,
idealistic continuum scale models will ultimately simulate the deposition of material within the
following odd layer on to material that was not activated within the previous layer. This is a
direct result of more scans being deposited within odd layers than in even layers. This is
obviously not representative of the physical effects that would be experienced in reality, such
as gravitational force and fluid flow. Whilst this assumption, made early on within this work, is
necessary to be able to undertake the modelling activities on the desired scale with a
reasonable amount of computational efficiency, it is a contribution to the boundary effects

experienced. This means the results are not reliable close to the boundary.

Figure 70: Equiaxed grains observed along the top surface of the deposit (taken from the XY EBSD for
sample Al).

Bulk nucleation is applied within these models. The bulk nucleation applied within these
simulations is expected to account for some of the introduction of new grains within the plane
as a result of crystal growth from out of the plane (or surrounding material if a smaller domain
is considered). These 3D effects are otherwise not accounted for within the 2D model.
Furthermore, as can be seen in the experimental EBSD maps, a border of equiaxed grains is
observed along the top surface of the deposited part. This is shown more closely in Figure 70.
It is expected that this is as a result of bulk nucleation that takes place within the melt pool
before epitaxial growth throughout the melt pool is complete, or again 3D growth from out of
plane. Throughout the build the same formations are not withessed, most likely because the
re-melting of material due to subsequent passes erases this microstructure. This explains why

this phenomena is only seen on the outer most surfaces of the deposit. Hence, this suggests



that the inclusion of bulk nucleation is a sensible conclusion. To address this observation and
previous arguments about grain growth out of plane, two levels of nucleation density have
been investigated; 1e2 and 1e4. These values were based on the value of nucleation density
given by Lian et al (Lian, et al., 2019 ) of 1e6mm-3. As the models undertaken here are in 2D
this is reduced to 1le4mm=2. A value of lower magnitudes have also been investigated for
comparison purposes as part of a sensitivity study. The corresponding results for sample A, B
and C are shown in Figure 71, Figure 72 and Figure 73 respectively. Repeats of the model
with nucleation density of 1e2 are shown to demonstrate the effects of the probabilistic aspects

of the model.

Figure 71: Microstructure simulations for sample A in the XY plane with a nucleation density of 0, 1e2, 1e2

and 1e4 from left to right.



Figure 72: Microstructure simulations for sample B in the XY plane with a nucleation density of 0, 1e2, 1e2

and le4 from left to right.

Figure 73: Microstructure simulations for sample C in the XY plane with a nucleation density of 0, 1e2, 1e2

and 1e4 from left to right.



A considerable change can be seen with the results as a consequence of the introduction bulk
nucleation within the models. In particular, by including nucleation, more significant variations
between the samples as a change in travel speed is demonstrated. Specifically, relatively thin
elongated structures are seen within the simulations of sample A irrespective of nucleation
density. Nevertheless, the length of these, elongated grains in the build direction, does
become shorter as the nucleation density is increased and new grain orientation are
introduced. On the other hand, wide diamond shaped grain morphologies are exhibited within
sample B. By introducing nucleation, the long columnar grains seen in the initial simulations,
that were not representative of the experimental morphology is suppressed. In fact, the
microstructure is now more representative of the experimental EBSDs with the inclusion of
shorter bulkier grains. Finally, sample C shows a combination of the diamond shaped wide
grains as well as the thin elongated grains seen in the other two samples. This is particularly
clear in the simulated microstructure with a nucleation density of 1e2. Again, this is expected
as the travel speed is mid-way between that of sample A and B, and a similar phenomena is

seen experimentally.

Another phenomena that is captured by the inclusion of nucleation is the clustering of equiaxed
grains at the centre of the melt pool. This is shown clearly in all the simulations utilising a
nucleation density of 1e4. Within these simulations clusters of nucleated grains can be seen
at the centre of each melt pool, when bulk nucleation occurs within the undercooled material
before epitaxial growth from surrounding grains is completed. This is representative of the
equiaxed grains seen along the top surface of experimental samples, such as that seen in
Figure 70. The introduction of these grains experimentally could also occur from epitaxial

growth out of the plane.

6.6.2 XZplane

Within this next section, the experimental and simulated microstructure of the planar cross
section, XZ plane, are presented. Figure 74 shows the predicted solidification microstructure
of all three samples without nucleation. It should be noted that this plane within the sample is
more likely to be susceptible to epistemic uncertainty. Thus, the exact location of the EBSD
cut, with respect to the build strategy, is subject to more uncertainty as the build strategy
means that for various planes throughout the height of the build, different thermal profiles are
experienced. This is not the case for the XY plane, as the build strategy is consistent through
the travel direction. However, the EBSD results obtained will still be representative of the
typical microstructures seen within these planes. In future work, multiple EBSD maps
throughout the height of the sample would be beneficial to establish the influence of this

uncertainty.



Figure 74: Simulated solidification microstructure within XZ plane, with no bulk nucleation; Sample A (left),
B (middle) and C (right).

All of the predicted microstructures consistently show discrete tracks within the microstructure
achieved by the bi-directional scan strategy. This feature is also observed within the
experimental EBSD images shown in Figure 75 to Figure 77. Very little difference is seen
within the simulated microstructures at this stage. The only slight variations, other than those
that can be attributed to the probabilistic assignment of the initial microstructure, is the
variation of the slope direction in the middle tracks of sample B compared to sample A and C.
This is as a result of the reversed scanning direction within even layers due to the fact that
each layer is deposited using one less scan. Moreover, these tracks appear to be slightly wider
within this sample due to the increased track separation. It is also noted that occasionally
within these models “a checker-boarding effect” between two grains is seen, this could suggest
a finer incrementation or mesh may be beneficial.




Figure 76: EBSD image of XZ plane for sample B2.

Figure 77: EBSD image of XZ plane for sample C2.

Experimentally, clear tracks can be seen in both sample A and C, but are less obvious in the
sample B EBSD. It is believed that these are caused by the epitaxial growth of red grains in
the build direction at the centre of the melt pool, whilst the green grains show grain growth
with a horizontal component, from the sides of the melt pool inwards, as in the XY plane. It is
expected that these are less clear within sample B as the red columnar grains are also less
pronounced within the corresponding XY EBSD (Figure 65). Similarly the tracks of red grains
are much wider within sample A, as they also are within the corresponding XY plane (Figure
64). As before, a sensitivity study considering the influence of bulk nucleation, has been

included in the following results in an attempt to account for some of the epitaxial growth from

out of the plane. These can be seen in Figure 78 to Figure 80.

Figure 78: Microstructure simulations for sample A in the XY plane with a nucleation density of 0, 1el, 1e2
and 1e4 from left to right.

Figure 79: Microstructure simulations for sample A in the XY plane with a nucleation density of 0, lel, 1e2

and 1e4 from left to right.



Figure 80: Microstructure simulations for sample A in the XY plane with a nucleation density of 0, lel, 1e2

and le4 from left to right.

The introduction of bulk nucleation has a clear effect on the simulation results across all three
samples. As in the XY plane, it predicts that the nucleation of new grains at the centre of the
melt pool, prior to growth from the surrounding material taking place. This results in tracks of
nucleated equiaxed grains surrounded by tracks of columnar elongated grains, that are
relatively horizontal, although are angled towards the scanning direction. This is similar to the
phenomena observed experimentally, although the horizontal tracks are more or less
perpendicular to the scanning direction within the EBSD images as opposed to angled.
Furthermore the tracks of red grains typically have a much larger grain size than those
simulated. This is likely because the red grains within the experimental images are actually
introduced to the plane through epitaxial growth out of the plane, when the thermal gradient
in the build direction is stronger, so they are already growing from established grains.
However, within the simulation these are new grains that are nucleated, so the growth
envelope assigned to them is much smaller. Furthermore, as these are randomly nucleated
grains this will affect the texture of the simulated microstructures, as predominantly red grains
are seen within these tracks experimentally as this is the crystal orientation aligned with the
build direction.

As a result of the nucleation within this model actually being more representative of crystal
growth out of plane, rather than bulk nucleation within the melt pool, this suggest different
nucleation densities may be more suitable for different process parameters, based on how
prominently columnar growth within the build direction features within the XY plane. A high
nucleation density would be required for sample A, compared to a much lower nucleation

density for sample B.

6.6.3 YZplane

Finally, the predicted microstructures for the longitudinal cross section, YZ plane, are shown.
As with the previous comparisons, initial results without the inclusion of bulk nucleation are
shown in Figure 81. Again, the exact location of the EBSD plane will have more effect on this

analysis because of the variation of scan strategy out of plane. Again, due to epistemic



uncertainty, the exact location of the plane with respect to the build strategy is unknown, but

the EBSD results are still indicative of the microstructure within this plane.

Figure 81: Simulated solidification microstructure within YZ plane, with no bulk nucleation; Sample A (left),
B (middle) and C (right).

Elongated, columnar grains are predicted through the total build height of the samples. Zig
zag formations are shown in sample A whilst vertical structures are shown for sample C. This

is not representative of the structures seen experimentally. The EBSD maps within the YZ
plane are shown in Figure 82.

Figure 82: EBSD images of YZ plane for sample A2 (left), B2 (middle) and C2 (right).



The experimental microstructure within sample A shows consistently textured vertical
columnar grains, aligned with the build direction. On the other hand, sample B and C show
bands of different grains throughout the build height, although these are more prominent in
sample B than sample C, which exhibits large regions of green grains which would be oriented
at approximately 45 degrees to the build direction. The results of the simulations including
nucleation with varying densities are presented in Figure 83 to Figure 85.
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Figure 83: Microstructure simulations for sample A in the YZ plane with a nucleation density of 0, lel, 1e2

o

and 1e4 from left to right.




Figure 84: Microstructure simulations for sample B in the YZ plane with a nucleation density of 0, lel, 1e2

and 1e4 from left to right.

Figure 85: Microstructure simulations for sample C in the YZ plane with a nucleation density of 0, 1lel, 1e2
and le4 from left to right.

By including nucleation within the simulations, the models begin to predict the development of
banded structures throughout the build height. These bands vary in size between samples
based on the changes in layer height. As the nucleation density increased, the bands become
more prominent across the simulations of all three samples. Between bands columnar grains
are predicted, as is shown in the experimental EBSD images. However, distinct angles are
simulated across all three samples within the elongated grains. This is not representative of
the grains seen experimentally. It is thought that the nucleation here is again related to the
epitaxial growth out of plane that is not captured by the 2D model. Particularly, because as
with the XZ planes, different values of nucleation density appear to best suit different samples.
For example, as columnar grains without much banding is observed within sample A, a low
nucleation density is expected, however a high nucleation density was assumed within the XZ
planes. Similarly, a high value of nucleation density is more suitable here for sample B,
however a low nucleation density was chosen for the XZ plane. Therefore, it is concluded that
the nucleation density is actually accounting for the significance of the thermal gradient out of
plane. And hence a different value is required depending on the plane being simulated. This
could be connected to the ratio of melt pool depth to length. This is expanded on further within

the conclusions.



6.7 Conclusion

Within this case study three LMD IN718 samples have been deposited with varying values of
travel speed, whilst all other key parameters remained fixed. EBSD images have been
obtained to reveal the as deposited solidification structure within all three principal planes.
Analytical thermal models have been implemented for efficiency, due to unforeseen
circumstances limiting the computational resources available. The Rosenthal solution was
implemented within the 2D CA model to determine if the microstructure modelling approach
was capable of predicting variations in microstructure as a result of changes in process
parameters. Simulations were undertaken within all three principal planes for each sample.
Varying levels of nucleation were included within the models. Representations of the 3D
microstructures using the simulated 2D planes can be seen in Figure 86 to Figure 88. Note,
these images have been constructed to get an idea of the overall grain structure in 3D, they
are not to scale. The corresponding nucleation density values that have been chosen for each

plane are given in Table 22.

Figure 86: Comparison of representative 3D microstructure for sample A, constructed form 2D EBSD maps
(left) and 2D simulations (right).



Figure 87: Comparison of representative 3D microstructure for sample B, constructed form 2D EBSD maps
(left) and 2D simulations (right).

Figure 88: Comparison of representative 3D microstructure for sample C, constructed form 2D EBSD maps
(left) and 2D simulations (right).



Sample ‘ XY Plane XZ Plane YZ Plane
A 0 le4 0

B le2 le2 le2

C le2 le2 le2

Table 22: Chosen nucleation densities (mm3).

Throughout the results shown in this work the effect of varying nucleation density within each
plane has been discussed. As can be seen in Table 22, the most suitable nucleation density
varies depending not only on the travel speed but also on the plane being investigated. It is
thought that the nucleation within these models is more closely related to 3D crystal growth
from out of the plane, than bulk nucleation within the melt pool. This is similar to the nucleation
sites introduced by Akram et al. to account for 3D growth (Akram, et al., 2018). Hence, it is
expected that the value of the density is determined by the strength of the growth from out of
the plane. By looking at the ratio of the melt pool width and length, given in Table 20, we can
begin to understand the relationship between the nucleation density and melt pool dimensions.
For example, sample A has the smallest ratio, implying that the tail of the melt pool is much
longer than the depth. Hence, it makes sense that when considering the XY plane growth out
of plane is less likely to occur, as one could expect the thermal gradient through the depth of
the melt pool to be much stronger than that through the length. This is supported by the more
prominent columnar growth seen within the EBSD images. However, in the XZ plane a high
nucleation density is used as growth perpendicular to this plane is more likely due to the
stronger thermal gradient. The converse is true for sample B, as a larger ratio is seen.
Therefore, increasing the likelihood of crystal growth perpendicular to the XY plane. However,
whilst the inclusion of nucleation, with the appropriate density, helps account for these 3D
aspects the size of the grains is not accurately predicted as the model assumes new growth,

as opposed to epitaxial growth from existing grains.

Overall, the work presented within this chapter demonstrates the capabilities and the
limitations of a 2D analytical-CA approach. The model was able to achieve a good level of
agreement with EBSD images, including the simulation of a number of phenomena
demonstrated within the experimental grain structures, including equiaxed growth at the top
of the melt pool, and banding formations within the longitudinal plane. Whilst high fidelity
models would provide deeper accuracy within the predictions, the modelling approach
implemented here is sufficient to understand the expected solidification microstructure at a

design level.



7 Fine to Coarse Microstructure Transitions

Following the validation of the modelling strategy, within the AMB2018-02 case study, and the
application of the cellular automata method using the Rosenthal solution to assess the model’s
capability to predict microstructural changes as a result of changes in process parameters,
work has been undertaken to apply the modelling approach to more complex additive
manufacturing scenarios, including functionally graded materials. Introduced in section 1.1,
functionally graded materials are highly desirable due to the added element of design they
offer. This chapter focuses on the prediction of microstructure within multi-layer powder bed
fusion systems involving an in situ process parameter change within the build process, causing
a microstructure transition. Existing literature is used as the experimental validation within this

study.

7.1 Experimental Paper

As mentioned within the literature review, one of the major benefits of additive manufacturing
is the freedom of design. As understanding surrounding the physical processes increases, this
extends to the tailoring of microstructures within the material through the alteration of process
parameters. Such an example can be seen in the work presented by Popovich et al (Popovich,
et al., 2017), which will be used as the source of experimental data for this case study. Within
this piece of experimental work, the authors manufactured a number of samples using powder
bed fusion of IN718, with different combinations of process parameters whilst maintaining
energy density. This demonstrates that although energy density is an important factor in the
design of additively manufactured parts, transitions in microstructure can be induced whilst
maintaining a good quality of build. The sample of interest within this project was a 70 x 20 x
10 mm cuboid with alternating sections using two sets of parameters (Table 23) from which
tensile samples were machined. It was stated that the parts were built using a scanning
direction 45° between the X and Y axis, where the Z axis represents the build direction. Note,
this coordinate system notation will be used in the model set up also. Although no detail is
given within the paper, upon examination of the macrographs it appears that the scanning
strategy rotated by 90° on alternate layers, therefore this rotation has been considered when
undertaking the microstructure predictions. However, as the experimental detail is taken from
literature there is minimal information by which to perform a thorough calibration of the thermal

models.



Section Hatch Layer Beam Beam Energy

Spacing Thickness Diameter Profile Density
(mm) (mm) (um) (I/mm?)
1 250 700 0.12 0.05 80 Gaussian | 59.5
2 950 320 0.5 0.1 100 Flat Top 59.4

Table 23: Experimental process parameters (Popovich, et al., 2017).

The sample seen within the EBSD map below (Figure 89), shows a tensile specimen extracted
from a part built using predominantly section 1 parameters with two 6mm high section 2
regions within the build. This sample in particular is used as the subject of this study, as it is
the only sample within the paper for which EBSD data is included. The EBSD shows a
magnified region of a single transition from section 1 to section 2 parameters and back. Upon
transition between sections a clear change is seen between fine and coarse grains. Section 2
exhibits large columnar grains, all of similar orientation within the EBSD map, whereas section
1 shows a more chaotic grains structure, showing smaller grains with varying orientations.
Initial thoughts when considering the phenomena within this experimental work, was that an
equiaxed grain structure was being achieved with the section 1 parameters, whilst the process
parameters involved in section 2 were triggering a columnar growth formation on a G-R
solidification diagram similar to that presented by DebRoy et al (Debroy, et al., 2018).
However, upon analysis of the process parameters and comparison against a G-R diagram
for IN718, it was determined that both structures are in fact likely to be columnar. The chaotic
structure is actually the truncation of columnar growth due to the subsequently deposited layer.
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Figure 89: Experimental EBSD showing transition in microstructure upon change of process parameters.
Figure 5in (Popovich, et al., 2017).
7.2 Modelling Approach
Due to the relatively large size of the test parts built within the experimental study described
above, it was impossible to efficiently model the entire build. In total there were over 800 layers
in the original tensile samples builds and still 100 layers within the EBSD domain shown in

Figure 89. Each layer had a dimension of 10mm by 20mm, which meant even the analysis of



a single layer on a fine enough scale to achieve accurate melt pool geometry and cooling rate
through the use of a transient finite element model would be too computationally expensive.
A number of approaches were taken to try and model a smaller domain. It was decided that
as with the LMD study, the most suitable and computationally efficient approach would be to
utilise an analytical thermal field to simulate the microstructural development within a 2D cross
sectional plane. As this approach was capable of predicting changes in microstructure within
the XY plane, it is expected that the same approach will be capable of demonstrating the

changes in grain morphology as the result of in situ parameter changes.

The final modelling approach that was used is representative of 10 layers of the section 1
parameters followed by 10 of the section 2 layers, with an excess substrate layer at the base
of the build, which was made to be 0.2mm thick. The width of the domain was chosen to allow
sufficient material to model the solidification of three scans within the section 2 region,
providing enough opportunity to witness the effects of the melt pool overlap as well as
providing a suitable amount of the domain where there will be little influence from any
boundary effects. A mesh size of 5um was used as this was the same as the step size used

within the experimentally obtained EBSD map.

The Rosenthal solution, as shown in section 6.4, has been used as an analytical thermal
model, within this study, to represent the stable melt pool region. It was sensible to assume
that the melt pool would be at steady state for this domain as the assumption was made that
the simulations were predicting microstructure development from the centre of the build. The
inherent assumption made by using the Rosenthal, which assumes the use of a steady-state
point heat source, means the difference between the Gaussian and top hat laser distributions
will not be specifically accounted for within this work. The same constant thermal properties
were used for IN718 as previously specified in Table 19. Further detail on the calibration of

the thermal model is given in the subsequent section.

The same validated modelling approach was used as that in the previous case study.
However, adjustments to the model had to be made to represent the powder bed fusion
process. Layers were activated in relation to the specified layer thicknesses. This was done
through the use of the extra state variable values. Inactive material was assigned a physical
state of -2, which stopped these cells being taken into account within the CA calculations.
Once activated, the physical state was changed to -1 representing powder material. Powder
already has an existing grain orientation within in the powder particles. This must be taken
into consideration within the model as this introduces new grain orientations that would
otherwise not exist. This is done by initialising the layers separately with an existing grain

structure with a similar grain size to the particle size reported within the experimental work



(20-64 um). A similar approach can be seen in the work by Koepf et al (Koepf, et al., 2019;
Koepf, et al.,, 2018). In addition, as the nucleation parameters featured heavily within the
previous study and showed some beneficial contribution to the 2D predictions, simulations
within this case study will be completed with and without nucleation. This helped to
demonstrate the importance of their inclusion within powder bed fusion simulations. The same
nucleation parameters for IN718 are used as before, a critical undercooling of 9.5 and a
standard deviation of 2.0. A nucleation density of 1e2 has been assumed throughout.

7.3 Heat source

As stated earlier, the Rosenthal solution has been used as the thermal model within this study
for computational efficiency. However, the efficiency of the heat source is an unknown
parameter that requires determination. An alternative value to that within the previous study
was to be expected because of the change in AM process and also the variation in process
parameters. Two strategies were applied; first, a value of 0.4 was assumed for both parameter
sets as this was found to be a typical value in literature for L-PBF processes (Irwin, et al.,
2021; Lee & Zhang, 2016; King, et al., 2015), second an attempt was made to determine the
melt pool dimensions from the available macrographs and use these to determine the
efficiency of each parameter set individually. Efficiency values of approximately 0.21 and 0.68
were calculated for section 1 based on estimated melt pool width and depth respectively.
Similarly, values of approximately 0.55 and 0.16 were determine for section 2 based on width
and depth respectively. However, it should be noted that estimating the melt pool depth, or
width, accurately from a macrograph is extremely difficult due to the overlap of melt pools, and
angle of the scan strategy. Furthermore, the Rosenthal solution predicts a semi-circular melt
pool, physically this is not always representative of the melt pool shape. Ultimately, a value of
0.3 was chosen for the section 1 parameters compared to a value of 0.55 for the section 2
parameters. These values ensured that no evidence of lack of fusion was witnessed and
complete melting of the required material was achieved. The melt pool dimensions achieved

are given in Table 24 for reference.

Section Efficiency Approx. Width (mm) Approx. Length (mm)
1 0.3 0.146 0.799
2 0.55 0.571 5.564

Table 24: Resultant melt pool dimensions.

Moreover, the scan strategy used for the build of this part involved scanning at 45 degrees to
the X and Y axes. Therefore, in order to simulate the microstructural development on a 2D
cross section perpendicular to the Y axis, a coordinate transformation must be applied to the

Rosenthal solution to account for this. Figure 90 shows the traditional Cartesian coordinate



system and the XZ plane representing the simulation domain. Another coordinate system (p,q)
is also shown. This is a 2D coordinate system set up such that p is the scan direction at 45°
to the X and Y axes, and g the normal to this. Through matrix calculations of this specific
coordinate transformation, p and g are given as functions of x and y in Equation 27. This allows
the Rosenthal solution to be defined in the (p,q) coordinate system with respect to the scan
direction as it is traditionally defined and converted back into Cartesian coordinates for
projection onto the XZ plane. Within Figure 90 the scan direction is defined as the p-axis,
however the scan direction can also be changed from being parallel to the p-axis to parallel to

the g-axis to account for the 90° rotation on even layers.
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Figure 90 Visual representation of the coordinate transformation required to transform Rosenthal solution by 45°.
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Equation 27 Coordinate transformations required to simulate Rosenthal solution at 45°.

A visual representation of the effects on the melt pool shape predicted by the Rosenthal
simulation, within in the 2D cross-section, as a result of this transformation is shown in Figure
91.



Figure 91: Comparison of melt pool shape with and without 45 degree rotation.

7.4 Modelling Results

Unidirectional models, with a scanning direction along the y-axis, were initially set up for
simplicity. These were representative of a part being built using the same process parameters
without the assumed rotation between layers and without scanning at 45 degrees within the
plane. The result of these simulations with and without bulk nucleation are shown in Figure
92. Note, within all the simulation results presented here, the bottom few layers shows the un-
affected substrate, demonstrating the initial microstructure assumed for the substrate and

powder material.

Figure 92: Unidirectional, scanning at 0°, microstructure prediction, with no nucleation (left) and nucleation
(right).

Within the images shown here, the model domain has been reduced to be representative of a

similar width of the build as that shown within the experimental EBSD, approximately 0.645mm



based on the step size and grid dimensions. Figure 92 clearly shows a transition in grain
morphology upon transition between parameters. Similar to that in the experimental EBSDs,
a fine structure is seen within section 1 region, changing to much more elongated grain
structures within section 2 in the direction of the melt pool solidification. The grain morphology
within section 1 frequently shows ‘V’ shape grains. These can also be seen in the experimental
EBSD. This grain morphology is not seen within the section 2 region of the experimental
EBSD, instead elongated grains are seen, with a very consistent texture. However, a slight
slope is seen within the angle of the grain morphology. Elongated epitaxial growth is predicted
within section 2 by the microstructure models, although the growth direction clearly follows the
thermal gradient during melt pool solidification, resulting in angled grains towards the centre
of the domain shown. The inclusion of nucleation within the results presented on the right of
Figure 92 has little effect on the predicted morphology. Whilst there are some differences
between the two images, it is expected this is more likely to be due to the probabilistic aspects
of orientation assignment to both the substrate and unfused powder, than because of the

inclusion of bulk nucleation.

The next step in increasing model complexity was to introduce the 90° rotation on alternate
layers. Hence, within this simulation, on odd layers the scanning direction was along the y-
axis, out of the plane, whilst on even layers it was along the x-axis, parallel to the plane. The

results obtained with and without nucleation are shown in Figure 93.

Figure 93: Predicted solidification microstructure scanning at 0°, with 90° rotation on alternate layers, with

no nucleation (left) and nucleation(right).



A clear visual difference is seen between the Figure 92 and Figure 93. Firstly, within the
section 1 region the ‘V’ shape grains are still prominent, however, the introduction of the
perpendicular scanning direction, on alternate layers, has resulted in the coarsening of these
grains. This is a good demonstration of the models capability to pick up changes to the
structure as a result of changes in scan strategy. Secondly, as a result of the introduction of
perpendicular scans, the epitaxial growth within section 2 is much more columnar and
elongated. This could be as a result of the lack of 3D effects that would capture out of plane
grain growth. Specifically, within the layers where the scan direction is parallel to the 2D plane,
there is a lack of new powder particles accounted for within the simulation for the introduction
of new grains. However, the application of bulk nucleation that could contribute to the
nucleation of new grains has been accounted for in the right hand image. Whilst, this result
seems very similar to the EBSD, with the sloped columnar grains within section 2, the
modelling set up is still not representative of the experimental set up as the 45° scanning
direction between the x and y axis has not yet been accounted for. This is introduced in the

following results in Figure 94 and Figure 95.

-

Figure 94: Unidirectional, scanning at 45°, microstructure prediction, with no nucleation (left) and

nucleation (right).



Figure 95: Predicted solidification microstructure scanning at 45°, with 90° rotation on alternate layers, with
no nucleation (left) and nucleation(right).

Again the model is undertaken with and without the 90° rotation of the scan direction on
alternate layers; Figure 94 and Figure 95 show the predicted grain morphology with and
without this rotation, respectively. For both, simulating the inclusion of bulk nucleation had little
effect as with the previous models within this study. Therefore, it is suggested that this
highlights that the inclusion of nucleation is much less important for PBF processes, where
nucleation of new grain orientations can be initiated from the surrounding powder material.
Furthermore, there is much less variation between the predicted grain structures with and
without the alternating scan direction, than that seen in Figure 92 and Figure 93. This is to be
expected as a 90° rotation on alternate layers when a 45° scanning direction is applied results
in a -45° scanning direction and therefore there is much less significance in the variation of
the melt pool shape seen within the plane between layers, especially when compared to the
variation between a scanning direction perpendicular to the plane and parallel to the plane.
For this reason, the results shown utilising the 45° scan strategy are much more similar to the
uni-directional, 0° scan strategy than with the alternate layer rotation applied. A comparison of
the experimental EBSD and most representative microstructure simulation (45° scanning

direction with a 90° rotation on alternate layers, without bulk nucleation) is shown in Figure 96.



Within this image the EBSD and simulations results have both been reduced to represent the

same size domain of 1mm by 1.5mm.

Figure 96: Comparison of microstructure predictions; Experimental EBSD, adapted from (Popovich, et al.,
2017) (left) and simulation (right).

A strong agreement can be seen between the morphology in the EBSD and the simulated
result, with a clear transition to larger, more elongated grains upon the in situ change of
parameters. However, it is clear that the elongated grains within the simulation are much more
angled than those in the experimental EBSD. It is unclear why this is, but it is suggested that
this could be as a result of difference between the melt pool shape obtained experimentally
and that simulated by the Rosenthal. Furthermore, due to the small size of EBSD data

available it is likely that deeper experimental analysis would benefit this investigation.

7.5 Conclusion

Within this chapter, the previously validated modelling approaches were implemented for the
application of functionally graded materials. Experimental data was taken from literature
demonstrating the use of in situ parameter changes to initiate a microstructural transition within
the deposition of L-PBF parts. These experimental details were used as the basis of

microstructure simulations.

The complexity of the models was built up incrementally allowing for the comparison of the
prediction of similar microstructures for variations on the scan strategy. A large change in
microstructure is seen when comparing a constant scan strategy perpendicular to the plane
with a scan strategy that introduces a 90 degree rotation on alternate layers, such that the

scan direction becomes parallel to the plane. This is not seen when an alternating 90 degree



rotation is applied to a scanning direction at 45 degrees within the XY plane. Furthermore, the

inclusion of bulk nucleation has little effect on the simulation throughout this study.

The final microstructure simulations achieved a good level of agreement with the experimental
EBSD. Fine, textured grain structures were seen in the region deposited using the section 1
parameters both experimentally and within the model. Meanwhile, elongated grains were
witnessed within the section 2 region. Whilst epitaxial growth within the model clearly shows
the microstructural transition to elongated grains, the simulated grains seem to be slightly
more angled than those witnessed experimentally. It is unknown why this is possibly the case,

but it is suggested that further experimental data would be required to investigate this fully.



8 Conclusions

Within this work, microstructure modelling methods have been used as a method of increasing
the understanding of the relationship between process parameters and the solidification
microstructure for metal additive manufacturing. Ultimately, the work presented here aims to
contribute to the process-structure-property relationships that are fundamental to
understanding the behaviour, and increasing the reliability, of additively manufactured parts
for use within industry. Cellular automata (CA) methods have been implemented due to their
relative computational efficiency compared to other methods such as phase field modelling,
whilst still being based on physical solidification laws and providing visual representations of
the simulated microstructure. For the ease of the reader, the objectives identified for this work

are reiterated here:

e Contribute to the smaller catalogue of work available for the application of cellular
automata (CA) to direct energy deposition (DED) processes, particularly for multi-layer
builds.

e Implement CA methods with experimentally-validated thermal models.

e Improve the computational efficiency of the required models to achieve sensible run

times with practical hardware requirements, suitable for use in industry.

e Apply CA models to investigate the influence of process parameters, with experimental

validation.

A 2D weakly-coupled CA model has been implemented throughout this work. Three case
studies have been undertaken to investigate the capabilities of the modelling approach. Firstly,
open source experimental data was used to validate the simulation approach for laser scans
on a bare Inconel 625 substrate. A statistical analysis of the microstructure model was

undertaken to determine the influence of probabilistic aspects of the model.

Secondly, the approach was applied to laser metal deposition (LMD) Inconel 718 deposits with
3 varying travel speeds. The aim of this case study was to evaluate the ability of the model to
predict differences in microstructure as a result of changes in process parameters. Whilst
unforeseen circumstances resulting in a lack of computational resources meant that the
planned finite element models could not be completed, microstructure predictions were
undertaken using an analytical Rosenthal solution. In fact, this provided an extremely
computationally efficient approach to investigate the resultant microstructure as a result of
process parameters. Simulated microstructures were undertaken in all 3 principal planes and

showed strong agreement with the experimental EBSD maps. Varying levels of nucleation



density were investigated and it was observed that different levels of nucleation density were
more suitable for different travel speeds and plane of simulation. It is suggested that this is
linked to the ratio of melt pool dimensions, based on the likelihood of out of plane crystal

growth.

Finally, this approach was applied to a powder bed fusion application, with an in situ change
in parameters. This was based upon experimental data found within literature. This
demonstrated the capability of the model to predict microstructure transitions for the

application of functionally graded materials.
The main outcomes of this project are summarised here:

e Development of experimentally validated thermal models for additive manufacturing
applications including, contributions to an NIST Benchmark award winning submission, that
used the Abaqus AM plug-in to provide part level thermal models for residual stress
predictions.

e Successful implementation of a 2D CA model weakly coupled to a finite element thermal
model that was validated with experimental data. Probabilistic effects on the simulations
were also investigated.

o An efficient method, that can be used at the design level, with minimal hardware
requirements, has been established through the use of 2D CA with an analytical heat source
within MATLAB.

¢ Whilst the 3D transient finite element models were unable to be completed within this work,
an approach for a combined integrated and conical heat source was suggested. This aims
to improve efficiency of fine level thermal models by allowing the analyst to change the
spatial and temporal resolution of the model within regions of interest.

e Experimental Inconel 718 LMD samples have been manufactured with thermocouple
recordings for thermal model validation. Furthermore, EBSD imaging has been undertaken
to reveal the solidification structure in all 3 principal planes, for experimental validation of
the microstructure predictions.

¢ Microstructure predictions have been undertaken on all 3 principal planes for multilayer LMD
Inconel 718 deposits with varying values of travel speed. Certain features of the
solidification microstructures have been captured well by the 2D models. The results have
been compared to experimental EBSD images and show a good level of agreement.

¢ Different nucleation densities have been investigated. It is thought that the presence of
nucleation within this work is related to crystal growth from out of the 2D plane. Links

between this and the melt pool geometry have been proposed.



¢ The ability of the modelling approach to simulate microstructural transitions as a result of in
situ changes in process parameter, within powder bed fusion (PBF) applications, was

demonstrated. This was based on and compared to experimental results within literature.

It is suggested here that future work within this topic requires the establishment of reliable and
widely accepted material parameters for microstructure models, including critical undercooling
and nucleation density. For use at the design level, well established material properties must
be available for a range of common alloys used for additive manufacturing. Increased
understanding of how these parameters can be derived experimentally would also be useful.
Further investigation of the link between process parameters and melt pool geometry could
improve the efficient use of 2D models, whilst accounting for out of plane growth. If an
established method of determining a reliable and appropriate correction factor for the
nucleation density, which accounted for the contribution of out of plane growth within 2D
models, this would increase the accuracy and practicality of 2D CA methods for industry. On
the other hand, improvements on computational efficiency of 3D CA methods, that achieve
suitable run times with practical hardware requirements, would be the ultimate goal within CA
models, as they can more accurately account for crystallographic texture and 3D growth,

without having to introduce any assumptions.

Moreover, the application of these approaches to more complex geometries representative of
industrially relevant components would be beneficial. Currently, the majority of work is
undertaken on test sample geometries such as walls and cubes. In order for this methodology
to be used effectively within industry, application to industrial geometries is essential. Due to
the large amount of process parameters available within AM processes, a wider investigation

of various process parameter influences would also be suggested.

In addition, the implementation of the combined integrated and conical heat source approach
to improve the efficiency of fine level finite element thermal models should be investigated.
This approach provides the potential to increase efficiency of fine level thermal models that
can be undertaken on a part scale but still provide a melt pool level thermal profile for
implementation within CA models. Computational efficiency of accurate models is key to

making models accessible and practical within industry.

Finally, further work is required to establish relationships between the outcomes of the
simulated solidification microstructures, such as those presented here, to the behaviour and
material properties within additively manufactured parts. This will complete the links between

process, structure and properties, and hence provide greater understanding surrounding the



reliability of additively manufactured parts, ultimately resulting in an increase of AM parts within

industry.
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Abstract

The laser powder bed fusion {LPBF) process involves using a laser beam to selectively melt metal powder with a desired shape on
a substrate to create a part layer-by-layer. As an Additive Manufacturing (AM) process, laser powder bed fusion (commonty
referred to as selective laser melting—SLM) offers superior design freedom over conventional manufacturing methods and
enables the production of complex, lightweight geometries with applications in the acrospace, automotive, and biomedical
industries. In addition to enhanced design freedomm, AM technologies provide improved material utilization and allow for reduced
assembly needs. However, the reliability and repeatability of additively manufactured parts is a challenge to the wide-scale
adoption of the technology for safety critical parts. A critical limitation of process optimization is the prediction and control of
residual sfresses, distortion, and microstructure evolution. This work focuses on the development and implementation of a
numerical modeling technique for the prediction of residual strains within an Inconel 625 LPBF part. The model, using the
SIMULIA Additive Manufacturing Scenario App, based on the Abaqus 2018 finite element solver, was developed and analyzed
as part of a submission for the NIST AM Benchmark 2018. A sequentially coupled thermo-mechanical analysis was adopted to
replicate the building conditions of a single cantilever beam built at the NIST laboratories. The results of the blind study were
compared to X-ray ditfraction (XRD) measurements of the physical build. The predicted three-dimensional residual strain field
showed a high level of accuracy and the submission described in this paper received joint first prize in the residual elastic strain
category of the NIST AM Benchmark 2018. The results presented in this paper retlect only findings before the benchmark
measurements were posted on the NIST website.

Keywords Additive manufacturing - Selective laser melting - Numerical modeling - Residual strain

Introduction as a near net shape method of manufacture. The technique
boasts a wide range of applications from weight-reduced aero-
Additive manufacturing (AM) has been of interest from as  space parts [2] to bespoke artificial joints [3]. Between 1990
early as the 1980s [1]. The process requires that the desired  and 2015, the growth rate of the worldwide revenues generat-
shape be divided into relatively thin layers (or slices) and  ed from all AM products or services was 25.4% [4]. This
added consecutively on top of each other. Initially used to  increase in interest was due to the wide range of benefits the
produce rapid prototypes, significant research and develop-  technique has to offer. AM provides methods of waste reduc-
ment over the past decade means that AM can now be used  tion [3], customization opportunities [6], and part repair [7].
Furthermore, it eradicates the need for the creation of geome-
try specific dies and provides new methods of creating even
50 Madie Allen more complex geometries.
madie.allen @affiliate.twi.co.uk One particular AM process that offers the capability of the
production of complex structures is laser powder bed fusion
(LPBF), which is also commonly referred to as selective laser
melting (SLM). SLM is a powder bed fusion process that uses
alaser as a heat source as opposed to an electron beam or wire
Brunel University, London, UK arc. The use of a powder bed enables the fabrication of lattice
*  TWI Ltd, Cambridge, UK structures; features that could not be manufactured by

! Dassault Systémes SIMULIA Corp, Johnston, RI, USA
NSIRC, TWI Ltd, Cambridge, UK
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traditional methods such as casting. SLM is one technique that
can also be used to reduce the weight-to-strength ratio of a part
by manufacturing topology optimized parts. However, due to
the relative infancy of the technology, there are still a number
of challenges with the process that are preventing its wide-
spread infroduction into industry.

The procedure has a number of limitations, some of which
challenge the reliability of the build parts and others that con-
strain the manufacture process itself. For example, certain AM
procedures such as SLM are limited by the size of the build
chamber. These processes can also exhibit very long manu-
facture times, due to the slow scan speeds and small layer
heights. Other issues that can be more widely applied to all
AM procedures include surface roughness, lack of fusion, and
distortion.

Primarily, the main challenge with all AM procedures
is the reliability and repeatability of parts [8, 9]. Due to
the thermal cycles that are experienced by the part dur-
ing the build process, residual stresses are induced,
resulting in part distortions. In addition, the thermal
field induces changes within the microstructure of the
matetial, resulting in altered material properties. These
factors cause unreliability in additively manufactured
parts. Alterations in mechanical properties and unknown
residual stresses mean that the suitability of the part is
unknown until tested. Therefore, non-destructive testing
methods are required to determine the material proper-
ties of the built part and any possible defects, such as
pores caused by lack of fusion; however, the lack of
inspectability of complex parts by means other than
computed tomography limits scalability.

The key to unlocking the potential of this new technol-
ogy is understanding every aspect of the process and its
effect on the material behavior, so that parts can be
manufactured in a fit-for-purpose state. Numerical model-
ing plays a large part in enabling this by providing a
method of testing the effect of physical parameters with-
out the cost of experimental trials. Once a validated model
that can predict the impact of these parameters has been
established, it can be used to investigate of the tailoring
process parameters to achieve desirable material proper-
ties and minimize distortion and residual stress.

Previous work on additive manufacturing has included
the research of modeling methods to predict distortion and
residual stresses [10-14], melt pool geometry and energy
penetration depth [15, 16], microstructure [17, 18], or to
determine the effect of different process parameters [19,
20]. Due to the complexity of the process, simulation
techniques vary a great deal, depending on which partic-
ular AM process is being mmplemented and what feature
or parameter is the central interest of the study. A rela-
tively detailed review of existing modeling approaches
was recently summarized by Luo and Zhao [21].

&f Springer

In this study, the focus is on a method of prediction of
residual stresses for the selective laser melting process. In
order to model residual stresses, first a sufficiently represen-
tative thermal model is required.

A number of heat source models have been used to model
the laser. Song et al. [22] undertook an investigation into re-
sidual stresses and microstructure using powdet bed methods
with a nickel superalloy. A Goldak double ellipsoidal model
was used to represent the moving heat source. Meanwhile,
Hussein et al. [23] use the more common Gaussian model in
their analysis of temperature and stress fields. While Hussein
et al. [23] use only a single layer in their model, simulations
which include multiple layers must exhibit a method of mate-
rial deposition. Song et al. [22] use the element birth and death
technique, in which sets of elements are activated/deactivated
within new steps. This method is implemented by many others
including Fu et al. [24]. Alternative methods include the quiet
element method demonstrated by Michaleris [25].

Material propetties, specitied within the analysis, should
also be temperature and state dependent [26]. For example,
Huang et al. [27] establish an effective thermal conductivity
for powder particles, and also use a linear mixing rule to take
porosity of the powder into account within its density.

When considering the simulation of residual strains, a
number of approaches are available. Li et al. [11, 12]
have developed a multi-scale model. Multi-scale models
have become of increasing interest due to their compu-
tational efficiency. The model shows the implementation
of a Gaussian heat distribution on a micro, meso, and
macro scale. The benefit of this method is that it allows
for the implementation of specific scan strategies. Other
approaches include an analytical method, demonstrated
by Fergani et al. [10]. Furthermore, Wu et al. [13] im-
plement a sequentially coupled thermo-mechanical anal-
ysis through Abaqus, similar to the work presented here.
Sequentially coupled analyses save a significant amount
of computational time [26] without sacrificing a reason-
ably accurate representation of the underlying physics.
Denlinger et al. [28] also use a sequentially coupled
analysis in their model of electron beam direct manu-
facture and again in reference [29]. In this analysis, the
weak coupling was used as the plastic strain energy was
significantly small in comparison to laser energy. More
recently, Williams et al. [14] have also used a sequen-
tially coupled analysis through Abaqus, using a ‘block
dump’ approach for material deposition that will be
used within this work. This is an efficient tool that also
reduces computational cost of the analysis.

In this paper, a specific approach for simulating residual
straing within an Inconel 625 part created by SLM is de-
scribed. This was undertaken as part of the AM Benchmark
2018, challenge 1 to (AMB201801). In section “The
Challenge”, an outline of the challenge is provided, followed
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by a description of the modeling approach in section
“Modeling Approach”. Finally, a discussion of the results is
presented in section “Results and Discussion™.

The Challenge

For this section, note that all details regarding the design and
setup of the experiment have been sourced from reference
[30], along with some independent correspondence with the
challenge coordinators.

The part geometry for this challenge was a simple single
cantilever structure of dimension 75 mm, $ mm, and 12.5 mm
in length, width, and height, respectively. A depiction of the
geometry can be seen in Fig. 1.

For each build process, four parts were built on the same
substrate. A full schematic of the layout and dimensions can
be found in reference [30]. However, as spacing is sufficient
between parts such that the build of an adjacent part has a
negligible effect on the thermal history of the current part,
the model is reduced to a single part, saving on computation
time. Nevertheless, it is important to consider the entire build
layout when calculating the cooling time between layers, as
this will have a first-order impact on the thermal history of the
part and consequently the residual strain field. The reduced
model is a single part, mounted on a section of the substrate.
The section is taken to be 81 mm * 12.7 mm % 11 mm
(length = height = width).

Within the benchmark, the part was built in IN625 and 15-
SPH Stainless Steel as part of the experimental tests held at the
NIST laboratories, The substrate in both cases was the same
alloy as the build part. In this study, IN625 was chosen as the
build material. The material properties used within the model
can be found in section “Material Properties™.

The manufacture of parts, within the benchmark, was un-
dertaken on two different machines: an NIST-built machine
and an EOS M270. It is assumed from here on out in this

Fig. 1 The full geometry of the
build part as given by NIST [30]
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Table 1 Build parameters [30]
Build parameter (units) Value
Infill laser power (W) 195
Contour laser power (W) 100
Laser diameter (pum) 50 (estimated)
Infill scan speed (mm/s) 800
Contour scan speed (mm/s) 900
Infill hatch distance (pum) 100
Layer height (um) 20

analysis that the EOS M270 is used. The exact build parame-
ters used during the process can be seen in Table 1.

The scan strategy used is outlined in great detail within the
challenge description, including laser on and off times. Firstly,
each layer begins with a contour scan, creating only the out-
line of a single part. An infill scan of the current part then
occurs, before moving on to the next part within the build.
From Table 1, it can be seen that the infill and contour scans
have different laser properties. In addition, the infill scan strat-
egy alternates, between horizontal and vertical scans, depend-
ing on whether an odd or even layer is being completed. This
is a common technique used within AM in order to reduce
lack of fusion within the build.

The parts described above were built to these specific pa-
rameters at the NIST laboratories. This was in preparation for
experimental testing as comparative data for simulations.

Multiple tests were undertaken on the completed build part
and many features observed, including distortion, residual
strain, and microstructure properties. This paper focuses sole-
Iy on the prediction of the residual strain measurements.

The evaluation of residual strain was undertaken using X-
ray diffraction (XRD) measurements across the central plane
of the build. Additionally, measurements were only taken
along the thickest legs. The measurement plane can be seen
i Fig. 2.
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Fig. 2 Plane for XRD
measurement [30]

For additional information on the experimental measure-
ment procedure, please refer to reference [31].

Modeling Approach

In order to achieve the prediction of residual strains, a numer-
ical simulation was undertaken using the additive manufactur-
ing process Apps from DASSAULT SYSTEMES [22].
Details of the modeling approach in the software package
can be found below in section “Software”. The software offers
several modeling approaches including thermo-mechanical
and eigenstrain/inherent strain methods. In this particular
work, the authors have adopted the sequentially coupled
thermo-mechanical procedure.

Sequentially coupled analyses rely on the fact that the first
analysis is independent of the second. Hence, in this particular
case, the thermal history of the build can be assumed to be
independent of its mechanical response [29]. This form of
analysis is preferential to a fully coupled analysis as it saves
a considerable amount of computational time and cost.
Sections “Thermal Simulation™ and “Mechanical
Simulation™ outline the approach to each part of the analysis.

Software

Initially, the DELMIA Powder Bed Fabrication App was used
to generate the slicing. recoating, and laser trajectories of the
part. This was done to comply with the specifications of the
challenge, including laser speed. power, and infill pattern. The
actual analysis was completed in the SIMULIA Additive
Manufacturing Scenario App. based on the Abaqus 2018 fi-
nite element solver. The app offers the ability to use either a
thermo-mechanical method or an eigenstrain based method.
Within this study, we used the thermo-mechanical approach.
As implemented in Abaqus 2017 [32], key features of the
physics-based framework that facilitate a more representative

ﬂ Springer
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or 2.5 mm legs

Origin

analysis of additive manufacturing processes include (1) the
ability to use finite element meshes that do not conform to the
actual powder layer thickness; (2) explicit use of the spatial
and temporal data associated with laser scan paths and powder
recoating for defining material activation in the model and
integration of the moving heat source; (3) an “intersection
module™ that slices the laser scan path within the finite ele-
ment mesh to distribute the heat source over a given increment
of time; (4) progressive element activation to track the specific
volume of an element that is either completely or partially
filled with material (integration points) that are active within
a given time increment; and (5) progressive heat loss through
convection and radiation by determining the evolving lateral
and vertical free surfaces as a consequence of the layer-by-
layer activation process. These specific features and their ap-
plication within the current finite element model are described
in more detail in subsequent sections.

Geometry and Mesh

The single cantilever used in this study can be seen earlier in
Fig. 1. In order to replicate this geometry exactly within the
model, the STL file was taken directly from the challenge
description [30] and converted into a solid part within the
Abaqus model. A second part was created in the model to
represent the build plate. This is an important aspect that must
be accounted for in order to achieve a reasonable thermal
history prediction, due to the large heat sink effect induced
by the relatively large size of the substrate in comparison to
the build. The substrate dimensions were given by NIST in the
task description [30]. However, to model the entire build plate
would have been computationally expensive, especially as
four parts were built on each build plate. Moreover, each part
was thermally isolated from the other parts: that is. the spacing
is sufficient such that the build of an adjacent part has a neg-
ligible effect on the thermal history of any other part.
Therefore, within this model, a reduced substrate was used



Integr Mater Manuf Innov (2019) 8:294—304

and only a single part was modeled. The reduced substrate
was still sufficiently large (with the actual through-wall thick-
ness modeled) to account for the heat sink effect of the sub-
strate. The dimensions of this section can be found above in
section “The Challenge”. The two parts were connected by a
mesh “gluing” technique constraint within the interaction
model. This ensures that the heat transfer flows from the build
material through to the build plate directly.

In order to achieve a regular, structured mesh, the build part
was partitioned. Throughout the thermal analysis, linear hexa-
hedron (DC3D8) elements were used. An identical mesh was
used in the structural analysis, to allow the analysis to take
place on a compatible mesh (see section “Mechanical
Simulation™). The characteristic element size of the build
was 0.20 mm (Fig. 3). Hence, each element accounted for
approximately 10 real layers. Single element layers were un-
feasible due to the large number of layers within the model.
The element size was chosen as compromise between accura-
cy and run time. The partial integration and homogenization
modeling techniques in the Abaqus 2018 solver were lever-
aged to mitigate the discrepancy between element size and
layer thickness.

Material Properties

As described previously, IN625 was the build material in this
study. Due to the abundant use of this nickel superalloy within
industry, material property data is widely available for this
particular alloy. However, within this application to a powder

Fig. 3 Finite element mesh of
part in 2 directions
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Table 2 Temperature-independent material properties
Density (kg/m®) 8440
Solidus temperature (°C) 1290
Liquidus temperature (°C) 1350
Latent heat for phase transformation (J’kg) 272E+3

bed process, temperature-dependent data is required. The
large thermal gradients that take place in the manufacturing
process mean that the material experiences a wide range of
temperatures and physical states.

The above (Table 2) gives the values of some temperature-
independent properties of the material. The temperature-
dependent data used for the thermal conductivity, specific heat
capacitance, Young’s modulus, Poisson’s ratio, and coefficient
of thermal expansion can all be seen in Fig. 4a—e [33]. In
general, for manufacturing process simulations, one accounts
for the temperature-dependent plasticity behavior of the ma-
terial under consideration. For example, temperature-
dependent stress-strain curves would be implemented in the
finite element solver to accurately account for the softening
response at elevated temperatures. However, due to the range
of temperatures that are experienced by the material, as a result
of the time integration method used, the plastic behavior ex-
hibits only a small dependency on temperature. Moreover, Li
etal. [11, 12] and Wu et al. [13] have shown that for similar
materials and geometric configurations, the temperature-
dependent behavior is of second-order importance. Wen
et al. [34] have also shown reasonable success predicting
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residual stress with temperature-independent properties.
Therefore, for the simulations in this work, temperature-
independent yielding behavior was implemented, with a bilin-
ear, orthotropic plasticity hardening model as shown in Fig. 4f
[35]. The material’s yield stress is 725 MPa in the horizontal
x- and y-directions and 615 MPa in the vertical z-direction.
The stress ratio is 0.8483. The stress corresponding to a plastic
strain of 0.35 is 990 MPa in the horizontal directions, and the
stress in the vertical direction is scaled with the same stress
ratio as that used for the yield stress. This modeling
assumption—using a temperature-independent yield
behavior—has been justified by the accuracy of the predic-
tions presented herein.

&f Springer

Thermal Simulation

The initial step of the analysis was to simulate the ther-
mal history of the process. This is important as it is used
to drive the mechanical responses and development of
residual strains within the build. In order to do so, a
number of important features of the additive manufactur-
ing process had to be modeled effectively. Firstly, the
moving laser heat source needs to be modeled in such
a way that is representative of the shape, the power, and
the movement of the laser.

In this model, a single thermal analysis step, with dura-
tion slightly larger than the total build time of the part, is
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undertaken. This is to allow some extra time, for cooling,
post build. The laser is modeled by a moving concentrated
point heat source. This method applies the heat flux at a
singular moving point, and the heat is then dissipated
through the model by the underlying rules of conduction.
This approach is valid when the size of the heat source (or
melt pool) is small relative to the characteristic element
size. In such a case, the shape of the heat source is not as
important as the total magnitude of heat flux; however, it is
important that the precise temporal and spatial locations of
the heat flux are taken into account within the modelling
approach. The energy deposition into the system is com-
puted by taking into account the actual path of the heat
source. The toolpath-mesh intersection module provides
the information pertaining to the energy deposition. Thus,
for any given solution increment of time duration dt, the
mesh intersection calculation identifies all elements (and
their associated mass properties) through which the laser
passes. The concentrated point heat source is then distrib-
uted according to the mass properties of all of the
intersected elements. The movement of the heat source
was implemented with the use of an event series replicating
exactly the movement of the scanning strategy. For more
detail on this approach, please see references [36, 37]
where the thermal approach is fully described. Images of
the scan strategy used can be seen in Fig. 5.

Another key attribute of the selective laser melting pro-
cess is the material deposition. The arrival of material
needs to be accounted for as it has a large impact on the
heat loss effects within the system. The simulation of ma-
terial deposition has been achieved in the past through the
implementation of one of two main methods: clement birth
techniques or quiet element methods. The former of the
two methods uses a model change within each new step
to introduce a new set of elements. The quiet element
method assigns all elements with suppressed material
properties until activated by the laser.

Within this simulation, material deposition was
achieved via the clement birth technique within the
ABAQUS AM app. This technique allows material to
be added to the model within a single step. An event
series was developed detailing the movement of the
recoater blade and implemented within the app. The

Fig. 5 Event series defining the
laser movement

material is progressively activated using the inbuilt pro-
gressive element activation techniques, according to the
recoat times given while leveraging spatial and temporal
homogenization techniques mentioned above.

Further details were taken into account using boundary
and initial conditions. In order to replicate the substrate
heating within the model. the substrate was assigned an
initial temperature of 80 °C, along with a boundary condi-
tion on the bottom surface at 80 °C to maintain this tem-
perature. Morcover, the build part was assigned an initial
temperature of 40 °C as this was taken as the chamber
temperature.

Heat loss was taken into account through convection and
radiation, given, respectively, by the equations below.

Qeome = H(T-T) [1a]
draq = €0 (T'=T2") [1b]
Eqn.1 a Heat loss due to convection.b Heat loss due to radiation

Here, & is the heat transfer coefficient taken to be
18 W/m? K [29] and = is the emissivity taken to be
0.45. 7., is the ambient chamber temperature and o is
the Stefan-Boltzman constant. These conditions were
assigned to the evolving lateral and vertical free surfaces
(calculated based on the specific activated elements for a
given solution increment). Heat loss through the evolving
lateral surfaces to the surrounding powder was assigned
the same convective heat transfer coefficient as the
evolving top surface of the part. In preparing the model,
a number of sensitivity studies were undertaken and it
was observed that the assumptions with regards to heat
loss to the surrounding powder (which in reality would
be lower than the top surface) only weakly influenced
the results. This is likely a consequence of the thermal
model analyzing relatively large solution increments. A
thermal model focusing on melt pool size predictions
would require smaller time incrementation and therefore
would experience a larger influence of these heat loss
considerations.

When running the thermal simulation, to reduce re-
quired memory and computational time, the time points
feature within Abaqus was used. Time points use a list of
specified values to create a bespoke range of times within
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a) EE, EE11
(Avg: 75%)
+3.500e-03

+2.333e-03
+1.167e-03
+3.492e-10
-5.833e-04
-1.750e-03
-2.917e-03
-3.681e-03

b EE, EE33
) (Ave: 75%)

+3.652-03
+2.917e-03
+1.750e-03
+3.492e-10
-5.833e-04
-2.333e-03
-3.500e-03

Fig. 6 Results of the mechanical simulation a EE11 and b EE33

the analysis at which to output the solution. Note: time
points are different to time increments, many increments
may occur but only certain ones are written to the output
file. It is used as a tool to reduce computational space
required and does not affect the accuracy of the analysis.
The total step time was taken as the entire build time and a
single time point was used to output the thermal history for
each elemental layer (e.g., each simulated, aggregation of
actual build layers). A total of 79 frames were outputted
within the thermal analysis.

Mechanical Simulation

Although not a numerical requirement, the mesh geometry is
automatically copied from the thermal model and used in the
mechanical model. This ensures mesh compatibility and min-
imizes any further interpolation required between nodes. The

thermal elements are automatically replaced with 3D stress
clements in the App. Similarly, the heat transfer step in the
original heat transfer analysis was replaced with a single, static
general step. The same step time and time points sequence
were used, although a smaller time increment was used to ease
convergence. Further details on this can be found in references
[36, 37].

The thermal history was imported into the mechanical
model as a predefined field. Temperatures are automatical-
ly mapped between the thermal analysis and structural
analyses, thermal expansion then drives deformation.
These values essentially act as the load within the analyses
and can be used to determine the build-up of residual strain
within the model.

The initial temperature of the build part represents a relax-
ation temperature (not room temperature) above which ther-
mal straining induces negligible thermal stress. Upon material
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Fig. 7 XRD measurements from NIST a EE11 and b EE33 [38]
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Fig. 8 XRD measurement and 0.0045

simulation result of strain z along
the z=10.75 mm path
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activation, it represents the temperature from which the initial
thermal contraction occurs. In this analysis, the initial temper-
ature of the bridge is set to 750 °C. The initial temperature for
the build plate is 80 °C.

The thermal results for each increment during the
previous transient heat transfer analysis are applied to
the structural analysis as predefined fields. Abaqus au-
tomatically maps the nodal values of temperature by
interpolation (both in space and time) of the previous
results.

In addition to this, the base of the substrate is
assigned an encastre boundary to ensure no movement.
Therefore, we can determine from this that any dis-
placement caused within the build is as a direct result
of the build-up of residual stresses.
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Results and Discussion

The thermal simulation, though done on a coarse scale, shows
reasonable accumulation of heat among the layers and ac-
counts for the cooling period between layers.

The results of the mechanical simulation are shown in
Fig. 6. Figure 6a shows the contour plot of the residual strain
in the x direction. Likewise, Fig. 6b shows the simulation
result of the residual strain along the z direction.

When compared to the results produced by NIST [31], a
few main features show strong agreement between the simu-
lation and experimental results.

Firstly, in a comparison of the simulation and experimental
contour plots in the x direction (Fig. 6a and Fig. 7a), one can
see that both results show tensile strains across the main body

Fig. 9 XRD measurement and 00035
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of the part, with compressive strains being seen on the left
hand side of each leg. Furthermore, there appears to be an
accumulation of compressive strains around the peaks where
the legs join. The magnitude in both cases is on a very similar
scale, showing values in the region of 3.5¢-03 and — 3.5¢-03.
Another prominent feature that can be seen in both contour
plots is the change from tensile to compressive strains within
the middle region of the far right support.

The comparison of the contour plots in the z direction (Fig.
6b and Fig. 7b) again shows a very good level of agreement.
Both contours show almost a reversal image to that in the x-
direction. Compressive strains can be seen throughout the body
of the build with tensile strains down the length of some of the
legs, in particular the wider ones. Again, magnitudes are very
similar, with a peak value 0f 3.652¢-3 being shown in the sim-
ulations and 3.5e-3 in the experimental data.

Figure 8 and Fig. 9 show the comparison between X-ray
diffraction measurements and simulation result of the strain in
the z direction along the z = 10.75 mm and 7 =2.75 mm paths
in the center plane. The predicted results show good correla-
tion with the benchmark test data.

It is suggested by the results above that the model implement-
ed here has delivered a reasonably accurate prediction of the
residual strains within the build. The magnitudes of the strains
are cotrect across the plane examined and the distribution of the
strains shows visual agreement between the two sets of contour
plots. Additionally, Figs. 8 and 9 show very clearly an agreement
in measuremernts throughout the build height of the part.

Conclusion

‘Within this study, a single cantilever was simulated and ex-
perimentally built and tested. This was undertaken as part of
the Additive Manufacturing Benchmark 2018. Experimental
data was supplied courtesy of the NIST laboratories.

A thermo-mechanical sequentially coupled analysis was
undertaken in order to predict the residual strain values within
the selectively laser melted part. The results show a very good
level of agreemernt with the XRD measurements taken of the
built part in this blind benchmark. From this, we can conclude
that the simulation technique developed within this document
is a sufficient method for the prediction of residual strain mea-
surements. The model described in this paper received joint
first prize in the residual elastic strain category of the NIST
AM Benchmark 2018.
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The suitability of using volumetric [jmm ?], areal [Jmm 2] and linear [Jmm '] energy densily as design param-
eters is discussed. To compare process conditions between continuous and pulsed laser systems, the jump speed
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developed at TWI, The importance of using v;in scan speed calculations is demonstrated. This allowed calculation
of accurate energy levels comparable to optimal conditiens reperted in literature, The power factor (Pr) model
and the specific point energy (Egp), used to describe and replicate the laser welding process in different laser sys-
tems, have been adapted to describe the L-PBF process. Egp - Pg curve is introduced, showing optimal processing
windows applicable to different L-PBF systems with powers ranging from 175 to 967 W and laser focus diameter
from 75 to 300 um. Quantitative indicators for hatch spacing and layer thickness optimisation are presented for
processing AlSi10Mg alloy: 1) melt-width overlapping coefficient = 30%, 2) width-to-depth ratio = 0.8 (using the

measured half width) and 3) melt-depth limit <410 pm.
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1. Introduction

Laser powder-bed-fusion (L-PBF), also known as selective laser
melting (SLM) or direct metal laser sintering (DMLS, trade name by
EQS) is a laser additive manufacturing (AM) technology that offers
high geometrical flexibility and accuracy with minimal material waste

0264-1275/@ 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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as well as topology optimisation potential for improving engineering
components [1]. Aerospace and automotive manufacturers are increas-
ingly adopting L-PBF as an industrial manufacturing technique for pro-
duction and topology optimisation of AlSi10Mg components due to
the material's high strength-to-weight ratio and its good mechanical
properties [2]. However, Aluminium alloys are corrosion susceptible
and easily oxidised, which increase material welding complexities [3].
Thermomechanical and optical properties of Aluminium play a very im-
portant role in its welding capabilities. The energy balance of the pro-
cess can be described by the relationship between the material's
thermal conductivity (k) and its laser absorption rate (A): k/A [4].
Aluminium’s characteristic 5% absorption coefficient (in cold material})
at the typical L-PBF laser wavelength 1.064 um [5] and its high thermal
conductivity promote energy imbalance which limits laser processing.
The need of high laser power (e.g. 500 W - 1000 W} in L-PBF of Alumnin-
ium [11] and Aluminium alloys can be more critical compared to corro-
sion resistant materials or materials with higher absorptivity and lower
thermal conductivity (e.g. stainless steel, titanium alloys, nickel alloys
etc.}, as the use of higher power can help disrupting oxides and improv-
ing the process energy balance. Absorptivity in laser welding of Alumin-
ium alloys can significantly increase from <20% to >80% when increasing
linear energy density from 33 Jm ™" to 100 Jm™ [6]. L-PBF process is
similar to the laser welding process with the difference that L-PBF
works with powder feedstock rather than solid dense material. In L-
PBF, apparent density of powder, particle morphology and size distribu-
tion define the absorptivity of a powder bed which can be higher than
that of solid dense materials [7]. In turn, thermal conductivity of a pow-
der bed can be one to two orders of magnitude lower than that of the
solid material [8]. Lower energy levels are thus typically used in L-PBF
compared to laser welding for manufacturing near full-density
components.

Volumetric energy density (Vep} is typically used in L-PBF to charac-
terise optimal parameters for minimum porosity in a specific material.
Vip is defined by the laser power, scan speed, hatch spacing and layer
thickness as described in Eq. (1).

Vip = laser power
-+ (scan speed-hatch spacing-layer thickness) [Jmm’3] )

Critical Vzp = 60 Jmm > was identified [9] for AlSi10Mg whilst pro-
cessing 50 pm layer thickness and varying hatch spacing, laser power
and scan speed. A maximum part density of 99.2% was reported {mea-
sured from cross-section micrographs using optical microscope). In
[10], two-dimensional {2D} expression of energy density was used.
This is described in Eq. (1) where Agp is the areal energy density in
the 2D plane.
Agp = laser power = (scan speed-hatch spacing) []mm’z} (2)

In[10], Agp, processing window ranging from 1.2 to 1.8 Jmm 2 was
identified for high-density AlSi10Mg parts with 30 um layer thickness
and varying hatch spacing, laser power and scan speed (acquiring a
maximum 99.07% density measured based on the Archimedes’ princi-
ple). The densification mechanism of high power (HP) L-PBF of
AlSi10Mg was investigated in [11], using up to 1 kW laser power to
achieve a maximum 99.8% density (measured using optical micro-
scope). The effect of linear energy density Lcp, in the densification mech-
anism was presented. Lgp is defined by Eq. (3).

Lep = laser power + scan speed [ Jmm'] 3

From work conducted in [11], optimal Lgp ranging from 0.2 to 0.7
Jmm~! can be identified with 50 um layer thickness and varying
power and speed with fixed hatch spacing. A ‘pre-sinter” scan strategy
was used in [12] to obtain 99.8% part density, similar to the HP L-PBF ap-
proach. The pre-sinter strategy consisted on a first scan of the layer

using half the power followed by a second scan with full power
(100 W) at 0.2 Jmm ~! with 50 pm hatch spacing and 40 um layer thick-
ness (i.e. Vgp = 100 Jmm—>). The use of pre-sintering strategies tends to
significantly decrease build rates resulting in longer processing time.
Build rate is defined by the divisor factor in Eq. (1} and is typically
given in mm? s~ Build rate of the pre-sinter strategy is therefore
1 mm? s~ which is then divided by the number of scanning per;/layer
(i.e. build rate = 0.5 mm?® s~ ), whilst HP L-PBF can build at
9.75 mm? s~ achieving same maximum density of 99.8%. Furthermore,
build rates of 21 mm? s~ were reported in [11] for 99.5% density parts.
The use of higher powers can increase the laser absorptivity of the ma-
terial [7]. HP L-PBF of AlSi10Mg can thus improve the energy balance of
the material promoting a more efficient densification mechanism whilst
increasing build rates simultaneously.

Following the linear energy density approach, single-track paramet-
ric analysis is reported in [13], characterising melt-pool dimensions and
weld bead homogeneity. Low Lz was observed to resultin droplet for-
mation and bad wetting to previous layers (or to the baseplate for the
first layer} whereas too high Lgp caused distortions and irregularities
due to large melt-pool volumes and balling. In their work they defined
a process window in the power-velocity (P-v) graph ranging from
0.13 to 0.21 Jmm ™" for samples >99% density. Single tracks within the
process window were characterised by the conduction welding mecha-
nism as well as uniform and continuous track beads. Keyhole welding
modes resulted in gas porosity formed at the bottom of the melt pool
and non-uniform tracks resulted in bead disruptions that ultimately
promoted higher levels of porosity. The process window in the P-v
graph was broader when using higher powers possibly due to the
more efficient densification mechanism promoted by an optimised en-
ergy balance. The maximum density acquired was ~99.3% {measured
by the Archimedes’ method) using 200 W power with a build rate
~4.4 mm’® s~', The effect of Lgp in porosity development of L-PBF parts
was investigated in [14]. Strong correlation between part density and
single track morphology, melt pool dimensions and welding mode
(conduction or keyhole} was observed. They concluded that melt pool
characterisation using different L, levels can provide valuable informa-
tion to define optimal processing windows for near full-density compo-
nents. The present work investigates the suitability of using energy
density as a design parameter to describe L-PBF. The use of Vgp, Agp
and Lgp, to characterise optimal L-PBF parameters is analysed. An alter-
native approach using the specific point energy as design parameter is
presented.

2. Background

This section presents consolidation defects typically observed in L-
PBF of AlSi10Mg components that limit the densification mechanism.
Also presented are the role of laser energy density in parameter optimi-
sation and processing windows reported in literature for this material.
Characteristics of the two different laser irradiation mechanisms used
in L-PBF, pulsed and continuous, are briefly described as well as the
two different approaches used in literature to characterise pulsed-
mode laser speeds. Finally, the power factor model used inlaser welding
is presented. The present work investigates the use of the power factor
model and specific point energy concept to characterise the densifica-
tion mechanism in L-PBF. To the authors’ knowledge, no work has
been reported previously in literature investigating the use of power
factor and specific point energy as design parameters in L-PBF.

2.1. Porosity and oxidation in L-PBF of AISi1OMg

Porosity and lack of fusion are typical defects in L-PBF AlSi10Mg
components. Large oxides (several microns to tens of microns large)
are known to be associated with such defects, promoting formation of
fatigue cracks [15]. The oxide particles prevent consolidation of the mol-
ten alloy causing the formation of large pores and incomplete
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consolidation (lack of fusion). Porosity along the edges of melt pool
widths are typically caused by lack of fusion. Such defects can be elimni-
nated by reducing hatch spacing which increases the number of local
melting cycles. In [15], oxidation-promoted lack of fusion and porosity
was predominant in L-PBF of AlSi10Mg using 370 W. Spherical gas
pores were only occasionally observed which were not associated
with crack nucleation, unlike the large oxidation-promoted pores.
High laser powers can be used to disrupt such oxides in order to mini-
mise porosity and eliminate lack of fusion defects [16]. In [17] it is re-
ported that 96% of the gas content within spherical gas pores in L-PBF
of AlSi10Mg is hydrogen. Only gas (hydrogen}) porosity was observed
using 910 W in HP L-PBF of AlSi10Mg and no lack of fusion was detected.
Hydrogen porosity can be controlled using different powder drying
mechanisms as reported in [17]. HP L-PBF can thus be used to manufac-
ture AlSi10Mg components with minimum porosity and no lack-of-
fusion defects.

2.2. The role of laser diameter in porosity formation

Laser beam diameter has a very important role in porosity forma-
tion. Porosity can increase significantly when using larger diameters
[17] possibly due to decrease in power density. Power density is defined
as the power per unit area, usually expressed in MWcm ~2 Lower power
density requires slower scanning speeds to manufacture samples with-
out imperfections. In turn, slower speeds can cause larger and deeper
melt pools which can promote the formation of keyhole porosity.
Large beam diameters with slow speeds can thus limit the process win-
dow for manufacturing high density components.

2.3. Defining processing windows of eptimal energy density

As described in Section 1, Vi, Agp and Ly are typically used as de-
sign parameters to manufacture near full-density AlSi10Mg L-PBF com-
ponents. However, processing windows for same material can show
different energy values in literature especially with varying power,
scan speed and laser focus diameter. For instance, optimal 58 Jmm™—>
was reported in [9] using 175 W whilst 185 Jmm™> was reported in
[18] with 400 W. In [10], optimal 55 Jmm > was identified at 195 W
whilst 36 Jmm 3 was reported in [17] using 910 W. Near-full density
was achieved at 72 Jmm~3 in [11] with 700 W and in [19] 67 Jmm—3
and 250 W were used to manufacture defect-free L-PBF components. Fi-
nally, 500 Jmm 3 was used in [32] to obtain optimal metallurgical
bonding between neighbouring (50 um) layers and in [33] uniform
scan tracks with no irregularities and well-consolidated layers, free of
satellites and balling, were produced at 160 Jmm >, The different en-
ergy density values reported in literature resulted from different combi-
nations of laser power with the other Vgp parameters (see Eq. (1)). It
has to be noted that all the aforementioned studies were conducted in
different L-PBF systems (i.e. different machine manufacturers} featuring
different laser focus diameters. Table 1 presents different powers, laser

Table 1
Different powers, laser focus diameters, Vep, Sep and Lgp used in literature for manufactur-
ing near full-density L-PBF AlSi10Mg components.

Power Laser Veo Aep Lep Reference
w] diameter [Jmm ™3] [Jmm~2] [Jmm~"]
[um]

§10 300 40 2 c4 [17]
195 100 55 16 0.28 [10]
175 150 58 18 0.17 [9]
250 200 67 33 0.50 [18]
700 195 72 36 0.54 [11]
400 135 131 33 0.43 [18]
100 20 160 8 c4 [33]
250 70 500 25 1.25 [32]

diameters and energy densities used in literature for manufacturing
near full-density L-PBF AlSi10Mg components.

Table 1 shows that optimal energy density can range from 40 to 500
Jmm 3, depending on power and laser focus diameter. Such wide range
complicates transferring parameters from one L-PBF systern to another,
which results in a long and resource consuming parameter develop-
ment process. As shown in Eqgs. (1)-(3), the calculation of Vgp, Agp
and Lgp does not take into account laser diameter. Defining process
power density for a given laser diameter is crucial for energy density op-
timisation. Investigating the role of laser focus diameter in L-PBF densi-
fication mechanism may help transferring optimal parameters between
different L-PBF systems with higher accuracy.

2.4. Pulsed and continuous L-PBF laser systemns

Lasers in commercial L-PBF systems can be operated by two different
energy deposition modes: continuous or pulsed. The main difference
between the two is the approach used to deliver the power along the
scan track in terms of speed. In pulsed L-PBF systems, the laser does
not fire continuously, but in a discrete (point-by-point) manner.
While continuous lasers use a single parameter that define the scan
speed, pulsed lasers use two different parameters that have to be inves-
tigated independently, namely: point distance (P, distance between
two consecutive points) and exposure time (T, elapsed laser firing
time at each point}). Usually, the speed (v} at which the pulsed laser
moves across the powder bed is defined by the ratio of these two pa-
rameters as shown in Eq. (4) [18]. However, in such approach the
speed at which the laser moves from point to point is not considered
(ie. speed of the scanning mirrors that control the point-to-point move-
ment of the laser). A more detailed definition of scan speed in a pulsed
L-PBF system is presented in [20] as described in Eq. (5}.

v=Py=T, [mms™] (4)

Vv="Ps+ (Te+ (Pg+vy)) [mms™"] (5)
where v; is the jump speed from point to point. In a pulsed system, the
scan speed can be obtained by combination of different P4 and T. values,
but not all are suitable for use even when the combined values are iden-
tical. Same speeds with different combination of Py and T, can deliver
completely different results, from near-full density components to
very high levels of porosity or build failure. In [18] it was shown that
P, similar to the laser diameter can be used to achieve high-density
AlSi10Mg components. The size of the melt pool may not be able to
cover the distance between consecutive points if P4 is too large,
resulting in high porosity or even disrupted melt tracks. In turn, too
large exposures can develop keyhole welding mode which is detrimen-
tal for the density of the part whilst too short exposures canresult in un-
consolidated material. Therefore, each parameter has to be carefully
selected. The use of vj in pulsed laser systems may provide a more accu-
rate representation of the process scanning speed which facilitates
transferring optimal parameters from a pulsed to a continuous L-PBF
systern.

2.5. The use of specific point energy and the power factor model

In laser welding, an empirical model is presented in [21] to charac-
terise the melt pool formation mechanism taking into account laser di-
ameter. The model uses the fundamental laser-material interaction
parameters (FLMIP), power density (qp}, interaction time (t;} and spe-
cific point energy (Esp), to replicate the welding process in different
laser systems. These parameters are described in Eqs. (8)-(10). It was
reported that power density and specific point energy control the
depth of penetration whilst interaction time controls the weld width.
The power factor (P} (see Eq. (11)} is used as design parameter to con-
trol constant melt pool depth with varying beam diameter. In [6] the
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model was used to characterise laser welding process of Aluminium and
in [22] the role of power density in the transition from conduction to
keyhole welding mode was investigated. Also, the relationship between
power density and porosity build-up within the melt pool is presented.
The model used to describe the densification mechanism and character-
ise melt pool dimensions in laser welding can potentially be used to in-
vestigate the L-PBF densification process as both technologies use
similar joining mechanism of laser melting of metallic feedstock. As
mentioned above, Esp and P empirical model is used in laser welding
to control melt depth, independent of laser beam size. A similar ap-
proach is presented in [23] where a novel method is proposed for
selecting optimal parameters in L-PBF of AlSi10Mg, based on the laser
penetration depth.

q, =P+ As  [typically MWem ™) (8)
t=d:v s &)
Esp = QptiAs =Prd = v [] (10)

Pp=qud =P =d [me’w (11)
In Eqs. (8)-(11), P refers to laser power, As is laser spot area, d is
laser diameter and v is welding speed.

2.6. Motivation and limitations of the present work

This work investigates the effect of energy density parameters such
as scan speed (i.e. exposure time and point distance), hatch spacing and
layer thickness in the densification mechanism of HP L-PBF of AlSi10Mg
alloy. The results are compared with optimal parameters reported in lit-
erature for same material, using different laser systems (i.e. different
machine manufacturers). An empirical model used to characterise
laser welding process has been adapted to describe L-PBF densification
mechanism of as-built AISi10Mg components, independent of laser sys-
tem. A well-defined specific point energy range characterising optimal
L-PBF process conditions is proposed in the present investigation. Only
energy density parameters {see Eq. (1)) and laser focus diameter are
considered in this work. Other L-PBF parameters such as gas flow,
scan strategy, etc., are not investigated. However, it has to be noted
that such parameters are fundamental for controlling mechanical prop-
erties of the as-built component. For instance, optimal gas flow can help
removing laser spatter particles, preventing them from landing on the
powder bed and minimising the number of imperfections in the process
layer, which ultimately improves the density of the part. On the other
hand, optimal scan strategies can be developed in order to control

800

local cooling rates and residual stresses and improve mechanical prop-
erties [34]. If a scan strategy is poorly chosen, it can cause local thermal
accumulation which can lead to part deformation [35]. The scope of the
present work is to optimise and homogenise L-PBF FLMIP in order to
identify optimal energy maps, independent of laser system used. Pro-
cess parameters such as gas flow, scan strategy, etc. can be investigated
in future work using optimal laser-material interaction parameters.

3. Experimental methodology

In order to investigate the effect of process parameters in the densi-
fication mechanism of HP {1 kW) L-PBF of AlSi10Mg, two builds, B1 and
B2, of different process layer thickness were conducted with varying ex-
posure time and hatch spacing, The samples were 10 x 10 x 10 mm?
cubes for density and microstructure analysis. Low and high layer thick-
ness levels were used in B1 and B2 respectively, namely: a) 50 um (B1)
and (b) 100 um (B2). Laser power was fixed to 967 W and point distance
P4 = d was used in all B1 and B2 samples. Both B1 and B2 were designed
in a full factorial 5 x 5 design with varying exposure time and hatch
spacing. Exposure times in B1 and B2 were chosen in order to maintain
consistent Vg ranges between both builds of varying layer thickness ac-
cording to Eq. (1). Hatch spacing range 0.12-0.24 mm, typical of HP L-
PBF of AlSi10Mg, was used in both builds. As layer thickness is a fixed
value that cannot be varied within the same build, using two full facto-
rial design builds (i.e. B1 and B2) allows identification of representative
density trends with varying characteristic Vip, Agp and Ly, parameters,
namely: layer thickness, hatch spacing and scan speed {or exposure
time in pulsed-mode laser) respectively. As Vi is the typical design pa-
rameter used in L-PBF, the experimental approach used in the present
research allows investigating same Vgp range in the different layer
thickness investigated, adjusting exposure time accordingly. One addi-
tional build was conducted with Py = 2d, adjusting exposure time in
order to maintain same Vg, range. However, larger point distance pro-
moted weld bead disruptions, leading to build failure. This build is
therefore not discussed in the present investigation.

3.1. L-PBF system

All experiments were conducted in a one-off Renishaw AM250 spe-
cially equipped with a 1 kW IPG pulsed-mode laser. A focus test was
conducted in order to use laser focus diameter that resulted in uniform
and consistent tracks at typical HP L-PBF scan speed. The test consisted
of multiple laser scan tracks on Aluminium solid substrate using fixed
speed and power, and varying machine focus parameter. Focus param-
eter is a numerical value in mm that defines alignment of the powder
bed with the laser focal z-location. Commercial L-PBF systems can

Spot size (um)
§E888E83

o

Focus (mm)

—8—xavg —@—yavg

Fig. 1. Average laser spot size with varying machine focus parameter. Regions of two different intensity distribution are shown within black dashed lines. Top view images of scan tracks

conducted at different laser spot size and focus are shown.
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Table 2
Chemical composition of AISi10Mg powder in weight %,

w

Al Cu Fe Mg Mn N Ni

Pb 0 Si sn Ti Zn Other

Bal. <0.01 01 033 <0.01 =0.01 <0.01

<0.01 0.05 9.87 <0.01 0.01 <0.01 0.02

have different focus at which the laser spot is at its focal position on the
process layer. Periodical focus characterisation is recommended in L-
PBF systems to confirm spot size and intensity distribution. Spot size
and intensity distribution of varying focus parameter were measured
using an Ophir Spiricon camera-based beam profiler. Fig. 1 shows
focus values plotted against average laser spot diameter. Two regions
of different laser intensity distribution are highlighted within dashed
lines in Fig. 1. A uniform Gaussian distribution was observed within
spot size range 75-100 um. Larger diameters with non-uniform inten-
sity distribution resulted in disrupted tracks of varying width along
the scan direction. The 75 um focused laser diameter resulted in uniform
tracks with constant width along the scan direction. In the present
worlk, all samples were conducted using 75 um laser diameter. Addition-
ally, a water-cooled Ophir Spiricon power sensor was used to measure
laser power delivered at the powder bed. Effective 967 W was measured
when using 1 kW output. Therefore, 967 W is used in calculations for
higher accuracy.

3.2, Material

Gas atomised AlSi10Mg powder sorted by LPW with 20-63 pm par-
ticle size distribution was used. Table 2 shows the chemical composition
of the material in weight % according to LPW Test Certificate. Fig. 2
shows scanning electron microscope {SEM) images of the powder mor-
phology and cross-sectional density. A large amount of elongated and
satellite particles were observed. The light density of Aluminium may
have caused such defects to form during the gas atomisation process.

Elongated and satellite particles can have a detrimental effect on pow-
der flowability {especially during deposition of layers) and apparent
density of the powder bed, limiting the densification process. No appar-
ent porosity/defects or contamination inside powder particles were ob-
served in the cross section powder morphology. Only occasional small
scale porosity was observed within the particles.

A particle size analysis was conducted using the laser diffraction
method according to BS I1SO 13320-2009 standard. Fig. 3 shows the par-
ticle size distribution (PSD) graph. A table embedded in Fig. 3 shows
values for Dy, Dsg and Dg. Sieving of powder is critical as PSD analysis
showed a small volume fraction below and above the declared size.
Sieving was conducted using 63 um sieve.

3.3. L-PBF process parameters

Fig. 4 shows the parameters used in B1 and B2. A pre-heat tempera-
ture of 80 °C, meander scan strategy and 67° rotation of subsequent
layers were used in both builds. X-marked samples in Fig. 4 were used
as reference for thermal monitoring and metallography. The reference
samples were specially selected to account variations in hatch spacing
and exposure time.

3.4. Thermal monitoring
The temperature evolution of reference samples was measured in-

situ using a bespoke 13 mm-thick thermocouple substrate. The sub-
strate is composed of multiple adjustable bolt-holders that locate the

Fig. 2. Scanning electron microscope {SEM) images showing {a) powder morphology and (b) cross-sectional density.

Dy (um) Dsg (um) Dgp (um)

= 286 47.4 777

Volume density (%)

=TT 7T T
100 1000

Size Classes (um)

Fig. 3. Particle size distribution (PSD) of AlSi10Mg powder showing Dy, Dsp and Dgg values.
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B1
Hatch spacing [mm]
012 015 018 021 024

Exposure time [ps]

B2
Hatch spacing [mm]
012 015 018 021 024

o1 ][ 2][2 ][ +]

Exposure time [ps]

% Samples selected for thermal monitoring and metallographicinspection

Fig. 4. Parameters used in B1 {50 pm layer thickness) and B2 (100 pm layer thickness). X-marked samples were selected for thermal monitoring and metallography.

thermocouple probes at the bottom of the substrate in a fixed position
and known distance from the top surface of the substrate. The thermo-
couple probes are surrounded by the substrate material and are in solid
contact with the measuring surface. Fig. 5a shows a schematic represen-
tation of the temperature measurement approach of a single reference
sample and Fig. 5b shows a bottom view of the thermocouple substrate
with spatially-defined thermocouple probe bolt-holders.

Multiple samples of varying hatch spacing and exposure time were
monitored as described in Fig. 4. For proper alignment between measur-
ing points and sample location on substrate, the substrate geometry was
embedded on an STL file, superposed to the sample array in Magics Soft-
ware. The samples of interest were located superposed to the substrate
measuring points. The substrate geometry was then removed from the
STLfile and the sample array was built without superposing geometries.
The thermocouple data was acquired using a 500 Hz data logger to ac-
count for the rapid thermal evolution of the laser melting process.
Time events were recorded describing representative temperature evo-
lution plots.

3.5. L-PBF modelling

In order to use a more accurate pulsed scan speed in the calculations,
experimentally acquired thermal evolution of AlSi10Mg reference sam-
ples were used to calibrate an FE model capable of adjusting jump speed
vi. The FE approach used in the present investigation leverages a new
physics-based framework from a general-purpose finite element code
(ABAQUS). The moving laser heat source was modelled through the

Measuring Sample

point

4mm -_----_----_¥--_-

Substrate

|v-._‘
Bolt-holder

s Thermocouple

Tightening screw

t

(a)

implementation of a DFLUX user subroutine, which accessed data re-
garding the location and power of the laser from an event series. The
event series was created to define the whereabouts and properties of
the laser throughout time and took both the exact scan strategy and
scan speed, as defined in Eq. (5), into consideration. This allowed for
the inclusion of jump speed within the simulation. Furthermore, mate-
rial deposition was modelled through the implementation of element
birth techniques. This is a common procedure in the modelling of AM
processes and allows for new material to be added throughout the sim-
ulation. The model has been previously developed and validated in re-
search conducted at TWI for Ti6AI4V alloy [24,25]. Further validation
was conducted in the present work modelling the thermomechanical
properties of AlSi10Mg.

3.6. Porosity and melt pool size measurement

Porosity in XZ and XY planes was measured using optical micros-
copy. XZ plane provides information of porosity build-up within multi-
ple layers, showing porosity development in melt pool widths and
depths. XY plane investigates porosity development within a single
layer. B1 and B2 samples were cross-sectioned across the scanning di-
rection to characterise melt pool width and depth. Optical micrographs
were taken at different locations across the sample covering 25% of the
total cross-sectional area. The micrographs were converted to binary
images where black pixels represented sample porosity. Statistical
pore pixel count was conducted using Image] software to calculate %
density of samples. B1 cross-sectioned reference samples (X-marked

Fig. 5. (a) Schematic representation of the thermocouple substrate design showing the holding mechanism used to fix the thermocouple in solid contact with the measuring point and
surrounding substrate material. Not scaled. (b) Bottom view of thermocouple substrate showing spatially-defined thermocouple probe bolt-holders.
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Fig. 6. XZ density of B1 {50 un) and B2 {100 un) samples with varying (a) Vip, (b) Agp and (€] Lep.

samples in Fig. 4) of varying exposure time and hatch spacing were used
for metallography analysis. Reference samples were etched with Keller's
reagent to reveal melt pools. Melt pool dimensions were measured by
pixel count in micrographs using Image] software.

4. Results

The effect of varying process parameters in melt-pool dimensions
and part density is presented in this section. Also presented are experi-
mental thermal measurements which were used to validate and cali-
brate the FE model for v; simulation.

4.1, Density

Volumetric energy density range 20-100 Jmm * (identified from
literature) was used for investigating the L-PBF densification mecha-
nism of AlSi10Mg powder. In the present section, 967 W power was
fixed in all samples in order to investigate the effect of exposure time,
hatch spacing and layer thickness in porosity development. Scan
speed of the pulsed laser was obtained using Eq. 4 as is typically
used in literature. In all samples, point distance was fixed to 75 um
(i.e. Pg = d). Fig. 6 shows B1 and B2 samples XZ density with varying
Ven, App and Lgp. Standard deviations are represented by error lines.
Fig. 6a-c show that energy density ranges of ‘good’ (higher % density)
samples are being gradually set apart from ‘bad’ (lower % density) sam-
ples when reducing dimensional expression of energy input from 3D to
1D respectively. As shown in Fig. 6, layer thickness has a strong influ-
ence on the density of AISi10Mg components as different thickness
levels can result in very different part densities even at same energy
range. High power factor (i.e. high laser power, e.g. 1 kW, focused

£
Sufficient
melt-depth
overlap

Melt depths > 4 times
larger than layer thickness

onto a small beam diameter, e.g. < 100 um) can lead to improper closure
of the melt pool especially when processing thicker layers [36]. Thick
(e.g. 100 um) layers typically lead to deeper melt pools. Residual gas
at the bottom of deep melt pools cannot escape in time during rapid so-
lidification, promoting keyhole porosity formation [37]. Fig. 7 shows a
B2-7 sample micrograph {n.b. XZ density of B2-7 sample is 90.3%). Sev-
eral aspects observed in all 100 pm layer samples are represented in
Fig. 7, namely: 1) melt pool depths in excess of layer thickness can de-
velop, suggesting that subsequent layers can be fully consolidated;
2) too deep melt pools promote keyhole porosity; 3) sufficient overlap-
ping between melt depths can be observed; 4) keyhole porosity is the
governing factor limiting part densification as lack of fusion was only
occasionally observed. These B2 samples’ characteristics indicate that
the laser energy range investigated is sufficient to process large {100
um) layer thickness. However, Fig. 7 provides information indicating
that thicker layers of AlSi10Mg alloy might require less laser energy
than expected. This could be due to typical Aluminium material proper-
ties. Different layer thickness in L-PBF of Aluminium can develop differ-
ent Oxygen content during the build process. In [39] it was observed
that lower layer thickness (i.e. 50 um) in Aluminium alloy can develop
higher amounts of oxide content than thicker (i.e. 75 um) layers, as
thicker layers reduce Oxygen by enhancing temperature and stirring
within the melt pool. Lower laser energy might thus be required in
thicker layers since thicker layers reduce cooling rates, increase exo-
thermic reaction and produce larger melt pools [39]. Layer-thickness-
based process instabilities might thus limit the use of Vg as design pa-
rameter. In L-PBF process, layer thickness has typically constant value
during the build process and is selected in advance based in productivity
(i.e. build rate), surface roughness, etc. Using Agp or Lgp (i.e. removing
the effect of layer thickness from energy calculations) can simplify

Lack of fusion only
occasionally observed

\

Lo

Keyhole
porosity atthe
bottom of melt

pool depths

Fig. 7. Representative Micrograph of 100 pm layer thickness B2-7 sample showing melt-pool and porosity characteristics. Keyhole porosity is shown as the governing factor limiting part

densification which might be an indication of excessive laser energy.
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Fig. 8. Optical binary micrographs of B2 samples of similar XZ density showing (a) large and (b) small pore sizes at different standard deviation (SD) values, extracted from porosity

measurement data.

identification of optimal process energy levels as long as a good range of
layer thickness levels is identified for manufacturing near-full density
components. If layer thickness vary during L-PBF process {e.g. for in-
creasing build rates, control microstructure, etc.), multiple lasers with
different size and power might be required to process each layer thick-
ness at optimal power factor and energy conditions [38]. Layer thickness
is therefore a fundamental parameter that defines energy input require-
ments. Fig. 8 shows a comparison of two B2 samples of similar % density
(95.9% and 95%) and different standard deviations {2 and 1.2 respec-
tively). It was observed that average pore-size distribution and maxi-
mum individual pore dimensions were correlated with standard
deviation values. A well-defined energy range differentiating high
from low % density was observed when analysing linear energy density
Lzp. In contrast, Vep and Agp scenarios showed “good” and “bad” sam-
ples merged along the energy axis. This was especially observed in
Vin, where all “good” and “bad” samples shared the same energy
range. A well-defined Lgp region of high-density components with
small spherical pores was identified ranging from 0.2 to 0.6 Jmm™~". Po-
rosity in all samples was observed to be either gas or keyhole porosity as
evidenced by the spherical morphology of individual pores. No lack of
fusion defects were detected and only small amounts of irregular
pores were observed in B2 samples, where multiple spherical pores

merged together. Standard deviations <1 were observed in high-
density samples which resulted in <60 pm pores. In contrast, standard
deviations =1 were associated with larger pores, reaching even values
=200 pm with SD > 2.

Figs. 9 and 10 show XZ density and standard deviations (SD} of B1
and B2 micrographs with varying exposure time and hatch spacing. It
can be seen in Fig. 9 that most of B1 samples were > 99% density with
only small spherical pores. Porosity and standard deviation in-
creased only in samples with hatch spacing 0.24 mm with 20-30 ps
exposures. Melt pool dimensions of lower exposure times may
have not been large enough to overcome porosity formation in re-
gions along the edges of melt pools widths, promoting higher poros-
ities in samples with larger hatch spacing. Fig. 10 shows larger
spherical pores reaching diameters >200 pm in B2 samples with
70-90 ps exposures and 0.12 mm hatch spacing. In B2 samples,
higher energy densities with longer exposure times promoted
deeper melt pools, which led to keyhole porosity. Increasing hatch
spacing may have decreased the number of local melting cycles
which helped reducing standard deviations and smaller pore dimen-
sions. However, large quantities of smaller pores limited the densifi-
cation mechanism in B2 samples even with increased hatch spacing,
resulting in densities <95%.

Hatch spacing

0.12mm

us
B1-11-
99.64%
'SD=0.11.

0.18mm

0.24mm

Fig. 9. Optical micrographs showing XZ density and standard deviation of B1 samples with varying exposure time and hatch spacing.
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Hatch spacing

0.12mm

Exposure time

0.18mm 0.24mm

Fig. 10. Optical micrographs showing XZ density and standard deviation of B2 samples with varying exposure time and hatch spacing.
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Fig. 11. (a) XY and XZ % density of B1 samples with varying hatch spacing and constant 25 ps exposure time. (b) XY and XZ % density of B1 samples with varying exposure time and

constant 0.18 mm hatch spacing.

Fig. 11 shows XY and XZ densities of a) B1-6-10 samples (i.e. 25 us
exposure time with varying hatch spacing) and b) B1-3, 8, 13, 18 and
23 samples (i.e. 0.18 mm hatch spacing with varying exposure time).
It can be seen in Fig. 11a that XY density can decrease steeply with in-
creasing hatch spacing, leading to large differences between XY and

XZ densities. XY density analysis accounts for porosity development
in-between laser tracks as shown in Fig. 11a where 0.12 mm hatch spac-
ing shows minimum difference between XY and XZ densities whilst
0.24 mm hatch spacing shows XY density < 96% and XZ density > 99%.
Better agreement between XY and XZ densities were observed with

Fig. 12. Representative XY micrographs of (a) B1-11 and (b) B1-15 samples with (a) 0.12 mm hatch spacing and (b) 0.24 mm hatch spacing respectively.
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Fig. 13. (a) Low and (b) high magnification XZ micrographs of reference sample showing (a) melt pool depths at the top of the sample, used to calculate average melt depth; and

{b) progressive melt pool width measurement approach based on average melt depth.

constant hatch spacing and varying exposure time especially at longer
exposures, as shown in Fig. 11b. Longer exposures usually lead to
wider melt tracks which can improve overlapping between melt pools
along the melt-width direction, improving part density especially in
larger hatch spacing values (smaller hatch spacing might exhibit good
melt-width overlapping at shorter exposure times). Fig. 12 shows XY
micrographs depicting melt pool tracks along scanning directions of
a) 0.12 mm hatch spacing and b) 0.24 mm hatch spacing with constant
exposure time. It can be seen in Fig. 12 that the amount of overlapping
between melt pools can decrease when increasing hatch spacing with
constant exposure time. Lower overlapping can be detrimental to the
density of the part, especially in the XY plane.

4.2. Microstructure

Microstructure of reference samples was investigated using XZ
cross-section micrographs of the whole sample (see Fig. 13a). Fig. 13
shows the melt-pool-size measurement approach used in the present
research. Scanning vectors were rotated 67° every subsequent layer in
the present work. It is assumed that melt tracks parallel to the X

20 ps

0.12 mm

Exposure time

30 ps

Hatch spacing

0.15 mm

direction, represent ~0° rotation. This is represented by continuous lon-
gitudinal melt tracks in Fig. 13b. From the ~0° base track, the fourth layer
in the build direction should have rotated ~270° (i.e. 268°) which is
equivalent to ~90° orthogonal scan tracks. Orthogonal tracks are differ-
entiated from oblique tracks as they show narrower melt pool widths.
The angle of rotation of scan vectors within layers does not affect melt
pool depths. Therefore, melt depth can be measured from melt pools
at the top of the sample, independent of the layer rotation angle (see
Fig. 13a). From Fig. 13a, average melt depth is calculated from multiple
top-melt-pool measurements along the sample. Then, from high magni-
fication micrographs, parallel (~0°) scan tracks are identified. Melt pools
are counted along the build direction (i.e. Z direction) to identify or-
thogonal ~90° tracks. The curvature of orthogonal melt pools is
projected assuming typical L-PBF parabolic melt pool shapes. Melt
pool widths are measured at the corresponding average melt depth cal-
culated (see Fig. 13a). Melt widths are thus measured from multiple
layers along the build direction to calculate average melt pool width.
Average depths and widths are used to calculate width-to-depth ratios.
Fig. 14 shows melt pools and XZ porosity development of B1 reference
samples with increasing (a) exposure time and (b) hatch spacing.

0.24 mm (b)

Fig. 14. Melt pools and XZ porosity development of B1 samples at increasing (a) exposure time and (b) hatch spacing.
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Fig. 15. Temperature evolution of reference samples of (a) varying exposure time and (b) varying hatch spacing. (a) Exposure values of B1-02, B1-12 and B1-22 samples are 20, 30 and 40
ps respectively. (b) Hatch spacing of B1-11, B1-12 and B1-15 are 0.12, 0.15 and 0.24 mm respectively.

Longer exposures were observed to promote overall porosity and larger
individual pores. Longer exposures are associated with slower scan
speeds and therefore higher energy levels. Excessive local energy depo-
sition may have promoted dynamic instabilities within the melt pool,
promoting inclusion of gas and formation of larger pores.

Melt pool overlapping can be determined based on XZ cross-sections
at the top of the sample. Based on pixel count (using the melt-pool-size
measurement approach shown in Fig. 13), the melt pool width (using
the measured half width) and depth of samples of varying exposure
time are 253 + 30 um and 232 + 15 um; 332 + 25 pm and 308 + 15
um; and 358 + 30 um and 472 + 15 um for exposures 20, 30 and 40
s respectively. Width-to-depth ratio was observed to decrease with in-
creasing exposure time. Critical width-to-depth ratio 0.8 was identified.
Below the critical value keyhole porosity developed, limiting the densi-
fication mechanism. Such instabilities were more critical in B2 samples
with exposures =40 pis. In samples of varying hatch spacing, melt pool
widch and depth were 332 + 25 pum and 308 £ 15 um respectively.
Hatch spacing did not influence melt pool dimensions. It was observed
that porosity increased proportionally with hatch spacing. Densities
>99% were attained in samples with >30% melt-pool width overlap be-
tween neighbouring scan tracks. Lower overlapping coefficients pro-
moted porosity formation especially in regions along the melt-pool
width.

4.3, Thermal monitoring and FE simulation

Sensitivity studies were conducted in order to calibrate and validate
the L-PBF FE model. Calibration involved performing parameter
matching exercises that result in the model predictions agreeing with
physical measurements. Simulation iterations were conducted to cali-
brate the jump speed v; of scanning mirrors. Validation involved using
the calibrated model to {blindly) predict physical measurements. To cal-
ibrate and validate the model, experimental thermal monitoring of ref-
erence samples {see Fig. 3) was conducted using the thermocouple
substrate described in Section 3.4. The samples were instrumented
and in situ temperature measurements were recorded for a range of

different process parameter combinations. Fig. 15 shows thermal evolu-
tion at the measuring point, 200 um below the top surface of the sub-
strate. Fig. 15a shows thermal evolution of reference samples with
varying exposure time and Fig. 15b shows thermal evolution of refer-
ence samples with varying hatch spacing. It was observed that peak
temperatures at the measuring point increased with increasing expo-
sure time (exposure values of B1-02, B1-12 and B1-22 samples are 20,
30 and 40 ps respectively) and decreasing hatch spacing ( hatch spacing
of B1-11, B1-12 and B1-15 are 0.12, 0.15 and 0.24 mm respectively).
Longer exposures and smaller hatch spacing induced higher peak
temperatures.

Temperature histories experimentally acquired (recorded at 500 Hz
sampling frequency) were compared with model that simulated the
production of the same samples with a “digital” thermocouple placed
at the same location as in the real experiment (i.e. measuring point
200 pm below the top surface of the substrate). The first simulations
were used to calibrate the heat source efficiency. Once the heat source
efficiency was calibrated, the model predictions were compared against
additional physical measurements. Jump speed v; = 500 mms ™' re-
sulted in good agreement between model prediction and experimental
measurements. Fig. 16 shows simulated thermal evolution against ex-
perimental measurements of a) multiple layers and b) single layer.
The black curve (digital thermocouple in the simulation) and the red
curve {physical measurement) showed strong agreement. The peak
temperatures and cooling rates were predicted within 15% error
aceuracy.

5. Discussion
5.1. Effect of process parameters in sample density

Density and standard deviations of B1 and B2 samples have been
presented in Section 4.1. It has been shown that standard deviations
are directly correlated with the size of individual pores. Spherical pore
morphology in all samples suggested the predominance of gas and key-
hole porosity as the only defects limiting the densification mechanism.

Temperature {*C)

Temperature (°C)
5 8888

3

8

Time (s)

—— Thermocouple data (experimental)

—FE model (simulated) (a)

Time (s)

—— Thermocouple data (experimental)

—FE model (simulated) (b:|

Fig. 16. Simulated and experimental thermal evolution at the measuring point located 200 um below the top surface of the substrate; a) multiple layers; b) single layer.
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Fig. 17. XZ density of B1 samples with (a) 20 ps, (b) 30 ps and {c) 40 ps exposure time and varying hatch spacing.

In the present section, the effect of hatch spacing, exposure time and
layer thickness in % density is presented. Fig. 17a-c show XZ B1 densi-
ties with varying hatch spacing for (a) 20, (b) 30 and (c) 40 ps expo-
sures. A decreasing density trend was observed with increasing hatch
spacing. This is more evident at shorter exposure 20 us compared to
30 and 40 s (see steeper trend in Fig. 17a in comparison with trends
in Fig. 15b and c).

Longer exposures led to larger melt-pool widths which promoted
re-melting of regions along edges of the melt-pool width, reducing
pore formation. Shorter exposures produced thinner melt widths
which were incapable of disrupting porosity in-between tracks.
Fig. 18a-c show XZ density trends with Lgp for (a) 0.15 mm,
(b) 0.21 mm and {¢) 0.24 mm hatch spacing. Lz is directly correlated
with exposure time, i.e. the longer the exposure the higher the energy.
Again, a decreasing density trend was observed with increasing Lzp
when using lower hatch spacing 0.15 and 0.21 mm in Fig. 18a and b re-
spectively. Deeper melt pools formed at higher energy levels which may
have induced melt instabilities promoting keyhole porosity. In contrast,
hatch spacing 0.24 mm showed an increasing % density trend with in-
creasing Lyp (see Fig. 18c). This can be explained in terms of the melt-
width to hatch-spacing ratio. Thinner melt pools, typical of lower Lgp
levels, were not capable of re-melting regions along the edges of the
melt when processing larger hatch spacing. Wider melt pools are re-
quired to reduce porosity in-between tracks when processing larger
hatching. Fig. 19 shows density of samples with varying hatch spacing
for (a) 50 pm and (b) 100 um layer thickness. Similar exposure times
are compared in Fig. 19a-b, namely (a) 40 and (b) 50 ps respectively.
It was observed that larger layer thickness limited the densification
mechanisim, possibly due to the development of deeper melts promot-
ing keyhole porosity. Longer exposures used in B2 with 100 um layer
thickness may have increased instabilities within the melt promoting
gas entrapment and larger pores as shown in Fig. 14a with increasing
exposure time. It has to be noted that longer exposures were used in

B2 in order to process similar Vi levels at both 50 pm and 100 pm
layer thickness scenarios.

5.2. Power factor model and specific point energy — transferring parameters
between different laser systems

In Section 4.1, it was observed that characterising % density using Ly,
as design parameter resulted in well-defined regions of high-density
samples, Using Vi and Agp, resulted in high and low % density merged
within same energy levels. It can be concluded that porosity formation
within melt pools is governed by the amount of energy per unit length
applied to the process. Characterising the densification mechanism
using Vg, or Agp, can be a misleading approach for selecting optimal pa-
rameters especially when varying exposure time (i.e. scan speed), hatch
spacing or layer thickness as demonstrated in the present investigation.
In laser welding, the power factor model is used to characterise porosity
formation in terms of the process specific-point-energy, taking into ac-
count laser diameter. In L-PBF, the specific point energy is the product of
Lgp and laser diameter d: Esp = Lgp x d, Therefore, Esp can be used to
characterise the densification mechanism in L-PBF, taking into account
laser diameter, In the present section, the scan speed used to character-
ise optimal Esp was calculated using Eq. (5), with jump speed v; = 500
mms " obtained from simulations, Fig, 20a shows XZ % density trends
of B1 and B2 samples (50 um and 100 um layer thickness respectively)
with varying Esp. The R* = 0.8 trend crossing 99% density threshold at
~0.173 ] shows that Esp > 0.173 ] can result in density < 99% when pro-
cessing layers >50 um. Therefore, Esp < 0.173 ] is suggested for layers >50
pm. In the present work, Pr = 12.9 Wum ' remained constant for B1
and B2 samples. It was observed that Esp controlled melt depth as
depicted in Fig. 20b. Melt depth increased with increasing Esp whilst %
density increased with decreasing Esp. Critical Esp = 0.18 ] was observed
above which density dropped <99% in B1 {50 pm layer thickness) sam-
ples {see crossing point highlighted in Fig. 20b). As shown in Fig. 20b,

100.0% 100.0% 100.0%
99.5% 99.5% 99.5%
99.0% 99.0% 99.0%
985% 98.5% 98.5%
ag0% 98.0% 98.0%
97.5% 97.5% 97.5%
02 03 04 05 06 02 03 04 a5 08 02 03 04 05 08
LED (Jmm™] (a) LED Imm™T ®) LED (Imm™T] ()

Fig. 18. XZ density of B1 samples with {a) 0.15 mm, {b) 0.21 mm and {c} 024 mm hatch spacing and varying exposure time.
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Fig. 19. XZ density of {a) B1 and (b) B2 samples with (a) 50 ym and (b) 100 pm layer thickness, {a) 40 ps and (b) 50 ps exposure time and varying hatch spacing.
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Fig. 20. {a) XZ density trend with varying specific point energy in B1 {50 um layer) and B2 {1

highlighting critical energy and melt depth limit point for >99% density.

melt depth > 410 pm resulted in <99% density due to keyhole porosity
development within deeper melts. It can be concluded that melt depths
<410 um, width-to-depth ratio > 0.8 (using the measured half width)
and melt width overlap >30% (see Section 4.2) are required for achiev-
ing near full density AISi10Mg parts whilst processing within optimal
energy levels,

Esp values that resulted in highest % density were compared to opti-
mal parameters reported in literature for manufacturing near full-
density AlSi10Mg components. A specific point energy range of
0.017-0.18 ] was identified with varying laser focus diameter and pro-
cessing parameters. It is reported in literature that (a) P controls laser
penetration depth independent of laser beam diameter, and (b) melt
depth can be used as a design parameter to select optimal process con-
ditions in L-PBF of AlSi10Mg. In the present work, Esp was observed to
control melt depth at fixed P The use of Esp and P as design parameters
controlling melt depth, can thus provide processing windows for
manufacturing near full-density L-PBF components. In order to investi-
gate the role of P in the densification mechanism of AlSi10Mg parts in
the present section, multiple samples were manufactured with power
ranging from 400 to 800 W, constant 75 um laser focus diameter and
Esp < 0.18 J. The samples manufactured with densities >99% are shown
in Fig. 21. A clear trend of optimal parameters in the Esp - Pr curve was
identified. This is shown in Fig. 21 along with optimal parameters re-
ported in literature for the same material. The data plotted in Fig. 21 (ex-
tracted from [2,9-11,17-19,23,26-33]) corresponds to different
processing conditions with laser focus diameter and power ranging
from 75 pm to 300 um and 175 W to 967 W respectively; as well as sub-
strate temperatures and layer thickness ranging from <100 °Cto >200°C
and 25 um to 50 um respectively. The broad range of process parameters
would complicate identification of optimal processing windows
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00 pm layer) samples. (b) Melt depth and % XZ density of B1 samples with varying Esp,

especially if Vi, was used as design parameter. The use of jump speed
in calculations resulted in pulsed-mode energy levels comparable to
values reported in literature for continuous-mode laser systems (see
R* = 0.9 in Esp - P; trend). Fig. 22 shows comparison of trends corre-
sponding to different pulsed-mode scan speed scenarios, i.e. with and
without jump speed in energy calculations. Trend behaviour compara-
ble to continuous-mode data reported in literature is observed when
using jump speed in calculations as well as higher R* in trend. The Egp
- P curve proposed in the present investigation provides a clear trend
of optimal process energy conditions taking into account substrate tem-
perature recommendations (according to literature and complemented
with the present research) depending on Esp and Pr values. For instance,
substrate pre-heating temperature > 200 °C is recommended when pro-
cessing at Pr <2 Wum " and Esp = 0.1 ], 0r Esp< 0.04 ] and P < 4. On the
other hand, P> 8 Wum " or Esp> 0.16 ] may require <100 °C substrate
pre-heating. Laser absorptivity and thermal conductivity are tempera-
ture dependant material properties that can vary with different sub-
strate preheating temperatures. Such properties will ultimately affect
melt pool depths. Therefore, optimal combination of Esp, Py and sub-
strate preheating temperature has to be used to control melt depth
and improve part density. Higher energy and power promote disruption
of oxides and improves the energy balance (k/A) in HP L-PBF. As Egp and
P; control melt depth, deeper melts promoted by higher energy and
power levels may cause over-melting and formation of keyhole
welding-mode if higher substrate temperatures are used. For higher
Esp and Py, alterative powder drying mechanism are proposed as re-
ported in literature, namely: a) external, using a furnace at constant
temperatures during a specific period of time; and/or b) internal,
using laser pre-sintering strategies to dry the powder locally at each
layer. The Esp - P curve in Fig. 21 provides optimal energy required
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Fig. 21. Esp - Pg curve of L-PBF parameters for manufacturing near full density AlSi10Mg components showing recommended regions of substrate preheating temperature ranges and
powder drying techniques for higher Esp and P to avoid over-melting. Data points represent optimal parameters that resulted in highest densities as reported in literature, along with
those obtained in the present investigation. Different laser focus diameters and laser powers are considered, ranging {rom 75 pum - 300 um and 175 W - 967 W respectively. The data
plotted corresponds to layer thickness ranging from 25 pm - 50 pum as reported in literature and in the present research. The curve might not be applicable to thicker layers.
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Fig. 22. Ep — Py curve of L-PBF parameters for manufacturing >99% AlSi10Mg components showing trends of pulsed-mode scan speeds with and without jump speed v; for energy

calculations.

for a given power level and laser focus diameter to manufacture near
full-density AlSi10Mg components. With this information, single track
experiments can be conducted at optimal energy conditions in order
to obtain melt pool dimensions, The quantitative indicators for process
optimisation reported in the present research, namely: 1) melt-width
overlapping, 2) melt-depth limit and 3) width-to-depth ratio; can be
used to choose layer thickness and hatch spacing for a) productivity
(i.e. build rate) and/or b) surface roughness optimisation.

6. Conclusion

The densification mechanism in L-PBF of AlSi10Mg has been investi-
gated in the present work. The role of processing parameters in part
density and melt pool dimensions has been characterised. Optimal pro-
cess conditions have been quantitatively defined and a new method for
selecting process parameters based on empirical model used to charac-
terise laser welding process has been proposed. The following can be
concluded:

* Volumetric (Jmm~?} and areal (Jmm~?) energy density ranges typi-
cally used to characterise processing windows in L-PBF can be ambig-
uous approaches to define optimal processing windows, especially
when using laser systems with different power, laser spot diameter
and irradiation mode (i.e. pulsed or continuous). Varying layer thick-
ness {characteristic parameter of Vyp,) can increase process instabil-
ities, especially with thicker layers, that might require varying laser
spot size, and adapting power levels accordingly (i.e. changing
power factor). Such process optimisation can be a more a complex ap-
proach than just varying Vip, levels within same power factor (i.e.
laser power to beam size ratio). Even though Ag;, can be used to sim-
plify the volumetric analysis, different power factors can result in dif-
ferent melt pool sizes even with same Agj, levels (i.e. same Ay, values
can have different laser spot sizes in different machines which results
in different power intensities). Vip and Agp can be used as design pa-
rameters if the same machine is used. However, a more holistic ap-
proach, taking into account different laser systems, can be defining
Esp — Pr curves {using Lz, and laser diameter) and quantitative melt
pool size indicators to use as design parameters for process optimisa-
tion of a given material.

Porosity formation was observed to be controlled by the amount of
energy per unit length (Jmm ') rather than by the volumetric
(Jmm~?) or areal (Jmm2) energy expressions. Density characterisa-
tion of samples using Lxp as design parameter resulted in well-defined
regions of high and low-density components.

The use of specific point energy Esp as design parameter has incorpo-
rated the use of laser diameter into the Lz, approach, which can be ap-
plicable to different L-PBF systems featuring different laser diameters.

* Jump speed v; (i.e. speed of scanning mirrors controlling the point-to-
point movement) in pulsed lasers is a very important factor that has to
be taken into account in Esp calculations especially when transferring
parameters from pulsed to continuous L-PBF systems. If v; is not con-
sidered, optimal parameters developed in a pulsed L-PBF system can
be misinterpreted and only applicable to specific L-PBF systems.

In the present work, v; = 500 mms ' was obtained from experimen-
tal thermal measurements and simulation iterations. This resulted in
well-defined range of parameters comparable to optimal conditions
reported in literature using pulsed and continuous laser systems. It
is suggested that v; is taken into account in scan speed calculations
for higher accuracy.

Esp was observed to control melt pool dimensions. Higher Esp levels
resulted in deeper melts. Critical width-to-depth ratio 0.8 was identi-
fied, using the measured half width. Width-to-depth values <0.8 pro-
moted development of keyhole porosity.

Melt pool dimensions were characterised against Esp levels. An in-
verse correlation between melt pool depth and part density was ob-
served and a critical melt depth value of 410 pm was identified.
Densities 299% corresponded to <410 um melt depths.

Hatch spacing values that resulted in 230% overlap between
neighbouring melt tracks were observed to promote densities =99%.
Lower overlapping resulted in increased porosity in regions along
the edges of the melt pool width,

The Esp - Pg curve has been presented in order to identify optimal Egp
values for different power ratings and laser focus diameters. Regions
of substrate preheating temperatures were recommended based on
Esp and P values. Higher power and energy levels may cause over-
melting if higher substrate temperatures are used.

The use of Esp - P curves as design parameter for process optimisation
in L-PBF of AlSi10Mg has been proposed in the present work, This pro-
vided processing windows that can be applicable to L-PBF machines
featuring different powers, laser focus diameters and laser irradiation
mode (i.e. pulsed or continuous) as well as varying layer thickness.
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