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REVIEW

Manufacturing quality assessment in the industry 4.0 era: a review

Nikolaos G. Markatos * and Alireza Mousavi

College of Engineering, Design and Physical Sciences, Brunel University, Greater London, UK

Maintaining high-quality standards has consistently been the main goal of industries.
With rising demand and customisation, industries must strike a balance between
cost, manufacturing time, and quality. The technological advancements of Industry
4.0 have allowed the implementation of accurate quality prediction frameworks in
the manufacturing lines. For quality prediction in manufacturing, machine learning,
and artificial intelligence offer several benefits, but there are also a number of
limitations that must be taken into consideration. The current study aims to highlight
the aforementioned benefits and drawbacks. To do this, a literature review on the
area of quality prediction and monitoring in Industry 4.0 manufacturing lines is
conducted. The results demonstrate that the merits of the reviewed methods are
many but six significant drawbacks must be accounted for the successful
implementation of the studied quality prediction frameworks. The current study can
serve as a ‘map’ for production managers in industries as well as experts in the field
of manufacturing as they weigh the benefits and drawbacks of popular quality
prediction models, as it provides information needed to determine to what extent
these methods can be applied to new or existing manufacturing lines.

Keywords: Evolution of Quality; Quality Prediction; Manufacturing; Industry 4.0

1. Introduction

Quality is a term that has many definitions. The American Society for Quality defines
quality as ‘the characteristics of a product or service that bear on its ability to satisfy
stated or implied needs’ and ‘a product or service free of deficiencies’ (ASQ, n.d.). Accord-
ing to Joseph Juran, quality is defined as ‘fitness for use’ and according to Philip Crosby,
quality is ‘conformance to requirements’ (ASQ, n.d.). In all the above definitions, it can be
seen that quality is measured by customer satisfaction.

Throughout the ages, quality was always the main focus of manufacturing.
Especially now, with rising demand and customisation, industries must balance cost,
manufacturing time, and quality. Growing emphasis on sustainable manufacturing
requires manufacturers to deliver higher-quality, complicated products at lower costs
while minimising resource utilisation (and waste) throughout the industrial ecosystem
(Powell et al., 2022). A shift in manufacturing philosophy is required in light of the
recent trend toward environmental awareness from a regulatory, consumer, and moral
standpoint (Kalpande & Toke, 2021).
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Also, when it comes to performance indicators, quality is one of the most important
factors that may have a big impact on a manufacturer’s ability to remain competitive.
Various quality models have been introduced, both empirical (e.g. inspection) and math-
ematical (e.g. statistical process control (SPC) charts, Machine Learning methods), to
assess quality. From the inspection phase, which was initiated at the beginning of the arti-
sanship process, we have now reached a stage where the focus has shifted to Information
quality, which focuses on the gathering of quality information to utilise it for the optimis-
ation of the manufacturing process.

When it comes to satisfying the growing demand for high-quality goods, the Zero
Defect Manufacturing (ZDM) concept is of the utmost significance. The fundamental prin-
ciple that motivates the ZDM methodology is not the identification of faults and defects,
but rather the forecasting of such difficulties and the provision of recommendations for
how they might be evaded (Nazarenko et al., 2021).

With the introduction of Industry 4.0 (fourth industrial revolution), we are witnessing a
shift towards an ‘intelligent’ or ‘smart’ factory, one that is fully integrated, automated, and
has optimised manufacturing (Zolotová et al., 2020) (Silvestri et al., 2020). This results in
increased productivity and a shift away from the conventional production relationships
between suppliers, producers, and customers as well as between humans and machines
(Vaidya et al., 2018) (Rüßmann et al., 2015). Industry 4.0 makes use of Cyber Physical
Systems (CPS) to automate production processes and communicate information. Data
mining and industrial control have both seen major improvements as a result of the intro-
duction of technological advancements such as the Internet of Things (IoT), the Industrial
Internet of Things (IIoT), machine learning, artificial intelligence, and big data analytics
(Sahoo & Lo, 2022).

In recent years, Artificial Intelligence (AI) has demonstrated substantial success in
automating processes that are associated with human thinking, such as planning, decision
making, and problem solving. This development has been made possible by recent
advancements in deep learning and neural networks. Artificial intelligence (AI) systems
can handle large amounts of data derived from a diverse variety of sources, such as
photos, text, audio, and 3D geometry. As a consequence of this, we are witnessing a pro-
liferation of AI-enabled strategies that aim to improve the forecasting, design, and control
capabilities of advanced manufacturing processes. These strategies make use of the current
trend toward the digitalisation of manufacturing and the use of large-scale data acquisition
platforms (Mozaffar et al., 2022).

AI has been widely used in manufacturing for the development of predictive process
modeling systems (Petri et al., 1998), in the improvement of manufacturing accuracy
(Warnecke & Kluge, 1998), in the development of control models for the production pro-
cesses (Institute of Electrical and Electronics Engineers, n.d.), in providing predictive ana-
lytics for quality assurance of assembly processes (Burggräf et al., 2021) and has been used
for early quality classification and prediction (S. Stock et al., 2022). Machine learning and,
in general, Artificial Intelligence offer several advantages for the quality prediction and
control of manufacturing and assembly processes, but some drawbacks and restrictions
must be taken into account.

The present research aims to highlight the advantages andweaknesses of the approaches
that are widely used in Industry 4.0 manufacturing lines for quality monitoring and predic-
tion. To do so, a literature review on the research around the area of quality prediction and
monitoring inmanufacturing lines of Industry 4.0 was conducted for the purpose of: (1) pre-
senting the research that has been conducted in the area of quality prediction in manufactur-
ing processes in Industry 4.0, (2) providing insight into the strengths and weaknesses of the
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research in this area, (3) identifying the research gaps that need to be addressed, and (4)
examine whether widely used methods such as Statistical Process Control (SPC) can ade-
quately address the highly-customised and complex manufacturing lines of Industry 4.0.

The aforementioned literature review allowed the formation of three research objec-
tives that the current research aims to achieve, to provide a spherical approach to
address the matter of quality prediction in industrial settings. These objectives are:

(1) Provide historical background on the evolution of Industry, from Industry 1.0 to
Industry 4.0.

This will act as a link between the technological achievements of each period and the
impact that these achievements had on manufacturing. Through this historical context, it
will become apparent which technological achievements allowed the transition from the
Inspection phase to Information quality and the automation that has been introduced by
Industry 4.0. Moreover, the pillars of Industry 4.0 will be presented and their contribution
towards manufacturing automation and quality prediction and monitoring will be dis-
cussed. Finally, this historical context aims to sufficiently present to the reader the trans-
formation of Industrial processes.

(2) Present the evolution of quality models from Industry 1.0 to Industry 4.0.

By analysing the evolution of quality models, the aspects of manufacturing on which
the quality models focused to measure and improve quality will be highlighted. This analy-
sis will allow the formulation of a spherical understanding of the evolution and focus of
quality models from Industry 1.0 to Industry 4.0.

(3) Analyse quality prediction and monitoring methods in industrial settings,
especially in Industry 4.0.

This analysis will delineate widely used quality prediction and monitoring methods
that have been used from Industry 1.0 to Industry 4.0. More specifically, the current
research aims to identify the advantages and weaknesses of these methods, with the
focus shifting especially to Machine Learning and, in general, Artificial Intelligence
approaches that are widely used in Industry 4.0 for quality monitoring and prediction.

The remainder of the manuscript is organised as follows: The literature that is pertinent to
the evolution of Industry and the evolution of quality models from Industry 1.0 to Industry 4.0
is reviewed in the following section (Section 2). The researchmethodology used in this study is
included in Section 3, and the study’s findings are presented in Section 4. The results are dis-
cussed in Section 5. In Section 6, this paper’s main conclusions and suggestions for additional
research are presented alongside the managerial implications of the present research.

2. Literature review

2.1. Evolution of industry (from industry 1.0 to industry 4.0)

2.1.1. Industry 1.0

The First Industrial Revolution (Industry 1.0) spans from approximately 1760–1840 and is
characterised by the utilisation of steam power and mechanisation of production (Vinitha
et al., 2020). Steam power and water power play a crucial part in the expansion of the
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industrial revolution, which began with the transition from manual to mechanised pro-
duction. Textile manufacturing, iron industry, steam power, machine tools, chemicals,
cement, gaslighting, glassmaking, agriculture, paper machine, transportation, mining,
canals and improved waterways, railways, roads, railroads and other industries were
among the first to be influenced by the industrial revolution (Vinitha et al., 2020).

2.1.2. Industry 2.0

The Second Industrial Revolution (Industry 2.0) is highlighted by a constellation of tech-
nologies, management approaches, and the use of electricity that expanded mass pro-
duction in the early twentieth century (Zonnenshain & Kenett, 2020). Walter Shewhart,
a physicist, engineer, and statistician, proposed using control charts, a statistical tool, to
manage production operations (Shewhart, 1926). Controlling the process via control
charts reduced the requirement for inspection, saving time and money while improving
quality. The focus of data analysis switched from inspection to process performance and
the need to comprehend the variation. Consequently, statistical models and probability
began to play a crucial role as quality assessment tools (Zonnenshain & Kenett, 2020).

2.1.3. Industry 3.0

The 1970s marked the beginning of the Third Industrial Revolution (Industry 3.0), which
was kicked off by the partial automation of industries through the use of computers (Rifkin,
2011). Because of computers, ‘mass customisation’ became possible (Davis, 1997). Mass
customisation, in its most basic form, brings together the scalability of big, continuous flow
production systems and the adaptability of job shops. During this period of revolutionary
change, the manufacturing sector is transitioning into the automation industry. The field of
engineering had phenomenal expansion within the production sector. The entire pro-
duction process in industries is currently being automated such that no humans are
required. Electronics and computer-controlled hardware are essential components in the
operation of automation. The dependability and effectiveness of the industrial system
are both improved thanks to automation.

2.1.4. Industry 4.0

The phrase ‘Industrie 4.0’ was first used in Germany in 2011 by the German National
Academy of Science and Engineering. It was translated into English as ‘Industry 4.0’
(Kagermann et al., 2013). Industry 4.0 has marked the beginning of the Fourth Industrial
Revolution, which is being brought on by the use of cyber-physical systems (CPS) and the
Internet of Things and Services. Germany is in a position of leadership in the field of CPS
and has approximately 20 years’ worth of expertise to draw on. The incorporation of cyber
technologies that enable products to be connected to the Internet lays the foundation for the
development of innovative services that, among other things, allow for Internet-based
diagnostics, maintenance, operation, and so on to be carried out in a manner that is both
economical and effective. In addition to this, it assists in the creation of new business
models, operating concepts, and smart controls, as well as the focus on the user and the
user’s specific requirements (Jazdi, 2014). The evolution from Industry 1.0 to Industry
4.0 can be seen in Figure 1.

The nine pillars of Industry 4.0 (Figure 2) that transform the factory into a ‘smart’
factory and add the element of automation are: Big Data and Analytics, Industrial Internet
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of Things (IIoT), Horizontal and Vertical System Integration, Simulation, Cloud Comput-
ing, Augmented Reality (AR), Autonomous Robots, Additive Manufacturing (AM), and
Cyber Security and Cyber-Physical Systems (CPS).

2.1.4.1. Big data and analytics. Traditional technologies are unable to process and
analyse the vast amounts of information that are generated and gathered daily as a result
of the fast expansion of the Internet in the modern day. On the other hand, there is a tech-
nology known as Big Data that enables us to conduct analyses (Witkowski, 2017). Because
it compiles information from a wide variety of sources, the databases are always expand-
ing, but thanks to Big Data, we are able to swiftly and effectively manage and use this
information.

Big Data is comprised of four dimensions (also known as 4 V): Volume of data,
Variety of Data, Velocity of generation of new data and analysis, and Value of Data.
Big Data enables analysis of the data at a more sophisticated level than was previously
feasible with the available tools. Even information that has been gathered in different,
incompatible systems, databases, and websites may be analysed and merged with the
help of this technology to provide a more accurate depiction of the circumstances
around a particular business or individual (Witkowski, 2017).

2.1.4.2. Internet of things (IoT). In the paradigm of the Internet of Things (IoT), a signifi-
cant number of the items that are all around us are connected to the network in some form

Figure 1. Industrial Revolutions through time.
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or another. This challenge, in which information and communication systems are invisibly
integrated into the world around us, is met head-on by technologies such as Radio Fre-
quency Identification (RFID) and sensor network technology. This model is composed
of services that can be categorised as commodities and will be distributed in a manner
that is analogous to how traditional commodities are distributed (Gubbi et al., 2013).

The Internet of Things is distinguished by three primary characteristics: optimisation,
omnipresence, and context. Omnipresence provides information on the location, and phys-
ical or atmospheric conditions of an object, optimisation illustrates the fact that today’s
objects are more than just connection to a network of human operators at human-
machine interfaces and context refers to the possibility of advanced object interaction
with an existing environment and immediate response if anything changes.

The Internet of Things opens up brand new opportunities for exploration in the area of
performance. For instance, road transport vehicles may be automatically regulated accord-
ing to the specifications of hosts. This will let the trucks run according to predetermined
intervals and at a constant pace, therefore optimising their use of fuel and reducing their
environmental impact (Witkowski, 2017).

Figure 2. Pillars of Industry 4.0.
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2.1.4.3. Horizontal and vertical system integration. The paradigm of Industry 4.0 is fun-
damentally delineated by three dimensions: (1) horizontal integration throughout the whole
value creation network, (2) end-to-end engineering over the entirety of the product life
cycle, as well as (3) vertical integration and networked manufacturing systems (T. Stock
& Seliger, 2016).

The horizontal integration throughout the whole value creation network is a description
of the cross-company and company-internal intelligent cross-linking and digitalisation of
value creation modules throughout the value chain of a product life cycle and between
value chains of adjacent product life cycles. End-to-end engineering across the entire
product life cycle refers to the intelligent cross-linking and digitalisation that occurs
throughout all stages of a product’s life cycle, beginning with the acquisition of raw
materials and continuing through the manufacturing system, product use, and the
product end of life. Vertical integration and networked manufacturing systems are terms
that are used to describe the intelligent cross-linking and digitalisation that occurs
between the various aggregation and hierarchical levels of a value creation module,
ranging from manufacturing stations to manufacturing cells, lines, and factories.

These systems also integrate the associated value chain activities, such as marketing or
technological innovation (Acatech, 2015). The complete digital integration and automation
of all aspects of manufacturing in both the vertical and horizontal dimensions entails not
only the automation of production processes but also of communication and collaboration,
particularly in areas where processes are standardised (Erol et al., 2016).

2.1.4.4. Simulation. In plant operations, simulations are increasingly utilised to harness
real-time data to create virtual models that match the physical world and can include equip-
ment, products, and humans. This helps reduce the amount of time needed to set up
machinery and improves product quality. For instance, Siemens and a German machine-
tool vendor collaborated to design a virtual machine that can imitate the machining of com-
ponents by making use of data obtained from the actual machine. Because of this, the
amount of time required to set up the actual machining process is reduced by as much
as 80 percent (Rüßmann et al., 2015). The reproduction in virtual form of a whole value
chain makes it possible to employ simulations as a decision-support tool (Schuh et al.,
2014).

2.1.4.5. Cloud computing. Because of Industry 4.0, businesses are required to improve
their data sharing across all of their locations and companies, which means that they
must be able to achieve reaction times in milliseconds or even faster (Vaidya et al.,
2018)(Rüßmann et al., 2015). The cloud-based information technology platform acts as
the technological backbone for the connectivity and communication of the several
pieces that make up the Application Centre for Industry 4.0. Through the use of integration
services, it is possible to link the controls of machining centres and robots to the platform,
in addition to decoupling sensors such as cameras and temperature probes (Landherr et al.,
2016). This concept can be expanded to include a collection of equipment from a shop floor
as well as the entire plant, in order to have a ‘digital production’ (Marilungo et al., 2017).

2.1.4.6. Augmented reality (AR). Systems that are based on augmented reality provide
assistance for a wide range of services, including the selection of components at a ware-
house and the transmission of repair instructions through mobile devices. Augmented
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reality may be used in industry to offer workers with information in real-time, which can
enhance decision-making as well as working operations. Workers may obtain repair
instructions on how to replace a particular part while they are looking at the real system
that needs to be repaired (Vaidya et al., 2018) (Rüßmann et al., 2015). For instance,
employees may receive instructions on how to replace a specific part while they are
looking at the real system that needs to be repaired. Augmented reality glasses are one
example of a technology that might be used to show this information right in front of
the employees’ line of sight (Rüßmann et al., 2015).

2.1.4.7. Autonomous robots. Autonomous production methods driven by robots that can
intelligently accomplish tasks are a crucial aspect of Industry 4.0. Autonomous robots are
complicated systems that involve the interaction or cooperation of a large number of differ-
ent kinds of software components. Autonomous robots are designed to carry out high-level
activities either independently or with very limited control from an outside source. Because
of the following characteristics, they are required in circumstances in which the employ-
ment of human control is either not practical or not cost-effective due to the following
reasons: (1) they work in circumstances that are highly unpredictable, uncertain, and con-
stantly changing throughout time, (2) for them to perform successfully, they have to adhere
to the real-time limitations and (3) they frequently engage in conversation with other
agents, including people and other types of machines (Bensalem et al., 2009).

This facet of Industry 4.0 places an emphasis on safety, flexibility, versatility, and col-
laborative working. Because there is no longer a requirement to compartmentalise its
working area, its incorporation into human workstations is both more cost-effective and
productive, and it opens the door to a wide variety of potential uses in industrial settings.
The most recent technological advancements are resulting in the development of an
increasing number of industrial robots, which are helping to facilitate the industrial revolu-
tion. Robots and people will collaborate, on interlinking tasks in Industry 4.0 by utilising
intelligent sensor human-machine interfaces. These tasks will be completed by combining
efforts. The use of robots is expanding to incorporate a variety of tasks, such as production,
logistics, and office management (for document distribution), and they may be operated
remotely (Aiman et al., 2016).

2.1.4.8. Additive manufacturing (AM). With the advent of Industry 4.0, additive manufac-
turing techniques are becoming increasingly popular. These techniques allow for the pro-
duction of individualised goods in small quantities, and they provide several benefits to the
construction industry. High-performance, decentralised additive manufacturing systems
will cut down on transportation distances as well as the amount of stock kept on hand
(Rüßmann et al., 2015). Utilising processes like selective laser melting (SLM), selective
laser sintering (SLS), or fused deposition modeling (FDM) can help make production more
efficient and cost-effective. For instance, this can be accomplished by implementing inline
quality control. On the other hand, Industry 4.0 seeks an economically viable realisation of
hybrid production systems that combine additive manufacturing with other well-established
manufacturing processes such as turning, milling, and/or welding (Landherr et al., 2016).

2.1.4.9. Cyber security and cyber-physical systems (CPS). The need to secure important
industrial systems and production lines from cyber security threats has greatly expanded as
a result of the increasing connection and adoption of standard communications protocols
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that come with Industry 4.0. As a consequence of this, it is vital to have secure and depend-
able communications, as well as an advanced identity and access control system for both
computers and users (Rüßmann et al., 2015).

Cyber-physical systems, often known as CPS for short, are systems that have been
characterised as those in which natural and human-made systems (physical space) are
strongly linked with computing, communication, and control systems (cyberspace)
(Bagheri et al., 2015). Researchers in the fields of systems and control have been pioneers
in the development of powerful methods and tools in the fields of system science and
engineering over the years. Some examples of these methods and tools include time and
frequency domain methods, state space analysis, system identification, filtering, prediction,
optimisation, robust control, and stochastic control.

During this same period, researchers in the field of computer science have made sig-
nificant strides forward in the development of new programming languages, real-time
computing techniques, visualisation methods, compiler designs, embedded system archi-
tectures and systems software, and innovative approaches to ensure the reliability of com-
puter systems, cyber security, and fault tolerance. In addition, scholars working in the field
of computer science have created a wide array of powerful modeling formalisms and ver-
ification tools. Cyber-physical systems research aims to develop new CPS science and sup-
porting technology by integrating knowledge and engineering principles from across the
computational and engineering disciplines (networking, control, software, human inter-
action, learning theory, as well as electrical, mechanical, chemical, biomedical, material
science, and other engineering disciplines) (Baheti et al., 2015).

A CPS is comprised of a control unit, often one or more microcontrollers, which control
the sensors and actuators required for interaction with the actual environment and processes
the data acquired. These embedded systems require a communication link to share infor-
mation with other embedded systems or the cloud. Data sharing is the most crucial aspect
of a CPS, as the data may be connected and analysed centrally, for example. In other
terms, a CPS is an embedded system capable of transmitting and receiving data across a
network. The Internet-connected CPS is commonly referred to as the ‘Internet of things.’
(Jazdi, 2014). Cyber-Physical Systems are primarily intended to engage in interaction and
collaboration with human operators, to achieve shared objectives, such as a reduction in
the number of incidents that result in failure (Silvestri et al., 2020)(Ansari et al., 2018).

2.2. Contribution of industry’s 4.0 elements to quality management

The nine pillars of Industry 4.0 have revolutionised the industrial sector. More specifically,
many of these pillars can contribute towards the optimisation of Quality Management, in
the aspects of Quality Improvement and Quality Control, as they introduce new technol-
ogies and at the same time provide tools that can improve the manufacturing processes.

Big Data allows the industry to utilise heterogenous, large amounts of data and at the
same time distinguish the essential data to improve the manufacturing processes. With the
aid of Big Data, data analysis is now possible at a more sophisticated level than was pre-
viously possible.

Internet of Things (IoT) and Horizontal and Vertical System Integration allow the
interconnectivity of remote systems through a central network and the complete digital
integration and automation of all aspects of manufacturing in both the vertical and horizon-
tal dimensions. That way, the element of automation is instilled in manufacturing lines and
can boost performance and product quality as the independent manufacturing systems can
now work and communicate as a unit.
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Simulations create virtual models that can simulate real-world scenarios and thus
improve product quality and speed up the process of setting up machinery.

Cloud computing is responsible for connectivity and timely transfer of information
between systems and thus it optimises production times.

The use of augmented reality in the workplace can help employees make better
decisions and perform their jobs more efficiently.

Autonomous robots andCyber Physical Systemsmay be employed in manufacturing
processes that are highly complex and as a result, improve the quality of production by
reducing the number of incidents that result in failure and the factor of human error.

2.3. Evolution of quality models

Quality models have undergone various evolutions through the ages. In 2020, Zonnenshain
and Kenett (Zonnenshain & Kenett, 2020), highlighted in their research some key mile-
stones for the evolution of quality models through time.

As a first milestone, they refer to the Old Testament where the Creator on the sixth day,
after having completed the creation, inspected the work carried out to see if any further
addition or improvement was needed. They used this example to highlight that inspection
was the leading quality model for many centuries, where crafting manufacturing systems
were deployed. Inspection has served as a cornerstone method of quality assurance.
Inspections (in the sense of measurement, test, and observation) offer the information
that drives all of the other components of the quality systems, and they continue to
provide a helpful way of distinguishing the problematic from the good. The inspection
phase was initiated at the beginning of the artisanship process, and it was practised by
the individual workers checking their work, by the master inspecting the work of appren-
tices, and by consumers carefully inspecting products before buying them. As a result of
increased product complexity, special persons or groups with extensive training were fre-
quently designated as inspectors (Godfrey, 1986).

Eli Whitney (1765-1825), an American inventor, mechanical engineer, and manufac-
turer, is credited with achieving a second significant milestone. As Zonneshain and
Kennet state in their work (Zonnenshain & Kenett, 2020), this achievement involves deter-
mining the specifications of the parts to be assembled before the final assembly. He created
machine tools that allowed an untrained worker to make a specific part that was then
measured and compared to a specification. This signifies the change in quality approach
that was introduced by Industry 1.0 and mass production. Instead of inspection at the
end of the manufacturing process, mass production introduced inspection in advance of
the parts to be assembled. In a sense, this is the first attempt to implement a product
quality prediction framework as the final quality was linked to the specifications of the
parts before the final assembly.

In 1926, Shewhart (Shewhart, 1926) introduced the use of statistical process control
(SPC) charts. Before the introduction of statistical process control charts, inspection had
focused the majority of its efforts on locating and removing defective products or lots
of products before they were shipped to the customer. Shewhart realised that statistical
methods could be used to increase the amount of good product that was being manufac-
tured (Godfrey, 1986). This led to a ‘scientification’ of the manufacturing process by
turning the focus on a more mathematical approach such as investigating the error correc-
tion on the taken data and improving the manufacturing process by implementing statisti-
cal tools. At this point, the focus had shifted from product quality to process quality
(Zonnenshain & Kenett, 2020).
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Sixty years later, Joseph Juran developed his Quality Trilogy, which is a universal
method for the management of quality. This approach was based on Shewhart’s work.
This event is considered to be the beginning of the era of quality management. Industrial
engineering, operations management, and supply-chain management are some of the other
disciplines that are participating in this revolution. The overarching goals of this revolution
are to achieve gains in quality, speed, delivery reliability, flexibility, and prices. W. Edwards
Deming, who, along with Juran, had enormous success in applying quality management
principles in devastated post-World War II Japan, was a significant contributor to this move-
ment (Zonnenshain & Kenett, 2020) (Connor, 1986) (Juran, 1986).

Deming and Juran both realised while working directly with top executives in Japan,
that straightforward statistical quality control methods, if implemented consistently across
the business, might play a significant role in elevating the competitiveness of Japanese
goods (Godfrey, 1986).

In the 1960s, a Japanese engineer by the name of Genichi Taguchi introduced to the
industrial sector new methods for generating statistically planned experiments that were
intended to improve products and processes by obtaining design-based robustness features
(Zonnenshain & Kenett, 2020) (Godfrey, 1986) (Taguchi, 1987). Although Taguchi intro-
duced these methods in the 1960s, it was not until 1980 that Bell Laboratories implemented
these methods to increase the performance of their most complex industrial processes.
Taguchi’s methods implemented in the already known frameworks the element of
design quality. Based on experiments, an optimal setting for manufacturing could be estab-
lished and thus minimisation of defects could be achieved.

Three decades later, industry began to face the phenomenon of big data. New control
options are now available for processes and products thanks to advancements in sensor
technology and data processing software. As a result of this, integrated models that
combine data from a variety of sources were put under consideration (Godfrey &
Kenett, 2007). The business of quality began migrating towards information quality
with the introduction of data analytics and manufacturing execution systems (MES).

To improve the manufacturing process, information quality focuses on gathering high-
quality information. To capitalise on the opportunities presented by their data, organis-
ations have begun recruiting data scientists. Data scientists began, in some capacity or
another, to become involved in the infrastructures of organisations and the quality of
data (Zonnenshain & Kenett, 2020).

As it can be concluded the evolution of quality models has undergone many changes.
The stages of that evolution (Figure 3) are: (1) Inspection, (2) Product Quality, (3) Process
Quality, (4) Quality Management, (5) Design Quality and (6) Information Quality.

During the Inspection phase, the focus of quality models was on the manufactured
product. Then, this focus shifted to the parts that were used to build the final product. It
can be seen that this shift in the focus, from the final product to the parts that are used
to manufacture the final product, is the first attempt to implement a quality prediction fra-
mework in the manufacturing area.

With the introduction of mathematical models, the manufacturing area faced a ‘scien-
tification’ and the focus of quality models shifted from creating good parts to optimising
the manufacturing processes to avoid defects. But this, in order to work more efficiently
and boost business productivity, needed to be implemented on a wider scale and include
more aspects than just the manufacturing process. In a sense, quality models shifted
from improving only the manufacturing processes to improving the productivity of a
business as a whole, from manufacturing to delivery reliability.
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So far, the manufacturing processes were optimised based on statistical methods that
were fed with data from the manufacturing line. With Taguchi’s methods though, the
optimisation would happen after experimental validation of the proposed change in
the system. This can be considered the first simulation approach in the manufacturing
industry.

With the introduction of new sensors and technologies in manufacturing, the amount
of available data deriving from the manufacturing processes expanded. This enabled
scientists to acquire valuable information from the produced data and thus focus on
studying these data to improve the manufacturing processes and minimise the gener-
ation of defects. This signifies a shift in the focus of quality models toward Information
quality.

In Industry 4.0, where sensor technology became accessible for the vast majority of
manufacturers, the introduction of the recording of diverse data regarding the manufactur-
ing process has led to the need to classify these data based on their quality and the impact
they have on manufacturing. This has motivated researchers to explore the area of Infor-
mation quality to more extent.

3. Research methodology

To examine the quality assessment methods that are used in manufacturing processes in
Industry 4.0, a literature review was conducted to identify relevant research around this
area. More specifically, the focus shifted from a wider range of keywords to specific
ones in order to identify the relevant material around quality prediction in Industry 4.0.
The keyword that was primarily used in the database ScienceDirect was ‘Quality predic-
tion’. This search yielded 783,025 results, which was expected as the keyword is broad and
does not specify efficiently the context of the current research.

As a second step, the keyword ‘Industry 4.0’ was added alongside ‘Quality prediction’.
These keywords yielded 181 results, from which 26 were review articles, 140 were
research articles, 7 were book chapters, 1 was a conference abstract, 1 was editorial, 2

Figure 3. Evolution of Quality.
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were mini-reviews, 2 were short communications, 1 was software publication and 1 was
categorised as ‘Other’.

Furthermore, to specify accurately the research area, the keyword ‘Manufacturing’was
added to the search criteria. The result yielded 167 results of which 24 were review articles,
130 were research articles, 7 were book chapters, 1 was a conference abstract, 1 was edi-
torial, 2 were mini reviews and 2 were short communications. The presented results refer to
a creative study that, from all those 167 documents, eliminated the ones that were not
exactly relevant to the purpose of the present work.[Q2]

However, apart from the above 167 documents, we took into account also references
that are used widely in the literature for Industry 1.0 to Industry 3.0 (e.g. (Tannock,
1992) and (Zorriassatine & Tannock, 1997)) to present the quality approaches mentioned
in these references and demonstrate why they cannot adequately address (most of the
times) the complex manufacturing scenarios of Industry 4.0. In the same manner, we
took into consideration references that do not deal with Industry 4.0 directly but focus
on modern manufacturing lines that implement elements of Industry 4.0. In total, 37
papers are included in this research that, when analysed, can highlight the advantages
and limitations of the approaches that are widely used in Industry 4.0 manufacturing
lines, for quality monitoring and prediction. The selected papers cover a wide range of
manufacturing processes and industries and were deemed suitable candidates to demon-
strate widely used methods alongside their advantages and drawbacks. The selection
process of these papers can be seen in Figure 4.

4. Results

The first quality control approach was introduced during the inspection phase that was
initiated at the beginning of the artisanship process. The product was inspected after it
was manufactured to assess its quality. This type of quality control is called Post-
Process Monitoring. The aim of Post-Process Monitoring is to create, through inspection,
causal links between the final product and the manufacturing processes that were followed
to create that product. Although it is capable of providing insights into the manufacturing

Figure 4. Selection process for papers.
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process in order to optimise it, it is not able to adequately explain complex manufacturing
processes and accurately identify why and which stage in the manufacturing process is
responsible for a possible defect. Inspection is not the path to quality; rather, it is a tool
for mitigating the effects of its absence (Tannock, 1992).

Even though they were created in the 1920s, traditional Statistical Process Control
(SPC) approaches are still widely used today (Colosimo et al., 2021). Statistical process
control, also known as SPC, is the application of statistical methods in order to maintain
quality control over a procedure or manufacturing method. Tools and techniques for
SPC can assist in monitoring the behaviour of processes, locating problems in internal
systems, and identifying potential solutions to production problems (American Society
for Quality, n.d.).

SPC control charts are commonly used to create and maintain statistical control of
essential outputs frommanufacturing and other complex processes where process variation
occurs from numerous sources (Zorriassatine & Tannock, 1997). There are many sorts of
charts to choose from; nevertheless, those that Shewhart initially developed continue to be
the most useful ones. They can be utilised with variable (continuous) data as well as attri-
bute (discrete) data, and they comprise time-series graphs that illustrate the outcomes of
periodic sampling and evaluation of some quality characteristic based on the output of
the process.

In recent years, numerous SPC approaches have been implemented by enterprises all
over the world, particularly as a component of quality improvement projects like Six
Sigma. The dissemination of control charting methods has been significantly aided by
the development of statistical software packages as well as highly developed techniques
for the collection of data (American Society for Quality, n.d.).

In 2016, Weese et al. (Weese et al., 2016) conducted a comprehensive literature review
on the use of statistical learning approaches to statistical process monitoring. They
observed that many contemporary systems generate data from several streams and/or a
hierarchical structure, with autocorrelation and cyclical patterns frequently occurring in
the output. The conventional SPC methods, which are model-based, are not well suited
for monitoring such data (Colosimo et al., 2021)(Weese et al., 2016). Several significant
methodological issues in process monitoring and surveillance continue to hinder SPC prac-
tise. The detection power of traditional SPC tools quickly decreases with increased data
dimensions, and they frequently call for a stationary process and a fixed baseline
(Weese et al., 2016). Additionally, traditional SPC tools are frequently based on linear
dimensionality reduction techniques, so they are unable to adequately address the chal-
lenges associated with process monitoring. In addition, before monitoring can begin,
one must first establish a baseline sample, which is traditionally referred to as Phase I
sample. This step must be completed before monitoring can begin. One of the initial chal-
lenges is figuring out how to establish such a sample in a setting that is both complex and
high-dimensional. There may be traditional statistical approaches to many of these scen-
arios, but the intricacies in the data from many of these scenarios may lend themselves
well to algorithmic solutions such as Machine Learning and AI (Colosimo et al., 2021)
(Weese et al., 2016).

The revolutionary technologies that were introduced during the age of Industry 4.0 are
disrupting existing manufacturing processes as well as driving transformation in those pro-
cesses. When it comes to coping with greater product personalisation and low-volume
outputs, traditional production tactics, such as mass production, have not shown to be
effective (Martinez et al., 2022). On the contrary, Flexible and Reconfigurable Manufac-
turing lines have tackled efficiently this issue. In addition to that, as a direct result of the
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previously mentioned product personalisation, the amount of time necessary to optimise
the manufacturing process lines has been drastically cut down, which has led to an increase
in the percentage of flawed items. Improved strategies for quality management are necess-
ary in order to fulfil the requirements of the present situation.

One of the methodologies that currently holds the most promise is known as Zero
Defect Manufacturing (ZDM). This approach aims to minimise and mitigate failures
within manufacturing processes. The ZDM is an innovative idea that has the potential to
completely transform the way people think about production (Psarommatis et al., 2020).

There are two distinct ways that the Zero Defect Manufacturing strategy may be put
into practice. The ZDM that is focused on the product, as well as the ZDM that is
focused on the process. The difference between a product-oriented ZDM and a process-
oriented ZDM is that the former investigates the flaws that are present on the actual
parts and works to find a solution, whereas the latter investigates the flaws that are
present in the manufacturing equipment and uses that information to determine whether
or not the products that are produced are satisfactory. The last one fits within the frame-
work of the concept of predictive maintenance (Psarommatis et al., 2020). Because accu-
rate and timely quality prediction has the potential to reduce the number of defects in a
product, it is a very useful instrument for use in manufacturing.

In 2022, Martinez et al. suggested employing well-established cyber-physical architec-
tures to support zero-defect manufacturing solutions in their paper (Martinez et al., 2022).
The manufacturing process is monitored by making use of inspection methods that are
already in place. The primary focuses of this monitoring are product quality and
machine health. A forecasting model between rework ratio and tool life is briefly
described, and it is demonstrated that preventative tool replacements can minimise the
amount of rework that is necessary due to faulty screw-fastening procedures by between
2 and 3 percent. They recommend conducting more research into the possibility of nonli-
nearity in the interactions that exist between variables and KPIs because the present data
analysis is restricted to linear correlations only.

In 2021, Pang et al. built a quality control system for CPS by making use of the intel-
ligent methods of Back Propagation (BP) neural network (Pang et al., 2021). Based on the
findings, it has been concluded that the intelligent data-driven system is both an essential
approach and an effective instrument for product quality prediction control in CPS.

In 2021, Vishnu et al. introduced a Digital Twin (DT) framework for the Computer
Numerical Control (CNC) machining process (Vishnu et al., 2021). This framework
makes it possible to simulate, predict, and optimise the machining quality at both the
process planning stage and the machining stage. In this study, predictive models are con-
structed for the purpose of forecasting surface roughness levels at both phases. It is difficult
to transform this DT into a high-fidelity representation since it requires precise prediction
models and optimisation modules for machining quality. Another disadvantage of this DT
is that the operator only has control over a limited number of parameters, such as feed rate
and spindle speed, when it comes to adjusting the quality of the machining while it is in
progress. The predictive models that were constructed for estimating the surface roughness
value at both phases require additional data in order to increase the model’s accuracy, and
an appropriate strategy needs to be picked in order to get better-predicted outcomes.
Finally, they suggest that future studies should include the investigation into the possibility
of developing optimisation techniques that are appropriate for this DT.

Work-in-progress (WIP) product quality may be accurately predicted using a method
developed byWang et al. in 2019, using generative neural networks (G. Wang et al., 2019).
This technique is based on an unsupervised learning environment and a time-delayed feed-
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forward neural network since the already described machine learning methods in this area
suffer from manual feature extraction and noise. This generative neural network technol-
ogy is capable of addressing such problems despite the low amount of data available since
it bases its prediction of product status on coded inputs. According to the findings of the
experiments, acceptable predictive classification accuracy is attained, and the majority
of WIP items that violate control limits throughout the production process are accurately
captured by using this technique. In addition, autoencoders, when used as unsupervised
feature extractors, present an automated method of creating features from the original
dataset without the addition of prior information or assumption. They recommend that
as part of future studies, this system should be improved so that it may process numerous
product quality attributes simultaneously, rather than just one particular feature at a time.

According to Su et al. in (Su et al., 2018), neural networks may be efficiently employed
to forecast irregularities in wafer dicing saw operations, and they can achieve chipping pre-
diction accuracy of 75%. This enables real-time monitoring of production conditions,
which in turn enables early identification of possible issues. This, in turn, helps prevent
product failure, which in turn reduces material costs, reduces wasting of machining
time, and improves overall manufacturing efficiency.

Bai et al., in 2021, presented an AdaBoost-Long Short Term Memory (LSTM)
model with rough knowledge for the purpose of predicting the quality of manufactured
goods (Bai et al., 2021). The AdaBoost method is used for the model’s reinforcement,
the LSTM is utilised as a regression tool, and the RS theory is utilised for the impor-
tance evaluation of the multiple parameters. The model that is provided here demon-
strates the best performance in terms of metrics, and it does so by drawing
inspiration from the approach of information extraction as well as ensemble learning.
As a result, the suggested framework has the potential to not only increase the efficient
application of information, hence enhancing the responsiveness of the model to the vari-
ables that are input, but it also has the potential to improve the performance of predic-
tions. Additionally, there is a statistically significant difference between the provided
model and other comparison models; hence, it may be the first choice for the manufac-
turing quality prediction in the actual work because of this difference. The researchers
believe that further effort in the form of relevant data collection is required in order to
test and enhance the performance of the proposed model.

An Infrared Thermography (IRT)-based artificial neural network model was suggested
by Gyasi et al., and it demonstrated good weld monitoring and control performance (Gyasi
et al., 2019). Even though the findings are encouraging, there are a few problems and con-
straints to consider. If the measurement point is too close to the solidifying weld pool, the
temperatures of the weld pool will exceed the highest recordable temperature, and the
measurement will become unusable as a result. On the other hand, if the location at
which the temperature is being measured is too far off from the weld pool, the temperature
will drop below the minimum value that can be measured. In terms of modeling ANN-
based solutions for actual welding scenarios, one of the most difficult challenges is to
determine the input and output parameters of the ANN. The causal effects of the input par-
ameters should not be directly linked in the same way as the output parameters, but the
output parameters should have some kind of causal link with the input parameters.

Saadallah et al. conducted research on the problem of early quality classification by
utilising a convolutional neural network (CNN) on time series sensor data from an auto-
motive real-world case study (Saadallah et al., 2022). The approach not only improved
the accuracy of classification, but it also achieved early quality prediction in a real-
world use case involving the automotive industry.
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Krauß et al. investigated the scope of the application of AutoML in production as well
as its limitations (Krauß et al., 2020). AutoML is a strategy that aims to eliminate the
demand for human resources inside machine learning projects by automating the pro-
cedures that are required to be carried out by these projects. They argue that AutoML
demonstrates poor performance with unsupervised learning as well as reinforcement learn-
ing and has issues when managing complicated data types such as diverse high-dimen-
sional data. Further studies about quality prediction in the manufacturing processes of
Industry 4.0 can be found in Table 1.

As we can deduce from the information presented above, machine learning is put to
extensive use in the production and assembly lines of Industry 4.0 for the purpose of
quality assessment. Examining the previous research done in that region, in the form of
literature reviews, likewise enables one to reach the same conclusion.

Kang et al. conducted a comprehensive literature review, which examines the appli-
cation of machine learning for production lines as well as the state of the art in this field
(Kang et al., 2020). Several issues that occurred on manufacturing lines were successfully
resolved with the help of machine learning.

In the most recent years, quality control and fault detection have emerged as two
primary areas of research focus, and techniques based on machine learning have been
demonstrated to be effective in both of these domains. As a result of the high level of com-
plexity involved in the processes and the large amount of data that is produced by certain
types of production lines, machine learning is most commonly utilised in the manufactur-
ing of metals and semiconductors. Access to data and the quality of that data are the two
most important factors that determine how well machine learning works. In most cases, the
outcomes of supervised learning are superior to those of semi-supervised learning and
unsupervised learning strategies. In order to increase the performance of the machine
learning models, it is helpful to have more data for each feature and data that is balanced.

Another literature study was carried out by Bertolini et al., and it confirms that the even
distribution of ML applications in many different industrial fields demonstrates the flexi-
bility of ML approaches and their excellent potential for operation management tasks (Ber-
tolini et al., 2021). In addition, the applications of machine learning in the sectors of
Industry 4.0 and AM appear to have positive potential, and the preliminary findings are
encouraging.

Caiazzo et al. carried out a study to investigate the most recent developments in ZDM-
related methodology (Caiazzo et al., 2022). As was shown, a significant amount of
machine learning is being put to use in the prediction area. This is in accordance with
the literature reviews that were previously mentioned. According to the findings of Liu
et al. (2022), enabling AI in the product design stage offers a potential answer to the
problem of how to take into account a wide range of design variables and the complexities
of the interactions between them in order to achieve the desired level of performance in
production. In addition, the incorporation of AI into the AMmanufacturing and assessment
stages enables not only the optimisation of the fabrication process for the tailored human-
centered products but also the complete and effective evaluation of the quality perform-
ance of the products.

In addition, Dogan et al. (Dogan & Birant, 2021) argue that implementing ML in man-
ufacturing can serve as a foundation for the creation of models that make estimates about the
behaviour that will be shown by the system in the future. It is feasible that this will lead to
forecasts that are approximately accurate regarding the possible future actions and reactions
of the manufacturing system. The capacity to make accurate predictions based on the data at
hand might vary widely depending on the properties of the machine learning algorithm. In
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Table 1. Further studies about quality prediction in the manufacturing and assembly processes of
Industry 4.0.

Study Area Quality Prediction Methods

(Lindemann et al.,
2019)

Anomaly detection in discrete
manufacturing (industrial press, metal
forming processes) using self-learning
approaches.

k-means, LSTM

(Wang et al., 2021) Welding quality prediction using a CNN to
predict back-side bead width from top-
side images.

CNN

(Bustillo et al.,
2018)

Boosting ensembles-based smart
optimisation of a friction-drilling process.

ANN, Regression Trees,
Ensembles of Adaboost
decision stumps

(Lee et al., 2017) CNN for Semiconductor Manufacturing
Process Fault Classification and
Diagnosis.

Fault Detection and
Classification (FDC)-CNN

(Bai et al., 2017) A mechanical manufacturing enterprise is
being investigated in order to evaluate the
DNN performance.

DNN

(Mohammadi &
Wang, 2016)

Product quality prediction of burned balls is
achieved using Support Vector Machine
classification algorithm in abrasion-
resistant material manufacturing process.

SVM

(Chhor et al., 2021) Ensemble learning approach based on
machine learning algorithms to predict the
optimal gear installation dimension in rear
axle drive assembly.

SVR, Random Forest (RF),
MLP

(Bak et al., 2021) Shallow neural network and data feature
selection technique for quality prediction
in aluminum diecasting process.

SNN

(Burggräf et al.,
2021)

Predictive analytics in quality assurance at
an industry 4.0 demonstration cell.

MLP, SVR, Decision Trees

(Gejji et al., 2020) Quality Prediction Model for Center-less
Honing Process Using Support Vector
Machine.

SVR, ANN, Random Forest,
Ensemble method

(Dengler et al.,
2021)

ML in the automated assembly of
pharmaceutical devices for a zero defect
tolerance system.

Decision Trees, SVM, CNN

(Zhang et al., 2020) Deep Learning with Attention Mechanism
for AM Part Quality Prediction.

Attention mechanism and
LSTM

(Behnke et al.,
2021)

In-Situ Quality Prediction using Early
Stopping Neural Network and Random
Forest in Laser-Based Additive
Manufacturing.

RF, ESNN

(Vrabel et al.,
2016)

Monitoring and controlling the
manufacturing process to improve the
quality of the surface workpiece when
drilling.

ANN

(Luo et al., 2015) Prediction of degradation using maintenance
framework in semiconductor
manufacturing industries.

RBM, Multiple RF, BPNN,
Evolvable NN, DBN

(Ayvaz & Alpay,
2021)

Predictive maintenance for additive layered
manufacturing processes (baby care
goods, home care products, etc.).

RF, XGBoost, MLP, Gradient
Boosting, SVR, AdaBoost

(Schorr et al.,
2020)

Quality Prediction of Drilled and Reamed
Bores.

CNN, ANN, SVR, RF, ETR,
AdaBoost, GBR, OLS,
BRR, DT
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spite of this, the general capacity of ML algorithms to arrive at accurate prediction outcomes
has been demonstrated and validated in the context of the manufacturing industry.

There are several benefits that Machine Learning brings to the quality prediction of
Industry 4.0 manufacturing and assembly processes; however, there are also a number
of downsides and limitations that need to be taken into consideration.

In (Kang et al., 2020), it is stated that good-quality data is not always available. This
can negatively affect the Machine Learning algorithms. One way for this to be tackled is by
using data pre-processing techniques.

In (Bertolini et al., 2021), it is concluded that the majority of the issues relate either to
the process of producing useful benchmark datasets or to the limited interpretability of the
results that are acquired. On the other hand, both issues may already be satisfactorily
resolved as a result of newly developing techniques. It’s possible that the only real chal-
lenge that still needs to be solved is providing practitioners with an appropriate key to inter-
pret and pick relevant ML approaches. This will ensure that they don’t get lost in the
overwhelming majority of scientific works that have been published in the subject area.

The need of selecting a suitable machine learning method in order to achieve the
desired level of fault detection is something that was also highlighted by Fu et al.
(2022). Their literature study concentrates on the application of machine learning tech-
niques for defect detection in metal laser-based additive manufacturing.

In (Caiazzo et al., 2022), it is highlighted that many areas around ZDM need improve-
ment. In the evaluation of this literature review, the topics that particularly pique our inter-
est are the following: Extension of the Detection strategy for different industrial processes
and Data Collection Management. Regarding the Extension of the Detection for different
industries, the Detection approach has undergone thorough analysis, however, the analysis
has only concentrated on specific industry procedures. Regarding Data Collection Manage-
ment, there is no unified procedure for the collection, management, or elaboration of data
within a coherent framework. This deficiency frequently becomes a barrier in the process
of putting ZDM techniques into practice in actual manufacturing environments.

According to (Liu et al., 2022), the suggested remaining problems and future research
possibilities are as follows: (1) development of sophisticated AM-oriented AI approaches
to manage the data with high heterogeneity, and high dimensionality, but limited availability
in the highly customised cases; (2) make full use of physics knowledge in the AI methods for
customised AM applications while ensuring process security and data privacy; and (3) incor-
porate people into the design, manufacturing, and quantification processes.

Following is a list of the key challenges that machine learning encounters in manufac-
turing, as noted by the vast majority of researchers and stated in the findings that are pub-
lished in the research carried by (Dogan & Birant, 2021) (also supported by (Wuest et al.,
2016)).

(1) The major benefit of machine learning is that it can automatically learn from varied
surroundings and adapt to those conditions as they change. This ability to learn and
adapt is what sets machine learning apart from other approaches. Because of the
dynamic and ever-changing nature of the industrial environment, the ML
system needs to be able to learn and adapt to new conditions, and the designer
of the system needs to be able to respond to any situation that may arise.

(2) Acquiring collected data that is both accurate and relevant is another significant
challenge because this information has a significant influence on the performance
of machine learning algorithms.
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(3) One of the most common issues that emerge when applying machine learning in
the manufacturing industry is the pre-processing of data. This is because it
carries a substantial amount of weight in terms of how the outcomes turn out.
This is also evident from looking at Table 1, which demonstrates that all of the
mentioned research utilised some form of data pre-processing.

(4) One other key challenge to surpass is deciding which machine learning (ML) strat-
egy to use and which algorithm to use.

(5) The interpretation of the data is the last important challenge to overcome (also sup-
ported by (Wuest et al., 2016)).

5. Discussion of the results

It can be shown that the approaches currently utilised for quality assessment in the man-
ufacturing lines of Industry 4.0 have a number of limitations that need to be addressed.
The aforementioned review papers serve as the main papers for this research because
they outline in a spherical way the drawbacks of the manufacturing aspect that each
paper focuses on. As these papers have studied many works in their respective manu-
facturing areas, their identified drawbacks are a product of wider research rather than a
single case. Even though these papers concentrate on various aspects of manufacturing,
it can be concluded that common drawbacks have been identified among all of them.
Based on the frequency with which each disadvantage was reported in the aforemen-
tioned review papers, combined with the identified drawbacks mentioned in the other
studied papers and the authors’ research, a summary of these drawbacks is provided
in what follows, starting with the most important, and working down to the least
important.

(1) It is not always possible to get high-quality data and/or of high level of accuracy.
Most of the time, successful pre-processing is required since it has a substantial
amount of influence on the final output.

As it was concluded from the aforementioned research, the quality of the data plays a
vital role in the performance of machine learning algorithms. Although the implementation
of sensors in industries allowed the acquisition of large amount of data, the data quality is
something that needs to be addressed in more detail in order to make good use of them.

(2) The performance of the aforementioned algorithms is adversely affected nega-
tively by the presence of high-dimensional data that is also extremely heteroge-
nous yet has limited availability in highly customised use cases.

Although the amount of available data in Industry 4.0 may be large, the presence of
high dimensionality, which is expressed as the inadequate ratio between gathered
samples and measured variables, can negatively affect the performance of the quality pre-
diction models. For that reason, a more systematic approach toward data acquisition
systems needs to be established. For instance, the strategical installation of sensors (e.g.
after simulation of the process) could lead to a more robust and efficient data acquisition
framework as only important information would be measured maintaining the dimension-
ality of the datasets low. This would boost the predictive accuracy of the quality prediction
methods and, at the same time, would reduce implementation and production costs (e.g.
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installation cost of redundant sensors, maintaining servers to store unnecessary measure-
ments, etc.).

(3) One of the most critical challenges continues to be deciding which strategy and
algorithm to use.

In the course of this study, it became apparent that there is no universal approach to
quality prediction in Industry 4.0 manufacturing lines. Although ML and AI are the
most popular ‘families’ of algorithms to address quality prediction, researchers still
need to undergo trial and error to find the best solution for each specific case. This is
due to the fact that modern manufacturing lines are highly customised and complex.
This creates a problem that needs to be addressed as in industries, where time and cost
are of the essence, the presence of universal frameworks, that each would address a specific
group of cases, would speed up the implementation of quality prediction mechanisms and
at the same time would reduce cost and time spent for finding the optimal solution.

(4) There is no guarantee that the results can be interpreted in any given situation.

Due to the complexity of the state-of-the-art algorithms that have been introduced in
recent years, the interpretation of the results might not be feasible for manufacturing
experts that are not familiar with the fundamental mathematics and methods of quality pre-
diction algorithms. This adds extra difficulty in the implementation of such models to man-
ufacturing lines as investing in solutions that cannot be fully interpreted at any given time
is not a common practice in industries.

(5) Quality prediction algorithms need to improve their ability to learn and adapt to
new conditions more effectively.

Modern manufacturing systems are highly reconfigurable and the system states change
frequently. The quality prediction models that are implemented in these systems cannot
accurately (most of the time) capture the change and adapt to it. This is also in accordance
with the lack of universal frameworks mentioned in (3) as both these problems have to
overcome the complexity and customisation of the manufacturing lines. As it can be con-
cluded, lack of adaptability translates to loss of efficiency and rise in production cost (e.g.
at each system change, readjusted solutions need to be implemented).

(6) Complete customisation must also ensure that data privacy and the security of
processes are maintained.

With the introduction of computer systems and the interconnectivity of Industry 4.0,
data pipelines are in charge of transmitting information from the shopfloor to the technol-
ogy providers and vice versa. Most of the time, this information is confidential and for that
reason, security measures need to be in place to ensure that data privacy and the security of
processes are maintained. For that reason, middleware components need to be up-to-date
with the latest advancements in the area of cyber security, in order to safeguard the con-
fidentiality of the data and the manufacturing processes.

Total Quality Management & Business Excellence 21



6. Conclusions, managerial implication, and proposals for future work of the
present research

6.1. Conclusions

As it can be concluded, quality models have undergone various evolution stages to reach
the current state. From the inspection of the finalised product to the use of statistical mod-
eling and finally, to the application of Machine Learning and AI for quality prediction,
quality models are constantly improving by utilising the newly introduced features of
each manufacturing era. Quality models shifted their focus from Inspection to Product
Quality, to monitoring and optimisation of Process Quality, to Quality Management,
and then to Design Quality. As a final stop, the quality models focused on Information
Quality. With the introduction of Industry 4.0, which made sensor technology available
to the vast majority of manufacturers, the amount of data available allowed the implemen-
tation of Machine Learning and AI to achieve greater accuracy in quality prediction.

Despite the immense success that Artificial Intelligence has had in the industry, it still has
some limitations. These limitations include the fact that the prediction models are negatively
impacted by the lack of quality data, that the interpretation of the solutions is not always
guaranteed, that it can be difficult to adapt the prediction frameworks to changes in the
system state, and that it can be difficult to achieve transferability of the solution to similar
cases due to the high level of customisation. If these limitations are overcome though,
then we do not find any reason why AI could not achieve higher levels of accuracy that
have not been achieved before, even in highly complex and customised manufacturing pro-
cesses. Based on the authors’ belief, AI will overcome these limitations as the advancements
during the last two decades indicate an exponential improvement in the capabilities of AI.

6.2. Managerial implication

The current research can act as a guidance tool for both experts in the area of manufactur-
ing and production managers in industries to weigh the advantages and drawbacks of
widely used quality prediction models. As automation and implementation of predictive
tools are on the rise, the current work can act as a ‘map’ that gathers the information
required to assess to which extent these methods can be implemented in new or existing
manufacturing lines.

More specifically, for new manufacturing lines, the current manuscript can help in the
strategic setup of the plant/factory in order to avoid the drawbacks mentioned in Section 5
(e.g. strategic installation of sensors, efficient data acquisition system to capture in depth
the information that is produced by the manufacturing line, proper security measures to
ensure confidentiality of the processes and data).

For existing manufacturing lines, the present study can assist in identifying the cause
behind possible bottlenecks in the already implemented quality prediction frameworks or,
it can be used in the same manner that can be used in new manufacturing lines and provide
guidance for the strategic implementation of quality prediction models.

6.3. Future work

The present research focused on presenting the advantages and limitations of quality predic-
tion models that are used in Industry 4.0 manufacturing lines. Although the Total Quality
Management approach focuses on increasing the efficiency and adaptability of business
operations as a whole (Toke &Kalpande, 2020), the current study focused on the technologi-
cal aspects of manufacturing. It would be interesting for further studies to examine the causal

22 N. G. Markatos and A. Mousavi



links between the implementation of quality prediction models and the gains in terms of
delivery reliability and financial growth. Furthermore, one aspect that future studies could
focus on could be how Industry 4.0 elements would deal with the challenges that industries
face for statutory and regulatory compliance regarding quality.

Disclosure statement
No potential conflict of interest was reported by the author(s).

Funding
This work has been carried out in the framework of the IQONIC project, which received funding
from the European Union’s Horizon 2020 Framework Programme research and innovation pro-
gramme under grant agreement No. 820677[Q1].

ORCID

Nikolaos G. Markatos http://orcid.org/0000-0003-3953-6796

References

Acatech. (2015). Acatech: Umsetzungsstrategie Industrie 4.0 Ergebnisbericht der Plattform
Industrie 4.0. www.vdma.org.

Aiman, M., Bahrin, K., Othman, F., Hayati, N., Azli, N., & Talib, F. (2016). Industry 4.0: A review
on industrial automation and robotic (Vol. 78). www.jurnalteknologi.utm.my.

American Society for Quality. (n.d.). What is statistical process control?
Ansari, F., Khobreh, M., Seidenberg, U., & Sihn, W. (2018). A problem-solving ontology for human-

centered cyber physical production systems. CIRP Journal of Manufacturing Science and
Technology, 22, 91–106. https://doi.org/10.1016/j.cirpj.2018.06.002

ASQ. (n.d.). QUALITY GLOSSARY. Retrieved November 16, 2022, from https://asq.org/quality-
resources/quality-glossary/q.

Ayvaz, S., & Alpay, K. (2021). Predictive maintenance system for production lines in manufactur-
ing: A machine learning approach using IoT data in real-time. Expert Systems with
Applications, 173, 114598. https://doi.org/10.1016/j.eswa.2021.114598

Bagheri, B., Yang, S., Kao, H. A., & Lee, J. (2015). Cyber-physical systems architecture for self-
aware machines in industry 4.0 environment. IFAC-PapersOnLine, 48(3), 1622–1627.
https://doi.org/10.1016/j.ifacol.2015.06.318

Baheti, R., Gill, H., Lee, J., Bagheri, B., & Kao, H. A. (2015). Cyber-physical Systems.
Manufacturing Letters, 3(October 2017).

Bai, Y., Li, C., Sun, Z., & Chen, H. (2017). Deep neural network for manufacturing quality predic-
tion. 2017 Prognostics and System Health Management Conference, PHM-Harbin 2017 -
Proceedings, https://doi.org/10.1109/PHM.2017.8079165

Bai, Y., Xie, J., Wang, D., Zhang, W., & Li, C. (2021). A manufacturing quality prediction model
based on AdaBoost-LSTM with rough knowledge. Computers & Industrial Engineering,
155, 107227. https://doi.org/10.1016/j.cie.2021.107227

Bak, C., Roy, A. G., & Son, H. (2021). Quality prediction for aluminum diecasting process based on
shallow neural network and data feature selection technique. CIRP Journal of Manufacturing
Science and Technology, 33, 327–338. https://doi.org/10.1016/j.cirpj.2021.04.001

Behnke, M., Guo, S., & Guo, W. (2021). Comparison of early stopping neural network and random
forest for in-situ quality prediction in laser based additive manufacturing. Procedia
Manufacturing, 53, 656–663. https://doi.org/10.1016/j.promfg.2021.06.065

Bensalem, S., Gallien, M., Ingrand, F., Kahloul, I., & Thanh-Hung, N. (2009). Designing auton-
omous robots: Toward a more dependable software architecture. IEEE Robotics &
Automation Magazine, 16, https://doi.org/10.1109/MRA.2008.931631

Total Quality Management & Business Excellence 23

http://www.vdma.org
http://www.jurnalteknologi.utm.my
https://doi.org/10.1016/j.cirpj.2018.06.002
https://asq.org/quality-resources/quality-glossary/q
https://asq.org/quality-resources/quality-glossary/q
https://doi.org/10.1016/j.eswa.2021.114598
https://doi.org/10.1016/j.ifacol.2015.06.318
https://doi.org/10.1109/PHM.2017.8079165
https://doi.org/10.1016/j.cie.2021.107227
https://doi.org/10.1016/j.cirpj.2021.04.001
https://doi.org/10.1016/j.promfg.2021.06.065
https://doi.org/10.1109/MRA.2008.931631


Bertolini, M., Mezzogori, D., Neroni, M., & Zammori, F. (2021). Machine Learning for industrial
applications: A comprehensive literature review. Expert Systems with Applications, 175,
114820. https://doi.org/10.1016/j.eswa.2021.114820

Burggräf, P., Wagner, J., Heinbach, B., Steinberg, F., Pérez, M. A. R., Schmallenbach, L., Garcke, J.,
Steffes-Lai, D., & Wolter, M. (2021). Predictive analytics in quality assurance for assembly
processes: Lessons learned from a case study at an industry 4.0 demonstration cell.
Procedia CIRP, 104, 641–646. https://doi.org/10.1016/j.procir.2021.11.108

Bustillo, A., Urbikain, G., Perez, J. M., Pereira, O. M., & Lopez de Lacalle, L. N. (2018). Smart
optimization of a friction-drilling process based on boosting ensembles. Journal of
Manufacturing Systems, 48, 108–121. https://doi.org/10.1016/j.jmsy.2018.06.004

Caiazzo, B., di Nardo, M., Murino, T., Petrillo, A., Piccirillo, G., & Santini, S. (2022). Towards Zero
Defect Manufacturing paradigm: A review of the state-of-the-art methods and open chal-
lenges. Computers in Industry, 134, 103548. https://doi.org/10.1016/j.compind.2021.103548

Chhor, J., Gerdhenrichs, S., & Schmitt, R. H. (2021). Predictive quality for hypoid gear in drive
assembly. Procedia CIRP, 104, 702–707. https://doi.org/10.1016/j.procir.2021.11.118

Colosimo, B. M., del Castillo, E., Jones-Farmer, L. A., & Paynabar, K. (2021). Artificial intelligence
and statistics for quality technology: An introduction to the special issue. Journal of Quality
Technology, 53(5), 443–453. https://doi.org/10.1080/00224065.2021.1987806

Connor, P. D. T. O. (1986). Quality, productivity and competitive position, W. Edwards Deming,
Massachusetts Institute of Technology. Center for Advanced Engineering Study, 1982. No.
of pages: 373. Quality and Reliability Engineering International, 2(4), https://doi.org/10.
1002/qre.4680020421

Davis, S. (1997). Future perfect: Tenth Anniversary Edition.
Dengler, S., Lahriri, S., Trunzer, E., & Vogel-Heuser, B. (2021). Applied machine learning for a zero

defect tolerance system in the automated assembly of pharmaceutical devices. Decision
Support Systems, 146), https://doi.org/10.1016/j.dss.2021.113540

Dogan, A., & Birant, D. (2021). Machine learning and data mining in manufacturing. Expert Systems
with Applications, 166, 114060. https://doi.org/10.1016/j.eswa.2020.114060

Erol, S., Jäger, A., Hold, P., Ott, K., & Sihn, W. (2016). Tangible industry 4.0: A scenario-based
approach to learning for the future of production. Procedia CIRP, 54, 13–18. https://doi.
org/10.1016/j.procir.2016.03.162

Fu, Y., Downey, A. R. J., Yuan, L., Zhang, T., Pratt, A., & Balogun, Y. (2022). Machine learning
algorithms for defect detection in metal laser-based additive manufacturing: A review.
Journal of Manufacturing Processes, 75, 693–710. https://doi.org/10.1016/j.jmapro.2021.
12.061

Gejji, A., Shukla, S., Pimparkar, S., Pattharwala, T., & Bewoor, A. (2020). Using a support vector
machine for building a quality prediction model for center-less honing process. Procedia
Manufacturing, 46, 600–607. https://doi.org/10.1016/j.promfg.2020.03.086

Godfrey, A. B. (1986). Report: The history and evolution of quality in AT&T. AT&T Technical
Journal, 65(2), 9–20. https://doi.org/10.1002/j.1538-7305.1986.tb00289.x

Godfrey, A. B., & Kenett, R. S. (2007). Joseph M. Juran, a perspective on past contributions and
future impact. Quality and Reliability Engineering International, 23(6), 653–663. https://
doi.org/10.1002/qre.861

Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Internet of Things (IoT): A vision,
architectural elements, and future directions. Future Generation Computer Systems, 29(7),
1645–1660. https://doi.org/10.1016/j.future.2013.01.010

Gyasi, E. A., Kah, P., Penttilä, S., Ratava, J., Handroos, H., & Sanbao, L. (2019). Digitalized auto-
mated welding systems for weld quality predictions and reliability. Procedia Manufacturing,
38, 133–141. https://doi.org/10.1016/j.promfg.2020.01.018

Institute of Electrical and Electronics Engineers. (n.d.). 2019 Ieee Workshop on Metrology for
Industry 4.0 and Internet of Things : proceedings : Naples, Italy, June 4-6, 2019.
“Advanced Process Defect Monitoring Model and Prediction Improvement by Artificial
Neural Network in Kitchen Manufacturing Industry: a Case of Study.”.

Jazdi, N. (2014). Cyber physical systems in the context of Industry 4.0. Proceedings of 2014 IEEE
International Conference on Automation, Quality and Testing, Robotics, AQTR 2014. https://
doi.org/10.1109/AQTR.2014.6857843.

Juran, J. M. (1986). The Quality Trilogy A Universal Approach to Managing for Quality.

24 N. G. Markatos and A. Mousavi

https://doi.org/10.1016/j.eswa.2021.114820
https://doi.org/10.1016/j.procir.2021.11.108
https://doi.org/10.1016/j.jmsy.2018.06.004
https://doi.org/10.1016/j.compind.2021.103548
https://doi.org/10.1016/j.procir.2021.11.118
https://doi.org/10.1080/00224065.2021.1987806
https://doi.org/10.1002/qre.4680020421
https://doi.org/10.1002/qre.4680020421
https://doi.org/10.1016/j.dss.2021.113540
https://doi.org/10.1016/j.eswa.2020.114060
https://doi.org/10.1016/j.procir.2016.03.162
https://doi.org/10.1016/j.procir.2016.03.162
https://doi.org/10.1016/j.jmapro.2021.12.061
https://doi.org/10.1016/j.jmapro.2021.12.061
https://doi.org/10.1016/j.promfg.2020.03.086
https://doi.org/10.1002/j.1538-7305.1986.tb00289.x
https://doi.org/10.1002/qre.861
https://doi.org/10.1002/qre.861
https://doi.org/10.1016/j.future.2013.01.010
https://doi.org/10.1016/j.promfg.2020.01.018
https://doi.org/10.1109/AQTR.2014.6857843
https://doi.org/10.1109/AQTR.2014.6857843


Kagermann, H., Wahlster, W., Helbig, J., Hellinger, A., Stumpf, M. A. V., Treugut, L., Blasco, J.,
Galloway, H., & Findeklee, U. (2013). Recommendations for implementing the strategic
initiative INDUSTRIE 4.0.

Kalpande, S. D., & Toke, L. K. (2021). Assessment of green supply chain management practices,
performance, pressure and barriers amongst Indian manufacturer to achieve sustainable devel-
opment. International Journal of Productivity and Performance Management, 70(8), 2237–
2257. https://doi.org/10.1108/IJPPM-02-2020-0045

Kang, Z., Catal, C., & Tekinerdogan, B. (2020). Machine learning applications in production lines: A
systematic literature review. Computers and Industrial Engineering, 149, 106773. https://doi.
org/10.1016/j.cie.2020.106773

Krauß, J., Pacheco, B. M., Zang, H. M., & Schmitt, R. H. (2020). Automated machine learning for
predictive quality in production. Procedia CIRP, 93, 443–448. https://doi.org/10.1016/j.
procir.2020.04.039

Landherr, M., Schneider, U., & Bauernhansl, T. (2016). The application center industrie 4.0 - indus-
try-driven manufacturing, research and development. Procedia CIRP, 57, 26–31. https://doi.
org/10.1016/j.procir.2016.11.006

Lee, K. B., Cheon, S., & Kim, C. O. (2017). A convolutional neural network for fault classification
and diagnosis in semiconductor manufacturing processes. IEEE Transactions on
Semiconductor Manufacturing, 30(2), 135–142. https://doi.org/10.1109/TSM.2017.2676245

Lindemann, B., Fesenmayr, F., Jazdi, N., &Weyrich, M. (2019). Anomaly detection in discrete man-
ufacturing using self-learning approaches. Procedia CIRP, 79, 313–318. https://doi.org/10.
1016/j.procir.2019.02.073

Liu, C., Tian, W., & Kan, C. (2022). When AI meets additive manufacturing: Challenges and emer-
ging opportunities for human-centered products development. Journal of Manufacturing
Systems, https://doi.org/10.1016/j.jmsy.2022.04.010

Luo, M., Yan, H. C., Hu, B., Zhou, J. H., & Pang, C. K. (2015). A data-driven two-stage maintenance
framework for degradation prediction in semiconductor manufacturing industries. Computers
& Industrial Engineering, 85, 414–422. https://doi.org/10.1016/j.cie.2015.04.008

Marilungo, E., Papetti, A., Germani, M., & Peruzzini, M. (2017). From PSS to CPS design: A real
industrial use case toward industry 4.0. Procedia CIRP, 64, 357–362. https://doi.org/10.1016/
j.procir.2017.03.007

Martinez, P., Al-Hussein, M., & Ahmad, R. (2022). A cyber-physical system approach to zero-defect
manufacturing in light-gauge steel frame assemblies. Procedia Computer Science, 200, 924–
933. https://doi.org/10.1016/j.procs.2022.01.290

Mohammadi, P., & Wang, Z. J. (2016). Machine learning for quality prediction in abrasion-resistant
material manufacturing process. Canadian Conference on Electrical and Computer
Engineering, 2016-October. https://doi.org/10.1109/CCECE.2016.7726783.

Mozaffar, M., Liao, S., Xie, X., Saha, S., Park, C., Cao, J., Liu, W. K., & Gan, Z. (2022). Mechanistic
artificial intelligence (mechanistic-AI) for modeling, design, and control of advanced manu-
facturing processes: Current state and perspectives. Journal of Materials Processing
Technology, 302, 117485. https://doi.org/10.1016/j.jmatprotec.2021.117485

Nazarenko, A. A., Sarraipa, J., Camarinha-Matos, L. M., Grunewald, C., Dorchain, M., & Jardim-
Goncalves, R. (2021). Analysis of relevant standards for industrial systems to support zero
defects manufacturing process. Journal of Industrial Information Integration, 23, 100214.
https://doi.org/10.1016/j.jii.2021.100214

Pang, J., Zhang, N., Xiao, Q., Qi, F., & Xue, X. (2021). A new intelligent and data-driven product
quality control system of industrial valve manufacturing process in CPS. Computer
Communications, 175, 25–34. https://doi.org/10.1016/j.comcom.2021.04.022

Petri, K. I., Billo, R. E., & Biclanda, B. (1998). A neural network process model for abrasive flow
machining operations. Journal of Manufacturing Systems, 17(1), 52–64. https://doi.org/10.
1016/S0278-6125(98)80009-5

Powell, D., Magnanini, M. C., Colledani, M., & Myklebust, O. (2022). Advancing zero defect man-
ufacturing: A state-of-the-art perspective and future research directions. Computers in
Industry, 136, 103596. https://doi.org/10.1016/j.compind.2021.103596

Psarommatis, F., May, G., Dreyfus, P. A., & Kiritsis, D. (2020). Zero defect manufacturing: state-of-
the-art review, shortcomings and future directions in research. International Journal of
Production Research, 58(1), 1–17. https://doi.org/10.1080/00207543.2019.1605228

Total Quality Management & Business Excellence 25

https://doi.org/10.1108/IJPPM-02-2020-0045
https://doi.org/10.1016/j.cie.2020.106773
https://doi.org/10.1016/j.cie.2020.106773
https://doi.org/10.1016/j.procir.2020.04.039
https://doi.org/10.1016/j.procir.2020.04.039
https://doi.org/10.1016/j.procir.2016.11.006
https://doi.org/10.1016/j.procir.2016.11.006
https://doi.org/10.1109/TSM.2017.2676245
https://doi.org/10.1016/j.procir.2019.02.073
https://doi.org/10.1016/j.procir.2019.02.073
https://doi.org/10.1016/j.jmsy.2022.04.010
https://doi.org/10.1016/j.cie.2015.04.008
https://doi.org/10.1016/j.procir.2017.03.007
https://doi.org/10.1016/j.procir.2017.03.007
https://doi.org/10.1016/j.procs.2022.01.290
https://doi.org/10.1109/CCECE.2016.7726783
https://doi.org/10.1016/j.jmatprotec.2021.117485
https://doi.org/10.1016/j.jii.2021.100214
https://doi.org/10.1016/j.comcom.2021.04.022
https://doi.org/10.1016/S0278-6125(98)80009-5
https://doi.org/10.1016/S0278-6125(98)80009-5
https://doi.org/10.1016/j.compind.2021.103596
https://doi.org/10.1080/00207543.2019.1605228


Rifkin, J. (2011). The Third Industrial Revolution : How Lateral Power is Transforming Energy, the
Economy and the World.

Rüßmann, M., Lorenz, M., Gerbert, P., Waldner, M., Justus, J., Engel, P., & Harnisch, M. (2015).
Industry 4.0 The Future of Productivity and Growth in Manufacturing Industries.

Saadallah, A., Abdulaaty, O., Büscher, J., Panusch, T., Morik, K., & Deuse, J. (2022). Early quality
prediction using deep learning on time series sensor data. Procedia CIRP, 107, 611–616.
https://doi.org/10.1016/j.procir.2022.05.034

Sahoo, S., & Lo, C.-Y. (2022). Smart manufacturing powered by recent technological advancements:
A review. Journal of Manufacturing Systems, 64, 236–250. https://doi.org/10.1016/j.jmsy.
2022.06.008

Schorr, S., Möller, M., Heib, J., & Bähre, D. (2020). Comparison of machine learning methods for
quality prediction of drilled and reamed bores based on NC-internal signals. Procedia CIRP,
101, 77–80. https://doi.org/10.1016/j.procir.2020.09.190

Schuh, G., Potente, T., Wesch-Potente, C., Weber, A. R., & Prote, J. P. (2014). Collaboration mech-
anisms to increase productivity in the context of industrie 4.0. Procedia CIRP, 19(C), 51–56.
https://doi.org/10.1016/j.procir.2014.05.016

Shewhart, W. A. (1926). Correction of Data for Errors of Measurement.
Silvestri, L., Forcina, A., Introna, V., Santolamazza, A., & Cesarotti, V. (2020). Maintenance trans-

formation through Industry 4.0 technologies: A systematic literature review. Computers in
Industry, 123, https://doi.org/10.1016/j.compind.2020.103335

Stock, S., Pohlmann, S., Günter, F. J., Hille, L., Hagemeister, J., & Reinhart, G. (2022). Early quality
classification and prediction of battery cycle life in production using machine learning.
Journal of Energy Storage, 50, https://doi.org/10.1016/j.est.2022.104144

Stock, T., & Seliger, G. (2016). Opportunities of sustainable manufacturing in industry 4.0. Procedia
CIRP, 40, 536–541. https://doi.org/10.1016/j.procir.2016.01.129

Su, T. J., Chen, Y. F., Cheng, J. C., & Chiu, C. L. (2018). An artificial neural network approach for
wafer dicing saw quality prediction. Microelectronics Reliability, 91, 257–261. https://doi.
org/10.1016/j.microrel.2018.10.013

Taguchi, G. (1987). Systems of experimental design (D. Clausing, Ed.; Vols. 1–2). UNIPUB/Kraus
International Publications.

Tannock, J. D. T. (1992). Automating quality systems. In Automating quality systems. Springer
Netherlands. https://doi.org/10.1007/978-94-011-2366-2

Toke, L. K., & Kalpande, S. D. (2020). Total quality management in small and medium enterprises:
An overview in Indian context. Quality Management Journal, 27(3), 159–175. https://doi.org/
10.1080/10686967.2020.1767008

Vaidya, S., Ambad, P., & Bhosle, S. (2018). Industry 4.0 - A Glimpse. Procedia Manufacturing, 20,
233–238. https://doi.org/10.1016/j.promfg.2018.02.034

Vinitha, K., Ambrose Prabhu, R., Bhaskar, R., & Hariharan, R. (2020). Review on industrial math-
ematics and materials at Industry 1.0 to Industry 4.0. Materials Today: Proceedings, 33,
3956–3960. https://doi.org/10.1016/j.matpr.2020.06.331

Vishnu, V. S., Varghese, K. G., & Gurumoorthy, B. (2021). A data-driven digital twin of CNC
machining processes for predicting surface roughness. Procedia CIRP, 104, 1065–1070.
https://doi.org/10.1016/j.procir.2021.11.179
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