
Taking Shape

The Data Science of Elastic Shape Analysis

with Practical Applications

Arianna Salili-James

Department of Mathematics

Brunel University London

Declaration

I declare that this thesis, submitted to Brunel University London, was composed by

myself, that the contents contained herein is my own original work except where otherwise

acknowledged in the text or by references, and that this work has not been submitted for

any other degree in any other schools or places.

2

Abstract

A mathematical curve can represent many different objects, both physical and abstract,

from the outline curve of an artefact in an image to the weight of growing animal to

the set of frequencies used in a sound. Regardless of these variations, the curves can

almost always vary non-linearly. One way to study shapes and their potential variations

is elastic shape analysis, a rich theory of which has developed over the past twenty years.

However, methods of elastic shape analysis are seldom utilized in practical applications

on real-world data, especially outside of the mathematical shape analysis community.

Our aim in this thesis is to explore some practical applications of elastic shape analysis.

To do this, we work with various types of shape data, the majority of which are based on

image datasets. As our focus is on two-dimensional curves, it is important to be able to

robustly extract contours from images, before we can apply elastic shape analysis tools.

In order to analyse the shapes in a dataset, we turn to methods of machine learning, to

investigate the applications of elastic shape analysis in classification.

In this thesis, we introduce an anthology of projects, in order to emphasise and under-

stand the potential of elastic shape analysis in practical applications. There are four main

projects in this thesis: (i) Classification of objects using outlines and the comparisons

between methods of elastic shape analysis, geometric morphometrics, and human experts,

with a focus on ancient Greek vases, (ii) Mussel species identification and a demonstra-

tion that shape may not be enough in some applications, (iii) A novel tool to monitor

the development of kākāpō chicks, and (iv) Classifying individual kiwi based on acoustic

data from their calls.

By combining tools from computer vision and machine learning with methods of elastic

shape analysis, we introduce a practical framework for the application of elastic shape

analysis, through a data science lens.

3

Acknowledgements

I would like to thank Stephen Marsland for being the best supervisor I could have asked

for, despite being thousands of miles away. And I would like to thank Matthias Maischak

for his continuous support at all times. I would also like to thank all the collaborators

who were involved in the projects that make up this PhD, in particular to Armand Leroi,

and to Andrew Digby. Furthermore, I would like to thank the PGR team at Brunel

University London for their invaluable support, and Martins Bruveris for giving me the

opportunity to begin this PhD in the first place.

I would like to express my deepest gratitude to my wonderful friends and family. From my

closest friends who have supported me throughout my life, and put up with my absences

during these last few years, to my fellow PhD colleagues who shared the journey with

me, and motivated me to keep on going until the very end. In particular, thank you to

my sister Aida, for always being there for me and constantly keeping me motivated. And

to my Benjamin, I would not have been able to do this PhD without you. Thank you for

always having my back through the good times and the difficult times, and thank you

for your constant help, support, expertise, and kindness. To my parents, I am eternally

grateful for everything you have done for me and continue to do for me. Thank you for

lighting my love for mathematics and starting me on this journey.

I dedicate this thesis to my family.

4

Preface

This PhD and thesis have been composed by myself. But the projects within have been

in collaboration with many other scientists from different areas. Collaborations are vital

to science and without it, science cannot progress. To emphasise my appreciation, for

the remainder of this thesis, I use “we” rather than “I ”.

5

Contents

List of Algorithms 9

1 Introduction 12

1.1 What Is Shape? . 12

1.1.1 Shape Data . 13

1.2 Analysing Shape Data . 14

1.2.1 Morphometrics . 14

1.2.2 Shape Analysis & Functional Data Analysis 15

1.2.3 Elastic Matching . 16

1.3 Our Research . 17

1.3.1 Motivation & Objectives . 18

1.3.2 Datasets . 21

1.4 Thesis Outline . 22

2 Background 24

2.1 Introduction . 24

2.1.1 History & Literature Review . 24

2.1.2 Procrustes Alignment . 27

2.1.3 Background Chapter Outline . 29

2.2 Shapes & Invariances . 30

2.2.1 Parametrising Curves . 30

2.2.2 Shape-Preserving Transformations 32

2.2.3 Pre-Shape and Shape Space . 33

2.3 Transforming Shapes . 35

2.3.1 LDDMM Framework . 35

2.3.2 Finding Geodesics . 39

2.4 Registering Curves in the SRVF Framework 43

6

Arianna Salili-James CONTENTS

2.4.1 Motivation for Pairwise Registration 43

2.4.2 Square Root Velocity Functions 44

2.4.3 Invariance to Shape-Preserving Transformations 47

2.4.4 Geodesics & Distances . 49

2.5 Implementations in the SRV Framework 50

2.5.1 SRVF Path-Straightening . 50

2.5.2 Pairwise Registration of Open Curves 55

2.5.3 Averages in the Shape Space . 67

3 Image Data Processing 74

3.1 Introduction to Curves in Images . 74

3.1.1 Deep Learning for Image Segmentation 75

3.1.2 Difficulties in Automatic Contour Extraction 77

3.1.3 A New Combination of Tools . 78

3.2 Image Binarization . 79

3.2.1 What Is an Image? . 79

3.2.2 Introduction to Image Binarization 79

3.2.3 Image Binarization Algorithms 81

3.3 Contour Extraction . 91

3.3.1 Marching Squares . 91

3.3.2 Snakes . 93

3.4 Experiments . 99

3.4.1 Our Contour Extraction Approach 100

3.4.2 Comparisons to Other Methods 100

4 Applications of Elastic Shape Analysis to Closed Curves Extracted from

Images 106

4.1 Classifying Ancient Greek Vases . 108

4.1.1 The Shapes of Vases . 108

4.1.2 Shape Analysis for Vase Classification 109

4.1.3 Data . 110

4.1.4 Removing Vase Handles . 111

4.1.5 Vase Image Binarization . 118

4.1.6 Finding Vase Outlines . 119

4.1.7 Quantifying Vase Shape Variation 122

7

Arianna Salili-James CONTENTS

4.1.8 Machine Learning Classification 126

4.1.9 Classification Results . 131

4.1.10 Means & Principal Components 136

4.1.11 Repeating the Method on Other Datasets 138

4.1.12 Overview . 142

4.2 The Effectiveness of Images . 143

4.2.1 Measuring the Shapes of Vases . 143

4.2.2 Project Overview . 145

4.3 Classifying Mussels . 149

4.3.1 Objectives . 149

4.3.2 Previous Classification Methods 149

4.3.3 Method . 150

4.3.4 Summary . 153

5 Applications of Elastic Shape Analysis on Open Curves 154

5.1 Kākāpō Health Classification . 155

5.1.1 Growth Curves . 155

5.1.2 Kākāpō Growth Monitoring with Shape Analysis 157

5.1.3 Kākāpō Weight Data . 159

5.1.4 Karcher Means of Kākāpō Growth Curves 161

5.1.5 Distances between Growth Curves & Means 164

5.1.6 Boundaries on Growth Curves . 165

5.1.7 Method Comparison Experiment 166

5.1.8 Classifying Growth Curves with Karcher Means 170

5.1.9 Summary & Significance in Conservation 176

5.2 Kiwi Call Identification . 179

5.2.1 Introduction to Automatic Birdsong Recognition 179

5.2.2 Project Introduction . 181

5.2.3 Signal Processing Fundamentals 184

5.2.4 Extracting Curves from Kiwi Calls 187

5.2.5 Quantifying Differences between Kiwi Calls 198

5.2.6 Summary & Future Work . 214

6 Conclusion 219

6.1 Summary . 219

8

Arianna Salili-James CONTENTS

6.2 Future Work . 221

A Kākāpō Classification Code 237

A.1 Algorithms . 238

A.1.1 Sampling Functions . 238

A.1.2 Defining Boundaries / Health . 240

A.1.3 Computing Means . 243

A.1.4 Health Classification . 245

A.2 Code Examples . 250

9

List of Algorithms

1 DPA . 58

2 KLR . 61

3 Karcher Mean Example . 70

4 Otsu’s Method . 84

5 New Binarization Technique . 86

6 Automated Image Processing Example . 101

7 Handle Removal – Group I . 113

8 Handle Removal – Group II . 114

9 Distance Matrix k-NN . 128

10 Bootstrapping k-NN Example . 130

11 Growth Curve Sampling . 172

12 Multi-Level Dominant Frequency Extraction 192

13 Spectrogram Binarization . 193

14 Syllable Contour Extraction . 194

15 Connecting Neighbouring Contours . 195

16 Segmenting Syllables . 197

17 Grid-Search Parameter Optimisation Example 208

18 createWeightsSample . 238

19 createBounds . 240

20 defineHealth . 241

21 extraFilter . 242

22 computeMeans . 243

23 trainTestKakapo . 245

24 predictHealth . 248

10

“Must a name mean something?” Alice asked doubtfully.

“Of course it must,” Humpty Dumpty said with a short

laugh: “MY name means the shape I am – and a good

handsome shape it is, too. With a name like yours, you

might be any shape, almost.”

Lewis Caroll, Alice Through the Looking-Glass

11

Chapter 1

Introduction

Shape analysis is the mathematical study of shapes, abstractly represented as continuous

curves. The mathematical spaces where shapes are described are non-linear, meaning

that the data-based analysis of shape requires specialist tools. In this interdisciplinary

data science thesis we focus on developing methods to apply the tools of shape analysis

to real-world applications. We introduce these applications using different projects that

form the individual chapters of this thesis. By delving into the areas of mathematical

shape analysis, computer vision, and machine learning, amongst others, our aim is to de-

velop novel tools and procedures to enable modern shape analysis methods to be applied

by domain scientists, without requiring too much mathematical knowledge.

We begin this introduction by defining the crucial word that this research is based on:

shape. Next, we will briefly outline the field of shape analysis (a more detailed overview

is presented in the following chapter) and functional data analysis. And finally, we will

detail the research projects that comprise this PhD, discuss their motivations and objec-

tives; and outline the roadmap of this thesis.

1.1 What Is Shape?

We can learn a lot about an object from its physical attributes, such as its size and tex-

ture. However, the key information is often in the object’s shape.

In everyday language, the word shape is used varyingly, whether it is to describe a three

12

Arianna Salili-James CHAPTER 1. INTRODUCTION

dimensional surface, or the outline of an object. In defining shape, it can be helpful

to distinguish between shape and form, although this is rarely done. Even the Oxford

dictionary lists one definition of “shape” as “form”, and that of “form” as “shape”. We

can think of the form as being the appearance of the object, while the shape is extracted

from the form, by removing the dependence upon global transformations, i.e., scaling,

translation, and rotation. Consider, for example, the outlines of the base of a 1× 1 and a

2× 2 Lego brick. Though their extrinsic forms certainly differ, with one larger than the

other, their intrinsic shape remains the same. In this way, mathematically, shapes are

elements of an infinite dimensional space, as we will discuss further in Section 2.2.3.

Separating the notion of shape from form is especially useful when working on applications

with image data. Here, we may not have the size and orientation information of the

objects in the images. And moreover, it is the camera shot that affects these attributions.

For example, photographs can show the same object but depending on how close the

camera was, the objects can appear to have different sizes. In this thesis, where it is

relevant, we will separate shape from form, by removing the global similarity transforms.

There are well-established tools for this, as will be discussed in the Background chapter.

1.1.1 Shape Data

It has been estimated that by 2025, there will be 175 zettabytes1 of data in the world

(Rydning, 2018). Included in that number will be a plethora of potential shape data; in

other words, datasets that consist of images of objects or details of objects, from which

shape information can be extracted. Already, we can see petabytes upon petabytes of

data that can be considered as shape data, for instance the petabytes of neuroimaging

data produced every year, (Dinov et al., 2014). Thus, from images that show distinct

objects, we can consider the shape of said object by its outline. Inside a computer, we

may represent a shape by:

Landmarks: Landmark points are defined in the field of morphometrics as points on an

object that correspond to definitive points across a population of similar objects. Impor-

tantly, landmark points have to preserve their correspondences throughout the dataset.

To better illustrate this, we present an example of landmarks distributed on a dataset of

leaf images (as seen in (Firmansyah et al., 2016)). In order to grasp a better understand-

ing of the comparisons between the shapes of leaves throughout the dataset, landmarks

1Where 1 zettabyte is equivalent to 109 terrabytes.

13

Arianna Salili-James CHAPTER 1. INTRODUCTION

can be placed on anatomical points such as on the apex (tip) of the leaf, its base, or

its petiole (stalk), where in this example, we make the assumption that these features

exists on each of the leaves. Landmarks can also be defined in a more quantitative way,

for example, by finding points on an outline that correspond to the points of highest

curvature.

Curves: Instead of selecting representative points, we can describe shapes as continu-

ous functions of some underlying parameter. For a two-dimensional curve, one parameter

is sufficient. The curve starts at a point a, and ends at a point b, where a, b ∈ R, and the

curve, c, is a mapping such that c : I = [a, b] 7→ R2. Curves can be open or closed. In the

latter case, c(a) = c(b). In order to include this condition, we can instead consider a closed

curve, c, as a mapping, c : S1 7→ R2. We will go into more detail about these mappings

in Section 2.2.1. Curves can be parametrised in many different ways. Note that points

on a curve will no longer need to be in-correspondence, unlike in the landmarks approach.

1.2 Analysing Shape Data

Owing to the myriad of shape data readily available today, it is now more important than

ever to establish ways in which to reliably analyse the data to its fullest.

1.2.1 Morphometrics

The hisotry of analysing shapes is often attributed with the field of morphometrics. This

is not too surprising, as the word morphometrics comes from “morphe” meaning “shape”,

and “metron”, meaning “measure”. There is a long history of analysing the shape of ob-

jects with morphometrics, such as the anthropological studies of facial structures in the

late 1800s, as described in (Mitteroecker and Gunz, 2009). These methods often employed

Bookstein Shape Coordinates2, (Bookstein et al., 1985), to describe transformations be-

tween landmarks; a technique still used today, such as in the palaeontological study on

predation analysis in (Leighton, 2011). By the late 20th centuary, the applied mathemati-

cian, Fred Bookstein, embarked on using Cartesian coordinates to describe shapes with

2Often considered the simplest tool in morphometrics, involving the removal of similarity transforms.

14

Arianna Salili-James CHAPTER 1. INTRODUCTION

landmarks, (Bookstein, 1997), and opened the doors to the area of Geometric Morpho-

metrics, which is arguably, one of the most popular approaches in the analysis of shapes,

particularly within anthropology, zoology, palaeontology, and archaeology. Geometric

Morphometrics focuses on the statistical analysis3 of shapes or forms of objects, as de-

scribed by the Cartesian coordinates of the object’s landmarks. Moreover, the analysis is

done whilst preserving the geometric relationships of the landmarks in question; this is an

important difference between this approach and traditional methods of morphometrics.

For more details regarding Geometric Morphometrics, we refer the reader to (Bookstein,

1997), which provides a useful analysis on morphometric tools and to (Rohlf and Marcus,

1993), and (Adams et al., 2004), which describe the revolution in morphometrics.

1.2.2 Shape Analysis & Functional Data Analysis

One place where methods of Geometric Morphometrics may fall short is on their reliance

on landmarks. Though landmarks are a convenient tool in the analysis of shapes, subtle

changes in them can sometimes lead to inaccuracies in analysis, for example, if there are

too few landmarks, or if the positions of the landmarks are not in correspondence across

a dataset. These particular problems are partially handled by using a semilandmark

approach, at the cost of optimisation, as discussed in (Gunz and Mitteroecker, 2013), a

study that introduced the concept of semilandmarks on curves and surfaces.

Another potential disadvantage of Geometric Morphometrics methods is the occasional

incorporation of standard linear methods for further statistical analysis, even when the

space of the shapes is not Euclidean. Such approaches risk painting a picture of the

shapes of objects, that may not be mathematically as accurate as it could be.

There are many possible issues that could arise form landmark-based methods, from pro-

cessing time due to the landmark-selection step, to the issues already mentioned here.

For more information, we refer readers to (Marsland and Shardlow, 2017), for a concise

description of landmark-based analysis of shapes with uncertainties. Furthermore, we

note that these possible deficiencies in landmark-based methods are something we will

be exploring in this thesis, namely in Section 4.1 of Chapter 4. This brings us on nicely

to a field that overcomes such issues, namely, (mathematical) shape analysis.

3such as Principal Component Analysis, PCA.

15

Arianna Salili-James CHAPTER 1. INTRODUCTION

Shape analysis can be loosely thought of as the mathematical study of shapes. It is part

of Functional Data Analysis, which deals with functional data, as the name suggestions,

i.e. data that can be considered as real-valued functions on fixed intervals, such as growth

curves. Henceforth, the statistical tools that allow us to analyse shapes (or functional

data) developed in this field, can be applied to numerous real-world problems, from facial

recognition to medical imaging.

The origin of shape shape analysis is often aligned with the publication of D’Arcy Thomp-

son’s notable book “On Growth and Form” (Thompson, 1917). This pioneering book

(which we shall go into more detail about in the next chapter) was the first to present the

idea of comparing two shapes for evolutionary analysis, by deforming a grid; a method

once proposed by the painter and mathematician, Albrecht Dürer in the 1500s, in his

work on human proportions. More specifically, by drawing an object onto a grid, one

searches for a means of morphing the grid so that the original shape of the object is

deformed in such a way that it resembles the other shape. This morphing from one shape

to another can be referred to as a matching, and plays a significant role in functional and

shape data analysis. By morphing a shape in such a way, we can incorporate a sense of

elasticity, that can perceivably provide a shape with more opportunities and freedom for

it to be morphed into another. This is the motivation for elastic (shape) matching.

1.2.3 Elastic Matching

As the title of this thesis suggests, our interest lies predominantly within the elastic

matching of shapes. Illustratively, we can think of an elastic matching between two

two-dimensional curves by imagining one curve being drawn on an elastic sheet, and

that sheet being stretched and compressed until the deformed shape resembles the other

curve. In the field of shape analysis (or more precisely in this case, elastic shape analysis),

these deformations between shapes, caused by an underlying grid deformation, are the

results of the action of diffeomorphisms4 on the shape itself. For example, we consider the

shapes of two closed curves, c1, c2 : S1 7→ R2. The objective is to find a diffeomorphism,

φ : R2 7→ R2 such that its action can be defined to describe a matching between the two

curves, where (φ, c1) is matched with c2 and the action (φ, ·) is by composition.

4A formal definition of diffeomorphisms will be provided in Chapter 2. For now, we can think of these

as nice, invertible transformations.

16

Arianna Salili-James CHAPTER 1. INTRODUCTION

Figure 1.1: Elasting matching between the shell outlines of two cone snails (Conus). The

matching is illustrated over time, via geodesics, as described in the next chapter.

An example of an elastic matching is shown in Figure 1.1, where a closed curve represent-

ing an outline of a shell is matched with another shell within the Conidae family. Elastic

matchings are not only helpful in illustrating how a shape can be morphed into another,

but more importantly, they can be used to define a distance between two shapes, for

example, by computing the energy required to perform the deformation. Such distances

represent the quantification of differences between the shapes of two objects, which can

be highly useful in statistical analysis of shape data.

1.3 Our Research

There are a vast variety of applications where the shapes of objects are relevant, from out-

line curves of objects to handwriting recognition to any function that can be graphed as a

continuous curve. Just within landmark analysis using morphometrics, more datasets are

produced regularly, particularly in the field of biology and ecology, such as in (Gündemir

et al., 2022), an analysis on the shapes within sternums of different birds. Despite this

vastness, real-world studies that utilize elastic shape matching and other tools from elas-

tic shape analysis, are rare. Therefore to showcase these opportunities, this thesis is

comprised of multiple projects that each work on differing types of data, which we will

soon see. By working on this anthology of different projects, we can provide a highly use-

ful and detailed overview of the applications of elastic shape analysis on two-dimensional

curves.

Broadly, our projects can be split into two categories based on the types of their data,

specifically: image-based data and non-image data. Whilst in the image datasets we are

making an assumption that the datasets in our objects have an outline, in the latter, we

are working with a natural definition of a curve, such as a growth curve. In this section,

we discuss the motivation behind these projects, their datasets, and our objectives.

17

Arianna Salili-James CHAPTER 1. INTRODUCTION

1.3.1 Motivation & Objectives

Shape analysis methods have been around for a few decades, from methods used to sep-

arate shape from form, such as Procrustes alignment (see Chapter 2), or methods of

temporal curve alignment, as in the Dynamic Time Warping method, (Berndt and Clif-

ford, 1994). However, our focus is predominantly on the newer and less-explored field of

elastic shape analysis, which we believe has yet to see its full potential in practical appli-

cations. Collaborations involving elastic shape analysis on varying datasets and alongside

researchers outside of the field, are seldom seen, hence the inclination of a greater poten-

tial to these methods, and the motivation to build the necessary bridges to explore the

possible practical applications. Furthermore, based on both the theoretical and practical

developments in elastic shape analysis in recent years, shape methods are now mature

enough to be applied and used in real-world projects. Therefore, it is now the ideal time

to be exploring such applications, starting, in this thesis, with the applications of elastic

shape matching on two-dimensional curves.

Our global ambition is to make elastic matching for the analysis of shape data accessible

to a much wider audience. To accomplish this, we undertake projects that analyse shape

data, via a data science lens, and in turn, build a framework that can be applied to

a broad range of questions and datasets, in a broad range of fields. Henceforth, this

research is based on a collection of aims, objectives, and questions, that can be split into

different themes. In the following section we mention the various new contributions of

this doctoral research by describing the themes that motivated this work, that are the

building blocks to this thesis.

Interdisciplinary Collaborations We want to apply elastic shape analysis to real-

world projects in collaboration with experts from a wide variety of fields and across several

datasets, from natural objects, such as (i) growth curves5 in collaboration with conser-

vationists and ecologists; (ii) shell datasets, in collaboration with malacologists6; (iii) to

analysis on ancient vases, in collaboration with archaeologists and historians. By working

directly with experts in the relevant fields, the results of our projects can be properly

evaluated, have immediate effects and be utilized to make a true difference to the area. In

particular, we collaborate with evolutionary biologist, Professor Armand Leroi7, at Im-

5more specifically, as we will see in the penultimate chapter, our growth curves are weights over time.
6Malacology is the study of Mollusca e.g., snails and cephalopods, as well as other invertebrates.
7https://www.imperial.ac.uk/people/a.leroi

18

https://www.imperial.ac.uk/people/a.leroi
https://www.imperial.ac.uk/people/a.leroi

Arianna Salili-James CHAPTER 1. INTRODUCTION

perial College London, for our work on shapes of ancient Greek vases, gastropod shells,

and Swedish leaves (– Section 4.1). We collaborate with Dr Andrew Digby8, ecologist

and scientific advisor at Kākāpō Recovery9, on our project Kākāpō health project (–

Section 5.1). We collaborate with marine biologist, Professor Jonathan Gardner10, from

Victoria University of Wellington, on our Mollusc classification project (– Section 4.3).

We collaborate with the AviaNZ11 team, at Victoria University of Wellington, on our

project relating to within-species birdsong identification (– Section 5.2).

Significant Datasets The datasets we will be working with cover a range of areas and

provide a useful account of the applications of elastic shape analysis. Not only are these

datasets useful in their variation, but they are of great importance too. For example,

our work in the final chapter of this thesis is focused on possible applications in wildlife

conservation. And in one particular project, we will be working with a biological dataset

from a highly endangered species. Thus, our projects are not only useful in proving an

overview of the possibilities of elastic shape analysis applications, but they also present

an exciting opportunity to work with important datasets that have not been studied

before. Furthermore, as an additional side-note, throughout this thesis we will try our

best to provide links to every dataset used or mentioned, as we recognise the importance

of sharing data for the progression of science.

Analysis of Distances The primary output from the elastic shape analysis stage of

our projects is a set of distances between shapes in the dataset. Subsequently, the aim is

often to analyse these results by delving into tools from machine learning. This is different

to most data-science-related research, which derive features from objects that are then

incorporated into machine learning algorithms that operate in Rn, whether that’s via a

supervised or non-supervised learning approach. Whilst certain deep learning methods

such as Convolutional Neural Networks12 side-step the requirement of the user to pre-

select the best features, their dependence on very large training data, and their often

lengthy training and application run-time, means that we cannot incorporate them in

8https://www.doc.govt.nz/our-work/kakapo-recovery/meet-the-people/

kakapo-recovery-team/
9https://www.doc.govt.nz/our-work/kakapo-recovery/

10https://people.wgtn.ac.nz/Jonathan.Gardner
11https://www.avianz.net/
12which we will briefly describe in Chapter 3.

19

https://www.doc.govt.nz/our-work/kakapo-recovery/meet-the-people/kakapo-recovery-team/
https://www.doc.govt.nz/our-work/kakapo-recovery/
https://people.wgtn.ac.nz/Jonathan.Gardner
https://www.avianz.net/
https://www.doc.govt.nz/our-work/kakapo-recovery/meet-the-people/kakapo-recovery-team/
https://www.doc.govt.nz/our-work/kakapo-recovery/meet-the-people/kakapo-recovery-team/
https://www.doc.govt.nz/our-work/kakapo-recovery/
https://people.wgtn.ac.nz/Jonathan.Gardner
https://www.avianz.net/

Arianna Salili-James CHAPTER 1. INTRODUCTION

our specific projects. Furthermore, many machine learning methods13, such as Support

Vector Machines, (Cortes and Vapnik, 1995) or K-means clustering, (Lloyd, 1982), in

general, work directly with feature vectors that describe objects in a dataset, and then

transform the space where a distance metric (typically, linear) is subsequently defined.

However, since we don’t have features, we want to use a distance matrix instead, and

thus, we adapt the relevant machine learning algorithms specifically for our projects, in

order to incorporate our distances or our distance metric.

Classification of Shapes Classification analyses are becoming increasingly important,

especially as we globally aim to automate many processes, from automatic recognition of

objects in images (such as animals in camera traps, as seen in (Schneider et al., 2018)),

to machine learning for classifying breast cancer in (Amrane et al., 2018). Classification

studies, particularly in medicine, biology, and ecology (to name a few) often use the shape

of an object as one of the attributes. This motivates the question, can a classification

algorithm be trained to classify objects, where the object’s shape is its sole attribute?.

In several projects across this thesis, we will explore this question and analyse the per-

formance of classification based on distance matrices that solely contain the distances

between the shapes of objects within the datasets. Moreover in our final project, we

examine the effect of incorporate additional non-shape-related information alongside the

distance matrices that contained the elastic matching results.

Comparisons with Popular Methods We want methods of elastic shape analysis to

become popular tools for analysing shape data outside of the shape analysis community.

For our methods to be tried by others, we must see how they compare with other pop-

ular methods that analyse shape data. Whilst in many areas, geometric morphometrics

methods are the most widely-used, in other areas, objects and their shapes and forms are

often analysed by eye. Thus, in Section 4.1, we compare multiple elastic shape analysis

methods with common methods used in other fields, on varying datasets.

Extraction of Shape Data We will exclusively be working with two-dimensional open

and closed curves, as it is the shape of the objects that we are solely interested in. Thus,

when it comes to image data, it is the outline curves within the image that we are in-

13We will go into more detail about certain machine learning methods later on in this thesis. But for

a general overview of machine learning alrogirthms, see (Marsland, 2015) or (Getoor and Taskar, 2019).

20

Arianna Salili-James CHAPTER 1. INTRODUCTION

terested in, not the image as a whole14. Since we are now describing three-dimensional

objects by their two-dimensional outlines, one project in our thesis (Section 4.2) examines

whether this may harm performances when applied to classification questions. Further-

more, as our focus is on the shape of the objects, extracting the outline curves is a highly

important step that is, more often than not, glossed over in literature regarding the anal-

ysis of shapes. Our research involves finding reliable methods to obtain smooth outline

curves from image data, regardless of the quality of the image. In chapter 3, we introduce

a novel algorithm that we created and a framework that can be used to automatically

extract smooth contours from images reliably.

We hope that the contents of this thesis can be regarded as a concise framework to be

employed when analysing shape data via elastic matching. Our research not only explores

the mathematics of elastic matching, but also investigates the data extraction and the

machine learning analysis, which are just as important when it comes to analysing shape

data. By combining all three segments, our work, including our accompanying code, can

be viewed as a guidebook to analyse shape data, no matter what experience one has in

shape analysis, computer vision, or machine learning. That is one of the fundamental

objectives of this PhD and this thesis.

1.3.2 Datasets

As previously mentioned, our research is built upon a combination of multiple projects

that are each based on different datasets. These include the following:

• Greek Vases: Ancient Greek vase images, of varying quality, from a well-known

pottery database, the Beazley Archive15. In addition to vase images found here,

we also work with first-hand data that our collaborators have obtained. These

include photographs of modern-day Greek vases taken in Lesbos, Greece; outlines

of Iron-Age Greek vases measured by hand; and 3D laser scans of lekythoi vases.

• Gastropod Shells: High quality images of gastropod shells of various species,

obtained from Gastropods.com16, taken from their front profiles.

14Though it can certainly be useful sometimes to analyse images as a whole (for example, in applications

of medical imaging), given the additional texture information that images comes with, however, we will

not be including them in this thesis
15https://www.carc.ox.ac.uk/carc/pottery
16https://conchology.be/?t=261

21

https://www.carc.ox.ac.uk/carc/pottery
https://conchology.be/?t=261
https://www.carc.ox.ac.uk/carc/pottery
https://conchology.be/?t=261

Arianna Salili-James CHAPTER 1. INTRODUCTION

• Leaves: Images of Swedish leaves from the Swedish Leaf Dataset17 - a well-used

dataset both within the field of elastic shape analysis, such as in (Laga et al., 2014),

a paper on landmark free methods to analyse leaf shapes, and outside, such as the

leaf classification study in (Mouine et al., 2013).

• Kākāpō Growth Curves: Database obtained from our collaborators at Kākāpō

Recovery18 with data regarding the health of all kākāpō, alive and deceased, that

have been monitored in the last few decades. Information includes location, sex,

and multiple weights, where the latter are used to create growth curves.

• Kiwi Calls: Audio recordings of kiwi calls from sound recorders left in the wild,

that are managed and monitored by our collaborators at AviaNZ19.

• Mussels: Images of mussels from the North Atlantic, the Mediterranean, and

mainland New Zealand as well as its offshore islands. The images were collated by

our colleagues at Victoria University of Wellington.

1.4 Thesis Outline

The remaining chapters of this thesis begin with an introduction to elastic shape analysis,

followed by an overview of image processing methods. From here, we dive into the

numerous applications that our research is built upon. These projects have been grouped

into two chapters, based on the type of the primary datasets involved.

2 – Background Chapter

This chapter begins with an overview of the field of elastic shape analysis, recent

literature, and its history. Subsequently, we focus on how a curve can be trans-

formed into another. To achieve this, we briefly study the roles of diffeomorphisms,

and geodesics, which describe shortest paths between points. Finally, we delve into

implementations that allow us to match / align both open and closed curves in R2.

3 – Image Data Processing

In this chapter, we look at some popular algorithms in Computer Vision, with the

aim of extracting curves from image data. This chapter is broadly split it into

17https://www.cvl.isy.liu.se/en/research/datasets/swedish-leaf/
18https://www.doc.govt.nz/our-work/kakapo-recovery/
19https://www.avianz.net/

22

https://www.cvl.isy.liu.se/en/research/datasets/swedish-leaf/
https://www.doc.govt.nz/our-work/kakapo-recovery/
https://www.doc.govt.nz/our-work/kakapo-recovery/
https://www.avianz.net/
https://www.cvl.isy.liu.se/en/research/datasets/swedish-leaf/
https://www.doc.govt.nz/our-work/kakapo-recovery/
https://www.avianz.net/

Arianna Salili-James CHAPTER 1. INTRODUCTION

sections on image binarization and (outline) contour extraction. The purpose of

the former is to create black and white versions of images, in order to improve the

performance of the contour extraction algorithms. We study some common algo-

rithms used in Computer Vision and used in our research, and will also introduce

an image binarization algorithm that we created specifically for our projects.

4 – Applications of Elastic Shape Analysis to Closed Curves Extracted

from Images

The majority of this chapter is focused on one large collaborative project regarding

the classification of organisms and artefacts by their shapes. Here, we compare

various methods of Elastic Shape Analysis and Geometric Morphometrics to anal-

yse the shapes found in image data consisting of Ancient Greek vases, gastropod

shells, and Swedish leaves. Additional projects in this chapter include a Mussel

identification project, and an analysis on the accuracy of shape outlines found in

vase images, in comparison to hand-measured outlines and 3D laser scans.

5 – Applications of Elastic Shape Analysis on Open Curves

Here, we take a look at two collaborative projects aimed at utilizing elastic shape

analysis in real-world conservation; in particular, the conservation of some of New

Zealand’s most remarkable birds. In one project, we create a novel tool which

incorporates elastic shape matching to predict the health of kākāpō chicks, in col-

laboration with conservationists and ecologists at Kākāpō Recovery20. Meanwhile,

in the second project, we explore the applications of elastic shape analysis to raw

sound data, something that to the best of our knowledge, has never been done

before. This project aims to classify individual kiwi, based on the shapes of their

calls, through the use of spectrograms, but could be used more widely.

6 – Summary & Conclusion

We summarize the results of our projects and discuss their future. And finally, we’ll

explore further possibilities for real-world applications of elastic shape matching.

20https://www.doc.govt.nz/our-work/kakapo-recovery/

23

https://www.doc.govt.nz/our-work/kakapo-recovery/
https://www.doc.govt.nz/our-work/kakapo-recovery/

Chapter 2

Background

2.1 Introduction

From a surface describing the beak of a spoonbill to a two-dimensional population growth

curve of a country, or an MRI scan of a heart to the outlines of hand-written characters

- there is a lot we can learn from the shapes of objects. This field of research is known

as shape analysis: the mathematical study of shapes.

We begin this chapter with a brief introduction to shape analysis, where we delve into the

history of shape analysis, visit some long-established methods, and review recent litera-

ture. We then outline the contents of the remainder of this chapter, which is dedicated to

an overview of elastic shape analysis, and in particular, elastic matchings between curves.

2.1.1 History & Literature Review

Over a century ago, in 1917, the mathematician and biologist D’Arcy Wentworth Thomp-

son published a pioneering book titled “On Growth and Form” (Thompson, 1917).

Amongst many concepts, the book included a study of the shapes of animals and plants.

It was ground-making in its introduction to mathematical biology and paved the way for

further topics such as computational anatomy and consequently, shape analysis. Notably,

the book alluded to allometry21, and discussed the use of mathematical transformations

in the evolution of the shape of species. An example of such transformation can be seen

21Allometry is broadly the study of the relationships between the size, shape and anatomy of living

organisms, and their impacts on evolution, ecology and so on. Moreover, it was first alluded to by Otto

Snell in (Snell, 1892).

24

Arianna Salili-James CHAPTER 2. BACKGROUND

Figure 2.1: An illustration of a transformation of a ray-finned fish using a shear mapping,

taken from On Growth and Form, (Thompson, 1917).

in Figure 2.1. Thompson showed that by drawing an Argyropelecus olfersi (a genus of

ray-finned fish) on a Cartesian grid, and applying a shear map to transform the points

on the drawing in a certain direction, the Argyropelecus olfersi can be transformed and

hence begin to resemble another type of ray-finned fish, the Sternoptyx.

Whilst Thompson’s work focused more on the forms of objects, our interest is on shape.

Though we will go on to provide a more mathematical definition of shape with each of

our applications, we can broadly consider the shape of an object as its form, modulo

global transformations such as scaling, rotation, and translation. By separating shape

from form, we can analyse the shapes of objects irrespective of such differences, in order

to grasp a better understanding of the shapes. This was particularly highlighted by David

Kendall, who pioneered the study of shapes within their shape spaces, and considered

the global transformations that affected form, but not shape, as nuisance parameters

(Kendall, 1984).

The twentieth century brought great advances, not only in shape analysis, but also in func-

tional data analysis in general. From Kendall’s work on shape spaces, (Kendall, 1984),

Bookstein’s analysis on landmarks with Bookstein coordinates (as previously mentioned

in Section 1.2.1) (Bookstein and Sampson, 1990), or methods of Procrustes alignent ((Sib-

son, 1978), (Gower, 1971)), to statistical analysis using maximum likelihood estimations,

as seen in (Mardia and Dryden, 1989).

As we’ll soon discover throughout this thesis, our main interests are on two (connected)

aspects of shape and functional data analysis: namely, aligning shapes, or more widely,

functional data, (as shown in Figure 2.2) and quantifying the differences between two

shapes by computing a distance. In the last few decades, we have seen an array of

25

Arianna Salili-James CHAPTER 2. BACKGROUND

methods to perform such things, from the Dynamic Time Warping method in (Berndt

and Clifford, 1994), used to warp time series data such as population growth curves, to

Geodesic Distance Analysis in (Joshi et al., 2011), or a precise dynamic programming

method to compute distances between open curves in (Lahiri et al., 2015).

Recall that in this thesis, our sole focus will be on two dimensional curves. One way we

can analyse our curves, is with the use of elastic-like transformations based on diffeomor-

phisms. The incorporation of diffeomorphisms leads to the potential of performing more

accurate transformations and distance computations between shapes, that may have been

less pertinent with previous landmark-focused or grid-based methods. In the last decade

or so, we have seen developments of such diffeomorphic methods, which form the basis

of elastic shape analysis. Concurrently, we have also seen an increased focus on the ap-

plications of elastic shape analysis methods, such as biomedical applications as seen in

(Bharath et al., 2018), an image analysis of brain tumours, (Cho et al., 2019) a broad

tutorial of elastic shape analysis on biological structures, from leaf outlines to DT-MRI

fibres, and also (Laborde et al., 2011), a study aligning the structures of RNA molecules

using elastic shape analysis.

Literature on the applications of elastic shape analysis has varied in recent years. For

example, in (Eslitzbichler, 2015), we saw the applications of shape analysis on motion

capturing. Here, the author utlized Square Root Velocity (SRV) representations22 of

animations curves, to approximate cyclic animations. Furthermore, they incorporated

geodesic distances to classify animations23. Other examples of applications of shape

analysis on animation includes the research seen in (Bauer et al., 2015), which was also

based on elastic matching of skeletal animations, within an SRV framework.

Amidst the literature, many works discussing such applications have focused on well-

known and well-used datasets, such as the Flavia Leaf Dataset24, the Swedish Leaf

Dataset25, the Kimia shape database26, Unipen handwriting data27, and the Berkeley

22We will discuss the square root velocity functions later on, in Section 2.4.2.
23For example, to distinguish actions such as walking and running, and so on.
24http://flavia.sourceforge.net/
25https://www.cvl.isy.liu.se/en/research/datasets/swedish-leaf/
26https://github.com/mmssouza/kimia99
27http://www.unipen.org/home.html

26

http://flavia.sourceforge.net/
https://www.cvl.isy.liu.se/en/research/datasets/swedish-leaf/
https://www.cvl.isy.liu.se/en/research/datasets/swedish-leaf/
https://github.com/mmssouza/kimia99
http://www.unipen.org/home.html
https://doi.org/10.7910/DVN/OWCPHT
https://doi.org/10.7910/DVN/OWCPHT
https://doi.org/10.7910/DVN/OWCPHT
https://doi.org/10.7910/DVN/OWCPHT
http://flavia.sourceforge.net/
https://doi.org/10.7910/DVN/OWCPHT
https://www.cvl.isy.liu.se/en/research/datasets/swedish-leaf/
https://doi.org/10.7910/DVN/OWCPHT
https://github.com/mmssouza/kimia99
https://doi.org/10.7910/DVN/OWCPHT
http://www.unipen.org/home.html
https://doi.org/10.7910/DVN/OWCPHT
https://doi.org/10.7910/DVN/OWCPHT

Arianna Salili-James CHAPTER 2. BACKGROUND

Figure 2.2: An alignment between two growth rate curves. On the left we see the two curves

before any alignment has taken place, whilst on the right we see a plot after alignment. Here,

the blue curve has been aligned to the black curve using a Dynamic Programming Algorithm,

which we will encounter later on in section 2.5.2.

Growth dataset28, to name a few. For example, handwriting applications were explored

in (Kurtek and Srivastava, 2014), in order to successfully29 segment letters and words

using elastic matchings.

Despite the volume of existing work involving elastic shape analysis, the methods have not

seen much uptake: analyses are still primarily in the papers where a method is developed,

and more often than not, with clean30 curves, originating from well-known datasets.

Hence a framework has yet to be introduced, detailing the process of applying elastic

shape analysis, from start to finish. Furthermore, there is an absence in literature, when

it comes to comparing different methods of elastic shape analysis in practical applications,

as well as comparisons with Geometric Morphometrics. This is the motivation behind

this thesis.

2.1.2 Procrustes Alignment

Outside of Shape Analysis, scientists often associate alignments between shapes with the

well-known Procrustes31 alignment method. Procrustes alignment, also known as Pro-

crustes superimposition, is the most widely-known shape analysis method. It has its roots

back in the early 20th century, such as in (Mosier, 1939). We briefly outline the method,

and refer readers to (Goodall, 1991) for more details.

28https://doi.org/10.7910/DVN/OWCPHT
29In particular, one small experiment on segmenting characters from words, had a 96% success rate.
30by which we mean data that has already been processed, and is unlikely to have much noise.
31Procrustes Alignment is rather gruesomely named after a character from Greek mythology, Pro-

crustes, an inn-keeper who supposedly stretched, compressed, or simply cut off limbs from his victims,

in order to fit them into the beds of his inn.

27

https://doi.org/10.7910/DVN/OWCPHT
https://doi.org/10.7910/DVN/OWCPHT
https://doi.org/10.7910/DVN/OWCPHT
https://doi.org/10.7910/DVN/OWCPHT

Arianna Salili-James CHAPTER 2. BACKGROUND

Procrustes alignment can be used to optimally rotate, translate, scale, and reflect shapes,

to match some template. As an example, take two curves c1, c2 : I 7→ R2, for some inter-

val I on a real space, with c1 chosen as the arbitrary template. We consider our curves

to be discretized at n points thus our curves are just a set of coordinates that can be

written ci = {(xi1, yi1), ..., (xin, y
i
n)}, for i ∈ {1, 2}.

The first steps in Procrustes alignment is the removal of translation and scaling variability.

The simplest way to do this is to translate the curves so that they lie at the origin. Let’s

take either one of our curves. For a discretized curve c = {(x1, y1), ..., (xn, yn)}, we can

find the mean curve c̄. This can then be used to find the translated curve ctr, and hence

the scaled curve csc, which is scaled to be of unit-length:

c̄ = (c̄x, c̄y) =

(
1

n

n∑
i=1

xi,
1

n

n∑
i=1

yi

)

ctr = {(x1 − c̄x, y1 − c̄y), ..., (xn − c̄x, yn − c̄y)} (2.1)

csc =
ctr√∑n

i ((xi − c̄x)2 + (yi − c̄y)2)
(2.2)

When it comes to rotation, we fix the template curve and rotate the other around the

origin, so that the sum of squared distances between it and the template are minimized.

Note that here, we use the version of the curves that have had the translation and scaling

variability removed. The rotation matrix can be defined as follows:

Rrot(θ) =

(
cos θ − sin θ

sin θ cos θ

)
(2.3)

If we consider our transformed curves in matrix form, say with M1,M2, the we compute

the rotation of one, M2, such that:

RrotM2 = V UT ,where MT
2 M1 = UDV T (2.4)

using singular value decomposition to find the diagonal matrix D, and the matrices U, V .

And the optimal angle, θ∗, is the result of the minimization problem:

θ∗ = arg min
θ

∑
(R(θ)M2 −M1)2 (2.5)

28

Arianna Salili-James CHAPTER 2. BACKGROUND

Figure 2.3: Procrustes alignment of leaves. Here, we see an outline of a modern-day leaf

(blue), being aligned to an outline of an ancestral Miocene leaf (red). The left plot shows the

original two leaf outlines, whilst the right plot shows the leaf outlines after the blue curve has

been aligned with the red using Procrustes alignment.

Note that a rotation of curves is simply the composition of two reflections. Thus, just as

we defined our rotation matrix with an angle θ in (2.3), we can define a reflection matrix,

Rref , with angle 2θ:

Rref (θ) =

(
cos θ − sin θ

sin θ cos θ

)
(2.6)

Henceforth, to find an optimal reflection, we once again perform the minimization as seen

in Equation 2.5, but with Rref , in order to find the optimal angle.

An example of a Procrustes alignment can be seen in Figure 2.3, where an outline of a leaf

(blue) has been aligned with an outline of ancestral leaf (red) using Procrustes alignment.

The computational simplicity of Procrustes alignment make it a worthy choice for a basic

alignment. Henceforth, it is often used as a pre-processing step for further analysis of

sets of shapes, of the same coordinate system, to extract shape from form. Furthermore,

though we do not focus too much on Procrustes alignment in this thesis, since the methods

we employ are invariant to such similarity transforms, as we’ll see in subsequent chapters,

we do sometimes incorporate it in certain projects, as a pre-processing step, when required

(as is the case Section 4.1).

2.1.3 Background Chapter Outline

Throughout this chapter, we provide an overview of elastic shape analysis on two dimen-

sional curves. We outline the definitions of shapes and shape spaces, and explore how

29

Arianna Salili-James CHAPTER 2. BACKGROUND

a shape can be transformed into another, whilst a distance is computed between them.

We then take a look at various implementations of methods of elastic shape analysis that

we utilize in our projects in the subsequent chapters of this thesis; with a focus on one

framework in particular: the Square Root Velocity framework, (Srivastava et al., 2011b).

The subsequent sections of this chapter are as follows:

2. Shapes & Invariances – We begin by defining a shape, which involves discussing

invariances to shape-preserving transformations, including reparametrization.

3. Transforming Shapes – In this section, we explore how a shape can be trans-

formed into another, and how this can be used to quantify differences between them.

We focus on LDDMM (i.e., Large Deformation Diffeomorphic Metric Mapping) -

a widely-used framework in elastic shape analysis, and outline other diffeomorphic

methods that we incorporate in our projects.

4. Square Root Velocity Framework – Here, we focus on arguably the most im-

portant framework in this thesis, the SRV (or SRVF) Framework. The framework

is based on the usage of a certain representation of curves, known as square root

velocity functions, which we will fully explore in this section.

5. Implementations – Finally, we take a look at implementations of methods dis-

cussed in previous sections. We also, evaluate a small project that was designed to

compare various methods of alignment between open curves in R2.

2.2 Shapes & Invariances

In this section, we define what shape means to us, in this thesis, and subsequently, we

explore what the space of these shapes looks like.

2.2.1 Parametrising Curves

As we’ll discover in the succeeding chapters, the majority of our projects are concerned

with the two-dimensional outlines of objects found in images. Regardless, our interest is

always on two-dimensional curves, either open or closed.

Curves can be parametrized in various ways. In the simplest case, we can consider discrete

points along an object’s boundary. Here, we can describe the boundary curve, c, with N

30

Arianna Salili-James CHAPTER 2. BACKGROUND

points, for example:

cpoints := {(xi, yi) ∈ R× R = R2 | i = 1, · · · , N}. (2.7)

Alternatively, we can focus on functional data (such as growth curves). Here, we are

concerned with functions on fixed intervals. For example, let’s consider discrete points

representing a growth curve over a fixed-time domain, I = [a, b]. We start with a de-

scription of the curve as c ⊆ ([a, b]× R), where a, b ∈ R. The next step is to find a way

to estimate the function, c(t), from these discrete points. A simple way would be with

a piecewise linear curve32 representation. Or, for a potentially smoother estimation, we

can employ a Least-Squares approach, where we can define a function c(t) by a linear

combination of points, using some basis function that belong to a Hilbert space with a

given inner product structure, as described in Chapter 4 of (Srivastava and Klassen, 2016).

For the remainder of this chapter, we’ll consider open and closed curves as continuous

mappings c : I 7→ R2, on some real interval I = [a, b]. We note that when considering

closed curves, we require the additional condition that the curve starts and ends at the

same point, i.e. c(a) = c(b). We can describe a closed curve c, as a mapping from the

unit circle S1 := {x ∈ R2 | ||x|| = 1} , such that c : S1 7→ R2. This leads to a natural

parameterisation by arc-length: a curve runs from θ = 0 to θ = 2π. In this thesis, we will

consider curves that do not have any self-intersections. This additional self-intersection

property leads us to a more specific definition of the curves that we will focus on. First,

we begin with defining a function often seen in the field of topology: homeomorphisms.

Definition 2.1 (Continuous function) A function f : X 7→ Y , where X and Y are

topological spaces, is continuous at a point x ∈ X, if and only if ∀ neighbourhoods V ⊂ Y ,

of f(x), ∃ a neighbourhood of x, U , where f(U) ⊆ V .

Definition 2.2 (Homeomorphism) f : X 7→ Y , where X, Y are topological spaces, is

a homeomorphism if it is continuous, bijective, and has a continuous inverse.

Importantly, we can now define what an embedding is:

Definition 2.3 (Embedding) An embedding is a homeomorphism onto its own image.

Therefore in this thesis, we describe a closed, non-self-intersecting curve c as embed-

ding, c ∈ Emb(S1,R2), where the self-intersection condition is implicit from the bijective

property of homeomorphisms.

32This can be illustrated by drawing straight-lines between (xi−1, yi−1) and (xi, yi) ∀i = 2, · · · , N .

31

Arianna Salili-James CHAPTER 2. BACKGROUND

2.2.2 Shape-Preserving Transformations

We are interested in the shapes of objects. This leads us to two questions:

1. Are there curves that have the same shape, but look different?

2. Are there curves that are parametrised differently, but look the same?

At the start of this chapter, the first question was somewhat referenced when we discussed

separating shape from form. For example, let’s consider two curves, where one represents

an outline of a violin, c1, and the other is a scalar multiple of it, c2 = kc1 for some

non-zero k ∈ R+. Though these two curves may look different, as one is larger than the

other, they both have the same violin shape. Scaling is an example of a shape-preserving

transformation. Other recognizable shape-preserving transformations include translation

(e.g. curves c1(t) : S1 7→ R2 and c2(t) : S1 7→ R2, where c2(t) = c1(t − a) + b for some

a, b,∈ R would have the same shape), and rotation (e.g. c1, c2 = Rrot(θ)c1 for some angle

|θ| < 2π, and rotation matrix Rrot, as seen in Equation (2.3)). Furthermore, we note that

the set of all such rotations can be described with the group33, SO(2). Finally, note that

these transformations can be removed by Procrustes alignment.

Diffeomorphisms

The second question refers to a slightly less obvious shape-preserving transformation:

reparametrization. For example, take a curve c1(t). We can reparametrize c1(t) via

a smooth function γ, such that the reparametrized curve c2(t) = c1(γ(t)) has the same

shape as c1(t), where γ is defined as a smooth, invertible, orientation-preserving mapping.

We can label the space of all such reparametrization functions as Γ. More specifically,

when considering closed curves, these smooth, invertible, orientation-preserving mappings

can be described by diffeomorphisms:

Definition 2.4 (Manifold) A topological space M is a manifold if it is locally Euclidean

(i.e., locally homeomorphic to a Euclidean space).

Definition 2.5 (C∞ (Smooth)) A function that is differentiable for all orders of dif-

ferentiation is a C∞ function or a smooth function.
33Recall that a rotation is a member of the special orthogonal group SO(n) = {A ∈ GL(n,R2)

∣∣ATA =

1n, det(A) = 1}, where GL(n,R) is the general linear group over R.

32

Arianna Salili-James CHAPTER 2. BACKGROUND

Definition 2.6 (Diffeomorphism) An invertible mapping between smooth manifolds,

where both itself and its inverse are smooth and differentiable.

Any diffeomorphism π : Diff(S1) 7→ S1 modifies the parameterisation of the curve, but

not its appearance. Thus the space of reparametrization functions Γ can be described

as the space of all such diffeomorphisms π: Γ = Diff(S1). In Section 2.4.3, we elaborate

on this equality by showing that the set of reparametrizations is a group and explicitly

defining what a right group action on it this. For now, for continuity, we will simply say

that the group action here is by composition, ◦:

Definition 2.7 (Right group action) Let G be a group, with identity element, gid. A

function of G on a set X is defined as a right group action, · : X × G 7→ G, if the

following conditions hold ∀x ∈ X:

1. x · gid = x,

2. (x · g) · h = x · (gh), ∀ g, h ∈ G.

Definition 2.8 (Function composition – ◦) For two functions f1, f2, we define a

composition as the operation ◦, such that (f1 ◦ f2)(x) = f1(f2(x)) ∀ x ∈ X, where X is

the domain of f1.

For a curve c : S1 7→ R2, the right group action: c · π = c ◦ π, does not change the image,

and hence shape of c. Therefore, we can say that the set of diffeomorphisms, Diff(S1) is

precisely the set of reparametrizations, Γ.

2.2.3 Pre-Shape and Shape Space

Recall that the field of shape analysis is the study of shapes, which we broadly described

as the forms of objects, modulo certain transformations. In this thesis, these transforma-

tions, which we dub as shape-preserving transformations, comprise of scaling, translation,

rotation, and reparametrization. Therefore, we must define the shapes of our curves in

R2, such that they are invariant to the so-called shape-preserving transformations.

We must first define the space of our open and closed curves. As we are interested in the

shape, and do not care for size and location, we can easily translate the curves so that

they are centred at the origin, and scale them to be unit-length.

Sopen =
{
c | c : I = [a, b] 7→ R2,

∫
I

||ċ(t)|| dt = 1
}

(2.8)

33

Arianna Salili-James CHAPTER 2. BACKGROUND

Sclosed =
{
c | c ∈ Emb(S1,R2),

∫
S1
||ċ(t)|| dt = 1

}
(2.9)

Let S be the space of unit-length curves of either Sopen or Sclosed. Though we have

discussed translation and scaling (refer to the last condition of the equations above), we

note that we have yet to remove the rotation and reparametrization invariability. In

reference to the works of Kendall34, such as in (Kendall et al., 2009), S is thus defined

as the pre-shape space. To describe the shape-space, S, we must quotient out the effects

of the remaining shape-preserving transformations, and to do this, we must first define

what an equivalence class is:

Definition 2.9 (Equivalence relation) A binary relation, ∼, on a non-empty set, X,

is an equivalence relation if the following conditions, ∀x ∈ X, are satisfied:

1. x ∼ x,

2. x ∼ y =⇒ y ∼ x, ∀ y ∈ X,

3. x ∼ y and y ∼ z =⇒ x ∼ z, ∀ y, z ∈ X.

Definition 2.10 (Equivalence class) Let ∼ be an equivalence relation on a set X. An

equivalence class, [·], of x ∈ X is defined as:

[x] = {y ∈ X | x ∼ y} (2.10)

A quotient space can be thought of a set of all equivalence classes and thus, we describe

our shape-space, S, as

S = S�Γ× SO(2), (2.11)

where Γ is the set of reparametrization functions (Γ = Diff(S1) when S = Sclosed). And

for a curve c ∈ S, we can define its shape by the equivalence class [c] ∈ S. Henceforth,

shapes are simply elements of an infinite-dimensional manifold.

34David George Kendall was a mathematician and statistician, known for his pioneering work in

statistical shape analysis, amongst other notable work.

34

Arianna Salili-James CHAPTER 2. BACKGROUND

2.3 Transforming Shapes

A major theme across this thesis, and, across the field of shape and functional data

analysis, is the matching of shapes. In other words, the transformation of an object’s

shape into another. This leads us to a notable model in the field of Shape Analysis,

namely, the Large Deformation Diffeomorphic Metric Mapping (LDDMM) framework.

2.3.1 LDDMM Framework

The motivation for the matching of shapes is rooted in the myriad of applications it

can be utilized within, from pattern recognition to medical imaging and computational

anatomy. Indeed, it was with the field of computation anatomy, where the methods of

LDDMM truly flourished, as described in (Grenander and Miller, 1998). Here, we provide

a general overview of the LDDMM framework on curves, but for more details, we refer the

reader to (Beg et al., 2005), where semi-Langrangian methods are incorporated to solve

solutions to the LDDMM problem, and (Marsland and Sommer, 2020), which provides a

concise overview of topics within geometric shape analysis and the LDDMM framework,

with a focus on the diffeomorphism group and its geometries35.

Action of a Diffeomorphism

The history of LDDMM as we know it today dates back to the work of Beg et al. (2005),

which in turn, was based on (Dupuis et al., 1998) and (Trouvé, 1995), as well as the model

developed by Christensen et al. (1996). Traditionally, the focus was on transforming a

template image, I0, in order for it to match the target image, I1. Here, a transformation

function can be described with φ : R2 7→ R2 (when working with 2D data). The images

I0, I1 can be defined as I0, I1 : R2 7→ Rn, where n depends on the chosen colour model

(for example, n = 1 for grey-scaled images, but n = 3 when employing the RGB colour

model). The action of the transformation on the template can be described by the pull-

back 36, φ · I0 = I0 ◦ φ−1, as explained in (Beg et al., 2005). This is important as it allows

to compare the images, without information being missing from the transformed image.

We focus on curves. We define a template curve, c0, and a target curve, c1, such that

35In this paper, there also explanations of diffeomorphic shape transformations on different examples

of shapes, from landmarks to images, and more.
36To fit the scope of this thesis, we will simply think of a pullback as a precomposition with a function.

35

Arianna Salili-James CHAPTER 2. BACKGROUND

c0, c1 ∈ Emb(S1,R2). In order to transform c0, we, once again, define a transformation

function φ : R2 7→ R2. Though this transformation mapping can take various forms, to

require invertibility (i.e., the existence of an inverse) and smoothness, we restrict φ to be

a diffeomorphism, as defined in Definition 2.6. We can define a left group action, “·”, on

a curve, by composition, such that φ · c0 = φ ◦ c0. Analogous to the idea of stretching

and shrinking an elastic sheet with an overlaid curve, in order to match the curve with

another, the action of φ on c0 is used to warp the curve alongside the deformation of

the original grid on R2. Importantly, Diff(R2) is a group, hence due to closure, we can

compose diffeomorphisms and obtain new diffeomorphisms.

Theorem 2.11 Diff(R2) is a group with group operation given by composition.

Proof: ∀ ω1, ω2, ω3 ∈ Diff(R2):

• Associativity - follows from associativity of composition:

(ω1.ω2).ω3 = (ω1 ◦ ω2) ◦ ω3 = ω1 ◦ ω2 ◦ ω3 = ω1 ◦ (ω2 ◦ ω3) = ω1.(ω2.ω3)

• Identity - the identity mapping idω ∈ Diff(R2) is a diffeomorphism.

• Inverse ∀ ω ∈ Diff(Ω), ∃ ω−1 by nature37, s.t. ω.ω−1 = ω ◦ ω−1 = idω. �

The diffeomorphism group is also analogous to an infinite-dimensional Lie group, (Kriegl

and Michor, 1997).

Definition 2.12 (Lie Group) A group G is defined as a Lie group if it is also a differ-

entiable manifold38.

Since the group Diff(R2) is analogous to a Lie Group and Lie groups are smooth manifolds,

this leads us to say that it can be endowed with a Riemannian metric39.

Definition 2.13 (Riemannian Metric) On a manifold M , a Riemannian metric G is

a smooth inner product Gc : TcM × TcM 7→ R, where TcM is the tangent space of M at

c, ∀c ∈M . Gc satisfies the following:

37Since the definition of a diffeomorphism requires it to be an invertible mapping.
38For the purpose of this section, it is enough to think of a differentiable manifold as a manifold that

is additionally globally equipped with a differential structure, which allows the use of calculus on it.
39Though we will not go into more details about the mathematics behind this link, as it is outside the

scope of this thesis, we recommend (Younes, 1998), a concise paper on elastic distances between shapes,

for more information.

36

Arianna Salili-James CHAPTER 2. BACKGROUND

1. Gc(h, k) = Gc(k, h) ∀h, k ∈ TcM

2. Gc(h, h) = 0 iff h = 0

3. Gc(h, h) ≥ 0 ∀h ∈ TcM

Definition 2.14 (Riemannian manifold) A smooth manifold M is a Riemannian man-

ifold if it is equipped with a Riemannian metric.

The Riemannian metric can be used to define a distance, d∗, between two points on a

manifold, M := Diff(R2), and hence, a distance between the shapes. For this, the aim if

to find the deformation function φ ∈ Diff(R2) such that φ · c0 = c1. Henceforth, we can

sketch an example of a distance between the shapes c0, c1, as seen in (Trouvé, 1995):

dS(c0, c1) = inf d∗(φid, φ), (2.12)

where dS is some distance on the pre-shape space, φid is the identity function in Diff(R2).

The distance between the shapes of the template and target is related to the amount of

energy required for the deformation. Furthermore, in order for dS to be symmetric, such

that dS(c0, c1) = dS(c1, c0), we restrict it to be right-invariant:

Definition 2.15 (Right-Invariance on Diff(R2)) A metric 〈·, ·〉 on Diff(R2) is said

to be right-invariant if ∀a, b, φ ∈ Diff(R2),

〈a ◦ φ, b ◦ φ〉 = 〈a, b〉.

By requiring our metric to be right-invariant, the distance between points on c0, c1 will

remain the same, when they are both deformed by the same diffeomorphism, φ ∈ Diff(R2).

In order to construct a right-invariant Riemannian metric, we refer the reader to the

previously mentioned paper, (Marsland and Sommer, 2020), which provides a thorough

outline of the diffeomorphism group and its geometries. Broadly, the method involves

considering an action on the right with Rφ, for φ ∈ Diff(R2), as:

Rφ : Diff(R2) 7→ Diff(R2), Rφγ = γ ◦ φ.

By the definition of a Riemannian metric, we can work on the tangent space to Diff(R2) at

φ, which we denote by TφDiff(R2). Henceforth, for a, b ∈ TφDiff(R2) ∃! h, k ∈ TidDiff(R2)

37

Arianna Salili-James CHAPTER 2. BACKGROUND

such that (Rφ)∗h = a and (Rφ)∗k = b; where TidDiff(R2) is the tangent space at φid,

and (Rφ)∗ is the pushforward mapping40, where the derivative is with respect to some γ.

Thus, a right-invariant metric is defined by the inner product at TφDiff(R2):

〈a, b〉φ := 〈h, k〉id (2.13)

Up until now, we have described a distance metric, d∗, on Diff(R2) and on the space

of our shapes, but we have not discussed how one can find the deformation function

φ ∈ Diff(R2). This brings us onto the topic of geodesics.

Geodesics

There are infinitely-many possible paths φ ∈ Diff(R2) that can transform our template

curve to c1. But our interest is on the shortest path, with respect to a given distance

metric. We call such paths geodesics, and we note that they are not necessarily unique.

The ease of finding geodesics depends on the metric we define in the space. Though this

can sometimes be an easier task, for example, when working with points on a sphere,

a geodesic is simply the shorter arc of the great circle passing through the points; at

other times, it is not so trivial, particularly, when working with an infinite-dimensional

Riemannain manifold. Here, the geodesic equation is a PDE, which we shall not go into

but once again recommend (Marsland and Sommer, 2020), for further details.

There are two main points of interest once an equation for a geodesic path has been

established. Firstly, we may be interested in the transformation of a template curve

to the target curve, via a geodesic path. This is seen in Figure 2.4, where a closed

leaf outline is morphed into another. Secondly, our sole interest may be in quantifying

the differences between two shapes, and thus we seek a distance, such as the distance

discussed in Equation (2.12). Furthermore, we can either use the length of a geodesic

to quantify the differences between shapes, or alternatively, we can compute the energy

(which is analogous to the square of the length):

Definition 2.16 (Geodesic Energy) Geodesics are smooth curves φ : [0, 1] 7→ Diff(C).

Their energy is defined as:

E(φ) =
1

2

∫ 1

0

||φ̇||2φ(t)dt

40Pushforward mappings can be thought of as the best linear approximation to a function between

smooth manifolds, which in essence, is the function’s derivative.

38

Arianna Salili-James CHAPTER 2. BACKGROUND

Figure 2.4: Geodesics between outlines of an ancient Miocene leaf and a close modern relative.

The original template shape and target shape, are shown in red, whilst the five samples equally

spaced along the geodesic path are plotted in black.

where || · ||φ is the norm associated with the inner product at the tangent space TφDiff(C)
defined by some right-invariant metric; where C is some smooth manifold.

Recall that we can define the shape of a curve by its equivalence class, as seen in Section

2.2.3. Henceforth, in order to describe a distance between the shapes of the template, c0,

and target, c1, we search for the shortest geodesic, with respect to the energy in Equation

(2.16), between all possible pairs ([c0], [c1]) ∈ S, where S is the space of our shapes.

2.3.2 Finding Geodesics

In Section 2.2.3, we described a shape as a curve modulo the shape-preserving transforma-

tions. There, we saw that the shape space for these curves can be described as a quotient

space, such as in Equation (2.11). However, throughout this section, we have kept a

vagueness around the shape space we are working within. This is primarily because when

working within the LDDMM framework, as we’ve seen, distances are computed directly

on Diff(R2) instead of the quotient space. This means in order for our distance metric to

be invariant to the shape-preserving transformations (e.g., reparametrization and scal-

ing), these similarity transforms need to be dealt with or removed beforehand, prior to

any analysis focusing on shapes.

On the other hand, instead of finding geodesics / distances on a rather complicated

infinite-dimensional Riemannian manifold such as Diff(R2), we can employ a represen-

tation of the curves that will transform the space into one that is equipped with much

simpler metrics. This is the motivation behind some of the alternative methods in elastic

shape analysis that find a geodesic distance between shapes. There are two in particular

that we are interested in, that we will be using for some of our projects in the subsequent

chapters of this thesis. These are the Geometric Currents method, and a framework based

on the Square Root Velocity Function (SRVF) representations of curves. We illustrate

39

Arianna Salili-James CHAPTER 2. BACKGROUND

LDDMM

SRVF
Path-Straightening

Geometric
Currents

Figure 2.5: Shape space illustration of leaf outlines. LDDMM methods work on the original

space, whilst the Geometric Currents and SRVF Path-Straightening methods transform the

curves, and hence the pre-shape and shape spaces, into something much simpler to work on.

the ideas behind all of these methods in Figure 2.5. This Figure shows how LDDMM

methods work directly on the original shape space, whilst the Geometric Currents method

transforms the space so that geodesics are simply straight lines, and the SRVF frame-

work allows us to transform the space into a sphere. Here, we will briefly go over these

methods, whilst we dedicate the succeeding section of this chapter, to a more detailed

overview of the SRVF framework, as it will play a large role in our research.

Solutions to the LDDMM Model

Within the LDDMM framework, it is common to employ vector-field representations of

the diffeomorphisms in the space, where by such representations, we imply the following:

Let S be the original shape space of the curves. A time-dependent vector field represen-

tation of φ ∈ Diff(R2) can be represented as ν : [0, 1] × S 7→ R2, where we can think of

the transformation as starting at t = 0, and terminating at t = 1. Hence, we re-write the

geodesic energy in Definition (2.16), as follows:

E(φ) =

∫ 1

0

||vt||2dt (2.14)

Consequently, the question of finding a distance between two curves, c0, c1, is analogous

to the optimization problem concerning the minimization of this geodesic energy and the

distance between the resulting, transformed template, with the target:

dS(c0, c1) = min
φ∈Diff(R2)

E(φ) + ||φ · c0 − c1||2. (2.15)

We note that the Euler-Lagrange equations can be used to minimize the vector field. For

more details, see (Marsland and Sommer, 2020) and (Younes, 2010).

40

Arianna Salili-James CHAPTER 2. BACKGROUND

Geometric Currents

For two curves c0, c1 ∈ Emb(S1,R2), our aim is to find a distance between their shapes.

To find a distance between two shapes with the LDDMM methods, we must first re-

move the shape-preserving transformations in the pre-processing step (for example, with

Procrustes alignment). However, it is possible to instead define a distance metric to be

invariant to shape-preserving transformations; including Diff(S1), i.e. the reparametriza-

tion group. One way to construct such a metric is with geometric currents. A current or

geometric current is defined in the field of geometric measure theory as a type of linear

functional. It was first introduced in (De Rham, 1973). In recent decades we have seen

its potential in shape analysis, for use in defining a distance metic on a shape space, with

literature including (Glaunes et al., 2008) and (Benn et al., 2019).

To outline the concept of geometric currents in shape analysis, we first consider our

curves as immersions (where immersions are locally en embedding41), such that c0, c1 ⊂
Emb(S1,R2) ⊂ Imm(S1,R2). In order to define a current, we look at the general definition

presented in (Benn et al., 2019) for the space of immersions, Imm(M,N), where, in our

case, M = S1 and N ⊆ R2.

Definition 2.17 (Dual (informal definition)) For a vector space, U , its dual, U∗,

is the vector space of linear functions of U .

Definition 2.18 (Definition 1 in (Benn et al., 2019)) Let M and N be oriented man-

ifolds of dimensions m and n, with m ≤ n. We denote by Imm(M,N) the space of im-

mersion from M to N . For φ ∈ Imm(M,N), [φ] is defined to be a linear function on

forms given by the following:

[φ] : Λm(N) 7→ R, [φ](α) :=

∫
M

φ∗α =

∫
φ(M)

α, (2.16)

where Λm(N) is the space of smooth m-forms on N . The current map is defined as:

[·] : Imm(M,N) 7→ Λm(N)∗, (2.17)

where Λm(N)∗ is the topological dual of Λm(N)

41We note that all embeddings are also immersions. However, the latter is not always true because

immersions do not necessarily exhibit injectivity, unlike embeddings which inherit bijectivity (and hence

injectivity) from their definition of being homeomorphisms.

41

Arianna Salili-James CHAPTER 2. BACKGROUND

It can be shown that the current map is invariant to all orientation-preserving reparametriza-

tions (diffeomorphisms of S1). This can be seen in Proposition 1 of (Benn et al., 2019).

Thus we can work on the shape space, S, defined as:

S = Imm(S1,R2)�Diff+(S1) (2.18)

where Diff+(S1) ⊂ Diff(S1) is the space of all orientation-preserving reparametrizations.

This is an important consequence as it enables us to work with the shapes of the curves,

c0, c1 ∈ Imm(S1,R2), by mapping their equivalence classes. As we are working with S1,

in our case m = 1, this means that the current mapping defined in (2.17), can be used

to map the equivalence classes to the dual space of 1-forms, thus, to a single point. This

is now a vector space, and the standard Euclidean metric can be used.

By linearising and hence simplifying the space, the geometric currents method allows us

to find distances between shapes much more easily than other methods within elastic

shape analysis, and computationally quickly. It also allows for traditional statistical

analysis methods to be used, such as Principal Component Analysis42 for example, as we

can work within a linear space. Though there are disadvantages to this approach, such as

the inability to invert43 the mapping in order to see a meaningful average shape in this

space for analysis, its advantages, such as its computation simplicity or its robustness to

noise, as detailed in (Benn et al., 2019), certainly outweigh its disadvantages. For this

reason, we utilize this approach in some of our projects, detailed in Chapter 4.

Square Root Velocity Framework

The final method that we will discuss is based on the representation of curves by square

root velocity functions. For our curves c0, c1 ∈ Emb(S1,R2), we find a distance between

their shapes by defining a distance between the equivalence classes of their square root

velocity representations, [q0], [q1], respectively, where q0, q1 are:

q0 =
ċ0√
|ċ0|

42Note that as we have found representations of the shapes of our curves in a vector space, PCA can be

carried out in this space. Thus, this is different from Tangent PCA, a method in Elastic Shape Analysis,

which we will discuss later on in Section 2.5.3.
43More specifically, a computation of an average would be based on on the mapping we saw in (2.17).

However, since the mapping cannot be reversed, any average computed cannot be exhibited in the original

space of the curves, and hence, visually, it may not be very helpful.

42

Arianna Salili-James CHAPTER 2. BACKGROUND

q1 =
ċ1√
|ċ1|

As we will soon discover, the space of all such square root velocity functions (SRVFs)

is analogous to L2(S1,R2), thereby transforming the pre-shape space into a unit sphere.

This plays a crucial role in allowing for much simpler computations of geodesics in not

just the pre-shape space, but the shape space (as defined in Equation (2.11)) too.

Across all the projects featured in this thesis, we will incorporate this SRVF framework.

In the next section, we dive deeper into the mathematics behind this method, with a

focus on open curves. Following on, in the last section of this chapter, we include an

overview of a particular algorithm within the SRVF framework, namely SRVF Path-

Straightening, used to find distances between the shapes of closed curves. We will also

study a widely-used algorithm in functional and shape data analysis that aims to align

open curves within this SRVF framework.

2.4 Registering Curves in the SRVF Framework

Previously, we mentioned that one can transform a shape space into a much simpler space

by utilizing the square root velocity representation of the curves. Here, we shall delve

deeper into this, and next, we will discover how these functions can be used to solve the

pairwise registration problem between curves in R2. Note that, though the computations

are similar, for succinctness we will focus on open curves, and highlight Chapter 6 of

(Srivastava and Klassen, 2016), for more emphasis on closed curves.

2.4.1 Motivation for Pairwise Registration

Broadly speaking, pairwise registration refers to the alignment of two curves. By min-

imizing some distance between two curves, we can register the curves to one another,

such that some distance between them is minimized. And in doing so, we can bring the

curves into alignment, this often results in an alignment of the peaks and valleys of the

curves (since the distance between the curves is large if these do not match), as shown in

Figure 2.6.

The motivation to register curves in a dataset arises with the desire to analyse the shapes

of our curves, in particular, with functional data, when there is no concern for the time

43

Arianna Salili-James CHAPTER 2. BACKGROUND

Figure 2.6: Growth rates of two people, f1, f2, taken from the Berkeley Growth Dataset45, and

the growth rate of the second person after registration, i.e. f2 ◦ γ, where γ is the reparameteri-

zation function found during pairwise registration of f1 and f2 using a dynamic programming

algorithm, which we will outline in the next section.

domain involved. For example, take two curves f1, f2 : I 7→ R2, on some fixed-time

domain, I, representing the growth curves of two people, as seen in Figure 2.6. Suppose

we wish to identify the average growth rate. One simple traditional way to do this would

be to compute a standard mean of curves by finding the pointwise average of the two

curves. However, since the growth spurts of the two people occur at different times, this

hides the true way that growth happens. It may therefore be beneficial to first align the

curves, with some reparametrization function, γ, before computing the average. Pairwise

registration as a pre-processing step to further analysis is a common approach utilising

the registration problem44.

2.4.2 Square Root Velocity Functions

The representation of curves with square root velocity functions, for the purpose of shape

analysis, was first introduced in (Srivastava et al., 2011a). In this section, we will provide

an overview of square root velocity representations, in particular, of absolutely continuous

curves. For more details on this framework in functional and shape data analysis, we refer

the reader to (Srivastava and Klassen, 2016).

44We often refer to the optimization of the alignment of two curves as the registration problem.
45The Berkeley Growth Dataset is from a mid twentieth-century study on the heights of children over

time, from ages 1-18. An R version can be found here46, whilst a MATLAB version can be found here47.

44

https://rdrr.io/cran/fda/man/growth.html
https://www.psych.mcgill.ca/misc/fda/downloads/FDAfuns/

Arianna Salili-James CHAPTER 2. BACKGROUND

Definition 2.19 (Definition 4.1 in (Srivastava and Klassen, 2016))

A function f : I 7→ R is absolutely continuous on I if it satisfies the following:

1. f is differentiable almost everywhere on I,

2. f(t) = f(0) +
∫ t

0
ḟ(u)du ∀t ∈ I.

A known remark to the definition of absolute continuity48 on a function f , is that its

derivative is Lebesgue integrable. This will come into play later in this section.

Definition 2.20 (Lebesgue integrability) For a non-negative, measurable function

f , we define its Lebesgue integral over a measure space X , with measure µ, as:∫
X
f dµ. (2.19)

Thereby, f is defined as Lebesgue integrable if (2.19) is finite.

Definition 2.21 (Square Root Velocity Function) For an absolute continuous curve

c : I 7→ R2, we define its square root velocity function as:

q(t) =

ċ(t)√
|ċ(t)|

, if |ċ(t)| 6= 0

0, otherwise.

(2.20)

Note that we require absolute continuity, as it is stronger than simply requiring the curves

to be continuous. Consequently, for these absolutely continuous curves, the square root

velocity function (SRVF), can be rewritten as q(t) = sign(ċ(t))
√
|ċ(t)|, sometimes called

the square root slope function. By representing curves c : I 7→ R2 by their SRVF,

the space of curves is significantly simplified to L2(I,R2), the space of square-integrable

functions on I;

Theorem 2.22 For absolutely continuous curves, c : I 7→ R2, the space of all square

root velocity functions is L2(I,R2).

48We also remark that all Lipschitz functions are also absolute continuous but the inverse is not

necessarily true.

45

Arianna Salili-James CHAPTER 2. BACKGROUND

Proof: Denote the space of square root velocity functions as Q. We show that Q ⊆
L2(I,R2) and conversely, L2(I,R2) ⊆ Q.

We begin by showing that Q ⊆ L2(I,R2). Recall the definition of square-integrability for

a function y over the real line is
∫
I
|y(x)|2dx <∞.

∫
I

|q(t)|2dt =

∫
I

∣∣∣∣∣ ċ(t)√
|ċ(t)|

∣∣∣∣∣
2

dt =

∫
I

ċ(t)2

|ċ(t)|
dt =

∫
I

|ċ(t)|dt <∞,

where the last inequality follows from the definition of absolute continuity, as the deriva-

tive of c is Lebesgue integrable. This shows us that ∀q ∈ Q, q is square-integrable and

thus Q ⊆ L2(I,R2).

Conversely, to prove that L2(I,R2) ⊆ Q, we take a function q ∈ L2(I,R2):

∫
I

|q(t)|2dt <∞.

This implies that there exists an absolutely continuous curve c : I 7→ R2 s.t.

∫
I

|q(t)|2dt = c(t).

By differentiating this, up to translation, we get:

|q(t)|2 = ċ(t) =⇒ |q(t)| =
√
|ċ(t)| =⇒ q(t) =

ċ(t)√
|ċ(t)|

This shows that ∀q ∈ L2(I,R2), q ∈ Q and thus L2(I,R2) ⊆ Q.

Since we have shown that L2(I,R2) ⊆ Q and Q ⊆ L2(I,R2), we have proved that the

space of all SRVFs Q = L2(I,R2). �.

The fact that the space of square root velocity functions is L2(I,R2) is very significant

for employing SRVF representations of curves, as we are now working in a much simpler

space, analogous to a unit sphere, which can be equipped with a much simpler metric to

compute distances between shapes: the L2-metric. For two SRVFs q1, q2 ∈ L2(I,R2), we

can use the inner product as follows:

〈q1, q2〉L2 =

∫
I

q1(t)q2(t)dt (2.21)

46

Arianna Salili-James CHAPTER 2. BACKGROUND

2.4.3 Invariance to Shape-Preserving Transformations

The important particularity that we have emphasised across the thesis is that we are

not interested in the difference between the original curves per se, but in the differ-

ences between the shapes of curves. Thus, as we are not removing any shape invariabil-

ity beforehand, we require the distance metric used to be invariant to shape-preserving

transformations. Recall that here, the shape-preserving transformations refer to scaling,

translation, rotation, and reparametrization.

By using the square root velocity representation of curves, we automatically avoid trans-

lation variability as a result of the derivative inside the function. In order to handle the

scaling variability, we can require the curves to be of unit length and can simplify com-

putations further by defining our interval as I = [0, 1]. This means that our pre-shape

space is now a unit sphere. To remove rotation and reparameterization variability, we

define a quotient space, as in Section 2.2.3. In advance of defining such a quotient space,

we must first examine the action of the reparametrization group and that of the rotation

group on the space of square root velocity functions.

Denote the space of reparameterizations as Γ and the space L2([0, 1],R2) as simply L2.

We introduce the following mapping:

L2 × Γ 7→ L2

(q, γ) 7→ (q ◦ γ)
√
γ̇

(2.22)

∀ SRVF q ∈ L2 and reparameterization function, γ ∈ Γ.

Theorem 2.23 The map in (2.22) forms a right group action of Γ on L2.

Proof: Previously, we mentioned that (Γ, ◦) is a group. Therefore, we introduce the

mapping α : L2 × Γ 7→ L2, that can be defined as a right group action if it satisfies the

identity and compatibility axioms. Thus, ∀q ∈ L2:

1. (q, γid) = (q ◦ γid(t)) γ̇id(t)√
|γ̇id(t)|

= (q ◦ γid(t))(1) = q(γid(t)) = q(t), where γid ∈ Γ is the

identity function and q is the SRVF of a curve c(t).

2. Need to show that α(α(q, γ1), γ2) = α(q, γ1 ◦ γ2) where γ1, γ2 ∈ Γ;

47

Arianna Salili-James CHAPTER 2. BACKGROUND

α(q, γ1 ◦ γ2) = (q ◦ (γ1 ◦ γ2))
√

(γ1 ◦ γ2)′ = (q ◦ (γ1 ◦ γ2))
√

(γ̇1 ◦ γ2)γ̇2

= (((q ◦ γ1) ◦ γ2)
√
γ̇1 ◦ γ2)

√
γ̇2 = ((q ◦ γ1)

√
γ̇1) ◦ γ2)

√
γ̇2

which is equal to α(α(q, γ1), γ2). �

The action of the rotation group can be defined by the mapping49:

SO(2)× L2 7→ L2

(O, q(t)) = Oq(t)
(2.23)

Before we define a quotient space for these two transformation groups, we need to be sure

that the actions of both of the groups is by isometries, in order for our shape analysis to

be invariant to rotation and to reparameterization. This space is equipped with the L2

inner product 〈 , 〉L2 where 〈q1, q2〉L2 =
∫ 1

0
q1(t)q2(t)dt, for q1, q2 ∈ L2.

Theorem 2.24 The actions of rotation group SO(2) and reparameterization group Γ on

L2, is by isometries with respect to the L2-metric.

Proof ((Srivastava et al., 2011a)): ∀ q1, q2 ∈ L2:

• 〈(O, q1(t)), (O, q2(t))〉L2 = 〈Oq1(t), Oq2(t)〉L2 = 〈q1(t), q2(t)〉L2 , where O ∈ SO(2).

Thus the action of SO(2) is by isometry.

• For γ ∈ Γ, 〈(q1, γ), (q2, γ)〉L2 =
∫ 1

0
q1(γ(t))

√
γ̇q2(γ(t))

√
γ̇dt. By setting s = γ(t) =⇒

ds = γ̇(t)dt, we obtain
∫ 1

0
q1(s)q2(s)ds = 〈q1, q2〉L2 . Therefore the action of the

reparametrization group, Γ, is by isometry. �

In essence, Theorem 2.24 shows us that the distances between two SRVFs, with respect to

the L2-metric, are not affected by the above transformations. Henceforth, we can define

a joint action between the rotation and the reparameterization group on L2 and define

the shape space, SSRV F , in this square root velocity framework as:

((O, γ), q) := O(q ◦ γ)
√
γ̇ (2.24)

49Note that with our curves, the transformation, Oq(t), can be computed by standard multiplication

between the rotation matrix and coordinates (represented as column vectors) that make up the curve.

48

Arianna Salili-James CHAPTER 2. BACKGROUND

SSRVF = L
2

�Γ× SO(2) (2.25)

And thus, we define our shapes in this space by:

[q] := {(O, γ), q)
∣∣ q ∈ L2, (γ,O) ∈ Γ× SO(2)}. (2.26)

For more details about shape-preserving transformations, and the actions of transfor-

mations groups on the space of square root velocity functions, we refer the reader to

(Srivastava et al., 2011a) and (Srivastava and Klassen, 2016).

2.4.4 Geodesics & Distances

We are interested in the shortest distance between a pair of shapes. Recall from section

2.3.1, that the length of a geodesic between two curves can represent a distance between

them. On the pre-shape space this task is straightforward as the space is the unit sphere,

and hence geodesics between points are simply the shorter arcs on great circles that

connect the points. Thus, the path of a geodesic, α, connecting two curves c1.c2 with

SRVFs q1, q2, can be computed as:

α(τ) =
1

sin θ
(sin θ(1− τ)q1 + sin θτq2) (2.27)

where θ is the geodesic length and thus the distance of interest is:

d(q1, q2) = θ = cos−1 〈q1, q2〉L2 (2.28)

On the other hand, computing a distance in the shape space, SSRVF, is not so simple, as

it would be between equivalence classes, not curves.

The shapes of an SRVF, q, can be described by its equivalence class [q] ∈ SSRVF. We can

begin to formulate a distance between two shapes in the shape space SSRVF, based on the

geodesic distance metric inherited from the pre-shape space, L2. Therefore a distance

metric, dS , on SSRVF can be defined as:

dS([q1], [q2]) = inf
q̄1∈[q1],q̄2∈[q2]

〈q̄1, q̄2〉L2 (2.29)

= inf
γ1,2∈Γ

O1,2∈SO(2)

〈O1(q1 ◦ γ1)
√
γ̇1, O2(q2 ◦ γ2)

√
γ̇2〉L2 . (2.30)

49

Arianna Salili-James CHAPTER 2. BACKGROUND

Since the action of the product Γ × SO(2) is by isometries, we can fix the orbits of one

SRVF and minimize for the other e.g.:

dS([q1], [q2]) = inf
γ∈Γ

O∈SO(2)

〈O(q1 ◦ γ)
√
γ̇, q2〉L2 = inf

γ∈Γ
O∈SO(2)

〈q1, O(q2 ◦ γ)
√
γ̇〉L2 , (2.31)

where the last equality follows from the symmetry of 〈·, ·〉L2 and the registration of these

functions by reparameterization and rotation.

2.5 Implementations in the SRV Framework

In this final section of the Background chapter, we explore various implementations of

elastic shape analysis within the Square Root Velocity framework. We begin with a

method of finding geodesics between closed curves in this framework using an algorithm

called the SRVF Path-Straightening algorithm. Next, we explore a Dynamic Program-

ming algorithm that is used to align open, piecewise linear curves. This algorithm finds

approximate solutions to the Pairwise Registration problem. We also take a brief look

at an alternative algorithm that provides precise solutions to this problem, and will

subsequently detail a comparison between the two methods. Lastly, we focus on the

computation of averages in the SRVF framework, via, a Karcher mean. We focus on

these algorithms as they are the methods that will play the greatest parts in the projects

we will subsequently explore. We note that for the implentations of these algorithms,

we recommend the MATLAB package, libsrvf50, as detailed in (Robinson, 2012), for the

approximate and precise pairwise registration of open curves, and the library fdasrsf51,

for Python implementations of elastic shape analysis on open and closed curves.

2.5.1 SRVF Path-Straightening

In this subsection, we will discuss another diffeomorphic shape analysis method used to

deform closed curves into one another: SRVF Path-Straightening. As the name sug-

gests, for this method we use the Square Root Velocity framework, employing SRVF

representations of our closed curves. Though it bears similarities to the LDDMM ap-

proach, as SRVF representations are used, the pre-shape space (and hence, shape space)

of the curves is transformed into a far less complicated space, thus enabling much simpler

computations to optimize curve deformations.

50https://github.com/fsu-ssamg/libsrvf
51https://fdasrsf-python.readthedocs.io/en/latest/

50

https://github.com/fsu-ssamg/libsrvf
https://fdasrsf-python.readthedocs.io/en/latest/
https://github.com/fsu-ssamg/libsrvf
https://fdasrsf-python.readthedocs.io/en/latest/

Arianna Salili-James CHAPTER 2. BACKGROUND

Pre-Shape & Shape Space

We consider unit-length closed curves, c, as embeddings, c ∈ Emb(S1,R2). Thus, the

original space of our curves, S, with an added emphasis for the closure, is defined as:

S =

{
c ∈ Emb(S1,R2)

∣∣ ∫
S1
||ċ(t)||dt = 1,

∫
S1
ċ(t)dt = 0

}
Next, recall the definition of a square root velocity function, SRVF, of an open curve

from subsection 2.4.2. For a closed curve, as a function of time, c(t), the SRVF is:

q(t) =
ċ(t)√
||ċ(t)||

(2.32)

where || · || is the standard Euclidean norm.

Note that the unit-length and closure conditions for SRVFs are:

• Unit-Length:
∫
S1 ||ċ(t)||dt = 1 =⇒

∫
S1 ||q(t)||

2dt = 1

• Closure:
∫
S1 ċ(t)dt = 0 =⇒

∫
S1 q(t)||q(t)||dt = 0 as the ratio q(t)

||q(t)|| is the instan-

taneous direction along c(t), (Joshi et al., 2007).

If we restrict the curves to be absolutely continuous (see Definition 2.19) on S1, then for

a curve c ∈ Emb(S1,R2), its square root velocity function q ∈ L2(S1,R2). Henceforth, we

can describe our pre-shape space, S, as:

S = {q ∈ L2(S1,R2)
∣∣ ∫

S1
||q(t)||2dt = 1,

∫
S1
q(t)||q(t)||dt = 0} (2.33)

By ignoring the closure condition in (2.33), we get a space, say So, that is geometrically

equivalent to a sphere, similar to the pre-shape space definition in Section 2.4.2. Thus,

as described earlier, our space of unit length curves has been transformed into a subset

of the unit-sphere. Moreover, S is a submanifold, with S ⊂ So ⊂ L2(S1,R2), as shown in

(Joshi et al., 2007).

Now that the pre-shape space has been defined, we can begin to describe the shape-space.

As seen in section 2.2.3, we wish to define the shape of a curve modulo shape-preserving

transformations and reparameterizations. As scaling and translation invariance are al-

ready handled in the pre-shape space, S, all that remains is rotation and reparameteriza-

tion. Recall from section 2.2.2, that for curves c ∈ Emb(S1,R2), the set of reparametriza-

tions is the diffeomorphism group Diff(S1). Therefore, as we did in Equation (2.11), we

51

Arianna Salili-James CHAPTER 2. BACKGROUND

can define the shape space, S, as the quotient space of our pre-shape space, modulo the

rotation and reparameterization group:

S = S�SO(2)×Diff(S1). (2.34)

Path-Straightening

Our primary aim is to deform one closed curve by the shortest path into another in order

to describe a distance between their shapes. Naturally, this brings us back to the topic of

geodesics. In this section, we follow the methods described in (Joshi et al., 2007), which

employ a path-straightening algorithm to find geodesics between curves.

As seen previously, the formulation of geodesics depends on the chosen Riemannian metric

on our pre-shape space, or, alternatively, on the inner-product on the tangent space of the

pre-shape space. One advantage of our pre-shape space is that we can use the standard

L2-metric. We combine this with a definition of a normal space, as in (Srivastava et al.,

2011a), to define a tangent space to S at an SRVF, q, represented as a discretization

based on n points:

TqS := {w : S1 7→ Rn
∣∣ w ∈ Tq(So), w ⊥ Nq(A)} (2.35)

where A is the space of closed curves, S = So ∩ A, and Nq(S) is the normal space, as

defined in the aforementioned literature:

Nq(S) = span

{
q(t),

(
q(t)i
||q(t)||

q(t) + ||q(t)||ei
)
i=1,··· ,n

}
(2.36)

with ei as the ith column of the identity matrix, In.

We remark that equation (2.35) shows us that the tangent vectors at S, lie on the tan-

gent space to So i.e., the space defined in (2.33), which excludes the additional closure

condition. We will shortly return to this point.

For now, we consider two closed curves c1, c2 with SRVFs q1, q2 ∈ S. Let α : [0, 1] 7→ S

be a path from q1 to q2, where α(0) = q1 and α(1) = q2. We let H denote the set of all

paths in S and H0 ⊂ H denote the set of paths from q1 to q2. To find geodesics between

q1 and q2, the Path-Straightening method, (Joshi et al., 2007), involves working on the

52

Arianna Salili-James CHAPTER 2. BACKGROUND

tangent space of H0 at paths such as α. We define a tangent space, Tα(H0), at the path

α, to H0, as follows:

Tα(τ)(S) = {w
∣∣ w ⊥ Nα(τ)(S)} (2.37)

Tα(H) = {w
∣∣ ∀τ ∈ [0, 1], w(τ) ∈ Tα(t)(S)} (2.38)

Tα(H0) = {w ∈ Tα(H)
∣∣ w(0) = w(1) = 0} (2.39)

where (2.39) fixes the end points of the path.

The general objective of the SRVF Path-Straightening method is to straighten a path, α,

between two square root velocity functions using a gradient descent approach, until the

path is a geodesic, i.e. until an energy function, E, describing a deformation, is locally

minimized in H0. Recall the definition of the geodesic energy equation, from Definition

2.16. We can use52 this to define an energy:

E(α) =
1

2

∫ 1

0

〈dα
dτ
,
dα

dτ

〉
α
dτ , (2.40)

where
〈
·, ·
〉
α

is the inner product defined on the tangent space, Tα(H0).

The pre-shape space, S, is a much simpler space to work on than the shape space, S,

particularly because we can employ the standard L2-metric. Therefore, it is computa-

tionally more efficient to find geodesics between curves in the pre-shape space first, before

handling the shape-preserving transformations that turn that into the shape space.

Recall that the shape space S is the quotient space of S modulo the rotation group, SO(2),

and reparameterization group, Γ. We consider two curves c1, c2 with SRVFs q1, q2 ∈ S,

and we define the joint action of SO(2) × Γ as we did in equation (2.24), for a rotation

O ∈ SO(2) and reparameterization γ ∈ Γ. To remove rotation and reparameterization

transformations, we minimize a cost function Ê with respect to the distance metric on

the pre-shape space, S:

Ê(O, γ) = dS(q1, O(q2 ◦ γ)
√
γ̇). (2.41)

Before outlining an algorithm incorporating SRVF Path-Straightening, we allude to

the remark made earlier regarding the reliance of So (recall that this space is simply

52Note that here, we rewrite the φ̇ in 2.16 with φ̇ := dα
dτ , and use the inner product definition.

53

Arianna Salili-James CHAPTER 2. BACKGROUND

the pre-shape space, S, in Equation (2.33) excluding the closure condition, such that

S ⊂ So ⊂ L2(S1,R2)) in defining tangent spaces to S. In fact, the space So plays a

much greater role than may be expected in the SRVF Path-Straightening algorithms. As

discussed earlier in this section, and in Section 2.4.2, the pre-shape space when working

within the SRVF framework on open curves is the unit sphere. Whilst S ⊂ So, the com-

putation of geodesics in So is much more straightforward. For this reason, it is often the

case that the path derivatives, dα
dτ

, as seen in the energy equation (2.40), are computed

on So, followed by a projection onto S. For more details of the computations of such

projections, we refer the reader to (Joshi et al., 2007).

Figure 2.7: Geodesics between an amphora (left, red) and a pyxis vase (right, red). We used

SRVF Path-Straightening to find a geodesic between two closed outlines. At five equally spaced

time-steps, we composed the curve in the original space, with the resulting path, α, to visualize

the deformations over time (seen in blue) when morphing one curve into the other. In the

first row we have the original amphora and pyxis curve, and their deformations. In the second

row, we have used procrustes alignment as a pre-processing step before implementing the SRVF

Path-Straightening algorithm. As the Procrustes alignment did not visibly alter the curves,

their deformations remain the same. In order to see the possible effect of noise, in the third row

we have added Gaussian noise to the original amphora and pyxis vase outlines. As we can see,

the deformations in this row are similar to the deformations seen in the other rows, except the

curves are naturally less smooth.

We will now crudely summarize the SRVF Path-Straightening algorithms which aims to

find a geodesic between shapes of closed curves. The first step is to find a geodesic between

SRVF representations of the curves, in the pre-shape space. To do this, a gradient descent

approach is taken to minimize the energy, E(α) (Equation (2.40)), for an arbitrary path,

54

Arianna Salili-James CHAPTER 2. BACKGROUND

α, until it is a geodesic. In general, this can be followed by the removal of rotation and

reparameterization transformations, which are done separately, using methods described

in (Srivastava et al., 2011a). Subsequently, a cost function, Ê (Equation (2.41)), is com-

puted and compared to a threshold; if it’s small enough, the algorithm stops; otherwise, it

will repeat the previous step. An example of a curve being deformed into another curve,

using a geodesic found with a SRVF Path-Straightening algorithm is shown in Figure

2.7. We note that for a more concise outline of an SRVF Path-Straightening algorithm

we recommend the literature: (Klassen and Srivastava, 2006), (Joshi et al., 2007), and

(Srivastava et al., 2011a).

SRVF Path-Straightening methods are very useful for the analysis of shapes of closed

curves. The computations of geodesics in this framework are much simpler, and algo-

rithmically more cost-effective than the LDDMM framework discussed in Section 2.3.1.

Additionally, with SRVF Path-Straightening, geodesic distances can be computed from

the paths53, which can provide a quantification of differences between two shapes – some-

thing which we will utilize in our applications in Chapter 4. We note that this method

does not offer an uncertainty in the results, and to deal with this, we would need a

stochastic differential equation formulation, which is outside the scope of this thesis, but

well discussed in (Marsland and Shardlow, 2017), a study on image registration with

uncertainty. Moreover, on the topic of noise, the SRVF Path-Straightening algorithm

has shown to perform well despite introductions of noise, as illustrated in the final row

of Figure 2.7. This is not just the case with the visual comparisons of the deformations

over time, but with the overall distances too – in this example, the geodesic distance

between the original curves was computed to be 0.57, and for the curves with added

Gaussian noise, this was 0.55. For all the benefits that SRVF Path-Straightening meth-

ods presents, we made the decision to incorporate these methods in our projects, which

we will discover further afield.

2.5.2 Pairwise Registration of Open Curves

The alignment of open curves is the primary aim in this section. For now, we put rotations

aside, and since we are working with SRVFs, all that remains to focus on is reparameter-

izations. In order to best align two curves, we search for a reparameterization function

53For example, by computing the sum of the distances between the SRVFs of consecutive deformations,

with the equation seen in (2.28).

55

Arianna Salili-James CHAPTER 2. BACKGROUND

that optimally aligns curves to one another - this is known as the Pairwise Registration

Problem. Previously, in Section 2.3.1, we discussed the role of diffeomorphisms in mor-

phing and aligning curves together. Here, we specify the set of these reparameterizations,

often called the set of warping functions, as follows:

Γ = {γ : [0, 1] 7→ [0, 1]
∣∣ γ(0) = 0, γ(1) = 1, γ̇ ≥ 0 almost everywhere.} (2.42)

More precisely, for the algorithms we describe in this section, we require the warping

functions γ ∈ Γ to be increasing. Our goal is to find optimal warping functions, γ∗1 , γ
∗
2

such that the square root velocity functions q1, q2 of curves c1, c2 are at their closest to

each other within their orbits. In other words, (q1, γ
∗
1) ∈ [q1], (q2, γ

∗
2) ∈ [q2] such that:

γ∗1 , γ
∗
2 = arg inf

γ1,γ2∈Γ
dS(c1 ◦ γ1, c2 ◦ γ2) (2.43)

= arg inf
γ1,γ2∈Γ

dS((q1, γ1), (q2, γ2)) (2.44)

= arg inf
γ1,γ2∈Γ

〈(q1 ◦ γ1)
√
γ̇1, (q2 ◦ γ2)

√
γ̇2〉L2 (2.45)

These optimal warping functions allow us to optimally match our curves c1, c2. Such

optimal matching always exist for C1 curves, (Bruveris, 2016). We examine two methods

to find them: a dynamic programming approach that approximates a solution, and an

algorithm that finds a precise solution, described in (Lahiri et al., 2015). In the following

section, we apply these two methods to a commonly used dataset in order to analyse the

effects of approximate solutions to the pairwise registration problem.

Dynamic Programming Algorithm

For years, a dynamic programming algorithm has been a favoured approach to solving

a pairwise registration problem in shape analysis, as it is computationally efficient. We

briefly go over one version of this algorithm, which we shall call DPA. For more details,

we refer the reader to the appendices found in (Srivastava and Klassen, 2016).

To minimize a distance between two open, absolutely continuous curves c1, c2 with square

root velocity functions q1, q2, we define a cost function, E, as the standard L2 norm

between the SRVFs:

E[c1, c2] = ||q1 − q2||L2 . (2.46)

As seen in (2.31), we can fix the orbits of the SRVF of one curve, say c1, and thus we can

redefine our optimal reparameterization as:

56

Arianna Salili-James CHAPTER 2. BACKGROUND

γ∗ = arg min
γ∈Γ

E[c1, c2 ◦ γ] = arg inf
γ∈Γ
||q1 − (q2, γ)||L2 . (2.47)

We take two piecewise linear curves c1, c2 with N and M points respectively, with SRVFs

q1, q2. The initial step of DPA is to create a N ×M grid labelled from [0, 1] on both axes.

Thus, the aim is to find the optimal warping function γ∗ that starts at point (0, 0) on

the grid and ends at (1, 1). Subsequently, we can define the energy Hi,j, at any (i
N
, j
M

)

point at the grid with a recurrence relation, as follows:

Hi,j = min
(k
N
, l
M

)∈Ni,j

Hk,l + E[c1, c2 ◦ γ] (2.48)

= min
(k
N
, l
N

)∈Ni,j

Hk,l +

∫ l
N

k
N

(q1(t)− q2(γ(t))
√
γ̇(t))2dt, (2.49)

where γ is simply the straight line between points (k
m
, l
m

) and (i
m
, j
m

), and Ni,j is the

neighbourhood around the point (i
N
, j
M

). This energy term is then used to create a

strictly-increasing path from (0, 0) to (1, 1), which is our optimal warping function, γ∗.

Note that the neighbourhood, Ni,j, can be written as:

Ni,j =

{(
i− p
N

,
j − q
M

) ∣∣p, q ∈ N, 1 ≤ p, q ≤ κ

}
(2.50)

for some boundary κ. This implies that the neighbouring functions are not only bounded

by some integer κ, but they are strictly south-west of the point. Furthermore, neigh-

bouring points connected by a horizontal line are not permitted, as we require a strictly

increasing γ∗. Meanwhile, neighbouring points connected by vertical lines would cause

an error in the energy term.

An outline of the DPA code is presented in Algorithm 1. As seen here, in addition to

the neighbourhood restrictions, and the strictly-increasing property enforced on γ∗, we

see a further assumption that the reparameterization only changes slope at grid points.

For all of these reasons, the resulting optimal warping function is seen as an approximate

solution. We now take a brief look at a more recent algorithm, which finds precise

solutions to the pairwise registration problem, which we call KLR.

57

Arianna Salili-James CHAPTER 2. BACKGROUND

Algorithm 1: DPA

DPA(c1,c2)

Aim:

Finds optimal reparameterization between curves c1, c2.

Initial Step:

Compute square root velocity functions q1, q2 for c1, c2 respectively.

Code:

1. Create a uniform N ×M grid, from 0 to 1, where N,M are the number of points

in c1, c2 respectively.

2. Set H0,0 = 0, H:,0 = H0,: =∞.

3. Compute the energy, H, at all of the remaining points on the grid.

4. Find strictly increasing γ∗:

(i) Start from point (1, 1) and connect it to the neighbouring point (k
N
, l
M

) that

resulted in the minimum energy.

(ii) Move onto the new point and repeat process until it reaches point (0, 0).

(iii) The resulting curve is the optimal warping function γ∗.

return γ∗ - optimal warping function aligning c2 to c1.

Precise Algorithm - KLR

The KLR algorithm, named after the authors Eric Klassen, Sayani Lahiri and Daniel

Robinson, who introduced it in (Lahiri et al., 2015), is a method of finding optimal repa-

materizations within the SRVF framework. For pairs of open, piecewise-linear curves in

R2, the algorithm produces a precise solution to the pairwise registration problem, which

optimally aligns the pairs together. We provide a brief outline of this algorithm here.

For two piecewise linear curves c1, c2 : [0, 1] 7→ R2 with square root velocity functions

q1, q2, the KLR algorithm searches for an optimal reparameterization, (which we’ll call

α∗, so as to not confuse it with the γ∗ found in DPA), such that the distance between

the orbits [q1] and [q2] is minimised when reparameterized with α∗ = (α∗1, α
∗
2). Note that

here, α∗ ∈ Γ̂, where Γ̂ is the closure of Γ, with an equivalent action on the right by

58

Arianna Salili-James CHAPTER 2. BACKGROUND

composition. Unlike γ∗ in DPA, α∗ is weakly increasing.

α∗ = arg inf
α1,α2∈Γ̂

||(q1, α1)− (q2, α2)||L2 (2.51)

Let’s consider that our curves c1, c2 are subdivided at s = {s0 = 0, s1, · · · , sm = 1} and

t = {t0 = 0, t1, · · · , tn = 1} respectively. Akin to DPA, the initial step of the KLR

algorithm is the creation of a grid from (0, 0) to (1, 1) with s and t as the y and x axes.

An n×m weight matrix, W is then defined, where for each (i, j) on the grid, we have:

Wi,j = 〈ui, vj〉L2 (2.52)

where u, v are the segments ui = q1((si−1, si)) and vj = q2((tj−1, tj)).

Where the KLR algorithm differs greatly from DPA is in the composition of the optimal

reparameterization. Here, reparameterizations, α, are made up of two different segments,

named P -segments and N -segments. Broadly, these can be divided into segments that

start/finish at grid points and only travel via the grid lines; and segments that travel

through the grid lines. An example of these segments can be seen in Figure 2.8.

Definition 2.25 (P -Segment) For a reparameterization α ∈ Γ̂, a P -segment, α|[a,b]⊂[0,1],

is an injective, piecewise linear path such that:

• α(a) = (si0−1, tj0−1) and α(b) = (si1−1, tj1−1) are vertices, for i0 ≤ i1 and j0 ≤ j1,

but ∀z ∈ (a, b), α(z) is not a vertex.

• Wi0,1,j0,1 > 0

Definition 2.26 (N-Segment) For a reparameterization function α ∈ Γ̂, an N-segment,

α|[a,b]⊂[0,1], is a segment of α such that:

• α(a) = (si0 , tj0) and α(b) = (si1 , tj1) are vertices with i0 ≤ i1; j0 ≤ j1.

• α|[a,a+b
2

] is a horizontal, linear path from (si0 , tj0) to (si1 , tj0). And α|[a+b
2
,b] is a

vertical, linear path from (si1 , tj0) to (si1 , tj1). If i0 = i1 or j0 = j1, then the

segment is a vertical or horizontal line respectively.

For a proof that the partitions of α ∈ Γ̂, α|[a,b], where [a, b] ⊂ [0, 1], are either P -segments

or N -segments, and for a more detailed definition of these segments, we refer the reader

to (Lahiri et al., 2015).

59

Arianna Salili-James CHAPTER 2. BACKGROUND

Figure 2.8: Here, we see an example of α∗ on a grid, obtained by aligning two functions from

the Berkeley Growth dataset. Green markers represent start and end-points of the optimal

P-segments, whilst red markers represent start and end points of the optimal N-segments.

Minimizing the distance between two points on the grid is equivalent to maximizing their

inner product. Thus, in the KLR algorithm, a cost function, Ai,j, is based on the inner

product between the reparameterized SRVFs, which describes the energy of joining (si, tj)

to a segment from (s0, t0).

In Algorithm 2, we provide a brief overview of the KLR algorithm. We note that the KLR

method is not the sole algorithm designed to provide precise solutions to the pairwise

registration problem of piece-wise linear, open curves. An earlier method was in fact

introduced by Daniel Robinson in (Robinson, 2012).

Precise vs Approximate Solutions

We have just outlined two methods used to solve the pairwise registration problem: DPA

and KLR. These methods find optimal reparameterizations, also known as optimal warp-

ing functions, that align, or register two open curves. An example of such registration

between two curves using these methods can be seen in Figure 2.9. Subsequently, the

optimal reparameterization, can be used to find a distance between the shapes of the two

curves, by computing the L2-distance between the optimally reparameterized square root

velocity functions of the curves.

Whilst DPA produces an approximate solution to the pairwise registration problem, the

KLR algorithm finds a precise optimal matching between curves, albeit at a computa-

60

Arianna Salili-James CHAPTER 2. BACKGROUND

Algorithm 2: KLR

KLR(c1,c2)

Aim:

Finds optimal reparameterization between curves c1, c2.

Initial Step:

Compute square root velocity functions q1, q2 for c1, c2 respectively.

Code:

1. Create a uniform N ×M grid, from 0 to 1, where N,M are the number of points

in c1, c2 respectively. The axes are the subdivisions of c1, c2;

s = {s0 = 0, s1, · · · , sm = 1}, t = {t0 = 0, t1, · · · , tn = 1}.

2. Compute the weight matrix, W .

3. Find the optimal segment, α∗, from (s0, t0) to (sm, tn):

for i ∈ 0, · · · ,m do

for j ∈ 0, · · · , n do
if segment has been found from (s0, t0) to (si, tj)

then

• If Wi+1,j+1 ≤ 0: Look for all possible N -segments

from (si, tj). Suppose ∃ N -segment ending at

(sk, tl). If Ai,j > Ak,l, then the union of the two

segments (i.e. from (s0, t0) to (sk, tl) via (si, tj))

yields a new possible optimal segment to (sk, tl).

• If Wi+1,j+1 > 0: Look for all possible P -segments.

Suppose ∃ P -segment at (sk, tl). Let A denote

the cost of reaching (sk, tl) from (si, tj). If A +

Ai,j > Ak,l, then the union of the segments is a

new possible optimal segment to (sk, tl).

else
Move onto next vertex.

end

end

end

return α∗ - optimal warping function aligning c1 to c2 together.

61

Arianna Salili-James CHAPTER 2. BACKGROUND

Figure 2.9: Pairwise Registration between two growth curves c1, c2 from the Berkeley Growth

Dataset, using the KLR method and the DPA method. Top: L – original growth curves; R – γ∗

from DPA (magenta), α∗ from KLR (black). Bottom: L – KLR results, c1 ◦ α∗1 and c2 ◦ α∗2; R

– DPA results, c1 and c2 ◦ γ∗. Here we see that the KLR algorithm has aligned the two curves

more successfully in the first half of the curves. Whilst the alignment from DPA is not too

dissimilar, one noticeable difference is the smoothness of the aligned curves, when employing

this algorithm, in comparison to the KLR algorithm.

62

Arianna Salili-James CHAPTER 2. BACKGROUND

tional cost. DPA remains a popular choice for aligning curves, due to its computational

simplicity54. This motivates a study comparing the results of the two methods when

applied on real data. For this, we incorporate a dataset of growth curves, the Berkeley

Growth Dataset.

Recall that the optimal reparameterization found using the DPA method is entirely re-

liant on the grid formed, as it is assumed that the warping function only changes slope

at the grid points. Therefore, we ask ourselves: how does varying the grid-size in DPA

affect the results of the pairwise registration problem? And moreover, how does this to

compare to the KLR algorithm? To tackle these questions, we took a sample of 54 fe-

male and 39 male height growth rate curves (aged 1-18 years) from our growth dataset

and linearly interpolated the curves to have n points. We chose n = 31, 69, 105, 205,

where n = 31 was the original number of points on the growth curves. As we’re working

with temporal data, the values of the chosen n were based on common growth analysis

intervals e.g. n = 69, 205 equate to quarterly and monthly intervals respectively. Note

that the original grid-size variable, n = 31 has non-uniform time-steps. This is because

there was an added focus on the growth development in the earlier years of those in the

sample. We note that the n = 105 grid-size is the only other non-uniform case. However,

we note that in our experiments here, how we interpolate the curve is not as important,

since our focus is on how many points we have interpolated the curves.

We begin by comparing the optimal reparameterizations, γ∗, α∗ found using the DPA

and KLR method respectively. Figure 2.10 shows optimal reparameterizations from the

pairwise registration of 20 pairs on the left, whilst the right shows the point-wise differ-

ences between γ∗ and α∗. We display the graphs for two grid-sizes, n = 31 and n = 205.

Interestingly, when taking a closer look at the optimal reparameterizations, we see that

the differences in γ∗ as n increases are not very visible, particularly in the first half of the

left-side plots. However differences in the second half do seem to appear, with γ∗ and α∗

looking marginally more alike when n = 205 compared to n = 31. This suggests that the

optimal warping functions obtained via DPA and KLR algorithms are more alike as n is

increases.

54For example, for two piecewise-linear curves c1, c2 with n and m points respectively, the process-

ing time for DPA is O(nmκ) where κ is the neighbour boundary, as seen in (2.50); this compares to

approximately O(n2m2) for the KLR method.

63

Arianna Salili-James CHAPTER 2. BACKGROUND

Figure 2.10: Optimal reparameterizations, γ∗, α∗ resulting from pairwise registration of 20

pairs of growth curves, using DPA (line) and KLR (dotted) respectively. On the left we see

the optimal reparameterizations whilst on the right we see the point-wise differences between

γ∗ and α∗. Moreover, in order to compare the grid-size changes, in the top row, the grid-size

variable is set n = 31, whilst on the bottom row n = 205.

To study the effect of an approximate solution to the pairwise registration problem on

further analyses, we computed distances using the optimal reparameterizations found

with DPA and KLR, whilst varying the grid-size, n. Figure 2.11 shows the L2-distance

after pairwise alignment of 93 curves from the Berkeley Growth Dataset, using KLR and

DPA, which can be seen on the x-axis and the y-axis respectively. The closer the distances

between the two methods are, the more the scatter plot should lie along the line y = x.

Firstly, the graphs show that the DPA distances are greater than the KLR distances.

Additionally, the scatter plots show slightly more resemblance to the line y = x as n

increases. These results are also reflected in Figure 2.12, where we employ histograms

to display the differences between the distances from the two methods. Lastly, Table 2.1

displays the average distance error, DE, i.e., the average of the absolute differences be-

tween distances computed on pairs of optimized curves using the DPA and KLR method.

The results in the table echo previous results implying a slight decrease in the differences

between distances from DPA and KLR as the grid-size, n, increases.

64

Arianna Salili-James CHAPTER 2. BACKGROUND

Figure 2.11: L2-distances between pairs of growth curves that have been aligned using the

(approximate) DPA method and the (exact) KLR method. We interpolate the curves at n

points, where n = 31, 69, 105, 205, before employing the pairwise registration algorithms. If the

resulting distances using DPA and KLR were equal, then the scatter plots would resemble y = x

(drawn here with a black line). The graphs show that as n increases, the distances become more

similar, and the scatter plots tend slightly more towards the line y = x. This remark is backed

up by regression analysis performed on the results, which found R2 to gradually increase from

0.80 for n = 31, to R2 = 0.86 for n = 205, whilst the standard error (SE) steadily decreased

from SE = 0.37 to SE = 0.30.

65

Arianna Salili-James CHAPTER 2. BACKGROUND

Figure 2.12: Histograms of differences in L2-distances using the DPA and KLR method. As

the KLR method provides an exact matching between two curves, we define a distance error as

the difference between the resulting distance with DPA, with the ground truth resulting from

KLR. Note that we have used the same axes across all four plots. Though this may create

a slight illusion that some of the histograms are more heavily skewed to the left than they

actually are, it provides a fairer way of visualizing the comparisons between all four distance

errors. Notwithstanding, the leftward skews of all four histograms indicate that in most cases

the DPA and KLR distances are highly comparable. Furthermore, we can see that as the

grid-size variable, n, increases, the mode of the histograms are more leftward, which implies a

decrease in the distance errors.

DE/n 31 69 105 205

Mean 1.029 0.915 0.749 0.648

Variance 0.149 0.168 0.131 0.106

Standard Deviation 0.386 0.409 0.362 0.326

Table 2.1: Table containing the mean distance error, DE, when comparing distances resulting

from DPA pairwise registration and from KLR pairwise registration. We vary the grid-size, n,

in DPA, with n = 31, 69, 105, 205. We see that as n increases, the differences between the two

methods slightly decreases.

Our tests indicate a not-too-surprising outcome that distances resulting from DPA be-

come more similar to the results obtained via the KLR algorithm, when the gridsize,

n, increases. What remains to be seen is how these results can affect further statistical

66

Arianna Salili-James CHAPTER 2. BACKGROUND

analysis, for example, a Karcher mean (which we shall define in the next section). Addi-

tionally, in future tests, we will examine whether a non-linear interpolation of the curves

(for the grid-sizes) can vary the results.

While the KLR algorithm may produce precise results, its disadvantage is with its com-

putation complexity. The DPA algorithm is much faster55 and as we’ve seen here, is

capable of producing comparable results. For this reason, when it comes to the practical

applications of open curve registration, we will stick to the DPA algorithm.

2.5.3 Averages in the Shape Space

Arguably, one of the most useful statistical tools in data analysis is the computation of an

average. One such average is particularly interesting to us and that is the mean average.

And when it comes to the analysis of shapes, this is no less important.

In the field of shape and functional data analysis, the computation of a mean on a mani-

fold, is often associated with the Karcher mean. This is generalised from the Riemannian

Centre of Mass, first introduced in (Grove and Karcher, 1973). In its simplest form, for

a finite set of points, {x1, · · · , xN}, the Karcher mean, µ̄KM, can be thought as a solution

to the local minimization problem56, based on some distance, d, in the shape space:

µ̄KM = argµ min
N∑
i

d(xi, µ)2. (2.53)

In this section, we will provide a general overview of the implementation of Karcher means

in elastic shape analysis, as well as their usage in enabling further statistical analysis,

namely, with principal components analysis.

55For example, we ran a test on five pairs of curves, each containing 31 points. On average, the

DPA algorithm found the optimal warping function in under a second, whilst the KLR algorithm was

approximately 200 times slower.
56While the Karcher mean is a local minimization, the Fréchet mean can be considered as the global

minimization. For example, on R, the standard arithmetic mean is analogous to the Fréchet mean, where

the distance metric, d(a, b) = a − b for some a, b ∈ R. The Karcher mean is analogous to the standard

point-wise (also called cross-sectional) mean, where the distance metric is the standard L2 metric. This

can also be seen in Section 5.1 of the penultimate chapter.

67

Arianna Salili-James CHAPTER 2. BACKGROUND

Karcher Means

Recall that our shape space, S, is a quotient space, as defined in Equation (2.34). Thus,

as our shapes are equivalence classes, the Karcher mean of square root velocity functions

in this space, can also be defined as such:

Definition 2.27 (Karcher Mean) On a shape space, S, with distance metric, dS , an

intrinsic sample mean of n square root velocity functions, {q1, ..., qn}, can be defined as

the Karcher mean [q̄]:

[q̄] = arg[q]∈S min
N∑
i

dS([qi], [q])
2 (2.54)

where, if we recall from Section 2.4.3, [q] can be defined as:

[q] := {(O, γ), q)
∣∣ q ∈ L2, (γ,O) ∈ Γ× SO(2)}.

Moreover, to better visualise the Karcher mean and utilize it in further analysis, we can

choose one element [q̄], and call that element the Karcher mean, µKM .

To illustrate the computation of a Karcher mean, we provide a brief example of an

algorithm that can be used to find a Karcher mean of curves, in Algorithm 3. Here,

in order to solve the local minimization problem in Definition 2.27, a gradient descent

algorithm is employed, as seen in (Dryden and Mardia, 2016), a book covering a concise

outline of statistical shape analysis methods. The algorithm begins by selecting an initial

mean, µ ∈ {q1, ..., qn}. From here, the aim is to align each q ∈ {q1, ..., qn} with µ, and to

find direction vectors, as once again, as seen in Section 2.5.1, we will be working with the

tangent space TqS, for each q. To compute a distance, d, between some mean µ and a

square root velocity function, q, we can incorporate the metric described in Section 2.4.4:

(O∗, γ∗) = arg inf
γ∈Γ

O∈SO(2)

〈µ,O(q ◦ γ)
√
γ̇〉L2

q∗ = ((O∗, γ∗), q)

d(µ, q) = d(µ, q∗) = cos−1 〈µ, q∗〉L2

where O∗ and γ∗ represent the optimal rotation and reparametrization transformations

and d is the geodesic distance described in Equation (2.28). We can denote d(µ, q) as θ.

68

Arianna Salili-James CHAPTER 2. BACKGROUND

In order to make projections to the tangent space and back, we need to define the expo-

nential and inverse exponential mapping.

Definition 2.28 (Inverse-exponential mapping) For a geodesic distance, θ, between

mean µ, and SRVF q, and a shape space, S, the inverse-exponential map exp−1 : S 7→ TqS
can be defined as:

exp−1
q q∗ =

θ

sin θ
(q∗ − µ cos θ) (2.55)

We call v = exp−1
q q∗ the shooting vector or direction vector.

Definition 2.29 (Exponential mapping) For a direction vector v, mean µ, and a

shape space, S, the exponential map exp : TqS 7→ S can be defined as:

expq v = µ cos ||v||+ sin ||v|| v
||v̄||

(2.56)

At each iteration, the algorithm aligns the SRVFs with the mean µ, and computes the

direction vectors v. Once this is done for all SRVFs, the average direction vector, v̄ is

computed57. This is the term that we are trying to minimize. Henceforth, a stopping

strategy is introduced with the term58 ε. If ||v̄|| ≤ ε, then µ will be our Karcher mean.

Else, if ||v̄|| > ε, then µ is updated by projecting v̄ from the tangent space to the shape

space, using the exponential mapping in Definition 2.29, and going back to the align-

ment step. This is the basis of the Karcher mean implementation of square root velocity

functions, as seen in Algorithm 3. We present some examples of such Karcher mean

implementations in Figure 2.13, taken from some of our applications. For more infor-

mation, we recommend the following literature: (Grove and Karcher, 1973), (Karcher,

1977), the original papers detailing the Karcher mean computations, (Strait et al., 2017)

for an outlook of elastic shape analysis of planar curves, including real-world examples

of means on mice vertebrae data, and (Dryden and Mardia, 2016), and (Srivastava and

Klassen, 2016), for concise textbooks on statistical shape analysis, as well as relevant

programming implementations.

57Note that since we are now in a vector space, we can compute the standard mean average.
58In our applications that involve Karcher mean computations, i.e., in Chapters 4, 5, this constant

boundary quantity is set to ε = 0.0001.

69

Arianna Salili-James CHAPTER 2. BACKGROUND

Algorithm 3: Karcher Mean Example

karcher mean(C,ε,δ)

Aim:

Compute the Karcher mean of a set of curves, C, using the dynamic programming

algorithm within the SRVF Framework.

Code:

1. Compute the square root velocity functions of all the curves in C, and compile

them into a list, Qs.

2. Pick an initial µ (this could be the first q ∈ Qs for example).

3. Using DPA (Algorithm 1), align the Qs to µ and find the direction vector v. All

direction vectors will be added to a list, Vs.

for q ∈ Qs do

(a) q∗ = DPA(µ,q), where q∗ is the optimally aligned q.

(b) Compute distance d = cos−1 〈µ, q∗〉L2 as in Equation (2.28).

(c) Get gradient of d by projecting to tangent space and finding

the direction vector, v.

(d) Add v to the list, Vs.

end

4. Let v̄ be the average of the direction vectors in Vs.

if ||v̄|| ≤ ε then
stop

else
Update µ in the direction of v̄ and repeat from step 3.

µ 7→ cos δ||v̄||µ+ sin δ||v̄|| v̄||v̄||
end

return µ - Karcher mean of the curves, C.

70

Arianna Salili-James CHAPTER 2. BACKGROUND

Figure 2.13: Karcher mean examples. Top: Outlines of mussels (cyan) of genus Modiolus

aoteanus, and a Karcher mean (dotted, black), taken from our Mussel Classification project in

Section 4.3. Bottom: Growth curves from kākāpō chicks (green), and a Karcher mean (dotted,

magenta); taken from our Kākāpō Health project, which we’ll discover in Section 5.1.

Tangent PCA

Another useful tool in statistical analysis is principal component analysis, PCA. PCA is

a popular technique to analyse variability within the datasets, used within a variety of

topics and concepts, from computing distances between shapes (as will be seen in Chapter

4), to dimension reduction, as seen in (Kambhatla and Leen, 1997).

Intuitively, PCA involves comparing each data point to a mean, to find principal compo-

nents. These principal components are the eigenvectors of a covariance matrix. For exam-

ple, for n objects, let’s consider our data matrix X, where each column Xi ∈ {X1, ..., Xn}
represents one data-point. A covariance matrix, KX,X, is found by computing the covari-

ance between every pair in our dataset:

KXi,Xj
= E[(Xi − E[Xi])(Xj − E[Xj])] (2.57)

where E[·] is the expected value, or mean.

From here, K can be decomposed so that we obtain a diagonal matrix Σ containing the

71

Arianna Salili-James CHAPTER 2. BACKGROUND

principal components for each data-point.

However, we are interested in the shapes of curves, which lie in a rather complicated

shape space, S. Therefore, as we require a vector space, we must once again move to

working on tangent spaces. Now we can utilize the same tools that we defined to compute

Karcher means, in order to perform PCA. As we are working with a tangent space, this

leads to the name Tangent PCA or tPCA.

For a set of n SRVFs, {q1, ..., qn}, the first step in tPCA is to find the Karcher mean,

µKM , for example, using Algorithm 3. Next, for each q ∈ {q1, ..., qn}, we compute the

shooting vector, v, with the definition of the inverse-exponential mapping in Definition

2.28. Henceforth, we define our sample covariance matrix, K, as:

K =
1

n− 1

n∑
i=1

viv
T
i (2.58)

Subsequently, from K, the diagonal matrix, Σ can be found. Henceforth, in order to

visualise these principal components, we can use the exponential mapping in Definition

2.29, to transform the points back into the shape space.

We present an example of tPCA results in Figure 2.14, taken from one of our projects.

As we will soon see in Chapters 4, 5, Tangent PCA and Karcher mean computations can

be highly useful tools in analysing shape variability. In the subsequent chapters of this

thesis, we will explore these projects and discover more about the practical applications

of elastic shape analysis.

72

Arianna Salili-James CHAPTER 2. BACKGROUND

PC1

4
2

0
2

4
6

8
10

PC2

2

0

2

4

6

PC3

6

4

2

0

2

Betula Pubescens

Fagus Sylvatica

Quercus Robur

Tilia Cordata

Tilia Platyphyllos

Prunus Padus

Scandosorbus Intermedia

Sorbus Aucuparia

Populus Sp.

Populus Tremula

Salix Fragilis

Acer Platanoides

Ulmus Glabra

Ulmus Laevis

Ulmus Minor

Figure 2.14: Tangent PCA on a set of leaf outlines. Here, we plot the top three principal

components for each data point (leaf) in our dataset and colour each point based on its species.

73

Chapter 3

Image Data Processing

Throughout this thesis, our goal is to enable shape analysis techniques to be used in

order to answer questions about the shapes of objects found in varying datasets. In our

examples, these questions range broadly from species identification & object classification,

to computations of average shapes. All of our projects are based on shape analysis

applications to two dimensional curve data. The majority of these datasets are comprised

of 2D images, of 3D objects. Thus, whilst working on each of our projects, we have

developed algorithms to process the relevant image data, in order to extract the necessary

curves, from these images. For this reason, we dedicate a chapter of this thesis to a general

outlook on tools from image processing that have guided us in extracting curves from

image data. Included in this will be a new algorithm that we designed in Section 3.2.3

and a novel framework to extract outlines of objects from images, in Algorithm 6.

3.1 Introduction to Curves in Images

Images of objects can contain a range of information, from the shape of an object and

its texture, to its colours, and patterns. Certainly, it can be useful for some datasets to

focus on all the information an image holds and thus work on the images as a whole;

for example in some medical imaging applications of elastic shape analysis, as seen in

(Twining and Marsland, 2003), (Zhang and Fletcher, 2015), (Miller, 2004). However,

we recognise objects by their shape (cats are cats whether purely black, tabby, or even

hairless) and the texture and colour of the image of an object can vary with the lighting

and photographic equipment while the outline remains constant. Therefore our interest

lies solely in the shape of distinct objects within images, which we assume can be suffi-

74

Arianna Salili-James CHAPTER 3. IMAGE DATA PROCESSING

Figure 3.1: An image of an elm leaf from the Swedish Leaf Dataset59. Using our own methods,

which we will describe in this chapter, we find the outline contour of the leaf and plot it on top

of the image (in red).

ciently described by their outlines, rather than requiring the entire image. These are the

fundamental reasons why in this thesis we will not be exploring image registration, and

instead, we focus solely on the registration of open or closed curves, which may in some

applications be extracted from images.

We need to find a way of describing our image data with two-dimensional curves. Assum-

ing that the objects in images have an outline, we look for the curves that represent the

outlines of these main objects that appear in the images of the datasets. A basic example

is shown in Figure 3.1, where we have an image of a leaf (Ulmus carpinifolia), and an

outline curve i.e., a contour, plotted in red. The process of finding such an outline is part

of the topic of image segmentation. In the general sense, this refers to the segmenting of

an object from an image. For example, in Figure 3.1, we can think of the leaf as being

separated or segmented from the overall image, as an outline contour is found.

3.1.1 Deep Learning for Image Segmentation

The basic motivation behind image segmentation is to partition images to focus on cer-

tain aspects within; this plays an important part in further image analyses, such as object

detection. Methods of image segmentation can date back to the 1970s, such as in (Brice

and Fennema, 1970), which focused on the partitioning of images. In the last decade we

have seen an increased focus on neural networks (Priddy and Keller, 2005), to segment

59https://www.cvl.isy.liu.se/en/research/datasets/swedish-leaf/

75

https://www.cvl.isy.liu.se/en/research/datasets/swedish-leaf/
https://www.cvl.isy.liu.se/en/research/datasets/swedish-leaf/

Arianna Salili-James CHAPTER 3. IMAGE DATA PROCESSING

images. And today, the most common techniques are based on convolutional neural net-

work models, such as (Minaee et al., 2021).

We can think of a more traditional neural network as containing inputs from a series

of features that are fed via weighted connections into hidden layers, where each node

contains some linear combination of the input features, that is then modified by a non-

linearity and incorporated in the output. For example, for the leaf in Figure 3.1, features

that we could possibly use to classify the leaf could include length and width, or the

colour of its veins. One problem that arises here, however, is that we might not know

what features are actually useful to us, and so it could be better to use the image it-

self. The challenge then is that the input is one-dimensional, and any way to reduce the

two-dimensional image into one-dimension breaks some of the locality between pixels.

This is the motivation behind Convolutional Neural Networks, CNNs, which take multi-

dimensional inputs, and use convolution to combine pixels.

Such networks can prove highly useful in image segmentation and in image processing as

a whole, hence why are they popular today across various fields. But as with all deep

learning methods, they traditionally require a large catalogue of training data; where

for image segmentation in particular, we would require not just the original image in

the training sample, but a segmented version of it too. Note that the question of how

large is dependent on a variety of aspects, from the type of data involved and type

of deep learning model, to the type of questions needing answered. As an example,

the popular AlexNet model (Krizhevsky et al., 2017) was trained on around 1.2 million

images. Alternatively, approaches of transfer learning (Pan and Yang, 2009) are now

often taken, which involves the incorporation of a pre-trained model, and allows users

to specialise the model for their data using far fewer samples. In this thesis however,

as we do not wish to limit the accessibility of our methods by requiring large datasets

and as some of our datasets are inherently small by nature (for example, the datasets on

endangered birds in Chapter 5), we will not be using deep learning methods. For a more

detailed overview of deep learning techniques for image processing, we recommend the

book (Goodfellow et al., 2016), which provides an introduction to deep learning methods,

as well the mathematics behind various models.

76

Arianna Salili-James CHAPTER 3. IMAGE DATA PROCESSING

3.1.2 Difficulties in Automatic Contour Extraction

Extracting curves from images is not always as simple as it may sound, even with the

latest technologies, especially when our aim is to automate the process amongst entire

image datasets. While there is image segmentation software that can be used to extract

object outlines from images, with just a few clicks, such as SHAPE60,61, they are not suf-

ficiently accurate for automatic extraction. Often, such programs require manual inputs

and parameter adjustments for each image, and typically do not output the coordinates

of curves into readable formats.

There are a handful of well-known algorithms in computer vision, (some of which we

will go into detail about, later on in this chapter) that are commonly used for the task

of extracting contours from images, including Geodesic Active Contour (Caselles et al.,

1997), and Marching Cubes (Lorensen and Cline, 1987). However, we have found that

using one algorithm is usually not enough. Furthermore, each method has its advantages

and disadvantages. Though some can be easily used for various languages (for instance,

Python and R), and successfully used to find contours (depending on the quality of the

images), it is clear that in general, such methods63 are not designed to be used, on their

own, for automatic contour extraction from image datasets. There are various possible

reasons for this, such as:

• The default parameters of the algorithm might not suit every image, and will thus

require manual tweaking. There is no general way to do this, but parameter selec-

tion for certain algorithms has been considered, such as in (Chopina et al., 2013),

which discussed parameter optimisation in the Active Contour model, or the in-

60http://lbm.ab.a.u-tokyo.ac.jp/~iwata/shape/
61SHAPE, (Iwata and Ukai, 2002), is software based on Elliptic Fourier Descriptors (Kuhl and Gi-

ardina, 1982), EFDs, that can be used to extract contours from images. Broadly, for an object in an

image, this involves taking the Fourier transform of the boundary points of the object. By adjusting the

terms of the inverse Fourier transform, used to go back to the original shape, we can obtain a smoothed

representation of the boundary curve. SHAPE requires two separate programs to process the image and

find a contour. Though the software can be fairly quick, it has a disadvantage that it does not output

the coordinates of the contours. To do this, a separate program needs to be run in order to find and save

the normalised elliptic Fourier coefficients. These coefficients can then be used to find the coordinates of

the contours, for example, by using functions from the Python library PyEFD62.
62https://pyefd.readthedocs.io/en/latest/
63To be more precise, we are referring to common contour extraction algorithms found in computer

vision, that do not incorporate any deep learning.

77

http://lbm.ab.a.u-tokyo.ac.jp/~iwata/shape/#_References
http://lbm.ab.a.u-tokyo.ac.jp/~iwata/shape/
https://pyefd.readthedocs.io/en/latest/
https://pyefd.readthedocs.io/en/latest/

Arianna Salili-James CHAPTER 3. IMAGE DATA PROCESSING

troduction of algorithms that attempt to alleviate certain models from necessary

parameter estimation, as seen in (Caselles et al., 1995), with the Geodesic Active

Contour model.

• Depending on additional attributions of the image (such as size, quality, and colour

model), some algorithms that are based on multiple iterations can hold a very long

processing time, ranging from seconds to tens of minutes, to process an image.

• Depending on image quality, contours found from contour extraction algorithms

may not be smooth. A filtering step is not attributed with all contour extraction

algorithms. Though there are certainly exceptions to this, such as the Snakes

method (Kass et al., 1988), which contains a specific smoothing parameter.

• Many contour extraction algorithms are designed to find all contours in an image,

whereas our aim is to find the single outline contour of the main object in an image.

As an example, consider the leaf pictured in Figure 3.1. If this image was unaltered,

it is highly likely that some contour extraction methods, such as Marching Squares,

would not only output the outline contour that we found, but it would also output

contours around the white marks within the leaf. Identifying the particular outline

contour it then a challenge.

3.1.3 A New Combination of Tools

During this research, we learned that in order to best segment images to find contours,

contour extraction methods should be combined with other algorithms, in particular,

when the process is to be automated. We were surprised to find that a general guide

and approach that combines multiple tools is fairly absent from the related literature.

This led to the creation of our own combinations of techniques, which we use in various

projects, to find outline contours. In almost all data processing used in this thesis, the

image segmentation process can be split into three sections:

1. Image binarization

2. Contour extraction

3. Contour smoothing

Establishing a successful procedure to automatically extract contours from images, can

play a significant role in the future of image data analysis. We believe that such tools

78

Arianna Salili-James CHAPTER 3. IMAGE DATA PROCESSING

can open doors for those who are less familiar with computer vision techniques, and com-

puter programming in general, by finding a straightforward way of producing coordinates

of object outlines, where the single required input is simply the path to a folder of images.

In this chapter, we outline the algorithms used in each of the steps in our image processing

procedure. We will briefly go through some well-known algorithms, and we will explore

the new algorithms we created, specifically for our projects.

3.2 Image Binarization

3.2.1 What Is an Image?

Simply put, digitised images are represented by pixels that can host various combinations

of colours. As an example, we consider the popular RGB colour model, based on the

intensities of the primary colours of red, green, and blue. Each of the three primary

colours has 256 possible shades (in an 8-bit image), ranging from 0 to 255. Thus, with

the RGB model, a two dimensional, coloured image, IC , can be thought of as an array of

pixels, where each pixel p ∈ IC is a tuple p = (i, j, k), with 0 ≤ i, j, k ≤ 255. Meanwhile,

grey-scale images are only concerned with the intensity of the pixels. Therefore, an 8-bit

grey-scale image, IG, can be represented by pixels with intensities 0 ≤ p ≤ 255 ,∀p ∈
IG. Alternatively, these can be mapped to [0, 1] trivially, to represent the percentage of

intensity, where pixel intensities range from 0 (i.e. black, 0% intensity) to 1 (white, 100%

intensity).

3.2.2 Introduction to Image Binarization

Images can hold a myriad of colours. Though this helps preserve images / photographs

in their truest forms, it can also lead to the inclusion of noise; this is particularly preva-

lent in images of poor quality. More often than not, contour extraction algorithms are

susceptible to noise, even when the noise may not be too obvious to the naked eye, such

as subtleties caused by shadows. An example of this can be seen in Figure 3.3, where the

contour extraction has mistaken a dark shadow on the lower right side of the vase, for its

outline. To try and overcome such issues, we turn to a topic in computer vision: image

binarization.

79

Arianna Salili-James CHAPTER 3. IMAGE DATA PROCESSING

Figure 3.2: Binarization benefits. L: a grey-scaled image, with contours (red) obtained via

a Marching Squares algorithm. R: A binarized image, with contours extracted, once again,

using Marching Squares. Here, the contour extraction computation on the binarized image was

approximately 5.5 times faster than the implementation on the grey-scale image.

Image binarization is the transformation of a multi-tonal image64 into a bi-tonal image

i.e., an image containing precisely two colours, typically, black and white. In computer

vision, it is not uncommon to incorporate a binarization algorithm prior to the imple-

mentation of a contour extraction algorithm, as it reduces the risk of possible errors in

the resulting contours. This is emphasised in the top right plot of Figure 3.3, where a

contour extraction algorithm is applied to a non-binarized, grey-scaled image, and it fails

to find the contour surrounding the main object in the image. Another example that

motivates the need for binarization is seen in Figure 3.2. Not only does the binarized im-

age provide better results from contour extraction, but it can also speed up computations.

Binarization algorithms can be adapted to our liking, for example, by including conditions

in order to isolate certain areas of the image, or to emphasise segments. The bottom left

plot in Figure 3.3 shows an example of automatic segmentation, where the binarization

algorithm has focused solely on the vase and has wiped out the other objects in the image.

Moreover, the algorithm has filled-in the inside of the vase, in order for the contour

extraction algorithm to focus on the outline of the vase, and not on the patterns within.

This particular example is related to the global aim of image segmentation, which relates

64We note that binarization is sometimes exclusively defined on grey-scale images.

80

Arianna Salili-James CHAPTER 3. IMAGE DATA PROCESSING

to the process of identifying objects65 in order to partition digitised images into different

object and thus find outline contours. This is emphasised in the bottom right plot in

Figure 3.3, where the binarization algorithm has not incorporated any segmentation per

se, and thus the output also includes contours from other objects, unlike the bottom left

plot. Whilst the contours seen in both of these plots, result from contour extraction that

was implemented after image binarization, we notice that it has not escaped the issues

of noise, particularly the noise caused by the shadow seen to the right of the vase. This

tell us that image binarization is not always perfect. However, had an image binarization

algorithm not been implemented at all (as seen in the top right plot of the same figure)

the results would have been far worse.

3.2.3 Image Binarization Algorithms

In order to binarize images, most algorithms take a thresholding approach. Broadly,

thresholding refers to the transformation of pixels into white or black, based on some

optimum threshold(s). For example, consider the mapping H : [0, 1] 7→ {0, 1}, with an

optimal threshold, ρ∗, applied to a grey-scale image I, with pixel intensities, p, ranging

from 0 to 1:

H(p) =

0, if p ≤ ρ∗

1, otherwise
(3.1)

Image thresholding methods can often be split into three categories: global thresholding,

local thresholding, or a combination of the two. Global thresholding methods search

for one optimal threshold to transform the pixels in an image, as in Equation (3.1).

Meanwhile, local thresholding methods transform pixels using a threshold that is based

on the local neighbourhood to each pixel, and not on the entire image. Furthermore,

there also exists hybrid methods which combine the two.

Otsu’s Method

Today, there are many image binarization algorithms from the local-thresholding method

introduced in (Niblack, 1985), to the hybrid binarization method in (Kuo et al., 2010).

Out of all binarization algorithms in computer vision, one algorithm is without a doubt

65In a computer-vision sense, we can think of objects in images as clusters of pixels in an image that

are notably different from the surrounding pixels in the background.
66https://www.wgtn.ac.nz/slc/about/our-programmes/classics/classics-museum

81

https://www.wgtn.ac.nz/slc/about/our-programmes/classics/classics-museum

Arianna Salili-James CHAPTER 3. IMAGE DATA PROCESSING

Figure 3.3: Top left: a photograph of an ancient Greek vase (alongside a kiwi toy for scale

and some card to label the picture), taken by Stephen Marsland, in the Classics Museum66at

Victoria University of Wellington. Bottom left: a binarized version of the original photograph,

and an outline contour of the vase, overlaid in red. Our own binarization algorithm, which also

incorporates the essence of segmentation, is used in this particular example, which we will outline

in the subsequent sections. Top right: a grey-scale version of the original photograph, and the

top contours obtained after contour extraction on the grey-scale image. Bottom right: contour

extracted and plotted on top a binarized version of the original photograph, using a popular

binarization algorithm, Otsu’s thresholding method, (Otsu, 1979). Although our binarization

algorithm has done rather well in binarizing the original image, the contour extraction algorithm

was still susceptible to some noise caused by a shadow, which can be seen on the lower-right side

of the vase. And the same can be said for Otsu’s thresholding method, where the resulting vase

contour is more affected by the shadow. However, the success of both binarization algorithms,

particularly our one, can certainly be praised, when the resulting contours are compared to the

contours in the top right plot, where a method of image binarization was not employed prior to

contour extraction. The basis of the contour extraction steps on all images was the Marching

Squares algorithm, (Lorensen and Cline, 1987), which we will describe in more detail, later on

in this chapter.

the most notable: Otsu’s method, (Otsu, 1979).

Otsu’s method, also known as Otsu’s thresholding method, is based on global threshold-

ing. The algorithm involves splitting the pixels in an image into two classes, using an

arbitrary threshold value. From here, the aim is to optimize the threshold value by min-

82

https://www.wgtn.ac.nz/slc/about/our-programmes/classics/classics-museum

Arianna Salili-James CHAPTER 3. IMAGE DATA PROCESSING

imizing the within-class variance, whilst maximizing the between-class variance. More

specifically, for a grey-scale image, I, Otsu’s method creates two histograms based on the

frequencies of pixel intensities in each of the two classes, I1, I2, split by some threshold,

t. These histograms are then used to compute the variance σ2
i for each class, and hence

the within-class variance, Vwc, and the between class variance, Vbc, where i ∈ [1, 2]:

Vwc =
n1

N
σ2

1 +
n2

N
σ2

2 (3.2)

Vbc = σ − Vwc =
n1n2

N2
(µ1 − µ2)2 (3.3)

where n1, n2 are the number of pixels within each class, N = n1 + n2 is the total number

of pixels, σ is the total variance, and µ1, µ2 are the means computed from the histograms.

Furthermore, the derivation of the final equality in Equation (3.3) can be found in (Otsu,

1979). Next, the algorithm goes through all possible values for t (i.e. based on the

histogram bins, from the starting bin, to that of maximum intensity) until it finds the

optimal t∗:

t∗ = arg max
t

Vbc (3.4)

Finally, the pixels are transformed using the optimal threshold, t∗, just as we saw in

Equation (3.1), and hence the image is binarized.

83

Arianna Salili-James CHAPTER 3. IMAGE DATA PROCESSING

Algorithm 4: Otsu’s Method

otsu binarize(I,min intensity=0,max intensity=255)

Aim:

Binarize a grey-scale image, I, with Ostu’s thresholding method.

Code:

1. Set top t = 0 and top Vbc = 0.

2. Perform lobal thresholding on image, I.

for t ∈ min intensity, · · · , max intensity do
Split pixels into classes I1, I2 and create histograms:

for p ∈ I do

if p ≤ t then
p ∈ I1

else
p ∈ I2

end

end

Compute pixel means µ1, µ2 from each of two histograms,

and probabilities, ρ1, ρ2, such that ρi = ni

N
for each i ∈

{1, 2}, where N is the total number of pixels, and n1, n2

are the number of pixels in I1, I2, respectively. Hence,

compute the between class variance, Vbc = ρ1ρ2(µ1−µ2)2.

if Vbc ≥top Vbc then
top t = t

top Vbc = Vbc

end

end

3. Let IB = I. Transform each pixel p ∈ IB based on threshold, top t.

if p ≤top t then
p = min intensity

else
p = max intensity

end

return IB - Binarized version of the image, I.

84

Arianna Salili-James CHAPTER 3. IMAGE DATA PROCESSING

Novel Binarization Technique

Image binarization can be applied to a whole variety of images, for varying purposes, from

forms and documents, used in digital scanning apps, to medical imaging. Though there

exists a plethora of techniques, it’s often that they each seem better on certain types of

images, and perform less successfully on others. For example, see the comparisons made

between Otsu’s Method and others in (Munshi and Mitra, 2012) on fingerprint binariza-

tion and the comparisons of hybrid and local thresholding methods on the binarization

of leaflets with complex backgrounds in (Kuo et al., 2010).

For the most part, the data that we deal with in the various projects of this thesis share

one commonality; namely, that the datasets consist of images, where the outline of the

prominent object (positioned approximately in the centre) is our sole interest. This im-

plies that we are not interested in the other objects in the image, or in the image as a

whole - indeed, we are only focused on that main object, and in particular, on its outline.

For this reason, it is in our interest to employ a binarization technique that not only

segments that prominent object, but also covers the inside of the main object, in order

to enable us to focus on the object’s outline. Therefore, we create our own binarization

algorithm that takes on board such matters, with the aim of applying it to the datasets

that we encounter in the following chapters of this thesis.

The algorithm outlined in Algorithm 5 describes our image binarization method. Funda-

mentally, the algorithm is based on three parts: thresholding, segmentation, and object-

filling (in other words, painting the entirety of the inside of the object in one colour).

The main difference between our method and other algorithms is the inclusion of object-

boundary ellipses in order to binarize the images. Two ellipses are computed. The larger

ellipse is used for the segmentation step, by recolouring all the pixels outside of it white.

This, in turn, separates out the object, from the rest of the image. Meanwhile, the smaller

ellipse is used in the object-filling step, by finding the left and right-most black pixels on

a quasi -thresholded image, that are within the smaller ellipse. Subsequently, all pixels

with those bounds are turned black.

85

Arianna Salili-James CHAPTER 3. IMAGE DATA PROCESSING

Algorithm 5: New Binarization Technique

new binarize(I,white or black=‘black’,black bound=0.2,

white bound=0.15,prop=0.45,border=20,ellipse leeway=15,

small diam leeway=0.05,large diam leeway=0.45,center=1)

Aim:

Binarize a grey-scaled image, I, and cover the inside of the main object.

Parameters:

• I - grey-scale image.

• white or black - Options: {‘black’, ‘white’, ‘both’}. This parameter is used in

the final transformation of pixels, where any pixel that has not, thus far, been

transformed into white or black, is transformed into white or black. If

white or black is ‘both’ then two binarized images are returned.

• black bound (float) - A float (0 ≤ black bound ≤ 1) to compute a proportion

of the maximum intensity that is used to create upper and lower bounds, for the

initial criterion of turning pixels black.

• white bound (float) - white bound is similar to black bound except it is used

in the initial criterion of turning pixels white.

• prop (float) - Upper bound for proportion of black pixels in I.

• border (float) - Percentage of the image size, to create a border around the

image, where all points in the border, are turned white. In other words, border

determines the subsequent thickness.

• ellipse leeway (float) - When the vertex and co-vertex of ellipses are

computed, the variable ellipse leeway is used to add some leeway to the

positions of these vertices. ellipse leeway is the percentage of the image size

that is used for the leeway.

• small diam leeway (float) - Additional leeway, based on a proportion

(determined by small diam leeway) of the image size, added to the diameter of

the small ellipse.

86

Arianna Salili-James CHAPTER 3. IMAGE DATA PROCESSING

• large diam leeway (float) - Equivalent to small diam leeway but used for the

leeway to the diameter of the larger ellipse.

• centre - If centre is 1 then we assume that the object of interest is centred

within the image. Otherwise, set to the rough position of the object’s center,

within the image, center = [x,y].

Code:

1. Find the average colour of the background, of the image, I.

2. Compute the approximate position of a vertex and co-vertex of an ellipse, by

finding the position of the top, bottom, left, and right-most dark pixels, starting

from the assumed centre of the object. By doing this, we can gain a rough idea of

the boundary of the object, which we can use to compute the ellipses.

3. Check whether the height of the assumed boundary, HB, is almost the height of I,

H. If the height is found to be large, we will require a thinner border, thus the

variable border must be increased, by a percentage.

if HB

H
> 0.75 then

if HB

H
> 0.95 then

border = border+20

else
border = border+10

end

end

4. Thresholding Step I: Create two boundaries (bound w, bound b) to be used to

convert pixels into white or black, based on the average background colour and

the variables white bound, black bound. Subsequently, all pixels with a value

within bound w will be turned white, whilst all pixels with values outside of

bound b will be turned black. In other words, we assume that pixels whose colour

differs the most from the background colour form part of the object, hence why

pixels outside of the boundary are turned black. Moreover, all pixels whose

positions fall within the border (created with the variable border), will be turned

white. Label the new image as I1.

87

Arianna Salili-James CHAPTER 3. IMAGE DATA PROCESSING

5. If the proportion of black pixels, ρ, is high, then the first thresholding step is

repeated, with different variables:

if ρ >prop then

if ρ > 0.95 then
If 95% of the image is covered in black pixels, it is

likely that something has gone wrong. This is often

caused by the colour of the main object being lighter

than the background colour, whilst white bound <

black bound. In this case, we swap the two variables.

black bound,white bound =

sort(black bound,white bound)

else
black bound = black bound+0.1

end

Redo Thresholding Step I and update ρ.

end

if ρ > 0.95 then
Redo Thresholding Step I with black bound doubled.

end

6. Create a small ellipse, ES, and a large ellipse, EL, based on the respective

diameter leeway variables, and on the vertex / co-vertex values, as we computed

in the second step.

7. Thresholding Step II: Turn all pixels in I1 whose position falls outside of EL

white. Call this new image, I2. By doing this, we can segment the main object of

interest, and ignore the background. Next, we aim to fill-in the inside of the

object, by iterating through the y-positions that appear in the smaller ellipse, YES
:

for i ∈ YES
do

positions b = np.where(I2[i,:]==0)[0]

if len(positions b) > 1 then
X = x-positions in positions b that are within ES.

if len(X)>1 then
I2[i,X[start]:X[end]] = 0

end

end

end

88

https://numpy.org/doc/stable/reference/generated/numpy.where.html

Arianna Salili-James CHAPTER 3. IMAGE DATA PROCESSING

8. Thresholding Step III: Find all pixels in I2 that are neither black nor white,

IB̄∩W̄ . Compute the average intensity of the pixel in IB̄∩W̄ and the standard

deviation, in order to create a new lower bound. Hence, all pixels in IB̄∩W̄ whose

intensity is less than the lower bound, will be turned white. This new image is

called I3.

9. Thresholding Step IV: Once again, find all remaining points that are neither

black nor white, IB̄∩W̄ , this time in I3. Let I4 = I3, and iterate through the

positions of the pixels in IB̄∩W̄ .

for (i, j) ∈ IB̄∩W̄ do
neighbourhood = I3[i-10:i+10,j-10:j+10].flatten()

α = len(np.where(neighbourhood=mx)[0])

where mx is the maximum intensity (usually 0 or 255).

if α > len(neighbourhood)× 0.5 then
I4[i-2:i+2,j-2:j+2]=mx

end

end

10. Thresholding Step V: Create a binarized image, IB, by recolouring all

remaining pixels in I4, that are still neither black nor white, into black or white

(depending on the variable black or white).

return IB - Binarized version of the image, I.

89

Arianna Salili-James CHAPTER 3. IMAGE DATA PROCESSING

Figure 3.4: Binarization examples. Here, we test out Ostu’s Thresholding Method, and our

new binarization technique, in order to binarize images of mussels. Overall, both methods have

done fairly well in binarizing these simple images, particularly the first image. Though the

second image may seem similar to the others, it consists of darker shadowings that have clearly

affected the success of Otsu’s method, whilst our algorithm seems fairly unaffected. Meanwhile,

in the last image, there is a mistake, albeit rather minuscule, from our binarization method,

as it has missed part of the top right side of the mussel. Otsu’s method does not make that

same mistake. As Otsu’s method is not designed to fill-in the objects of an image, it is not

surprising that is hasn’t done so in this last image, as the light patterns on the mussel are

certainly well-camouflaged with the background of the image.

90

Arianna Salili-James CHAPTER 3. IMAGE DATA PROCESSING

3.3 Contour Extraction

Recall that our interest is in the outlines of objects presented in images. These outlines,

also known as contours in Computer Vision, describe the boundary of objects, using

coordinates (which can be interpreted as (x, y)-coordinates) that can refer to the positions

of the pixels in the image where that boundary is found. There are numerous contour

extraction algorithms, many of which are commonly used in medical imaging applications,

such as the Active Contour Model, used to detect boundaries in echocardiograms, (i.e.

heart ultrasounds), in (Chalana et al., 1996).

3.3.1 Marching Squares

Of all contour extraction algorithms, one algorithm in particular, features quite a lot

in literature, due to its simplicity, speed, and efficiency, namely, the Marching Square

algorithm, (Lorensen and Cline, 1987).

Throughout this PhD, we have extracted contours from various types of images, from

digitised versions of noisy photographs taken from the early twentieth century, to spectro-

grams computed from audio files. Although these images greatly differ from one another,

we find that the Marching Squares Algorithm constantly excels in extracting contours

from our datasets. It has therefore become a staple tool in our image processing steps.

The Marching Squares algorithm for two-dimensional contour extraction, is based on its

three-dimensional equivalent, the Marching Cubes algorithm, first described in (Lorensen

and Cline, 1987), to form three-dimensional visualisations of objects from medical im-

ages. Whilst the Marching Cubes method incorporates a grid of cubes in its process to

find contours, the Marching Squares algorithm, analogously, assigns a grid of squares.

In order to find contours from images in our datasets, we use the Marching Squares

algorithm, implemented by the Python library, scikit-image67, (van der Walt et al., 2014).

For more details of this algorithm, we recommend (Hansen and Johnson, 2011) or (Maple,

2003). In general, this algorithm can be split into 4 steps but as we input binarized images

in our projects, in place of grey-scale images, the steps can be reduced to 2. Nonetheless,

we briefly outline the four original steps here:

67https://scikit-image.org/docs/0.8.0/api/skimage.measure.find_contours.html

91

https://scikit-image.org/docs/0.8.0/api/skimage.measure.find_contours.html
https://scikit-image.org/docs/0.8.0/api/skimage.measure.find_contours.html

Arianna Salili-James CHAPTER 3. IMAGE DATA PROCESSING

Step I – Binarization The Marching Square method is commonly used on grey-scale

images. The first step of the algorithm is to binarize the image using some threshold

value. If the input is already a binarized image (as it is in our case), the choice of the

threshold is redundant.

Step II – Grid Formation A grid of squares is overlaid on the binarized image, where

each square (also called cell) covers a 2×2 pixel block, with the cell vertices each centred

within a pixel. In other words, the vertices of each cell, are, in total, contained within

four pixels. An index is then created for the vertex nodes, depending on the binarized

state of the pixel that they are inhabited within. For example, if a vertex node is within

a black pixel, the node is coloured black, and so on.

Step III – Finding Contours From here, the aim is to check whether parts of a

contour (or contours), pass through each cell, and if so, how. To answer this question, a

look-up table, such as the table shown in Figure 3.5, is incorporated, in order to determine

what the contour lines would look like in each case. There are 24 = 16 possible cases for

what a cell looks like, based on the colour of its four vertex nodes. For example, in Case

0, as there are no black pixels (and hence black nodes), we assume that a contour does

not pass through this cell. Similarly, in Case 15, as the cell is completely within a block

of black pixels, we assume that the cell is not positioned on the boundary of an object in

an image, and thus, a contour does not pass through. We iterate through each node in

the grid, to determine whether a contour passes through the cell comprising of the given

node in its top right corner, and draw the relevant lines, based on the look-up table.

Step IV – Linear Interpolation At this stage, the contour lines exclusively go

through the midpoints of the squared grid. If the input image is not originally bina-

rized, then the start and end points of contour lines through the cells can be adjusted.

This adjustment is done using a linear interpolation on the original values of pixels. More

specifically, we consider a vector that a contour line touches, and find the original pixel

values of the two nodes that form that vector. A value, µ, is then computed, based on

the original pixel values and the threshold value used in the first step. Henceforth, the

vector is linearly interpreted at µ, to find the new start or end position of the contour

line. We reiterate that this step can only make a difference when the original image is

not a binarized image.

92

Arianna Salili-James CHAPTER 3. IMAGE DATA PROCESSING

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Figure 3.5: Contour lines look-up table, for use in the Marching Squares algorithm. Each

square, or cell, comprises of a 2 × 2 pixel block, where the vertices are centred within four

pixels. The colour of the vertex nodes are determined by the colour of the binarized pixel it

inhabits, either white (shown here with a clear circle), or black. Thus, there are 16 possible

cases for what cells could look like, labelled here from 0 to 15. This look-up table is used to

establish how a contour line may pass through a cell, in order to find contours. Contour lines

pass through cells via the midpoints of the vectors (grid-lines), and they only touch the vectors

that are connected by one white node and one black node. With this look-up table, we can

establish piecewise linear contours from images.

The Marching Squares algorithm is an efficient method for finding piecewise linear con-

tours from images. As with all algorithms, it does have its flaws, such as its lack of

attention to finer details and its inability to produce contours containing sharp corners,

a problem addressed in (Gong and Newman, 2013). Nonetheless, it still remains a very

popular algorithm for contour extraction, particularly in applications of topography or

medical imaging, see, for example, it’s use in analysing CT scans in (Huang et al., 2011).

Next, we will take a brief look at another popular method of contour extraction, and see

how it compares to the Marching Squares algorithm.

3.3.2 Snakes

Contour extraction algorithms can vary greatly from one another, from methods that

incorporate meshes and pre-built lookup tables, as in the Marching Cubes algorithm, to

93

Arianna Salili-James CHAPTER 3. IMAGE DATA PROCESSING

methods that are based on more mathematical tools such as splines, as seen in Snakes.

Snakes, also known as the Active Contour model, were first described in (Kass et al.,

1988). With its ability to work well with noisy images, and its inclusion of a smoothing

constraint, Snakes has become one of the most popular methods in Computer Vision,

particularly for its practical use in segmentation, edge detection, and contour extraction.

Minimizing the Energy

The primary focus of the Snakes model is to fit a spline, or snake, to the boundary of

an object in an image, by minimizing an energy defined by the spline and by the ac-

tual image. Intuitively, we can think of the snake as an elastic band which is initially

stretched and extended around the desired object in an image, that is then released to

tightly wrap the object, thus defining the object’s boundary. This release can take nu-

merous iterations, until the shape of the elastic band (the snake) no longer changes (or

until a maximum iteration number is reached). Hence, there are two important implica-

tions. Firstly, the algorithm requires a rough guide of where the contour may lie. And

secondly, the algorithm will always output one contour, unlike the Marching Squares

algorithm, where there is no limit (see for example, the right-side plots of Figure 3.3).

Though we briefly outline the method, for more information on how Snakes works, we re-

fer the reader to (Ivins and Porrill, 1995), as well as the original paper, (Kass et al., 1988).

As described in (Kass et al., 1988), we can represent a snake with the parametric equation,

ν, and thus describe it’s energy functional as follows:

ν(s) = (x(s), y(s)) (3.5)

E∗ =

∫ 1

0

Esnake(ν(s))ds

=

∫ 1

0

Eint(ν(s)) + Eimage(ν(s)) + Eext(ν(s))ds (3.6)

where Eint is the snake’s internal bending energy, Eimage is the energy defined by the im-

age, and finally, Eext is the energy of the external forces, which are specified, traditionally,

by the user.

94

Arianna Salili-James CHAPTER 3. IMAGE DATA PROCESSING

For the algorithm to act like an elastic band, two constraints are introduced, in order to

define the snake’s internal bending energy.

Eint =
1

2

(
α(s)

∣∣∣∂ν
∂s

∣∣∣2 + β(s)
∣∣∣∂2ν

∂s2

∣∣∣2) (3.7)

for some chosen weights, α(s), β(s). Note that both parts of Eint focus on the change of

position of the snake, at every iteration. The first part can be thought of as the tension

or elasticity, making sure that all points in the snake move at the same time. Meanwhile,

the second part is focused on the stiffness of the snake, including its smoothness, by

taking care of possible spikes. If we are interested in a spike or corner, β(s) can be set to

zero to accommodate this.

The energy of the image, Eimage, can be interpreted as the weighted sum of forces used

to navigate the snake towards certain features, namely, lines, segments, and terminations

(of line segments and / or corners):

Eimage = ωlineEline + ωedgeEedge + ωtermEterm (3.8)

with chosen weights68 ωline, ωedge, ωterm. For example, if we wish for our snake to be

attracted towards brightness, positive values are used for ωline, whilst, alternatively, neg-

ative values are used to attract the snake towards dark lines. In the simplest form, the

three energy functionals seen in Equation (3.8) can be defined as:

Eline = I(x, y) (3.9)

Eedge = |∇I(x, y)|2 (3.10)

Eterm =
∂θ

∂n⊥
(3.11)

where I represents the intensity of the image, θ = arctan Cx

Cy
is the gradient angle, n⊥ =

(− sin θ, cos θ) defines the unit vectors perpendicular to the direction of the gradient, and

C is the curvature of level lines:

C(x, y) = Gσ(x, y) · I(x, y) (3.12)

68Note that the weights in Eimage are referred to by variables of the same name, in scikit-image’s snake

function, active contour69.
69https://scikit-image.org/docs/dev/api/skimage.segmentation.html#skimage.

segmentation.active_contour

95

https://scikit-image.org/docs/dev/api/skimage.segmentation.html#skimage.segmentation.active_contour
https://scikit-image.org/docs/dev/api/skimage.segmentation.html#skimage.segmentation.active_contour
https://scikit-image.org/docs/dev/api/skimage.segmentation.html#skimage.segmentation.active_contour

Arianna Salili-James CHAPTER 3. IMAGE DATA PROCESSING

for the Gaussian Gσ, with standard deviation σ.

Finally, the energy of the external forces, Eext, depends on what our aim is for the

algorithm. For example, if the snake is initialised outside70 of the desired object, we

want it to be attracted inwards, in order to eventually wrap the outline of the object, as

we described earlier in this section. Thus, an external force can be used to control this

attraction:

Eext(ν(s)) = κ|(x, y)− ν|2 (3.13)

for a point (x, y) on the image, and the spring71 factor variable, κ.

In order to minimize the energy defined in Equation (3.6), the Snakes algorithm employs

an iterative gradient-descent approach. On each iteration, the snake moves a few steps

closer to its optimal position, whilst also being smoothed. Here, both the smoothing

constraint and the maximum number of steps taken in each iteration, is decided by the

user. Once the snake is aligned with the desired object boundary in the image, or when

the maximum iteration is reached, the algorithm stops and outputs the final version of

ν.

Comparisons & Uses

In comparison to the Marching Squares algorithm, the Snakes algorithm is much more

complex and requires a lot more input from the user. Its success and processing time are

highly dependent on two things in particular:

1. The original snake, initialised at the start.

2. The maximum number of iterations.

Moreover, these are correlated with each other. As an example, if the initialised snake

is not anywhere near the shape of the boundary (for instance, if it were simply a circle

surrounding the main object) it may not reach the desired boundary, before the max-

imum number of iterations is reached. Nevertheless, the results produced by a Snakes

algorithm, particularly when time is not of the essence (and thus a large maximum num-

ber of iterations can be chosen), are often successful. This is seen in Figure 3.6, where we

70It is also possible for the initial snake to placed within the boundary of the desired object. In this

case, the snake repels and moves outwards, until it reaches the boundary.
71κ is the spring constraint for a spring connecting a point on the image to a point on the snake.

96

Arianna Salili-James CHAPTER 3. IMAGE DATA PROCESSING

compare a contour found using Snakes, with contours found using a Marching Squares

algorithm on the same image.

Gaussian Filter
 & Snakes

Gaussian filter + Otsu
 & Marching Squares Original Image

Figure 3.6: Snakes vs Marching Squares – 1. Left: As a Snakes algorithm is commonly

applied to filtered images, we use a Gaussian filter to smooth the image slightly before applying

Snakes. Moreover, we set the initial snake as an ellipse, shown here in blue. Finally, we plot

the resulting contour in red. Centre: In order to make it a fair comparison, we also use the

Gaussian-filtered image for the Marching Squares test. Here, as per the required thresholding

step for non-binarized images in Marching Squares, the optimal threshold value is found using

Otsu’s algorithm, which is hence followed by Marching Squares contour extraction. Right:

Original image of mussel. We note that the downfall of the Marching Squares algorithm in this

particular example is due to the dependency on the thresholding step, which has been heavily

affected by the noise caused by the shadowing in this image. The Snakes algorithm, on the

other hand, is scarcely affected by the shadows, and thus performs well in finding the mussel’s

contour. This emphasises that Snakes can work well on noisy images.

The most difficult aspect of Snakes is undoubtedly the selection of its parameters. Though

there have been suggestions on how to address this issue, as in (Rousselle et al., 2003),

where a genetic algorithm is used to optimize the parameters, it is very often the case that

the parameter selection remains a manual and fiddly step. When used for the purpose of

contour extraction, any slight change in the parameters of a Snakes algorithm, can have

a big effect on the resulting contour. Furthermore, as manually tweaking the parameters

can take a long time, Snakes is generally not the most convenient method to incorporate

in automatic contour extraction.

Though the use of Snakes to extract contours may seem arduous, it could in fact be

incorporated with a different purpose. In particular, we can employ a Snakes algorithm

to smooth our contours. Recall that the algorithm includes a smoothing of a snake at

each iteration, based on a smoothing constraint. If a contour has already been estab-

97

Arianna Salili-James CHAPTER 3. IMAGE DATA PROCESSING

Gaussian Filter
 & Snakes

Our Binarization
 & Marching Squares

Otsu Binarization
 & Marching Squares

Original Image
(Afer Lansbergisi)

Figure 3.7: Snakes vs Marching Squares – 2. In this example, we take a look at a naturally-

more-complicated shape. This time, we not only compare the different contour extraction

methods, but we also compare the two binarization methods we previously discussed. Far left:

A Gaussian filtered image, with an ellipse as the initial snake (white), and the final contour

(magenta). Centre-left: Image binarized using our binarization method, as described in Algo-

rithm 5. Contour (red) extracted using the Marching Squares algorithm on the binarized image.

Centre-right: Image binarized using Otsu’s algorithm, and contours, once again, extracted us-

ing Marching Squares. Far right: original shell image. Here, the results show that both the

Marching Squares method and Snakes perform well in extracting the contour around the shell.

On closer inspection however, it seems that the Snakes method has missed some tight corners in

the top right part of the shell. This is likely due to the snake over-smoothing. Meanwhile, both

binarization techniques have also worked fairly well, with our binarization algorithm coming

out on top, as unlike Otsu’s method, it did not fail at the bottom tip of the shell.

lished, then we can set the initial snake to be this very contour. Henceforth, by iterating

the Snakes algorithm only a handful of times and with the algorithm’s smoothing con-

straint set very low, we can smooth the initial contour, without the risk of over-fitting,

and without enabling the additional parameters chosen for the Snakes algorithm to have

a significant effect on the shape of our contour. The stopping strategy is a pre-chosen

number of iterations; since this is very low, the model does not overfit; the aim is only

to smooth the contour. An example of this can be seen in Figures 3.8 and 3.9, where

the incorporation of Snakes has improved the original contour. We note that a similar

approach was also taken in (Yang and Marchant, 1996), where Snakes was used to refine

contours surrounding fruit blemishes.

As the maximum number of iterations is set to a small number72, this method of smooth-

72For example, in some projects we set the maximum to be 2− 5. This is far smaller than the default

number used in scikit-image73’s function, which is set at 2500.

98

https://scikit-image.org/docs/dev/api/skimage.segmentation.html#skimage.segmentation.active_contour

Arianna Salili-James CHAPTER 3. IMAGE DATA PROCESSING

Figure 3.8: Snakes for smoothing. Left: An example of a contour obtained via a Marching

Squares algorithm (red). Right: A smoothed contour (blue) using the Snakes algorithm, with

a few iterations. Here, the contour on the left was used as the initial snake. We can see that

though the smoothed contour is not perfect, it has certainly improved the original contour.

ing will be computationally quick, and will prove an efficient addition to the automatic

image processing we take on for our projects, specifically, when smoothing closed curves.

Though this method may seem more complicated than traditional smoothing techniques,

such as splines, in general, Snakes not only performs better on more complicated shapes,

but also it does not impose restrictions on the initial contour, unlike certain spline meth-

ods. For example, many implementations of splines in the Python library scikit-image,

require the original curves to be strictly increasing in the time domain74. However, such

problems do not exists with a Snakes method. Furthermore, if the original contour had

missed the object boundary in certain areas, a Snakes method may be able to overcome

this as it has the additional information of the image in its implementation, unlike spline

methods which only require a contour in their implementation.

3.4 Experiments

In this chapter, we have visited four algorithms, each of which will play some part in the

shape analysis projects that we will be describing in the remaining chapters. An algo-

rithm, or in most cases, a combination of these algorithms, will be used to find curves

from our datasets, that will subsequently be incorporated with elastic shape analysis, in

one way or another, in order to answer questions regarding the shape of the objects.

74Thus, contours will need to be split into sections before these methods can be used for smoothing.

99

Arianna Salili-James CHAPTER 3. IMAGE DATA PROCESSING

Contour before Snakes Smoothing

Contour after Snakes Smoothing

Figure 3.9: Smooth contour extraction with Algorithm 6, with a processing time of around

2.7 seconds75, from image loading to contour smoothing.

3.4.1 Our Contour Extraction Approach

The datasets and the type of datasets we work with are all different, as are the questions

we ask of them. Thus, the way in which we will be using these algorithms will also

differ. The data processing step for each dataset will be discussed in the relevant project

chapters / sections. However, in Algorithm 6, we provide an outline of what the simplest

image processing step looks like.

Here, the algorithm is designed for basic automatic contour extraction, given the loca-

tion paths of images in a dataset. It follows a 5-step process to obtain a smooth contour

describing the outline of the desired object for each image. More specifically, we find

the contour using Marching Squares on a binarized image, which is then smoothed using

Snakes. Furthermore, in case multiple contours are found during the Marching Squares

step, in this example an assumption is made that the longest contour (in terms of the

number of points), represents the boundary of the object. This is because our image bi-

narization algorithm aims to segment the object whilst masking the inside of the object,

thus the longest contour should in theory be the boundary we seek.

3.4.2 Comparisons to Other Methods

In order to further evaluate whether our approach to contour extraction would work bet-

ter than other methods when it comes to the automatic extraction of object outlines from

2D images, we designed an experiment based on an assortment of images.

75On a machine with an Intel Core i7-8550U @ 1.80GHz CPU and 8GB of RAM.

100

Arianna Salili-James CHAPTER 3. IMAGE DATA PROCESSING

Algorithm 6: Automated Image Processing Example

find contours(paths,binAlg=new binarize,N = 3)

Aim:

Find all contours from a dataset of images.

Initial Step:

Create a list containing the location paths of the images in the dataset, paths.

Code:

1. Set all contours = [].

2. One by one, find all contours.

for path ∈ paths do
Step I: Load grey-scaled version of image.

Step II: Binarize image with chosen binariza-

tion algorithm.

img bin = binAlg(img)

Step III: Find outline contour.

C = marching squares(img bin)

j = arg maxi length(Ci)

outline contour = C[j]

Step IV: Smooth contour.

smoothed contour =

Snakes(img,initial snake=outline contour,max iterations=N)

Step V: Add contour to list of other contours.

all contours.append(smoothed contour)

end

return all contours - Return a list of smoothed outline contours.

This experiment was split into two sections. The first part focused on an array of popular

methods as well as our own method, and on a random selection of object images, ranging

from images of buccinidae to amphorae, as seen in Table 3.1. Whilst the second experi-

ment was based on an image dataset of just one object, and on a finer selection of methods.

Our first experiment was based on the following methods:

1. Method 1: Otsu & Marching Squares – Otsu’s thresholding technique (Algo-

101

Arianna Salili-James CHAPTER 3. IMAGE DATA PROCESSING

Object Type # Samples

Amphorae 21

Lekythoi 5

Mussel Shells 21

Other Gastropods 3

Table 3.1: Total number of sample per object, in Experiment 1.

rithm 4, (Otsu, 1979)) was employed to binarize the image, and this was followed

by the Marching Squares algorithm (Section 3.3.1, (Lorensen and Cline, 1987)) to

find contours.

2. Method 2: Canny Edge Detection & Marching Squares – Here, we employed

a Canny edge detection algorithm76 (Canny, 1986) which produces a binarized image

with edges highlighted. This was then combined by a Marching Square algorithm

to extract the contours.

3. Method 3: Snakes – We used a Snakes algorithm (Section 3.3.2, (Kass et al.,

1988)) to find the outline contour of the object. Recall that this method requires

an initial snake as its input. Thus, as we are working with a random assortment

of images, we chose an arbitrary initial snake. These were ellipses centred in tfhe

centre of the images, with the diameters based on proportions77 of the image size.

Finally, in order to save time in our experiments, the maximum number of iterations

for this method was set at 500.

4. Method 4: Canny Edge Detection & Border Following – Here, we used

the Canny Edge Detection algorithm to create a binarized version of the image.

Subsequently, a Border Following algorithm (Suzuki et al., 1985) was employed to

find contours, using the popular OpenCV78 implementation.

5. Method 5: Our Method – Lastly, we used our own approach of extracting outline

contours, as seen Algorithm 6.

76https://scikit-image.org/docs/stable/auto_examples/edges/plot_canny.html
77Specifically, this was 70% for the x-diameter, and 90% for the y-diameter, as we were mainly working

with landscape images.
78https://docs.opencv.org/3.4/df/d0d/tutorial_find_contours.html

102

https://scikit-image.org/docs/stable/auto_examples/edges/plot_canny.html
https://docs.opencv.org/3.4/df/d0d/tutorial_find_contours.html
https://scikit-image.org/docs/stable/auto_examples/edges/plot_canny.html
https://docs.opencv.org/3.4/df/d0d/tutorial_find_contours.html

Arianna Salili-James CHAPTER 3. IMAGE DATA PROCESSING

Method % Success

1 44%

2 8%

3 8%

4 28%

5 60%

Table 3.2: Experiment 1: Percentage of good outline contours found per method. Note that

an outline contour is classified as good if the experimenter judges that it correctly resembles the

boundary of the main object in the image.

In order to compare the different approaches, we implemented the 5 methods on a dataset

of 50 images, and plotted the contours overlaid onto the original image. Subsequently,

we analysed the plots produced by each of the image, by eye, and counted those that had

correctly identified the outline of an object from a contour. Note that for the methods

that find multiple contours (i.e., Methods 1,2,4), when making our judgements, we ig-

nored the contours that were not outline contours. Thus, we defined the success of each

method by its proportion of correctly-identified contours, i.e., contours that correctly79

outlined the main object in the image.

The results of our experiment can be seen in Table 3.2. Some methods certainly per-

formed better than others and this could be down to various reasons, from the default

parameters not being suited our particular dataset, or due to cap on the maximum num-

ber of iterations. We also reiterate that the images in our dataset of purposely of varying

quality, from high-quality images of gastropod shells, to images of mussels that contained

a lot of shadows. We display some plots from this experiment in Figure 3.10. Further-

more, as we find that Methods 1,4,5 performed the best in these tests, in our second

experiment we focus on these 3 methods.

In our second experiment we concentrate on one class of objects, namely, images of mus-

sel shells. Furthemore, as we are focusing one class, we can tweak the parameters based

on these objects. For example, for Method 5, we increase the border parameter in the

79For example, in Figure 3.10, Method 3 did not result in a correct outline of the amphora in the

image ,whilst Method 5 did produce a contour that correctly outlined the amphora.

103

Arianna Salili-James CHAPTER 3. IMAGE DATA PROCESSING

Figure 3.10: Experiment 1: Example contours, from all five methods. We display images

of buccinidae shell and a modern-day amphora vase, with contours overlaid. Here, we see

that almost all the methods performed well in extracting an outline contour from the shell

image. However, the contours resulting from Methods 1 and 4, moved within the shell itself.

Furthermore, the contour from Method 5 may be slightly over-smoothed. The amphora however,

seems to be complicated by the distinct patterns within the vase, which has affected almost all

of the methods, with the exception of Method 5, which incorporates a boundary-filling step, as

discussed in Section 3.2.3.

binarization step (Algorithm 5), as our dataset consisted of a small mussel shell centred

in a rather large image, as seen in Figure 3.11. We conduct our tests using the same tech-

nique as the first experiment. The results for this experiment (shown in Table 3.3) reveal

that our approach (Method 5), outperformed the other methods, and correctly extracted

the outline contour in 80% of the mussel images. These results further motivated us to

employ our contour extraction techniques for our specific projects.

Next, we delve into our projects, where we will demonstrate some results of the image

processing methods we have discussed in this chapter. And we will show that with the

reasonable combination of computer vision, elastic shape analysis, and machine learning,

we can discover some exciting results.

104

Arianna Salili-James CHAPTER 3. IMAGE DATA PROCESSING

Method 1 Method 4 Method 5

Figure 3.11: Experiment 2: Contours overlaid onto images of mussel images. As Methods 1

and 4, can find multiple contuors on an image, here we plot only the longest contour, as we

assume that the longest contour represents the outline contour. In these specific plots, Method

5, resulted in most accurate contours, despite some of them not being perfect (such as the first

mussel contour). Method 1 also performed rather well, except the slight distortions based on

the patters within the mussel. Meanwhile Method 4, in these specific plots, failed to find a

closed outline contour, and instead found open curves representing a segment of the outline.

Method % Success

1 48%

4 12%

5 80%

Table 3.3: Experiment 2: Percentage of good outline contours found in the top methods. Here

we see that our contour extraction approach, based on Algorithm 6, performed the best.

105

Chapter 4

Applications of Elastic Shape

Analysis to Closed Curves Extracted

from Images

By analysing image datasets with mathematical methods we are able to extract infor-

mation about image collections for a wide variety of practical uses. In this chapter, to

analyse image datasets, we incorporate elastic shape metrics and we define the shape of

an object from an image, by the closed curve describing its outline. We want to show

that elastic shape metrics are useful in quasi-automatic applications on image datasets.

Our research is broadly based on three aims:

• Classification of objects using their outlines, with comparisons between various

methods, and human experts.

• Comparison of image-derived outlines and measurements from the true object.

• Demonstration that shape alone may not be enough.

Henceforth, we take on three collaborative projects, to explore the practical applications

of image data analysis, by analysing shapes with elastic shape analysis. In the order of

which they will appear in this thesis, the projects are the following:

1. Classification of Ancient Greek Vases – We explore comparisons between Elas-

tic Shape Analysis methods with traditional methods of Geometric Morphometrics

by primarily analysing their effectiveness in classification. We focus on Greek vases,

but our datasets entail:

106

Arianna Salili-James CHAPTER 4. APPLICATIONS ON CLOSED CURVES

(i) Ancient Greek vases,

(ii) Gastropod shells,

(iii) Swedish leaves.

This is a large collaboration, with collaborators spread across the world, including

biologists, archaeologists, and malacologists.

2. The Effectiveness of Images – In this project, we study the effects of employing

images to analyse the shapes of vases, in comparison to the traditional method of

hand-measurements, and the more modern technique of 3D laser scanning.

3. Classification of Mussels – Our last project is focused on using elastic shape anal-

ysis to distinguish non-native mussels from native mussels found in New Zealand.

107

Arianna Salili-James CHAPTER 4. APPLICATIONS ON CLOSED CURVES

4.1 Classifying Ancient Greek Vases

The classification of historical and archaeological objects has played a key role in shaping

our understanding of history. As a simple example, the classification of objects found on

an archaeological site can help guide archaeologists in dating the site. Whilst historically

classification was done by eye, as seen in some examples in (Beazley, 1956) to identify

specific painters of vases, in modern literature, techniques have ranged from using geo-

metric morphometrics to study ancient Brazilian spear heads in (Okumura and Araujo,

2019), to using a neural network model to classify ancient Persian cuineform characters,

as seen in (Mostofi and Khashman, 2014). Our main interest, however, is on one specific

set of historical objects: the vases of Ancient Greece.

4.1.1 The Shapes of Vases

From ancient Persia to Babylonia, and ancient Greece to the Byzantine empire, many

ancient civilisations relied on pots or vases, for various reasons, such as practical use, cere-

monial use, or ornamental use. Thus, given their wide-spread usage, and their durability,

it is no surprise that countless numbers of vases have been discovered today, with many

originating from ancient Greece. By classifying such vases, we can begin to understand

about their usage and origins and hence learn more about the ancient civilisation they

originated from.

It is estimated that around 100, 000 painted ancient Greek vases survive today. These

come in a variety of styles and shapes, with some vases being more bizarre than others,

from rhytons80 shaped as animal heads, to the elegant wine jug, epichysis, as can be seen

in Figure 4.2. These varying styles were transmitted between potters for generations,

resulting in the vast array of Ancient Greek vases we see today. Therefore, there is a

lot of interest in the classification of vases, particularly to discover who made the vases,

how they have been constructed, what their usage is, and which period they belong to.

To answer such questions today, archaeologists and historians often work with images of

vases, as a whole.

The decorations on vases are very often relied on when it comes to the classification of

80Rhytons were conical vessels mainly made for drinking, and were particularly popular in Ancient

Persia, although the Ancient Greeks are also known to have made them.

108

Arianna Salili-James CHAPTER 4. APPLICATIONS ON CLOSED CURVES

these ancient vessels. Additional attributions that can also play a part in vase classi-

fication are the materials used to construct the vase, and the handles. The outline of

the vase however, is seldom used in classification. Though there are some examples of

literature that focus on vase shapes, such as (Bloesch, 1940), the outline of an object

alone (i.e., without any additional information) is scarcely utilised. Given the occasional

complexities of factors that can affect the outline shape of the vase (for example, intricate

handles), combined with the similarities in shape across various other classes of vases, it

is probably not too surprising that the outline shape has not been used as a primary fea-

ture in the classification of vases. Take Figure 4.1 for example, showing a neck amphora

(left) and a volute krater (right). If the handles are removed, then except for the slightly

elongated leg of the volute krater, the two vases may start to look rather alike. This

challenge motivated us to ask the question: If the shapes of vases are indeed difficult to

classify by eye, can an algorithm succeed instead?

Figure 4.1: An ancient Greek neck amphora (L) and a volute krater (R) with Beazley IDs

4529 and 1006971 respectively. Though the outlines of the two vases are clearly different, if the

handles were to be removed, their outline shapes would be rather similar.

4.1.2 Shape Analysis for Vase Classification

Ancient Greek vases come in all shapes and sizes. The peculiarities of vase shapes, the

wide range of data, and academic curiosity all inspire our research into vase classification

using solely the shape of the vase. This research focuses on three primary questions:

1. Is shape alone sufficient for the classification of ancient Greek vases?

2. Which shape analysis methods have the best accuracy?

3. Are the results using shape alone comparable to human experts?

109

Arianna Salili-James CHAPTER 4. APPLICATIONS ON CLOSED CURVES

Figure 4.2: Assortment of vase shapes. L-R: Lamb rhyton, urn, epichysis, askos. We note that

these particular types of vases were not included in our classification tests. This was primarily

due to the lack of any type of shape consistency in these classes. For example, urns are named

for their purpose, and can hence take a variety of different shapes, thus, it is not intuitive to

consider its shape in classification tests.

In collaboration with Prof. Armand Leroi of Imperial College, we began a project based

on the classification of ancient Greek vases using solely the outline shapes of vases, ex-

tracted from a collection of vase images. In the subsequent sections of this chapter, we

outline our approach in more detail, from describing the process of finding vase outlines,

to detailing the various classification algorithms.

4.1.3 Data

Our focus is on the outlines of vases from images. Henceforth, in this project, we utilize

images of individual ancient Greek vases from the Beazley Archive81. The archive holds

hundreds of thousands of vase images from museums and personal collections from across

the globe, as emphasised in Moffett (1992), a paper on the archive’s contribution to global

accessibility of humanities data. We selected a sample of vase images from a restricted list

of different classes (though a larger-scale project, on a wider variety of classes, is planned).

Our collaborator vetted the images in the sample to make sure of their suitability, for

example, to check if images contained a whole, complete vase, presented in front-view 83.

81The Beazley Archive82was built on the archive of the famous archaeology professor, Sir John Beazley,

known for his work on the classification of Ancient Greek vases.
82https://www.beazley.ox.ac.uk/carc/pottery
83The archive contains all types of vases images, including broken vases and fragments.

110

https://www.beazley.ox.ac.uk/carc/pottery
https://www.beazley.ox.ac.uk/carc/pottery

Arianna Salili-James CHAPTER 4. APPLICATIONS ON CLOSED CURVES

The true classes (or types) of the vases were independently verified.

Vase Outlines

The extraction of vase outline contours from the images incorporates Algorithm 6, de-

scribed in Chapter 3, which involves binarizing an image and extracting a contour from

the binarized image, which is then smoothed. However, for this project, the process is

not so simple, as two additional steps are also required. Firstly, as we only interested in

the main shape of the vase, we must either create a contour extraction algorithm that

ignores the handles, or we must remove the handles. Secondly, as the classes of vases we

study are generally symmetrical, we want our vase contours to also be symmetrical along

the vertical axis. By doing so, we provide additional smoothing, whilst also removing

structures of the vase that we do not care about, such as vase spouts. In the next sections,

we explore the methods used to find smooth, symmetric outlines from images of ancient

Greek vases, in the following order:

1. Handle removal algorithms.

2. Binarization.

3. Contour extraction, smoothing, and symmetrization.

4.1.4 Removing Vase Handles

Elaborate lids and impressive handles often appear in ancient Greek pottery. One might

argue that these are the features that characterize many vases, such as the majestic volute

krater seen in Figure 4.1. When a potter creates a vase, the body of the vase is morphed

from clay along with the basic mouth and base. As handles and other features are added

externally afterwards, for our shape classification, it is the primary body of the vase that

we are fundamentally interested in.

It is vital to remove the external features of a vase during the data processing stage of

our project. Some vases are photographed from an angle that excludes such features, and

others might not have any external features in the first place. But there will always be a

few vases in any sample of images that include handles and lids and so on. As our sample

was quite small (circa 700 individual vase images), the simplest way to achieve this would

be to manually edit the image of the vase (using a photo editing tool) before starting the

111

Arianna Salili-James CHAPTER 4. APPLICATIONS ON CLOSED CURVES

image thresholding and contour extraction process. Though this is the avenue we occa-

sionally resorted to, it was preceded by a series of algorithms we developed to automate

the process of handle-removal. Here, we will briefly outline the basis of these algorithms

and discuss the potential they could have in the future.

Excluding a small minority of classes, in general ancient Greek vases with handles can

be split into two categories: those with handles that start and loop back onto the body

such as an amphora, and those with handles that stick out, such as bell-kraters and some

cups. The former group is, unsurprisingly, much more complex than the latter, as initial

contours need to be found that not only describe the outline of the vase, but also the

contours inside the handles (as displayed in green and red, in the left plot of Figure 4.3).

Moreover, this handle contour can be segmented even further, as one side of it is part of

the vase outline (which we label as the inner handle contour, plotted in green in Figure

4.3), whilst the other side is part of the external handle (plotted in red in Figure 4.3).

Therefore, we create two primary handle-removal algorithms that extract an outline con-

tour, with the handles excluded, from the two discussed groups.

Algorithm 7 is a sketch of a contour extraction function that extracts a contour from an

image of a vase without the handles. This function can be used on vases with a handle

that loops back onto a vase, such as a regular amphora or an askos vase (see Figure 4.2).

An example of how this algorithm works can be seen in Figure 4.3. On the left we see the

original outer contour, the outer handle contour (red – runs along the external handle),

and the inner handle contour (green – runs along the vase outline). The image on the

right shows the new contour which excludes the handle, as well as the positions on the

contour, where the handle is attached to the vase (labelled as (a,b) in Algorithm 7, and

plotted in magenta and blue respectively, in Figure 4.3).

An outline for the handle-removal of Group II vases, i.e., vases with handles that stick

out, can be seen in Algorithm 8. This function is simpler than Algorithm 7, as its primary

aim is to find the start and end positions of the handle on the original outline contour.

Subsequently, a straight cut is made along the outline contour between the assumed start

and end points. An example of this can be seen in Figure 4.4, where the outline contour

84https://scikit-image.org/docs/0.8.0/api/skimage.measure.find_contours.html
85https://scikit-image.org/docs/0.8.0/api/skimage.measure.find_contours.html

112

https://scikit-image.org/docs/0.8.0/api/skimage.measure.find_contours.html
https://scikit-image.org/docs/0.8.0/api/skimage.measure.find_contours.html

Arianna Salili-James CHAPTER 4. APPLICATIONS ON CLOSED CURVES

Algorithm 7: Handle Removal – Group I

handle removal 1(bin image, one side=True)

Aim:

Given a binarised image, extract an outline contour of a vase from its image,

excluding its handles. This is used for Group I vases, i.e. those with looped,

amphora-like handles.

Code:

1. Find all contours in the image, for example, by using scikit-image’s84contour

extraction function, all contours = measure.find contours(bin image).

2. Search through all contours to find the outline contour, (x,y), (the longest

contour that goes around the handles), and the handle contours on each side.

These contours are based on approximations of the locations of the handles, and

the range / length of the individual contours.

3. Choose one side, and segment the inner handle contour from the original handle

contour.

4. Find two positions on the outline contour corresponding to where the external

handle is attached to the body of the vase. We call these two positions (a,b).

5. Adjust the inner handle contour, based on the coordinates (x[a],y[a]) and

(x[b],y[b]), and call this new contour segment (xh,yh).

6. Create a new outline contour, (X,Y), by going along the original outline contour

in the areas that don’t include the handle, but going through the updated inner

handle contour in the areas which originally aligned with the handle. For

example, for one side, X,Y = (x[:a]+xh+x[b:],y[:a]+yh+y[b:]).

7. Repeat steps on other side, if necessary:

if one side==False then
Repeat steps 3-6 for the other side of the vase.

Let (X,Y) represent the outline contour which

connects both sides of the vase.
end

return X - x-coordinates of new outline contour.

return Y - y-coordinates of new outline contour.

113

https://scikit-image.org/docs/0.8.0/api/skimage.measure.find_contours.html

Arianna Salili-James CHAPTER 4. APPLICATIONS ON CLOSED CURVES

Algorithm 8: Handle Removal – Group II

handle removal 2(bin image, one side=True)

Aim:

Given a binarised image, extract an outline contour of a vase from its image,

excluding its handles. This is used for Group II vases, i.e., those with handles

that stick out.

Code:

1. Find all contours in the image, for example, by using scikit-image’s85contour

extraction function, all contours = measure.find contours(bin image).

2. Find the longest contour in all contours, (x,y).

3. Choose one side to focus on. This can be the best side (determined by certain

contour factors), or a pre-selected side.

4. Find the start point, a, of the handle on the outline contour. To do this, we

identify indents on the outline curve. These are defined as points on the original

outline curve where the x-coordinate is greater than both its preceding and

succeeding neighbouring points.

5. The end point, b, of the handle is found by creating a boundary for the handle

position (using the start point found), and searching for points with similar

x-coordinates as the handle start point.

6. Create a new outline contour that excludes the handle, for example, on one side:

X,Y = (x[:a]+x[b:],y[:a]+y[b:]).

7. Repeat steps on other side, if necessary:

if one side==False then
Repeat steps 4-6 for the other side of the vase.

Let (X,Y) represent the outline contour which

connects both sides of the vase.
end

return X - x-coordinates of new outline contour.

return Y - y-coordinates of new outline contour.

114

https://scikit-image.org/docs/0.8.0/api/skimage.measure.find_contours.html

Arianna Salili-James CHAPTER 4. APPLICATIONS ON CLOSED CURVES

Figure 4.3: L: A contour around an amphora vase. Focusing on one side of the vase (blue), a

handle contour is found which is subsequently segmented as the outer handle contour (red) and

the inner-handle contour (green). R: A different (panathenic) amphora, with the handle contour

on one side (green), and the outline contour, excluding any handle (yellow, dotted red). Also

plotted, are the two positions (pink and blue) on the outline contour, (i.e. (a,b) in Algorithm

7), which are the assumed positions where the external handle attaches to the vase body.

(excluding the handle) can be seen in red, whilst the start and end positions of the handle

are plotted in blue.

Figure 4.4: Outline contour example using Algorithm 8. Here, we see the output of the

algorithm as a contour on one side of the vase, with the handle excluded, imposed onto the

original vase image. We also plot the assumed start/end points of the handle (blue) that the

algorithm uses in order to cut the handle from the original outline contour.

We outline the two principal algorithms that find contours that exclude the vase han-

dles. However, many sub-algorithms were also made, in order to improve results for

certain classes, for example to focus on askos vases (see Figure 4.2) due to their looped

handles appearing on the top of their vase bodies, as opposed to the sides as in amphorae.

115

Arianna Salili-James CHAPTER 4. APPLICATIONS ON CLOSED CURVES

Figure 4.5: A loutrophoros vase that has had its handle removed using Algorithm 7, where its

output of is superimposed onto the original vase image. L: straight cuts have been made at the

two positions where the handle is joined to the vase body. R: splines have been used instead;

where we can see a noticeable difference, particularly in the centre, when taking a closer look.

Figure 4.6: Smoothing outline contours of Group II vases. In this example we have a binarized

Hydria vase, with an outline contour (excluding the handle) on one side, found using Algorithm

8, and plotted in red on the image (far left). On the left we have the original output, which

performed a regular straight cut between the start and end positions of the handle. In the

centre figure we fitted a quadratic spline instead, whilst on the right we fitted a cubic spline.

In order to test the performance of all of our handle-removal algorithms, we worked on a

large sample of vase images (circa 2000) of differing quality, with a multitude of classes,

separate from the sample used for our specific classification project. Overall, our success

rate was around 55%, where this score was based on a manual classification of contours,

by eye. In other words, contours that did not correctly outline the boundary of a vase

were deemed bad (see Figure 4.8 as an example), whilst those that correctly outlined the

vase were classed as good.

Definition 4.1 (Good / Bad Contours) A contour that correctly represents the bound-

ary of an object within an image is defined as good, else the contour is classed as bad.

Though this score is not too bad, there are many possible reasons for the errors. In

many cases, the algorithms failed because of poor image quality, though other reasons

116

Arianna Salili-James CHAPTER 4. APPLICATIONS ON CLOSED CURVES

Figure 4.7: Bad vase contours. We show examples of where the handle removal methods

of Algorithms 7 and 8 failed to find an appropriate outline contour. L: The handle removal

algorithm has done a decent job in finding an outline contour that excludes the handle, however,

it has mistakenly included a small portion of the handle at the top of the vase. This is a rather

understandable mistake to make, given that the handle is only really distinguishable from

the vase lid by its colour. Additionally, the outline contour has also included some text that

appeared at the bottom of the image. Centre: In this example, the original contour included

a dark spot that appeared on the vase stand. This affected the resulting outline contour that

excluded the handle. R: Here, the only mistake of the handle removal algorithm is its failure to

properly locate the start and end positions of the vase handles on the outline contour.

were down to failures of pinpointing the exact start and end positions of handles, or to

additional objects appearing in the image, and so on. An example of such bad contours

can be seen in Figure 4.7. Furthermore, we note that in some cases, though the resulting

contour was not too bad, the straight cuts made by either Algorithm 7 and 8 were simply

not particularly credible. One possible solution to this specific problem is to use splines

instead of straight cuts. An example of these using Algorithms 7 and 8 can be seen in

Figure 4.5 and Figure 4.6 respectively.

We note that by taking a different approach, for example, employing a neural network

model, we may be able to improve the performance and obtain better vase outlines that

exclude handles. However, such techniques would certainly require much larger datasets,

considering the variety of outline shapes seen across ancient Greek vases. On the other

hand, we have no doubt that by continuing to work on the algorithms that we have already

created, we can one day achieve more impressive results. But given the performance of

the handle removal algorithms in our tests at the time, we made a pragmatic decision to

supplement our results by using image manipulation software to correct the output.

117

Arianna Salili-James CHAPTER 4. APPLICATIONS ON CLOSED CURVES

Figure 4.8: Unsuccessful contours. The contours in this example, as seen in red, overlaid on

the vases, were all deemed bad in our tests of the handle-removal algorithms.

4.1.5 Vase Image Binarization

Binarization is a form of image thresholding. It involves a modification to an image such

that each pixel is one of two colours: in our case, black or white. Thus, the outcome of

binarization of an image is a black-and-white version of the original image. As discussed

in Chapter 3, binarizing an image is a worthwhile pre-processing step before contour

extraction. Not only does binarization accelerate the process and progress of contour

extraction algorithms (for example, by denoising an image by default), but it can also be

used to mask certain regions of an image. The latter can be utilized to fill-in the inside

of a vase, so that the decorations within the vase are not detected by the subsequent

contour extraction algorithms.

In section 3.2.3 of the Image Processing chapter of this thesis, we discussed a novel

binarization technique we designed in order to binarize images containing one object

centred in the middle. Here, we use a section of this algorithm, aimed at segmenting the

vase, and masking the inside of the vase in one colour. This refers to part of Algorithm 5,

up to Thresholding Step III ; therefore, here, we call this sub-algorithm the Binarize-Fill

Method. During this project, to binarize our sample of vase images, we employed this

Binarize-Fill Method, and often combined it with a well-known thresholding method,

Otsu’s Method, (Otsu, 1979), in order to obtain the best binarization results. Though

we discussed both of these algorithms in great detail in Algorithm 5 and 4 in Chapter 3,

we briefly outline the two methods here:

Binarize-Fill Method: The function starts by detecting the average background colour.

It uses this average to create two initial thresholds, t1 and t2, used for mapping pixel in-

118

Arianna Salili-James CHAPTER 4. APPLICATIONS ON CLOSED CURVES

tensities; P≤t1 7→ 0, whilst P≥t2 7→ 1, where P represents the set of pixels in the image, 0

is used for black, and 1 is white. Based on the new set of pixels, two ellipses are created,

E1 and E2 where E2 ⊂ E1. All pixels whose positions in the image fall outside of E1 are

subsequently turned white (1). Meanwhile, the interior of the object is masked by finding

the furthest dark pixels from the centre to the boundary of E2, and thus turning all the

pixels within those positions black (0). The pixels whose positions lie in between E1 and

E2 go through a nearest-neighbour-like procedure, where their new pixel colour is based

on their neighbouring pixels. For further details on this method, we refer the reader to

Algorithm 5.

Otsu’s Method: Otsu’s method involves finding a threshold, t, that is used to split

the pixels into two classes. Here, the aim is to minimize the within-class variance, Vwc,

and maximize the between-class variance, Vbc (as described in equations (3.2) and (3.3),

respectively). The algorithm goes through all possible values for t (based on the colour

model of the image) until it finds the optimum, t∗ = arg maxt Vbc. Finally, the pixel

intensities are updated based on the optimal threshold, for example, P<t∗ 7→ 0, whilst

P≥t∗ 7→ 1, for the set of pixels P . For more details, see Algorithm 4 of Chapter 3.

4.1.6 Finding Vase Outlines

Recall that our aim is to construct a dataset of smooth and symmetrical vase outlines

from images of ancient Greek vases. Where our classification project differs86 from many

other projects, specifically in relation to data processing, is that we aim to establish a

process that automates the procedure of obtaining contours from images.

Contour Extraction

As mentioned previously, the images in our sample were vetted and modified using image-

editing software to manually remove features such as handles, lids, and stands, when

necessary. Following this, images were binarized with the methods discussed earlier.

The next step was to extract the outline contours from the binarized images. We used

scikit-image87’s implementation of the Marching Squares algorithm (see Section 3.3.1) to

86For example, there have been many cases of classification projects on shapes of objects from im-

ages, where their forms are obtained by hand, or, alternatively, algorithmically obtained for each image

individually.
87https://scikit-image.org/docs/0.8.0/api/skimage.measure.find_contours.html

119

https://scikit-image.org/docs/0.8.0/api/skimage.measure.find_contours.html
https://scikit-image.org/docs/0.8.0/api/skimage.measure.find_contours.html

Arianna Salili-James CHAPTER 4. APPLICATIONS ON CLOSED CURVES

extract all possible contours. Moreover, as this algorithm outputs all contours that it can

find, we filter for the outline contour by choosing the contour with the longest range (in

the vertical axis).

Smoothing & Symmetrization

Once an outline of the vase has been found, our next step is to obtain a symmetrical

outline. The vases chosen for our dataset should all exhibit bilateral symmetry, vertically

down the centre. Though this is simple to see when looking at the images, for the re-

sulting outlines from the contour extraction step, we first have to make the assumption

that the outline contours do indeed correctly outline the vase. By measuring the width

of the outline, we can compute the midpoint of the contour, and fix our assumed line

of symmetry. The next step is to split the original outline contour through this vertical

axis we have assumed, in order to obtain two contours. Our aim is to choose one side

contour, reflect it, and then connect it to the original side, so that we can have a sym-

metrical vase outline. The chosen side was selected either because of a pre-set variable

(for example, if we always pick the left side contour) or in other cases, for instance in

very poor quality images, the side with fewer points88 along its contour, in a certain range.

Before creating a complete symmetrical outline, the chosen side contour must first be

smoothed. To smooth these side contours, we employed a three-step process:

1. For the points in the main body of the vase (i.e., excluding the base and mouth of

the vase), we restricted the points in the side contour to include the maximum /

minimum (depending on whether the right side or left side is chosen) x-coordinate

that appears for every unique y-coordinate. This decreases the number of points in

a contour and hence, helps de-noise the contour.

2. Remove contour indents. As the vases in our sample did not exhibit the most

complicated of forms, we assume that any fractures or indents in particular areas

of the outline (for example, the main body in the centre) are deformities caused

by external factors such as a fault in the binarization or contour extraction steps.

Broadly, we define these indents as points on a contour that are preceded and

88The assumption here is that this is the least noisy side.

120

Arianna Salili-James CHAPTER 4. APPLICATIONS ON CLOSED CURVES

succeeded by points that have an x-value that is greater than (or less than, for

left-side contours) the x-value of the point in question.

3. Smooth the main body of the side contour using B-splines89, based on cubic splines.

Cubic splines can be used to smooth a curve, by fitting multiple cubic polynomials

onto a curve, joined at various points, called knots. Meanwhile, B-splines (where

the name is shortened from basis-splines) allow us to express the cubic splines by

using a linear combination of the basis functions of order 3, with respect to the

knots. As described in (Höllig and Hörner, 2013), this enables us to describe a

smooth curve with a linear combination of B-splines, S:

S =
∑
k

ckbk,ζ (4.1)

where the degree n = 3 in our case, and ζ = (ζk, · · · , ζk+n) is the vector of knot posi-

tions. The ck are called the control points, that are used to define the B-spline func-

tions. By employing B-splines, computations are numerically more efficient than

simply incorporating traditional splines, whilst allowing greater freedom to control

smoothness, and the positioning of knots (for example, by utilizing uniformly-spread

knots). Moreover, by fixing the parameters in this B-splines interpolation step, the

process of contour smoothing is automated and hence the processing of the con-

tours is more efficient. For more details on curve fitting with B-splines, we refer the

reader to (Höllig and Hörner, 2013) and (De Boor, 1978).

Once the side contour has been smoothed, a duplicate is created, which is then reflected

in the y-axis and subsequently connected to the original side contour. Thus, for every

outline curve extracted from an image, we obtain a symmetrical contour.

Procrustes Alignment

At the final stage, outlines are processed to remove global shape-preserving transforma-

tions such as scaling, using Procrustes alignment. As detailed in the introduction of

Chapter 2, Procrustes analysis involves optimally aligning a shape to a template using

translation alignment, rotation, scaling, and reflection. Here, the template was chosen

arbitrarily from our original sample. This was followed by a reparametrization of the

curves so that they all have N points. In this project, we set N = 139. This number was

89namely with scipy’s90scipy.interpolate.splrep and scipy.interpolate.splev functions
90https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.splev.html

121

https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.splev.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.splev.html

Arianna Salili-James CHAPTER 4. APPLICATIONS ON CLOSED CURVES

chosen after numerous tests, based on the fact that at this number, we could not see any

noticeable difference between a linearly interpolated curve and the true outline.

Although Procrustes alignment is not necessary when incorporating our primary shape

analysis methods for the classification, its usage is required for other methods included in

our tests. Therefore, as we make comparisons between various methods, to perform as a

fair a test as possible, Procrustes alignment becomes a vital part of our data processing.

4.1.7 Quantifying Vase Shape Variation

How different is an amphora from a krater?

Our objective is to use shape analysis to classify a sample of vases. Though the shape

/ form of ancient vases has been mathematicially evaluated in the past, for instance,

using Elliptic Fourier Analysis to study ancient Chinese pottery in (Wang et al., 2021),

a comparative analysis of their use in classification is largely absent. Additionally, when

shape methods are applied in classification-related projects, the focus tends to be either

on one specific method, or on a single groups of methods, such as geometric morphometric

methods (as seen in (Sheets et al., 2006), a zoological study of feather shapes, which com-

pares various morphometrics methods). For that reason, in this project we work with a

selection of different mathematical methods including the most common method used in

historical classification, and methods of diffeomorphic shape analysis. These mathemat-

ical methods will be used to compute differences between pairs of vases. Subsequently,

they will be used as the input in a machine learning classification algorithm. In this

section we briefly outline the shape analysis methods that we incorporate in this study,

and refer the reader to the Background Chapter 2 for a more detailed overview.

Geometric Morphometrics

The name Geometric Morphometrics habitually appears in archaeological literature re-

lating to shapes. Simply put, as discussed in Section 1.2.1, geometric morphometrics are

landmark or semi-landmark approaches to analyse morphological variability in shapes.

These methods can be used to visualise changes in the shapes of objects, hence their

importance in archaeological classification, as emphasised in (Selden Jr, 2019). Mathe-

matically, one standard approach can be broken down into four steps. Though this can

go by various names, in this project, we call this method Eigenshape Analysis.

122

Arianna Salili-James CHAPTER 4. APPLICATIONS ON CLOSED CURVES

Eigenshape Analysis:

1. Find landmarks outlining the form of an object, in each object. Slandmarks = {c =

(p1, · · · pN) ⊂ R2} where the N landmarks are represented with coordinates, for

example, pi = (x, y).

2. Use Procrustes analysis to remove variations in the similarity transforms (i.e., the

shape-preserving transformations of scaling, rotation and translation).

3. Find a linear transformation with Principal Component Analysis to reduce the

dimension of the data using the top k < 2N components.

4. Compute distances with the Frobenius norm between all pairs of shapes in the

sample, where the shapes are vectors of size k.

For the majority of this project, we refer to the outlines of our vases as curves. However,

unlike the other methods, Geometric Morphometrics works on landmarks not curves. As

these curves describe the coordinates of the positions on the image that correspond to

the object’s outline, we can consider them as we would a set of landmarks91. Here, we’ll

call this a semi-landmark approach92, where we not only have an equal number of evenly

spaced points on each curve, but we also have the first point on all curves, positioned at

the same position (namely, on the top centre of the vase outline).

Shape Analysis Methods

Previously, we defined the shapes in our sample as outlines of vases, post-Procrustes

alignment. Thus, it would be more natural to consider these outlines as curves rather

than treat them as landmarks, as Eigenshape Analysis does. For this, we turn to diffeo-

morphic shape analysis.

The first thing we note is that though we may be visualizing vase outlines as curves

in R2, it is not as straightforward as it may seem. In the case where each curve is

described with N points, the shape space of our curves is in actual fact a submanifold

91We reiterate that these points in our dataset are not real landmarks, as apart from the start and

end points at the top and base of the vase, there is no correspondence between the points across the set

of images.
92Though note that we are not referring to the official term of semi-landmark which is traditionally

used to describe the sliding landmark method, described in (Gunz and Mitteroecker, 2013).

123

Arianna Salili-James CHAPTER 4. APPLICATIONS ON CLOSED CURVES

of R2N . Moreover, as discussed in Chapter 2, the shape space can admit a Riemannian

metric. Unfortunately, such Riemannian metrics in the shape space are not so simple,

in computational terms. A solution to this could be to transform the shape space into a

more manageable space. We look at three methods which utilize diffeomorphic (elastic)

shape analysis to quantify differences between shapes; two of them transform the shape

space, whilst one of them remains in the original, rather complicated, shape space, as

illustrated in Figure 2.5. More details about all three methods can be found in the

Background chapter but we provide a brief outline here for continuity.

LDDMM: We can quantify differences between the shape of two vases by deforming

the outline curve of one, through bending and stretching it, so that it resembles the other.

The energy utilised to compute this deformation is the desired distance quantity. This is

the basic foundation of the LDDMM (Large Deformation Diffeomorphic Metric Mapping)

framework. More explicitly, we look for a geodesic between two curves, as described in

Section 2.3.1, with the geodesic energy described in Definition 2.16. We compute this

energy93 between all pairs of vases in our sample. Here, we use the implementation

described in (Marsland and Shardlow, 2017), with the stochastic parameters set to 0,

and the time-step parameter set to 20.

SRVF Path-Straightening: In this method, we transform the shapes into a simpler

space by employing the square root velocity function (SRVF) representation of the shapes,

instead of directly using the original curves.

q(t) =
ċ(t)√
||ċ(t)||

, (4.2)

for a curve c(t), where ||.|| is the standard Euclidean norm in R2. As we saw in Section

2.4, to compute distances between two shapes, the SRVFs of the shapes and its tangent

vectors are projected into the shape space and tangent space respectively. The process

then involves straightening a path between the two shapes in κ steps94, by incorporating a

gradient descent approach, until the path is a geodesic. The length of the geodesics show

93Note that this energy equation involves an approximation of a derivative of the curve Φ. As we

will see later on in this chapter, inaccurate discretisations of the curve and hence approximation of this

derivative will affect the results of distances between vase outlines.
94We note that after a few experiments, we decided to set κ = 2 as we found that at this value,

distances were sufficiently unchanged (in comparison to greater values) whilst maintaining a fairly quick

computation speed.

124

Arianna Salili-James CHAPTER 4. APPLICATIONS ON CLOSED CURVES

us how much energy is required to morph one shape into another. More details about the

SRVF Path-Straightening method can be found in Section 2.5.1, and the implementation

used here can be found in the fdasrsf95 Python library.

Geometric Currents: Another method which involves transforming the original space

of shapes uses currents, based on Geometric Measure Theory, (Benn et al., 2019). Here,

the equivalence class of a curve is mapped under the current map into a single point in

H; consequently, we can compute straight-line distances in the normed vector space. As

this space is equipped with a Euclidean metric, distances and other statistical techniques

such as PCA can be easily computed (see Section 2.3.2). Note that there were three

parameters involved in this implementation, based on the matrix-size, the mesh-size, and

a scaling parameter. For more details on these parameters, and the implementation we

incorporated here, see Section 2.3.2 and the paper (Benn et al., 2019), which provides a

thorough account of the geometric currents method.

Overview of Methods

To date, shape analysis methods have seldom been used in real-world classification stud-

ies. We want to compare these shape analysis methods with the most common method

used in this area, which is why the Eigenshape analysis method features here. Over-

all, we have chosen four different methods to obtain distances between our vases. One

method uses a semi-landmark approach (Eigenshape Analysis) whilst the other three

treat the outlines as curves. Importantly, this means that the shape analysis methods

do not require the points to be in correspondence. Moreover, two of the methods (SRVF

Path-Straightening and Geometric Currents) are invariant under orientation-preserving

reparametrizations. As discussed, in order for the experiment to be as fair as possible,

all vase outlines have been reparametrized to have the same number of points and they

have been Procrustes-aligned to remove variability of orientation-preserving (and shape-

preserving as a whole) transformations.

Our four methods certainly have their differences, whether it’s mathematically or com-

putationally. Eigenshape Analysis transforms vase outlines into N -size vectors based on

the top N principal components. Meanwhile, Geometric Currents incorporates measure

theory and elastic shape analysis to transform a curve into a single point. On the other

95https://fdasrsf-python.readthedocs.io/en/latest/

125

https://fdasrsf-python.readthedocs.io/en/latest/
https://fdasrsf-python.readthedocs.io/en/latest/

Arianna Salili-James CHAPTER 4. APPLICATIONS ON CLOSED CURVES

hand, SRVF Path-Straightening and LDDMM methods search for some optimal defor-

mation between shapes. However, despite their differences, one shared attribute is that

they can all output a distance. We therefore obtain four distance matrices (one for each

method) showing the pairwise distances between all pairs of vase contours.

4.1.8 Machine Learning Classification

Our goal is to compare the four chosen mathematical methods with respect to their clas-

sification performance. To classify the vase outlines, we incorporate a machine learning

algorithm. Most often, machine learning and data mining algorithms require features as

inputs, in our case however, the sole input of our chosen classifier will be a distance ma-

trix. This prerequisite automatically reduces the options for machine learning classifiers

to use in this project96. Out of the few options that remain, one algorithm is particularly

efficient for what we need: a k-nearest neighbour classifier.

A k-NN Classifier

The k-nearest-neighbour, k-NN, algorithm was first developed by the statisticians Evelyn

Fix and Joseph Hodges in (Fix and Hodges Jr, 1952). Broadly, the algorithm works by

classifying an object based on the majority classification of the object’s closest neighbours.

Commonly, a Euclidean distance is used to find the nearest neighbours to an object.

However, instead of inputting original curves from a sample and employing an arbitrary

distance metric, the algorithm can be easily modified to use a distance matrix as its input

instead. In this project, we implemented our own k-NN classifier, a brief outline of which

can be seen in Algorithm 9. Not only does this algorithm require a distance matrix as its

input, but it also tests multiple classification results based on differing values97 of k. The

96Note that though standard deep learning methods can’t be used, a neural network can be trained

to find distances between pairs of curves, as in (Hartman et al., 2021), where a Siamese convolutional

neural network was trained on square root velocity distances. We tested this classifier on our dataset, but

we obtained poor results and thus we did not pursue it further. One reason for this poor performance

can be attributed to the relatively small training set, as traditionally, deep learning methods require

large datasets. Hence, with a larger dataset, this could be a potential future avenue to explore.
97Various values for k were tested, with an example shown in Figure 4.11. These values were based

on the minimum number of training data per class. In our specific dataset of Greek vases, the number

of training data per class ranged from 12 outlines, to 25, thus our k-NN algorithm tested integers up

to 12. From here, the classification results that provided the highest score were output, as explained.

We remark that this method of selecting the best k is indeed not a robust method that should be used

126

Arianna Salili-James CHAPTER 4. APPLICATIONS ON CLOSED CURVES

classification that resulted in the highest score is the final output. In order to score the

classifications, we opted for a F1 score. We use this score as it is highly-popular scoring

method within classification studies. It is based on the harmonic mean of the precision

and recall scores, denoted by P and R respectively:

P =
|True Positives|

|True Positives|+ |False Positives|
(4.3)

R =
|True Positives|

|True Positives|+ |False Negatives|
(4.4)

The F1 score is a variant of the more general Fβ score that uses a weight term β (which

we will discuss in Section 5.1), with β set to 1:

Fβ(P,R) = (1 + β2)× PR

P (β2) +R

F1 = Fβ=1(P,R) = 2
PR

P +R
(4.5)

We note that these definitions are based on binary classification. Therefore, the F1-

scores are computed for each class, against all other classes, and combined together with

a weighted average:

Fmulticlass
1 =

1

N

N∑
i=1

Ni(F1)i (4.6)

where N is the total number of samples, Ni is the total samples in the ith class, and (F1)i

is the F1-score for the ith class (in this case, the binary classification is based on whether

a sample is of class i, or not, and so on). For the remainder of this thesis, we refer to

Fmulticlass
1 defined in Equation (4.6), as the F1-score.

Boostrapping

In general, classification depends on how a dataset has been split into training and testing

sets. For small datasets in particular, there is a possibility that the mere positioning of

samples in the two sets can strongly affect the final classification results. We took this

into account, and opted for a bootstrapping approach, creating 100 training and testing

for general classification analyses. Instead, it was used solely for the purpose of comparing our different

methods, with their best possible results. Some examples of classification results with different values of

k can be seen in Figures 4.10 and 4.11. Here, unless stated otherwise, we will plot these best results, with

k ranging from 3 to 12. In general, if a k-NN classifier is desired on particular classification analysis, k

should indeed be fixed (for example k = 5 in our further vase classification analyses in Section 4.2 of this

chapter).

127

Arianna Salili-James CHAPTER 4. APPLICATIONS ON CLOSED CURVES

Algorithm 9: Distance Matrix k-NN

new knn(D,class data,train,test,kNeighbours=np.linspace(3,12,10))

Aim:

k-NN classification using a distance matrix, D.

Input:

Pairwise distances between shapes, D, and class information from the training

(train) and testing samples (test), class data.

Code:

1. Create two dictionaries, train details and test details, and append to each of

them, the names of the samples in the training set and testing set respectively,

along with each sample’s true class, seen in class data.

2. Let top score=0 and begin k-NN process:

for k ∈ kNeighbours do
pred details = {}
for test sample ∈ test do

• Find all distances in D, between test sample and samples in train.

• Sort distances in ascending order to find the training samples that

correspond to the k smallest distances.

• Let k classes be the set of classes, of those k training samples.

• pred class = mode(k classes) and save to pred details

end

Compute F1 between the true classes (test details) and predicted

classes (pred details) using Equation (4.6).

if F1 ≥top score then
top score = F1

classification = pred details

end

end

return classification - the classification scores of the samples in test.

return top score - the top F1-score computed.

128

Arianna Salili-James CHAPTER 4. APPLICATIONS ON CLOSED CURVES

sets, where the objects were quasi-randomly98 selected from the original data sample,

before proceeding with the k-NN step. After each of the 100 iterations, for each distance

matrix, the algorithm outputs the top F1-score. Finally, after all iterations, the average

of all 100 classification scores is computed for each of the distance matrices. This is then

the final output of the algorithm, along with the top classification results per method,

per iteration. We provide an example of this algorithm in Algorithm 10.

98Our tests are multi-class classifications, thus it is important to assure that all classes appear in the

training sets. To do this, training and testing sets were created by sampling the data by class. For each

class, a proportion (denoted by p in Algorithm 10) of data-points were randomly selected for the training

set, and the rest were labelled as the testing set.

129

Arianna Salili-James CHAPTER 4. APPLICATIONS ON CLOSED CURVES

Algorithm 10: Bootstrapping k-NN Example

bootstrap knn(distance matrices,index data,N=100,p=0.25)

Aim:

N bootstrapping tests with a k-NN classifier (Algorithm 9) on distance matrices.

Code:

1. Create N training and testing sets, train test. Let i = 0.

while i <N do
training set, testing set = []

for c ∈ classes do

• Let names contain the list of samples, with class c.

• train = random.sample(names,int(length(names)*p)) and

let test be the samples in names that are not in train.

• training set.extend(train), testing set.extend(test)

end

train test.append([training set,testing set])

i 7→ i+ 1

end

2. Let avg scores, all scores, all classifications = [] and run k-NN:

for D ∈ distance matrices do
scores, classifications = []

for (train,test) ∈ train test do
top F1,predictions = new knn(D,index data,train,test)

scores.append(top F1),

classifications.append(predictions)

end

avg scores.append(average(scores))

all scores.append(scores)

all classification.append(classifications)

end

return all classification - the classification scores of the samples in test.

return all scores - N top F1-scores computed for every distance matrix.

return avg scores - average top F1-score computed for each distance matrix.

130

Arianna Salili-James CHAPTER 4. APPLICATIONS ON CLOSED CURVES

Figure 4.9: Confusion matrices showing the classification results from a k-NN classifier on a

distance matrix computed with the SRVF Path-Straightening method (left) and the Eigenshape

Analysis method (right). The same training and testing sets were used for these results. For

this particular training and testing set, these two methods outperformed the other two, with

the SRVF Path-Straightening on top.

4.1.9 Classification Results

Across the various methods in this project, there are many parameters that require se-

lection, whether based on sufficient accuracy of the classification, such as k in the k-NN

classification or the training proportion parameter, p in the k-NN algorithm, 10, or on

the shape methods themselves, such as the number of principal components to use for the

Eigenshape Analysis method, or the three parameters required in Geometric Currents. In

order to optimize these parameters, we took on an experimental approach which involved

running multiple k-NN tests on various parameter options. Here, we plot the results from

some of these classification tests. Furthermore, in this section, we plot some of the top

classification results that we obtained.

Overall, when studying the classification results from the k-NN classifier, we found that

the SRVF Path-Straightening method consistently outperformed the other methods. This

can be seen in the Table 4.1.

99https://scikit-learn.org/stable/modules/generated/sklearn.metrics.adjusted_rand_

score.html

131

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.adjusted_rand_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.adjusted_rand_score.html

Arianna Salili-James CHAPTER 4. APPLICATIONS ON CLOSED CURVES

Figure 4.10: Eigenshape dimension tests. In order to compare the effects of altering the

dimensions in Eigenshape Analsyis, we implemented a k-NN classifier (shown here for k = 3, 6)

on various distance matrices. This time to make the comparisons, we computed the average

Adjusted Rand Index99. We found that though the majority of the variance was held in just a

few principal components (for example, > 90% in a mere 3 principal components), we still had

to increase the number of dimensions rather drastically in order to significantly improve the

results. The accuracy started to stagnate at approximately N ≥ 30 with 99.95% of the variance

covered, and this was also mirrored when adjusting the neighbourhood value k.

Figure 4.11: We plot the average F1-scores from k-NN tests (shown with k = 1, 3, 5) but

using various values for the proportion parameter p (i.e. the parameter used in Algorithm 9

that determines the number of samples that are put into the training set). We tested a variety

of values for p, where 2 ≤ p ≤ 22. Interestingly, though the results do improve when p increases,

the average F1-scores at even the lowest values for p are still very respectable.

132

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.adjusted_rand_score.html

Arianna Salili-James CHAPTER 4. APPLICATIONS ON CLOSED CURVES

Method SRVF Path-

Straightening

Eigenshape

Analysis

Geometric

Currents

LDDMM

Average F1 0.967± 0.002 0.920± 0.003 0.916± 0.003 0.909± 0.003

Table 4.1: Table containing the mean average top F1-scores ±95% confidence intervals, from

100 k-NN boostrapping tests. Statistical t-tests showed that the F1-scores resulting from dif-

ferent methods were all statistically different from each other, except for the average F1-scores

computed using Eigenshape Analysis and Geometric Currents, which were found not to be

statistically significantly different.

From Table 4.1 we learn that the distance matrix computed using the SRVF Path-

Straightening method results in the best classification results using a k-NN classifier,

compared to the other three methods. The F1-scores resulting from the Geometric Cur-

rents approach and Eigenshape Analysis are very similar, with the results of a standard

t-tests (with 5% and 1% thresholds) showing p-values to be p < 10−6.

Another interesting result seen in Table 4.1 is the rather poor performance of the k-NN

classification results based on the distance matrix from the LDDMM method. Although

LDDMM is the only diffeomorphic method here that worked in the original shape space of

the vase outlines, the metric uses a trade-off between the precision of the transformation

and the length of the geodesic path. The smaller the trade-off, the more processing power

that is required to make the computations. This, along with the potential presence of

noise, could be the reason why it didn’t perform as well as the other diffeomorphic

methods that, unlike LDDMM, work in much simpler shape spaces.

Expert Analysis

At the start of this section we asked three questions that shape our vase classification

project. One question asked whether an algorithm can classify vases as well as a human

would. This is an important question as vase classification which, from centuries ago, to

modern-day analysis, has relied on the opinions of the experts. The average person may

be able to pick out an amphora from a set of cups, but the task is not always so sim-

ple. Vase shapes differ varyingly, and in some cases, the differences are incredibly subtle.

However, Greek-vase experts have been trained to notice these differences, irrespective of

99This score is similar to the computation of accuracy (proportion of correct predictions).

133

Arianna Salili-James CHAPTER 4. APPLICATIONS ON CLOSED CURVES

Figure 4.12: Examples of the expert’s vase sample. The outline contours were filled and scaled

to be the same size (through the Procrustes-alignment stage of the contour extraction process).

This sample was then sent off to the vase experts in order for them to perform their clustering.

Here, we display one filled vase outline for each of the classes in our sample.

the subtleness, and utilise this information to classify vases.

Expert vase classification almost always requires the expert to have the vase at hand, or

at minimum, a high quality image of the vase. This way, they are provided with all the

information that a vase can offer, to make their classification; from vase textures, and

materials, to the vase paintings and possible potters’ signatures100. On the other hand,

our methods used just the shape of the vase to make a classification. Thus we wondered

how well experts can classify vases if they too could only look at the shapes, and whether

shape was indeed enough to perform meaningful classifications.

In order to answer such questions, we created another training and test set of vase out-

lines. Both of these sets were given to our k-NN classifier so that we could use our four

methods to obtain a classification of the outlines in the test set. Meanwhile, three ex-

pert scholars of Ancient Greek vases were given images of vase outlines from the test set

(examples of which are shown in Figure 4.12). The experts were told how many different

vase classes there were, but were not given the names of the classes. From here, they were

tasked with partitioning the set of outlines into groups. Finally, we assigned a predicted

class label based on the experts’ clusters (for instance, if the majority of amphorae were

put into the first cluster, then cluster 1 would be labelled as amphora, and so forth), and

used this to compute F1-scores.

100Potters’ and painters’ signatures often appear on ancient Greek vases. See (Immerwahr, 1984) for a

study connecting painters to potters by their signatures.

134

Arianna Salili-James CHAPTER 4. APPLICATIONS ON CLOSED CURVES

Figure 4.13: Confusion matrices based on the clustering results from our three vase experts.

The clusters were assigned a class, based on the majority class that appeared within them.

Subsequently, confusion matrices were plotted and F1-scores were computed. Though this

approach is (understandably) not often used to portray results from clusterning analysis, we

adopted this technique in order for us to be able to make straightforward comparisons between

the expert’s clustering results and the machine learning classification results. The F1-scores for

each expert are displayed in the title of the plots.

Figure 4.13 shows the confusion matrices from the experts’ clustering results. Two out

of three of the experts gained an F1-score lower than any of the four methods on the

same test set (the confusion matrices from two of the methods can be seen in Figure

4.9), emphasising the worthiness of algorithmic methods for vase classification. One

expert performed tremendously well and outperformed all methods except the SRVF

Path-Straightening method. When taking a deeper look at the experts’ confusion matrices

in conjunction with the confusion matrices from our k-NN classifier, we see that there

are certainly similarities between the mistakes that are made. For example, there seems

to be confusions between pelike and chous vases (see the 12th and 13th rows/columns,

respectively, in Figure 4.13) in all of the confusion matrices by experts and algorithms.

Experts can spot small differences between shapes of vases. Thus even when it comes to

vases with incredibly similar shapes, such as skyphos and kyathos vases (see Figure 4.14,

or the 18th and 17th rows/columns in Figure 4.13), the experts do well to classify at least

half of the outlines correctly. With these two vase types in particular, one method that

performed extremely well at distinguishing between the two was, once again, the SRVF

Path-Straightening method.

135

Arianna Salili-James CHAPTER 4. APPLICATIONS ON CLOSED CURVES

Figure 4.14: Can you spot the difference? Outline of a kyathos (L), and skyphos vase (R). The

shapes of these two classes of vases are often very similar, with the main differences appearing

in the base. Therefore it is understandable that these two were one of the pairs of classes that

the vase experts confused the most. The SRVF Path-Straightening method classified the vases

of these two classes almost perfectly, as illustrated in Figure 4.9, which shows the same testing

set that the experts used.

4.1.10 Means & Principal Components

Previously, we saw that the top method for vase classification was not in fact the tradi-

tional morphometrics method used in archaeological (and anthropological) shape studies,

Eigenshape analysis, but instead the diffeomorphic method from elastic shape analysis,

namely, SRVF Path-Straightening. This is the motivation for further comparisons be-

tween diffeomorphic methods and traditional methods.

The Average Vase

Traditionally, a mean shape can be computed from a set of landmarks (that are in align-

ment) by computing the standard mean average of each point. In diffeomorphic shape

analysis, a related average can be computed, known as the Karcher mean, as detailed

in Section 2.5.3 of the Background chapter. Here, to represent our diffeomorphic meth-

ods, we can use the diffeomorphic distance metric used in our SRVF Path-Straightening

method for example, and compare this to the standard (pointwise) Euclidean mean.

Computing the mean shape is a useful tool in shape analyses; not only does it give us an

insight into what our data looks like, but the means can also be used as templates, for

example for further classification. In Figure 4.15, we see a plot showing the (filled) mean

outline for a subset of vase classes from our sample. On the left, the average shapes were

created using the Karcher mean, whilst on the right, we used the standard Euclidean

mean. Though they may look similar from afar, when looking more closely, we see that

136

Arianna Salili-James CHAPTER 4. APPLICATIONS ON CLOSED CURVES

Figure 4.15: Average shapes. The mean shape of vases for a few classes featured in our

sample. In the left plot, the average is computed using a Karcher mean, whilst in the right plot,

a standard Euclidean mean is used. Here, we see that the Karcher mean has performed much

better in retaining the shape information than the standard mean. This point is particularly

clear in the pyxis vase class, where the standard Euclidean mean has ignored the true lip and

base structure of the vase, unlike the Karcher mean equivalent.

the Karcher means provide much more information that the Euclidean means. This is

particularly evident in the bases and lips of the vases. An extreme example for this

observation is the pyxis vase, where the standard mean has missed the shape of the base

and lips entirely. These plots highlight the advantages that diffeomorphic shape analysis

has over traditional methods when studying shapes of objects.

Plotting Principal Components

Another common tool used in analysing shape data is principal component analysis

(PCA), which can be used to visualise the samples in a dataset. By plotting the top

principal components (defined by the majority percentage of variance that the compo-

nents represent) from a dataset , we can examine whether any possible clusters exist.

In order to compare traditional PCA with our shape analysis methods, we obtained

principal components from the Geometric Currents method, and the SRVF method. As

the Geometric Currents method transforms the shape space into a standard Euclidean

vector space, PCA can be performed in the traditional way. Meanwhile for the latter

method, principal components can be computed by considering the variation of points to

the Karcher mean, using the implementation of Tangent PCA described in Section 2.5.3.

Figure 4.16 shows principal components plots using the two diffeomorphic methods (left

and centre), as well as traditional PCA (right). Note that these plots illustrate a better,

137

Arianna Salili-James CHAPTER 4. APPLICATIONS ON CLOSED CURVES

PC1

30

20

10

0

10

20

30

PC2

30

20

10

0

10

20

30

PC3

20

10

0

10

20

30

PC1PC2

PC3

PC1

6

4

2

0

2

4

PC2

4

2

0

2

4

PC3

4

3

2

1

0

1

2

3

Alabastron

Amphora_b

Amphora_neck

Amphora_panathenaic

Amphora_nikosthenic

Loutrophoros

Lekythos_slender

Lekythos_dumpy

Lekythos_squat

Olpe

Hydria

Pelike

Chous

Oinochoe

Stamnos

Krater_column

Kyathos

Cup_skyphos

Lekanis

Cup_c

Cup_little_master

Psykter

Plemochoe

Pyxis

Figure 4.16: Principal components of the shapes of vase outlines, where the top three principal

components represent > 90% share of the variance. On the far left we have the first three prin-

cipal components computed using tangent PCA (tPCA); in the centre we have the Geometric

Currents PCA result; and on the far right we have the standard PCA results, for all vases in

our sample. These plots show us that the two methods of curve shape analysis perform better

in clustering the vase outlines.

more defined, separation between classes when using the curve-based methods. This

further emphasises the benefit of the inclusion of shape analysis methods in studies of

object shapes.

4.1.11 Repeating the Method on Other Datasets

Throughout this section, we have been analysing and comparing traditional methods used

to study shapes with methods from diffeomorphic shape analysis, to study and classify

shapes of ancient Greek vases. Firstly, we have learnt that classification on shape alone

can certainly yield successful results. More importantly, this project has shown that our

recipe for classification not only works, but performs very well. The recipe being:

Contour Extraction + SRVF Path-Straightening Distances + k-NN.

The vases seen in this project came in all sorts of shapes, but they are certainly not the

most complex of shapes. In order to scrutinize our recipe, we ran the same experiment

on different classes of shapes, that were not only arguably more complex, but they also

contained classes that were far more similar than the closest classes that we saw in our

138

Arianna Salili-James CHAPTER 4. APPLICATIONS ON CLOSED CURVES

vase dataset101. These were leaf outlines from the Swedish Leaf Dataset102103 and gastro-

pod shells. As before, we consulted three experts for each dataset, who in turn provided

their own clusterings (which were subsequently turned into classifications).

When testing our methods on these two new datasets, we found that the results echoed

those from our vase project, with the SRVF Path-Straightening method outperforming

all methods and experts, followed by the similar results from Geometric Currents and

Eigenshape Analysis, which were trailed, once again, by LDDMM. The confusion ma-

trices from all of the tests can be found in Figure 4.18. Moreover, what was even more

interesting about these results, was the large difference between the scores of the SRVF

Path-Straightening method, compared to the classification score based on the top ex-

perts. For example, let’s consider the gastropod shell dataset. Many of these classes are

incredibly similar to each other, as seen in Figure 4.17, which shows the outlines from

the test set. This is particularly true for the cone shapes (Conasprella, plotted in green,

and Conus plotted in cyan), as well as other shell genera such as the Buccinum (blue)

and Neptunea (red). Therefore, it is not too surprising that even the top classification

results from our malacologist failed to distinguish between these classes, as shown in the

bottom right confusion matrix in Figure 4.18. On the other hand, the k-NN classifi-

cation resulting from the SRVF Path-Straightening method performed remarkably well

in distinguishing the shapes of these very similar classes, and hence the (greater than)

30% increase in F1-scores, in comparison to the top expert’s score. These results sim-

ply accentuate the great potential of elastic shape analysis methods (particularly SRVF

Path-Straightening), in the classification of object shapes, no matter how complicated.

101For example, the average shapes of the kyathos and skyphos vases are less similar, than the average

shapes of the Conasprella and Conus shells (see Figure 4.17).
102https://www.cvl.isy.liu.se/en/research/datasets/swedish-leaf/
103Another reason for incorporating the Swedish Leaf Dataset is because previous tests in shape analysis

literature also utilize this dataset, such as (Laga et al., 2014).

139

https://www.cvl.isy.liu.se/en/research/datasets/swedish-leaf/
https://www.cvl.isy.liu.se/en/research/datasets/swedish-leaf/

Arianna Salili-James CHAPTER 4. APPLICATIONS ON CLOSED CURVES

Figure 4.17: Outlines of gastropod shells from the test set that was used in our classification

and clustering analysis. Here, we can see just how similar some of the shell shapes are. We can

also see how complicated the shapes of some of the species are, such as the Chicoreus (magenta)

and the Hexaplex (grey).

140

Arianna Salili-James CHAPTER 4. APPLICATIONS ON CLOSED CURVES

100

100

10 90

10 100

100

100

100

100

1090

10 90

100

80

100

8020

80 20

10 100

100

100

100

100

90

109010

100

x
w
v
u
t
s
r
q
p
o
n
m
l
k
j
i
h
g
f
e
d
c
b
a

al
ab

as
tro

n
am

ph
or

a
b

am
ph

or
a

ne
ck

am
ph

or
a

pa
na

th
en

ai
c

am
ph

or
a

ni
ko

st
he

ni
c

lo
ut

ro
ph

or
os

le
ky

th
os

 s
le

nd
er

le
ky

th
os

 d
um

py
le

ky
th

os
 s

qu
at

ol
pe

hy
dr

ia
pe

lik
e

ch
ou

s
oi

no
ch

oe
st

am
no

s
kr

at
er

 c
ol

um
n

ky
at

ho
s

cu
p

sk
yp

ho
s

le
ka

ni
s

cu
p

c
cu

p
lit

tle
 m

as
te

r
ps

yk
te

r
pl

em
oc

ho
e

py
xi

s

ground truth classes

100

100

100

100

100 25

10

80 40 22

10 6760

100

75 11

100

100

100

100

100k
j
i
h
g
f
e
d
c
b
a 58

100 100

100

70

6710

928225

17 1064

5836 10

17 818

25 33

Bu
cc

in
um

N
ep

tu
ne

a

Si
ph

on
al

ia

C
on

as
pr

el
la

C
on

us

C
hi

co
re

us

H
ex

ap
le

x

O
ce

ne
br

a

O
ci

ne
br

el
lu

s

Vo
ke

si
m

ur
ex

42

101883

17 864

8882 8

918 92

33 10 259

208828

33 408 18

5810

8 83 8 10

100Vokesimurex

Ocinebrellus

Ocenebra

Hexaplex

Chicoreus

Conus

Conasprella

Siphonalia

Neptunea

Buccinum

ei
ge

ns
ha

pe
 k

nn
 c

la
ss

es

83 89

817 891 30

91

75

75 30

17100

8 40

92

100 9

8 100

100
100 20 10

80

100
90

100

70

90
10 100

10 60

100

100
80 40

10 100

100
100

100

100

10 90

100

30100

100
100

100

100

33

67 100

100

90

10100

100

100

100

100

12100

1088

20100 11

70

89

100

56

11 30 11100 12

9011

100

88 40 1110

60 14

100

29

70

1012100

8811 14

60 11

30 2043 60

20 6711

100
100 1010 10

100

100
90

100

10010

90
10010

90

100

100
10100

100

100
100

100

100

10 90

90

80

100
100

100

100
100 10 10

70 10

9010
90 10

100

9010

9020
10 100

70

10 100

100
3090

8010

100
100

100

100

70

10100

90 1010

100
100

100

100

22 10

1267 90

12 100

12 100

88

100

100

71

100

11 100

75

60 11

30 10029

10 89

1092 9

25 10 845

91 8 18

929

58 259

8 20 8873

88 9 1750

88 10 4218

7518

100

o
n
m
l

Be
tu

la
 p

ub
es

ce
ns

Fa
gu

s
sy

lv
at

ic
a

Q
ue

rc
us

 ro
bu

r
Ti

lia
 c

or
da

ta
Ti

lia
 p

la
ty

ph
yl

lo
s

Pr
un

us
 p

ad
us

Sc
an

do
so

rb
us

 in
te

rm
ed

ia
So

rb
us

 a
uc

up
ar

ia
Po

pu
lu

s
sp

.
Po

pu
lu

s
tre

m
ul

a
Sa

lix
 fr

ag
ilis

Ac
er

 p
la

ta
no

id
es

U
lm

us
 g

la
br

a
U

lm
us

 la
ev

is
U

lm
us

 m
in

or

100

ex
pe

rt
cl

as
se

s
vases leaves shells

Vokesimurex

Ocinebrellus

Ocenebra

Hexaplex

Chicoreus

Conasprella

Siphonalia

Neptunea

Buccinum

Conus

sr
vf

 k
nn

 c
la

ss
es

alabastron
amphora b

amphora neck
amphora panathenaic
amphora nikosthenic

loutrophoros
lekythos slender
lekythos dumpy
lekythos squat

olpe
hydria
pelike
chous

oinochoe
stamnos

krater column
kyathos

cup skyphos
lekanis

cup c
cup little master

psykter
plemochoe

pyxis

Betula pubescens
Fagus sylvatica
Quercus robur

Tilia cordata
Tilia platyphyllos

Prunus padus
Scandosorbus intermedia

Sorbus aucuparia
Populus sp.

Populus tremula
Salix fragilis

Acer platanoides
Ulmus glabra
Ulmus laevis
Ulmus minor

Betula pubescens
Fagus sylvatica
Quercus robur

Tilia cordata
Tilia platyphyllos

Prunus padus
Scandosorbus intermedia

Sorbus aucuparia
Populus sp.

Populus tremula
Salix fragilis

Acer platanoides
Ulmus glabra
Ulmus laevis
Ulmus minor

alabastron
amphora b

amphora neck
amphora panathenaic
amphora nikosthenic

loutrophoros
lekythos slender
lekythos dumpy
lekythos squat

olpe
hydria
pelike
chous

oinochoe
stamnos

krater column
kyathos

cup skyphos
lekanis

cup c
cup little master

psykter
plemochoe

pyxis

j

i

h

g

f

e

d

c

b

a

alabastron
amphora b

amphora neck
amphora panathenaic
amphora nikosthenic

loutrophoros
lekythos slender
lekythos dumpy
lekythos squat

olpe
hydria
pelike
chous

oinochoe
stamnos

krater column
kyathos

cup skyphos
lekanis

cup c
cup little master

psykter
plemochoe

pyxis

Betula pubescens
Fagus sylvatica
Quercus robur

Tilia cordata
Tilia platyphyllos

Prunus padus
Scandosorbus intermedia

Sorbus aucuparia
Populus sp.

Populus tremula
Salix fragilis

Acer platanoides
Ulmus glabra
Ulmus laevis
Ulmus minor Vokesimurex

Ocinebrellus

Ocenebra

Hexaplex

Chicoreus

Conasprella

Siphonalia

Neptunea

Buccinum

Conus

ge
om

et
ric

 c
ur

re
nt

s
kn

n
cl

as
se

s

0.94

0.93

0.97

0.95

0.91

0.86 0.72

0.72

0.620.85

0.84

0.85

Figure 4.18: The top three confusion matrices resulting from k-NN classification on the

distance matrices computed with the mathematical methods of SRVF Path-Straightening (top

row), Geometric Currents (top centre), and Eigenshape Analysis (bottom centre), and the

experts’ classification (bottom). The results are shown for all three datasets: ancient Greek

vases (far left), leaves (centre), and shells (far right). The F1-scores are shown on the bottom

left corner of each of the confusion matrices. The results here emphasise how well methods of

shape analysis perform in classification.

141

Arianna Salili-James CHAPTER 4. APPLICATIONS ON CLOSED CURVES

4.1.12 Overview

Future Work

Throughout this project, we have seen that methods of elastic shape analysis have per-

formed well in the analysis of closed outlines from images. In particular, the SRVF

methods have constantly come out on top. Recall from Section 2.4.2, that the metric

used in this SRVF framework, is broadly based on some alignment between the shapes.

However, we note that in this case, closed curves lose rotation along the curve. For exam-

ple, if we consider the outlines of two shells, it is possible for one outline to be matched

to a rotated version of the other. In other words, there is no alignment of structures.

Depending on the questions asked, this may cause issues in certain datasets. However,

as we have a more general interest on the shapes of objects, particularly in classification,

it is not a concern. Though in the future, we can work on a version of this diffeomorphic

method that enables us to fix a desired number of points on the curve, in the alignments.

There is a plethora of datasets containing images of ancient Greek vases that have yet

to be fully explored. In this project, we have seen just how well we can classify vases by

simply studying the shapes of their outlines - in particular, by using tools from elastic

shape analysis. Our end goal is to use these methods to analyse much larger datasets of

vase images. Henceforth, the next steps are to improve the handle removal code (to speed

up the automatic contour extraction process) and focus on SRVF Path-Straightening, so

that we can begin to discover more about the shapes of these ancient vessels.

Summary

Our underlying aim throughout the larger project discussed here has not only been to

study the shapes of vases, leaves and shells, but to showcase diffeomorphic shape analysis

methods for studies on object shapes, from images, as a whole. We have seen how well

diffeomorphic methods, particularly SRVF methods, have performed across the board,

whether it’s the Karcher mean computations compared to the standard means, or the

classification results when paired with a k-NN classifier. Diffeomorphic shape analysis

methods are seldom applied to real-world applications, but this project has shown that

they can be. Ultimately, we have shown that diffeomorphic shape analysis methods

belong in every applied scientist’s toolbox.

142

Arianna Salili-James CHAPTER 4. APPLICATIONS ON CLOSED CURVES

4.2 The Effectiveness of Images

In this modern era, analyses studying the shapes (or forms) of objects is very often car-

ried out via images of the objects. There are many advantages of using images; from the

speed at which an outline can be measured, to the accessibility of the object in the first

place. However, literature regarding the effectiveness of utilizing images in the analysis

of shapes, in comparison to other techniques, is largely absent. This was the motivation

to take on a project to delve into the question.

Traditionally, the shapes of objects were measured by hand. Today, with the advance-

ments in technology, 3D laser scanning is slowly becoming a popular alternative (see for

example, the geometric morphometrics analysis on 3D-scanned vases in (Joháczi, 2018)).

Both of these methods are important as they produce high-quality and accurate mea-

surements of an object, which may or may not be similarly obtained from an image. By

returning to the Greek vases, we compare the effects of these methods in classification.

4.2.1 Measuring the Shapes of Vases

The shapes of vases were often studied by measuring the outlines of the vase at various

angles, by hand, as seen in (Bloesch, 1940). Though this method of computing outlines

can be tedious, time consuming and require direct access to a vase, it is still used today, as

it is (rightly) believed to be a highly accurate method in analysing shapes. For example,

in (Mackay, 2010), measurements taken by hand, led to a study of the vase shapes in

order to establish a chronology belonging to a notable potter, Exekias104.

Modern-day laser scanners can also be used for accurate measurements. 3D laser scans

can achieve high quality three dimensional scans of an object, Here, we obtain more in-

formation about a shape of an object, than any other method, whether hand-measured

or extracted from an image using computer vision tools. However, this approach is rather

slow105 and requires expensive hardware.

There’s no doubt that extracting a contour from an image of a vase is quicker and easier

than measuring an outline by hand or with a laser scanner. However, there are possible

104https://www.britishmuseum.org/collection/term/BIOG58234
105can take between a couple of minutes to over an hour.

143

https://www.britishmuseum.org/collection/term/BIOG58234
https://www.britishmuseum.org/collection/term/BIOG58234

Arianna Salili-James CHAPTER 4. APPLICATIONS ON CLOSED CURVES

Figure 4.19: Distortion via perspective projection. Top: Photographs of an amphora (at

Victoria University of Wellington), taken at varying distances from the vase. Bottom left: the

base of the contours from the images above. Bottom right: modified version of the contours,

in order to straighten the bases. This figure demonstrates how the straight line describing the

base becomes curved due to perspective projection.

issues with this technique that can certainly arise. These can include / be caused by the

following:

• Poor quality images that can render binarization and contour extraction algorithms

useless. This issue is particularly likely to occur when handling old images, such as

some that may be seen in the Beazley archive106.

• Distortion caused by the camera lens, which causes straight lines to appear curved.

An extreme example of this is caused by wide-angle lenses such as a Fisheye lens107.

• Distortion by perspective projection. In other words, straight lines appearing curved,

but instead of being caused by a certain type of lens, it is the result of the photo-

graph being taken too close to the object. This phenomenon can be seen in Figure

4.19, where the same vase has been photographed from different distances, but from

the same angle. Here, the plot on the right shows just how curved the base of the

outline vase becomes, despite originally being straight.108

106https://www.beazley.ox.ac.uk/carc/pottery
107https://en.wikipedia.org/wiki/Fisheye_lens
108We note that to cater for such effects, a collaboration between a computer scientist and vase historian

led to a program designed to estimate the degree of distortion, in (Wyvill and Anson, 2004). However,

this program cannot automatically detect and fix distortions, so it cannot be easily used at a larger scale.

144

https://www.beazley.ox.ac.uk/carc/pottery
https://en.wikipedia.org/wiki/Fisheye_lens
https://www.beazley.ox.ac.uk/carc/pottery
https://en.wikipedia.org/wiki/Fisheye_lens

Arianna Salili-James CHAPTER 4. APPLICATIONS ON CLOSED CURVES

4.2.2 Project Overview

In order to evaluate the effects of employing images in the analysis of shapes, we designed

a project based on the shape classification of ancient Greek vases. Here, we collated

datasets of outline contours of Greek vases, obtained from hand-measurements, 3D laser

scans, and images. Henceforth, we incorporated a classification approach (as seen in

Section 4.1) on the three datasets, and compared the results.

Data Processing

We begin with three datasets of Greek vases:

• Hand-measured amphorae vases (containing side outlines from numerous angles of

the vase), by Dr. Anne Mackay of University of Auckland,

• Profiles taken from 3D laser-scans of lekythoi vases, by Dr. Szilvia Joháczi, from

Eötvös Loránd University, Budapest,

• 2D images of amphorae and lekythoi vases.

Although the manually-measured datasets (i.e., from hand-measurements, and 3D laser

scans) are based on differing vases109, the image-based dataset covers all the vases that

appear in the other two. Furthermore, to obtain outlines from the image dataset, we

incorporated Algorithm 6.

In order to create a dataset of smooth, symmetric outline contours of vases, that also

take into consideration the possible distortions discussed in the previous section, we take

on the following steps:

1. Split the contour into side contours110,

2. Compute the Karcher mean (see Section 2.5.3) of the side contours,

3. Connect the Karcher mean with its reflection (along the y-axis) in order to create

a symmetric vase.

109Ideally, we would have both datasets based on the same vases, but unfortunately this could not be

obtained within the scope of the project.
110Note that for the hand-measured vases, we already have numerous side contours. For the other two

datasets, this step implies splitting an outline contour in half, through the vertical axis.

145

Arianna Salili-James CHAPTER 4. APPLICATIONS ON CLOSED CURVES

Figure 4.20: Before and after. Top: contours obtained from images via Algorithm 6. Bottom:

Symmetrized contours after the 6-step contour procedure.

Step 1 Step 2 Step 3 Step 4 Step 5

Figure 4.21: An example of an amphora (Beazley number 9029664) going through the various

data processing steps. Here, we begin with the steps outlined in Algorithm 6, which involve (i)

Image binarization, (ii) contour extraction, and (iii) contour smoothing. Following on from this,

the 6 processing steps are taken to obtain a symmetric vase. Note that the Step 3 image shows

both the original outline contour (dotted red) and the smoothed contour (blue). On average, in

total, it takes approximately 4 seconds to complete for a single image, with the bulk of that time

being spent on symmetrisation111This process time assumes manual modifications to the image,

if needed; for example, handle-removal via image-editing software has already been completed.

4. For image outlines only: Modify the base and top of the vase, by creating a

straight cut, to counter the possibility of distortion by perspective projection (as

seen in Figure 4.19).

5. Procrustes alignment between new outline and a template.

6. Reparametrize outlines to have 250 equally arc-length spaced points.

An example of the specific steps taken for a vase image in particular, is shown in Figure

4.21, whilst further examples of original contours and final contours can be seen in Figure

4.20. Henceforth, we obtain three datasets of symmetric outline contours from Ancient

Greek vases, based on hand-measurements, 3D scans, and images.

111On a machine with an Intel Core i7-8550U @ 1.80GHz CPU and 8GB of RAM.

146

Arianna Salili-James CHAPTER 4. APPLICATIONS ON CLOSED CURVES

Classification

Recall that our aim is to compare the performances of image-derived contours in clas-

sification, with alternative, more accurate methods. For this reason, and due to the

fact that the two non-image datasets were originally of differing contours (amphorae and

lekythoi), we group the manually-derived contour datasets (i.e., from hand-measurements

and 3D scanned vases) together. Furthermore, based on the success of our previous clas-

sification tests on Ancient Greek vases (see Figure 4.18 for example), we incorporate a

similar approach by utilizing a k-NN boostrapping technique (Algorithm 10) on distance

matrices containing the distances between the pairs of vase contours using the SRVF

Path-Straightening method (see Section 2.5.1), for each of the two datasets.

Figure 4.22 shows an example of the k-NN classification results. In the above plot, we see

confusion matrix resulting from the distance matrix computed with the manually-derived

contours, whilst in the bottom plot the distance matrix from the image-based contours

is used. We find that both methods (of deriving contours) led to impressive classification

results, despite similar mistakes being made across both sets. Furthermore, the F1-scores

from the manually-derived contours was slightly higher, with F1 = 0.96, compared to

F1 = 0.92 for the image-based results.

Conclusion

Our findings show that while the hand-measured / 3D-laser scanned outlines did improve

the overall classification results, as emphasised by the average F1-scores we just saw, the

improvements were modest.

In summary, we have seen impressive classification results obtained with a distance matrix

based on image-extracted contours, that can certainly compare to the classification results

obtained via the other two vase-outline methods. Therefore, given this performance, and

the fact that contours are far more easily obtained via images than other methods such as

hand-measurements and 3D laser scans, we conclude that images are indeed an effective

and arguably the most worthwhile method of shape classification.

147

Arianna Salili-James CHAPTER 4. APPLICATIONS ON CLOSED CURVES

y

83 2 0 0 0

17 98 0 0 0

0 0 99 0 0

0 0 0 98 10

0 0 0 2 90

ground truth (actual) classes

k−
N

N
 c

la
se

s

lethykos broad-shouldered

lethykos cylinder

amphora neck

amphora Type B

amphora Type A

direct (manual or 3d)

66 2 2 0 0

34 98 0 0 0

0 0 98 0 0

0 0 0 96 9

0 0 0 4 91

le
th

yk
os

 b
ro

ad
-s

ho
ul

de
re

d

le
th

yk
os

 c
yl

in
de

r

am
ph

or
a

ne
ck

am
ph

or
a

T
yp

e
B

am
ph

or
a

T
yp

e
A

lethykos broad-shouldered

lethykos cylinder

amphora neck

amphora Type B

amphora Type A 0.00

0.25

0.50

0.75

F1

Figure 4.22: Top confusion matrices from 100 k-NN boostrapping tests. The top plot uses

the distance matrix based on the manually-derived vase contours (from hand-measurements

and 3D-laser-scans), whilst the lower plot uses the distance matrix obtained from the image-

extracted outlines. This plot emphasises the similarity in the results between the three methods

of measuring vase outlines. Furthermore, both methods performed well in classifying vases,

echoing the results from Section 4.1.

148

Arianna Salili-James CHAPTER 4. APPLICATIONS ON CLOSED CURVES

4.3 Classifying Mussels

There are countless ways in which image classification is a highly practical tool in the

everyday world; whether it is to identify anomalies in MRI scans (Abdullah et al., 2011),

or provide facial recognition systems (Julina and Sharmila, 2017). In this project, we

consider an example of: mussels.

4.3.1 Objectives

Bivalve112 molluscs are creatures that often hook themselves onto the hulls of boats.

Though this can be problematic at times, for example by limiting the speed of boats, or

bringing in invasive species, (Minchin et al., 2003), it could also present the opportunity

to determine previous locations of boats, based on the species of mussels seen attached.

One practical application of image-based classification is based on the detection of invasive

mussel species. Henceforth, in collaboration with marine biologists at Victoria University

of Wellington, we explore the potentials of classifying mussels from images, in order to

identify them as native species, or non-native and potentially invasive species.

4.3.2 Previous Classification Methods

Classification of mussels from images has been done before, such as in (Magbayao et al.,

2020), where classification was performed on images of Asian Green Mussel (Perna

Viridis) to identify sex. In this particular example, the colour of the mussel gonad was

of sole interest; where image processing was applied to obtain RGB values of the gonad,

followed by classification on the RGB values using Fuzzy Logic113 and a traditional k-NN

classifier. However, here we are interested in the images of the shells.

An alternative approach is one attempted by our collaborators at Victoria University of

112The term bivalves refers to molluscs whose shells can be considered as consisting of two sides, hinged

together, such as the shells seen in oysters, scallops, and mussels.
113Broadly speaking, fuzzy logic can be thought of as traditional logic, but with an added vagueness

to it. Here, truth values are not restricted to just 0 and 1 and can instead inhabit any p ∈ R, 0 ≤ p ≤ 1.

Multiple values can be input into one variable (where in the example above, the three RGB values were

used), whilst the output of fuzzy logic, is one value. A condition is then used used to classify the objects,

based on that one value. For more information, we refer the reader to (Zadeh, 1996).

149

Arianna Salili-James CHAPTER 4. APPLICATIONS ON CLOSED CURVES

Sub-species # Samples

NatMg 70

MedMg 57

MlMa 53

OsMa 59

Table 4.2: Total number of mussel images per sub-species, in our dataset.

Wellington, with the SHAPE114 program. The software uses Elliptical Fourier Descriptors

to extract outline contours from images, (Iwata and Ukai, 2002). This can be followed

by Eigenshape Analysis (see Section 4.1.7) on the Fourier coefficients, which can then

be used to classify the mussel contours. We note that though this software can work

well on finding precise outlines115, the contours are not part of the output which the user

receives, thus it cannot be used in conjunction with any other methods or classifiers.

4.3.3 Method

Owing to the successful performance of diffeomorphic methods on shell classification in

Section 4.1 (see for example Figure 4.18), here, we adopt a similar approach. Specifically,

as the top two methods employed an SRVF Path-Straightening algorithm, and Geometric

Currents, we focus on the incorporation of these two methods in k-NN classification.

Dataset

In order to test whether an elastic shape analysis approach would perform well in clas-

sifying mussels from their outlines, we collated a sample of 239 contours from images

of native and non-native mussels, provided by our collaborators. This dataset consists

of mussels from two species: Mytilus galloprovincialis and Mytilus aoteanus that were

split into two subspecies, based on the location that they originate from. The non-native

Mytilus galloprovincialis species comprised of mussels from the North Atlantic and the

Mediterranean seas; that are subsequently labelled as NatMg and MedMg respectively.

The Mytilus aoteanus species are native to mainland New Zealand and its off-shore is-

lands, and are labelled MlMa and OsMa. The total samples can be seen in Table 4.2.

114http://lbm.ab.a.u-tokyo.ac.jp/~iwata/shape/
115albeit with the requirement of manual parameter selection which cannot be automated.

150

http://lbm.ab.a.u-tokyo.ac.jp/~iwata/shape/
http://lbm.ab.a.u-tokyo.ac.jp/~iwata/shape/

Arianna Salili-James CHAPTER 4. APPLICATIONS ON CLOSED CURVES

Mussel Image Processing

As always, the first step in image-based classification is image processing. In order to

obtain mussel contours, we incorporate Algorithm 6, as detailed in Chapter 3. This al-

gorithm begins with a binarization step, based on Algorithm 5, that aims to segment an

object centred in an image, whilst filling-in the interior of the object. Recall that this

algorithm works by computing a threshold value based on the mean average background

colour, and the computation of two ellipses. While the larger ellipse is used to segment

the object, and the smaller ellipse is used to fill-in the interiors, the values inbetween the

two ellipses go through a nearest-neighbour inspired approach, based on the threshold

value, to determine the colours of the pixels within the boundary. Once binarized, Algo-

rithm 6 employs the marching squares algorithm (Lorensen and Cline, 1987) to find the

outline contour of the mussels in the images, followed by a snakes algorithm (Kass et al.,

1988) to smooth the contour. Using linear interpolation, contours were reparametrized

to have 251 points. Recall that for our project on Gastropod shells (in Section 4.1.11),

we based our contours on 150 points across the outline boundary of the shells, as this

number was sufficient enough to maintain the necessary shell shape information, whilst

minimizing computational costs. The differentiation between the shapes of mussel shells

across the species is far more subtle, thus a greater number is required. Henceforth,

through impromptu evaluation116, we found that 251 points were needed.

Elastic Shape Analysis & Machine Learning

In order to perform classification on the shapes of mussels, we first compute two distance

matrices, based on the pairwise distances between mussel contours using the SRVF Path-

Straightening algorithm and the Geometric Currents approach (see Sections 2.5.1 and

2.3.2 respectively). Furthermore, we return to our implementation of a k-NN classifier,

as described in Algorithm 10. Recall that this implementation involves bootstrapping the

classes, where training and testing sets117 are randomly generated N times, from our

dataset, and the F1-scores are obtained at each of the N iterations. Here, we set N = 50

and evaluate the average F1-score using the two distance matrices.

We plot an overview of the scores in Table 4.3. At first, the F1-scores resulting from both

116We note that such evaluations were based on kNN implementations on distance matrices obtained

from contours with a varying number of points, ranging from 150 to 750.
117In this project, the training and testing sets each contained 50% of the total samples.

151

Arianna Salili-James CHAPTER 4. APPLICATIONS ON CLOSED CURVES

Classes / Method σ Median Mean Max

4 / SRVF 0.033 0.532 0.529 0.622

4 / GC 0.038 0.550 0.551 0.621

3 / SRVF 0.031 0.698 0.697 0.761

3 / GC 0.029 0.715 0.712 0.789

2 / SRVF 0.028 0.750 0.752 0.800

2 / GC 0.023 0.774 0.773 0.825

Table 4.3: Average F1-scores (where σ represents the standard deviation) from k-NN clas-

sification using the distance matrices obtained from SRVF Path-Straightening (SRVF) and

Geometric Currents (GC) on mussel contours, with varying number of classes, based on certain

combinations of sub-species. The top rows display the average F1-scores, where the classes were

kept as the original four sub-species. Meanwhile, in the middle rows, the two non-native sub-

species have been combined, whilst the native sub-species remain separated. Finally, the last

rows show the average F1-scores after the four sub-species have been grouped into two classes,

representing all native mussels, and all non-native mussels.

distance matrices were rather poor, averaging around the 0.5 mark. However, as our

global aim is to differentiate the non-native species from the native species, we decided to

combine the subspecies together, to see how this could affect the results. We found that

when the non-native species are combined together, the F1-scores drastically improve, as

can be seen in the middle rows of Table 4.3. These results are particularly impressive

when the Geometric Currents method is employed. Similar improvements resulted when

the two native species were also combined and thus classification is performed on only two

classes. Here, we find a top score of 0.825, resulting from the Geometric Currents method.

Thus far, we have achieved decent results, given the similarities of the shapes of the four

mussel sub-species. This similarity is emphasised in Figure 4.23, which shows the Karcher

means of each of the four classes. Considering the within-species likeness between the

mussels, it is therefore no surprise that the F1-scores improve when the classification is

performed on species, rather than sub-species.

152

Arianna Salili-James CHAPTER 4. APPLICATIONS ON CLOSED CURVES

NatMg MedMg OsMa MlMa

Figure 4.23: Karcher means computed on the four classes of mussels. These plots empha-

sise the within-species similarities of the shapes of the mussels, particularly within the Mytilus

galloprovincialis mussels (cyan/blue). Though we note that differences between Mytilus gal-

loprovincialis and Modiolus aoteanus (pink/magenta) are visible to the eye, especially in the

Karcher mean computed from the off-shore islands samples (OsMa, pink).

4.3.4 Summary

In comparison with classification scores our collaborators obtained in previous tests, the

top F1-scores here were reasonable. However, this was only after classes were combined.

This suggests that shape methods may not be enough for the classification of mussels

from images, and thus we may need to incorporate additional features in future work.

Overall, our results reveal two important consequences. Firstly, we find that the Geo-

metric Currents method significantly outperforms the SRVF Path-Straightening method

despite the fact that the SRVF Path-Straightening method constantly came out on top

in previous tests, seen in Section 4.1. This surprising outcome hints that Geometric

Currents should be considered as one of the top methods for use in shape classification,

particularly, when the shape differences in the dataset are quite subtle. Moreover, as

Geometric Currents has a much faster processing time than SRVF Path-Straightening,

these results motivate the need for further tests, allowing us to take an even deeper look

into comparing these two methods. Finally, the second consequence of our findings, is

that despite the imperfect scores, we can certainly classify mussels by their shapes and

obtain useful classification results. Our work here encourages us to continue developing

methods with our collaborators, with a next step of expanding our training sets, in order

to create a tool that automatically and successfully distinguishes non-native mussels from

native mussels, by analysing their shapes.

153

Chapter 5

Applications of Elastic Shape

Analysis on Open Curves

In Chapter 4, we presented an anthology of projects based on the classification of closed

shapes extracted from images. In this chapter, we turn our focus onto open curves, found

in non-image data. We use elastic shape analysis for two practical applications in wildlife

conservation.

1. Kākāpō Health Classification – We focus on a collaborative project with conser-

vation biologists at Kākāpō Recovery118, which looks at incorporating elastic shape

analyis to build a tool to automatically classify the health status of kākāpō chicks.

2. Kiwi Call Identification – In this project, we work with audio data containing

recordings of kiwi calls. We design an algorithm to extract curves from spectrograms

of audio files, and combine methods of elastic shape analysis with machine learning

to develop a procedure for identifying individual kiwis, based on the shapes of their

calls.

118https://www.doc.govt.nz/our-work/kakapo-recovery/

154

https://www.doc.govt.nz/our-work/kakapo-recovery/
https://www.doc.govt.nz/our-work/kakapo-recovery/

Arianna Salili-James CHAPTER 5. APPLICATIONS ON OPEN CURVES

5.1 Kākāpō Health Classification

Flightless, nocturnal, endemic to New Zealand, and the heaviest parrot in the world.

Internationally adored, two-time winner of national Bird of the Year119 competition, and

one of them120 was even appointed as the official Spokesbird for Conservation. Despite

the love and fame, kākāpō (Strigops habroptilus) are critically endangered, with only 201

alive today. Thanks to the efforts of the Kākāpō Recovery122 team (part of New Zealand’s

Department of Conservation), this number is a significant increase from the mere 50 or

so that were alive in the 1990s. Therefore we might ask ourselves: what can we do to help?

Like all natural beings, kākāpō, and particularly, kākāpō chicks can grow at different

rates; some may be slower than others, whilst some might reach their peak in half the

time. This is where elastic shape analysis has the potential to play a useful role in

analysing the growth curves of this endangered species. This was the motivation to start

a project, in collaboration with Kākāpō Recovery, to examine whether tools from elastic

shape analysis can aid in the monitoring, and hence the conservation, of these marvellous

creatures, by analysing the shapes of their growth curves.

5.1.1 Growth Curves

Growth curves are a useful tool in analysing biological data, whether it’s measuring the

population of a certain bacteria, or the differences in skull size of polar bears, (Bechshøft

et al., 2008). When it comes to the conservation of avian species, age-vs-weight growth

curves are increasingly helpful for various reasons from the relative ease of taking weight

measurements (in comparison to other types of measurements), to the relationship that

weight can have on further variables, such as breeding (see (Elliott et al., 2001)). Growth

curve analysis is of particular importance in the early stages of life. This is because in

many species, the prominent changes in growth occur early on in their lives, and can

additionally prove pivotal in the existence of the individual into adulthood. Therefore,

for our project, we focus our interest on the growth curves of chicks.

119https://www.birdoftheyear.org.nz/
120In 2010, Sirocco121the kākāpō, an international superstar, was appointed as the official Spokesbird

for Conservation by the then New Zealand prime minister.
121https://www.doc.govt.nz/nature/native-animals/birds/birds-a-z/kakapo/sirocco/
122https://www.doc.govt.nz/our-work/kakapo-recovery/

155

https://www.birdoftheyear.org.nz/
https://www.doc.govt.nz/our-work/kakapo-recovery/
https://www.birdoftheyear.org.nz/
https://www.doc.govt.nz/nature/native-animals/birds/birds-a-z/kakapo/sirocco/
https://www.doc.govt.nz/nature/native-animals/birds/birds-a-z/kakapo/sirocco/
https://www.doc.govt.nz/our-work/kakapo-recovery/

Arianna Salili-James CHAPTER 5. APPLICATIONS ON OPEN CURVES

Common models for growth analysis on avian species include Gompertz and Von Berta-

lanffy models. In particular, these were seen in research done on the weights of avian

species such as blue tits & great tits, and the southern & northern ground hornbill, in

(Brunner et al., 2021) and (Engelbrecht et al., 2007) respectively. The models can be

written in a variety of ways, including the following:

Gompertz:

G(t) = W0 exp

(
ln

(
WA

W0

)
(1− e−tg)

)
(5.1)

Von Bertalanffy:

B(t) = WA(1− exp(−(t− t0)g)3 (5.2)

where W0 is the initial weight, WA is the asymptotic weight (the weight that the growth

curves tend towards); g is the average growth rate or growth coefficient, and t0 is a known

theoretical age where the weight is zero. Note that the power of three in Equation (5.2)

is not always seen in Von Bertalanffy functions, for example with length data. However,

it is often included when analysing weight data.

Finding suitable parameters for the above growth models is not always a simple task.

Often, a minimizer, such as a least squares minimizer, is employed to optimize the pa-

rameters. To test this, we incorporated kākāpō weight data, and used a least squares

algorithm to fit the Gompertz and Von Bertalanffy curves to the weights of 61 chicks

aged 0-90 days. The results can be seen in Figure 5.1. Here, we modelled the curves

using two weight means: a Euclidean mean, and a Karcher mean. Interestingly, the two

models appear very similar when their parameters are optimized. Another remark is that

though the Euclidean mean is naturally unsmooth, a growth model such as Gompertz or

Von Bertalanffy can be used to smooth the mean. This can be useful in some cases, for

example, if we required a smooth template for a mean, to be used in further classificaiton.

However, we note that there’s also the risk that we may miss information from the mean

curves, by such smoothing. For more details on the optimization of these and similar

models, we refer the reader to (Kühleitner et al., 2019).

The incorporation of a Karcher mean is a unique twist in the analysis of these growth

models, that traditionally rely on standard Euclidean means. This is a basic example

156

Arianna Salili-James CHAPTER 5. APPLICATIONS ON OPEN CURVES

0 10 20 30 40 50 60 70 80 90
0.0

0.5

1.0

1.5

2.0

2.5
Fledged Female Kakapo

Mean
Karcher Mean
Gompertz
von Bertalanffy
Original Weights

0 10 20 30 40 50 60 70 80 90
0.0

0.5

1.0

1.5

2.0

2.5
Fledged Male Kakapo

Mean
Karcher Mean
Gompertz
von Bertalanffy
Original Weights

Figure 5.1: A Gompertz and Von Bertalanffy curve fitted to kākāpō chick weights, aged 0-

90 days, for male (left) and female (right) kākāpō chicks. The Gompertz and Von Bertalanffy

functions are fitted to the Karcher mean (see section 2.5.3) of the growth curves (black, circled),

and to the standard Euclidean mean of growth curves (black, crossed). These plots show us

that the Karcher mean of kākāpō weights is much smoother than the standard mean. Moreover,

we see that both the Gompertz and Von Bertalanffy curves fit almost perfectly to the Karcher

mean. This suggests the potential that the Gompertz and Von Bertalanffy functions may have

in the analysis of kākāpō growth curves, using elastic shape analysis. We remark that the

Karcher mean curves in both plots are much higher than the standard means. This is due to

the scaling-invariant metric used in the Karcher mean, which meant that the curves had to be

re-scaled in order to be plotted on top of the original curves, causing a possible distortion in

the y-axis. Though this does not matter when analysing the shapes of the curves, it could be a

concern if a direct comparison is being done with the original y-values. Note that we will come

back to the point later on in this section.

of combining elastic shape analysis with traditional growth modelling methods. The ad-

vantage of using elastic shape analysis is that we can focus on the shape of the growth

curves. This is particularly helpful when comparing multiple growth curves, as the time

domain is, in essence, ignored, enabling more meaningful comparisons to be made be-

tween the growth of multiple chicks, even if they grew at different rates. Although we did

not pursue this particular path of incorporating growth models with elastic shape anal-

ysis much further, further comparisons between Karcher means and Euclidean means in

growth curve modelling might prove to be an interesting research avenue to explore in

the future.

5.1.2 Kākāpō Growth Monitoring with Shape Analysis

Monitoring the weights of kākāpō regularly is a vital step for their conservation. From

the day they hatch, they are weighed periodically, particularly in the weeks before they

157

Arianna Salili-James CHAPTER 5. APPLICATIONS ON OPEN CURVES

0 10 20 30 40 50 60 70
Days

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

W
e
ig

h
t

(k
g
)

Figure 5.2: Growth curves of a sample of chicks aged between 0-75 days, alongside images

of growing chicks, from birth to fledged. Images courtesy of Dr Andrew Digby from Kākāpō

Recovery124. The first photo was taken on the day a chick has hatched, the second-to-last

photograph is of almost-fledged chicks, and the last photo shows a fully fledged chick.

fledge123. Kākāpō chicks grow a lot during this period, as can be seen in Figure 5.2,

hence the importance of regular measurements. For this reason, the Kākāpō Recovery

team actively monitor these weight curves, and use them as the main method of detecting

poor health conditions of chicks.

Currently, to monitor the growth of chicks, the team compute the Euclidean mean weight

of all the male or female chicks, and a threshold is set at the minus 20% mark125. Chicks

that fall below this threshold are classed as underweight and provided with extra help.

In the subsequent sections, we detail a new tool we have created in collaboration with the

Kākāpō Recovery team, which uses elastic shape analysis to monitor kākāpō. Though

the focus is on analysing kākāpō chicks from the day they hatch, the new platform will

also work to analyse the health of older, post-fledged chicks too. This tool has one simple

aim: to classify a chick as healthy or unhealthy by analysing their growth curve.

123In these flightless birds, fledging is considered to be when the chick leaves the nest and learns to

fend for and feed themselves. This usually happens at around age 75-120 days but can vary hugely,

particularly for hand-reared birds.
124https://www.doc.govt.nz/our-work/kakapo-recovery/
125Specifically, two thresholds are set, where one is at the 20% mark, and the other at 35%, where the

latter is a cause for a greater concern. For succinctness, in this section, we will focus on the 20% mark.

158

https://www.doc.govt.nz/our-work/kakapo-recovery/
https://www.doc.govt.nz/our-work/kakapo-recovery/
https://www.doc.govt.nz/our-work/kakapo-recovery/

Arianna Salili-James CHAPTER 5. APPLICATIONS ON OPEN CURVES

5.1.3 Kākāpō Weight Data

As technology advances across the world, so do the gadgets used for kākāpō conserva-

tion. Each bird has a smart transmitter, all nests are fitted with infrared cameras during

breeding season, there are data loggers scattered in various locations, automatic scales,

and more126. This is relevant to our project, as it not only enables us to gather up-to-date

weight data, but it provides us with additional information, such as the location, which

we could possibly use in our algorithms.

Each kākāpō is weighed regularly. When chicks first hatch, they are weighed manually.

Meanwhile, the adult birds can be weighed when they visit a feeding station, and their

weight is automatically added to the database with a hidden data logger; in addition to

being weighed manually from time to time. All weights, and other information such as

locations, and behavioural details (e.g. mating) are logged onto a database, which can

be accessed online.

The Rimu Effect

For some time now, studies have indicated that kākāpō breed in response to the masting

of certain trees, and in particular, (due to the islands that most kākāpō reside in) the

Rimu tree (Dacrydium cupressinum), (Fidler et al., 2008).

Rimu are large, slow-growing, coniferous trees that mast (i.e. bear lots of fruit) depend-

ing on their environment’s temperature approximately every 2-3 years. Even if the fruit

grow, if the climate is not warm enough, the fruit will not ripen.

Though there still remains secrets to be discovered, regarding the breeding of kākāpō,

it is accepted that kākāpō breed in response to the rimu mast, (Harper et al., 2006).

However, for chick growth, it is not the abundance of fruit that is relevant to the kākāpō

per se, but the proportion of ripe fruit. Henceforth, the ripe rimu status of the year a

chick was born can have an important impact on a chick’s weight, and consequently, their

development, (Cottam et al., 2006).

126For more details on the technologies used, check out the Kākāpō Recovery127website.
127https://www.doc.govt.nz/our-work/kakapo-recovery/what-we-do/technology/

159

https://www.doc.govt.nz/our-work/kakapo-recovery/what-we-do/technology/
https://www.doc.govt.nz/our-work/kakapo-recovery/what-we-do/technology/

Arianna Salili-James CHAPTER 5. APPLICATIONS ON OPEN CURVES

Data Categories

In order to analyse growth curves, we require pairs of (weight,date-time) data for the

chicks, as well as the hatch date to compute age. We incorporate additional factors

which can affect growth, such as the ripe Rimu effect which we discussed previously.

During our tests (some of which will be shown in the subsequent sections), we found that

three factors had a distinctive effect on growth curves:

1. Sex: Chicks are of similar sizes when born, and identifying the sex can take days

and sometimes weeks. However, differences in growth curves soon appear, and

classification results tend to improve when a chick is identified and grouped with

its sex as soon as possible. Thus we categorise chicks by their sex.

2. Ripe Rimu: As the ripe rimu status of the year a chick is born can affect the

development of a chick, we include this factor in our dataset. We categorise each

chick in our sample by introducing a binary ripe-rimu variable, depending on the

ripe rimu status of the location in the year where the chicks were born.

3. Hand-Reared: There are times when chicks might need to be pulled for hand-

rearing. This could be for various reasons, for example, if they are not doing well,

to encourage mothers to breed again, or if the chick is unwell and requires more

medical attention. Hand-rearing chicks is complicated, but there are certainly great

benefits to it, especially when it comes to saving the lives of kākāpō that may not

have survived otherwise. On the other hand, hand-rearing chicks can also lead

to slower growth, as discussed in (Eason and Moorhouse, 2006). For this reason,

in this project, we also categorise the chicks in our sample, based on whether they

have been hand-reared or not. As chicks can go in and out of a hand-rearing facility

numerous times, to class a chick as being hand-reared, a boundary128 was chosen

by our collaborators. Thus, if a chick had been hand-reared for more than the

boundary, from age 0 - 75 (days), they were classed as hand-reared.

Training Data

Our aim is to create a tool that can detect whether a chick is healthy or unhealthy, based

on their growth curve. To train an algorithm in the process of building our health detec-

128During our tests, a chick’s hand-reared status was set to “Y” (yes) if it had been hand-reared for 30

or more days, and “N” if it was hand-reared for less than 10 days. Those in-between had the option of

being classed somewhere in between as “YN”, as “Y” / “N”, or just excluded from the training sets.

160

Arianna Salili-James CHAPTER 5. APPLICATIONS ON OPEN CURVES

tion tool, we require some sort of ground truth classification for the training data.

We based our ground truth definition of unhealthy on two things:

1. Whether a chick had survived to a fledged age (approximated here as 75 days).

2. Whether the chick appeared on a list of chicks that were observed to be unhealthy

or underweight, collated by the team at Kākāpō Recovery, including their vet.

Overall, our dataset of chicks contains weight information for each chick over time, as

well as meta details, i.e. sex, date-hatched, and the hand-reared and ripe-rimu statuses.

Our training set also includes the binary true health classification.

5.1.4 Karcher Means of Kākāpō Growth Curves

In order to monitor kākāpō chicks, conservationists routinely monitor their weights by

comparing it to the standard (L2) mean. In order to compute this average, which is often

associated with the moniker cross-sectional sample mean, we do the following:

µ̄ = arg min
µ

N∑
i

||fi − µ||2L2 (5.3)

where f1, · · · , fN represent the growth curves.

Like all natural beings, kākāpō chicks can grow at different rates; some may be slower

than others, whilst some might reach their peak in half the time. Therefore, comparing

chicks to a standard mean might not be the most credible method to use, and this is

where tools from shape analysis, such as the Karcher mean, could be favourable. As seen

in Section 2.5.3, a Karcher mean is defined with a chosen distance metric, d, based on a

geodesic equation defined on the shape space.

As seen in the background material chapter, we can define a distance metric, which

involves an alignment that is invariant to shape-preserving transformations. This metric

(d) can then be used to compute a mean:

µ̄KM = argµ min
N∑
i

d(fi, µ)2 (5.4)

161

Arianna Salili-James CHAPTER 5. APPLICATIONS ON OPEN CURVES

The two mean equations seen in Equations (5.3) and (5.4) are equivalent if the distance

metric in Equation (5.3) is simply d(fi, µ) = fi − µ. This is the standard arithmetic

mean:

d

dµ

N∑
i

(fi − µ)2 = 0 =⇒ −2
N∑
i

fi + 2Nµ = 0 =⇒ µ =
1

N

N∑
i

fi.

In order to analyse our growth curves, in this project, we will choose a distance metric

that focuses on an alignment between the shapes of the growth curves, as seen in the

Equation (2.28) of Section 2.4.4. We will use this to compute Karcher means, as given

in Algorithm 3 in the Background chapter. We will incorporate the Karcher mean in

further kākāpō growth analysis, and will compare the results to those obtained via the

use of the standard mean.

Some Karcher means can be seen in Figure 5.3. The first thing to note is that these have

been plotted alongside the original sampled growth curves, and not the aligned growth

curves. Though this has been done for graphical purposes, to show both the growth

curves and the Karcher means in one plot, it is a useful reminder that Karcher means

may alter the original scaling and positioning of the growth curves in their computation,

due to the invariances imposed on its distance metric. Recall from Chapter 2, that we

consider shapes as curves modulo shape-preserving transformations. Thus, the metric

we describe in the Karcher Mean algorithm (Algorithm 3) in Section 2.5.3, is invariant

to shape-preserving transformations. Henceforth, due to this invariance to scaling and

translation in particular, the resulting domain and range of the Karcher mean, will differ

from the original curves. For this reason, when plotting a Karcher mean alongside the

original growth curves, as done in Figure 5.3 and in Figure 5.1 for example, the Karcher

means would need to be translated and re-scaled129. Therefore, when studying such plots,

we must not dwell on the values presented on the y-axis.

Figure 5.3 shows us a few interesting things. Firstly, we can see that there are clear

differences between the growth curves of chicks in the relevant groups. For example, in

the top graphs, the growth curves for hand-reared chicks are much lower in weight than

those chicks who weren’t hand-reared; and this is true for both male and female chicks.

Secondly, we can see that there are distinctive differences in the Karcher means too: for

129Note that this scaling is usually based on the average ranges.

162

Arianna Salili-James CHAPTER 5. APPLICATIONS ON OPEN CURVES

0 20 40 60 80 100
0.0

0.5

1.0

1.5

2.0

2.5
Female Kakapo, Aged 0-100

Original Curves (HR) (22)
Original Curves (not HR) (34)
Karcher Mean ± 1 s.d. (HR)
Karcher Mean ± 1 s.d. (not HR)
Karcher Mean ± 1 s.d. (all)

0 20 40 60 80 100
0.0

0.5

1.0

1.5

2.0

2.5
Male Kakapo, Aged 0-100

Original Curves (HR) (19)
Original Curves (not HR) (36)
Karcher Mean ± 1 s.d. (HR)
Karcher Mean ± 1 s.d. (no HR)
Karcher Mean ± 1 s.d. (all)

0 20 40 60 80 100
0.0

0.5

1.0

1.5

2.0

2.5
Female Kakapo, Aged 0-100

Original Curves (Rimu) (23)
Original Curves (no Rimu) (14)
Karcher Mean ± 1 s.d. (Rimu)
Karcher Mean ± 1 s.d. (no Rimu)
Karcher Mean ± 1 s.d. (all)

0 20 40 60 80 100
0.0

0.5

1.0

1.5

2.0

2.5
Male Kakapo, Aged 0-100

Original Curves (Rimu) (22)
Original Curves (no Rimu) (17)
Karcher Mean ± 1 s.d. (Rimu)
Karcher Mean ± 1 s.d. (no Rimu)
Karcher Mean ± 1 s.d. (all)

Figure 5.3: Karcher means of chicks aged 0-100 days. Top: Karcher mean from growth curves

of hand-reared (cyan) vs non hand-reared (magenta) chicks. Bottom: Karcher means from

ripe-rimu (cyan) vs non ripe-rimu (magenta) chicks. Sampled growth curves are also plotted

(dotted, cyan or magenta). An additional Karcher mean (black) is computed on the total set

(i.e. without separating the samples based on their hand-reared or ripe-rimu status). Note that

the Karcher means here are plotted alongside a boundary created by ±1 standard deviation,

computed point-wise across the aligned samples. These graphs show us that differences can

certainly be seen in the means when separating the chicks based on their hand-reared or ripe-

rimu status. The plots also show that Karcher means on the full set generally resembles the

Karcher mean of one set more than the other - this could potentially be due to the template

curve that initially chosen.

example, in the bottom graphs, the Karcher mean of the chicks born during a ripe Rimu

season, stabilizes more gradually than the Karcher mean of the non-Rimu chicks. The

other curious point the graphs show is that when computing the Karcher means of the

groups combined, the mean tends to heavily resemble one of the Karcher means of the

divided groups. These points all indicate that splitting the chicks by the factors of sex,

163

Arianna Salili-James CHAPTER 5. APPLICATIONS ON OPEN CURVES

ripe-Rimu, and hand-reared could be helpful, and are therefore appropriate to measure

in the data.

5.1.5 Distances between Growth Curves & Means

Our aim is to classify or sample chicks into healthy and unhealthy. Often in the literature,

this may involve a distance computation between a sample point and the mean, such as in

machine learning with a K-means clustering algorithm. In order to investigate distance

computations on our kākāpō growth curves, we tested out two methods, both based on

a distance metric within the SRV framework, as seen in Section 2.4.2.

In Chapter 2, we saw that for two open curves, c1, c2 : I 7→ R2, on some interval, I, the

square root velocity functions (SRVFs) can be described by the mapping:

q(c(t)) =
ċ(t)√
|ċ(t)|

. (5.5)

In Section 2.4.2, we saw that the space of all such SRVFs is analogous to the space of

square-integrable functions, L2(I,R2). Hence, we can employ the L2-distance in this

space, and we define an SRVF distance, d:

d(c1, c2) = ||q(c1)− q(c2)||L2 , (5.6)

for two open curves, c1, c2.

We use this to outline possible distance methods for use in this project:

Distance Method 1: Compute the geodesic distance directly between a growth curve

in the testing set to the Karcher mean computed from a training set. This method

registers the growth curve to the Karcher mean using the pairwise registration method

described in the Background Material chapter. The resulting distance, d, is the SRVF-

distance between the registered growth curve and the Karcher mean:

d = min
γ

d((qgc, γ), qKM) = min
γ

(||(qgc, γ)− qKM ||L2) (5.7)

(·, γ) is the action by composition (as seen in Equation (2.22)), and qgc, qKM are the

square root velocity functions of the testing growth curve and Karcher mean respectively.

164

Arianna Salili-James CHAPTER 5. APPLICATIONS ON OPEN CURVES

Distance Method 2: Using the resulting γ-functions (registration functions) from the

Karcher mean computation on the training set, we calculate the average, γ̄. We then

reparametrize a growth curve by γ̄ and compute the SRVF-distance between itself and

the Karcher mean.

γi = arg min
γ
||(qi, γ)− qKM ||L2 (5.8)

γ̄ =
1

N

N∑
i

γi (5.9)

d = ||(qgc, γ̄)− qKM ||L2 (5.10)

where the qi are the square root velocity functions of the growth curves in the training

set, and qgc is a growth curve from the testing set.

In order to classify a growth curve, we can compare the distance computed to a chosen

threshold, as we will see later on in this section. This threshold value can be optimized

in various ways, for example by utilizing a cross-validation grid-search approach.

Distance Method 1 provides us with a more accurate approximation of how close a growth

curve is to the Karcher mean. However, Distance Method 2 removes the requirement of

numerous optimization calculations, which noticeably speeds up the process. Given that

our research is not theoretical, and is directly involved with these real-world applications,

the significance of minimizing computational time mustn’t be underestimated.

5.1.6 Boundaries on Growth Curves

An alternative to computing distances in the health classification of growth curves could

be to incorporate a variation of the current method used by the Kākāpō Recovery group.

Presently, a standard mean is computed for the growth curves, and a boundary is set at

the mean−20% mark130, as seen in the left plot in Figure 5.4. A chick whose curve falls

below this boundary is then classified as underweight, hence, unhealthy.

Conversely, we can create a boundary using the Karcher mean. Unlike the standard

mean, deviation both above and below the boundary are equally worrying, hence why we

130We reiterate that this 20% figure has been tried and tested by the experts at Kākāpō Recovery; as

well as a separate, slightly more extreme, 35% threshold which is also sometimes used.

165

Arianna Salili-James CHAPTER 5. APPLICATIONS ON OPEN CURVES

0 10 20 30 40 50 60 70
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Mean & Boundary (-20%)

0 10 20 30 40 50 60 70
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Karcher Mean & Boundary (± 3.25 std)
Female Chicks, 0-75 Days, handReared & not Rimu

Figure 5.4: Example of growth curves of a sample of female chicks, aged 0-75 days. In the left

plot, we see the mean (thick, black) alongside the original growth curves (thin, black). In the

right plot, we see the Karcher mean (thick, blue), alongside the aligned growth curves (thin,

blue). In both plots, the red dotted lines represent the boundaries. Note that the left plot

does not have an upper bound as at this point it does not matter if a chick is over-weight. In

the right plot however, as we are plotting a Karcher mean alongside aligned growth curves, if

a curve appears above the Karcher mean, due to the invariances we discussed earlier, this can

not necessarily be associated with a chick being over-weight.

don’t stick to a single lower bound. Moreover, instead of decreasing by some percentage,

a boundary can be created using the standard deviation of the Karcher Mean, as seen on

the right, in Figure 5.4. Here, the boundary region is: Karcher mean ±3.25× standard

deviation131. By using a standard deviation, we distribute significance at various ages, in

a way that is more relevant to the data. A chick whose aligned growth curve falls outside

of the boundary region will be classified as unhealthy ; which is not too dissimilar from

the previous method.

5.1.7 Method Comparison Experiment

Thus far, we have mentioned four possible methods which can be used to classify growth

curves (two distance methods and two boundary methods). However, we have yet to make

any substantial comparisons between these. In this subsection, we outline an experiment

designed to test all four different methods of kākāpō growth curve classification.

Method 1: This is the original method, which involves creating a lower bound based

on the standard (cross-sectional) mean minus 20%.

131We note that the standard deviation is computed from the aligned growth curves. The choice of

value 3.25 is for this plot. Later on, we will see how this value is chosen in our algorithms.

166

Arianna Salili-James CHAPTER 5. APPLICATIONS ON OPEN CURVES

Method 2: A variation of the original method, which computes a Karcher mean and

creates a boundary based on a scalar multiple of the standard deviation, taken away

from the Karcher mean. Growth curves are aligned using the average reparametrization

function, γ̄ (such as in Distance Method 2), and the aligned growth curve is compared to

the created boundary.

Method 3: This method incorporates Distance Method 1 to find distances between

growth curves and the Karcher Mean. It then uses a threshold value to determine the

classification of the chick. In particular, the threshold value is based on the average of

all of the distances added to a scalar multiple of standard deviation of the distances.

Method 4: Similar to the previous method, however this time, Distance Method 2 is

used to compute the distances before classification.

We want to test our classification algorithms by comparing the predicted health values

to a ground truth. In collaboration with the Kākāpō Recovery team, we devised a list

of general health statuses to use as a ground truth. The samples are then split into

groups based on the sex, ripe-Rimu and hand-reared factors. For each group, we start

by selecting a sample of growth curves that will be used to compute the Karcher means

needed for Methods 2-4, as a training set. This training sample will contain growth

curves of similar lengths (in ages), ranging from 0-75 days of age. Thereafter, we create a

separate sample of growth curves, a testing set. In this second sample, growth curves of

all lengths are included, but still with a minimum age of 0 days and a maximum age 75

days132. This means that shorter curves (for example, only a few days long), may also be

included. From here, the next step is to create the boundaries and distance thresholds.

We test various values for the parameters involved for Methods 2-4133. To do this, for

each parameter, we compute a score based on the classification results, and the ground

truth. Henceforth, we output the results that achieved the highest score.

132Although in this case we are simply considering growth curves of ages up to 75 days, in general we

may want to alter the minimum and maximum age, for example, if we wanted to exclude the weights in

a chick’s first week, and so on.
133Note that for Method 1, in this example, training is bypassed, as is parameter testing. Instead, the

mean and 20% boundary are created using the testing sample. One reason for this was because the size

of the training samples used in the other methods is rather small. Secondly, by computing the mean

from the test set, our method is more in-line with the techniques currently used by our collaborators.

167

Arianna Salili-James CHAPTER 5. APPLICATIONS ON OPEN CURVES

To calculate classification scores, we must take into consideration the implications of false

positives and false negatives:

False Positives – the incorrect classification of healthy chicks as unhealthy. When a

chick is classified as unhealthy, it will be temporarily hand-reared or moved to another

nest. However, if the classification is a false positive, this may cause a waste in resources

that could have otherwise been used for an unhealthy chick who required help.

False Negatives – incorrectly classifying unhealthy chicks as healthy. This can have

dangerous implications that can leave a genuinely unhealthy chick untreated.

When it comes to predicting the health of a species in conservation research, the impli-

cations of false negatives are far more severe than the implications of false positives. For

this reason, here we will not employ a score that weighs the rates of these equally. As we

are interested in a well-regarded scoring technique that is well-used within the machine

learning community yet does not weigh rates equally, this naturally leads us to the gen-

eralisation of the standard F1-score incorporated in previous projects, i.e. the Fβ-score

(where β trades off the relative importance of precision against recall).

Fβ(P,R) = (1 + β2)× PR

P (β2) +R
(5.11)

where P and R are the precision and recall scores, as defined in Equations (4.3) and

(4.4) respectively. Using this type of score, as opposed to an F1-score, grants us the

power to decide on the level importance each component has. In our case, it is bene-

ficial to weight the recall lower than the precision, since it is important that we don’t

miss out on classifying any unhealthy chicks. For this reason, we set β to be a low number.

In order to decide on our weight parameter, β, we performed classification tests on all

groups and subgroups of datasets (i.e., based on the classes of the chicks), using not

just the four methods detailed here, but other variants of Method 1, that were based on

different percentage values. We then then computed the scores with different values of β

and analysed the results, in consultation with the Kākāpō Recovery team. Thus the F

score parameter was then fixed for the remainder of the analysis, at β = 0.15.

Figure 5.5 shows confusion matrices from our experiment. Here we see the top results of

168

Arianna Salili-James CHAPTER 5. APPLICATIONS ON OPEN CURVES

0 1

0
1

(2)
F2-2002

Waikawa-3-A-19

(1)
Nora-1-A-19

(5)
Elsie

Marama
Titapu
Toiora

Whaea Jane

(15)
Aio
Ako

Alison
Aria

Atatu
Galaxy
Gale

Hanariki
Hau

Kohengi...

Rimu=Y, HR=Y, F:0.850

1

2

3

4

0 1

0
1

(3)
Bella1.1.05

Gromit
Mokopuna

(1)
Suzanne 3-3-16

(10)
Evohe

Hakatere
Hera

Hinemoa
Jemma
Punga
Purity

Ra
Taonga
Toitiiti

(16)
Awarua
Huhana

Ihi
JEM

Millie
Pounamu

Pura
Roha
Stella
Tia...

Rimu=N, HR=Y, F:0.840

0 1

0
1

(3)
Bella-2-A-19

Huhana1-2-16
Queenie-4-A-19

(1)
Hine Taumai-2-B-19

(7)
Aurora
Dusky

Makorea
Matariki
Mukeke
Phoenix

Rata

(25)
Adelaide
Aparima

Aroha
Aumaria

Esperance
Eva

Gertrude
Hananui

Hine Taumai
Huarangi...

Rimu=Y, HR=N, F:0.885

0 1

0
1

(1)
Raupeka

(3)
Apopo

Kuia 1-3-16
Kuihi 2-3-16

(0)

(5)
Atareta
Queenie

Rimu
Tohu

Tukaha

Rimu=N, HR=N, F:0.788

0 1

0
1

(2)
F2-2002

Waikawa-3-A-19

(1)
Nora-1-A-19

(0)

(20)
Aio
Ako

Alison
Aria

Atatu
Elsie

Galaxy
Gale

Hanariki
Hau...

Rimu=Y, HR=Y, F:0.959

0 1

0
1

(4)
Bella1.1.05

Gromit
Mokopuna

Suzanne 3-3-16

(0)

(4)
Evohe

Huhana
Jemma

Pounamu

(22)
Awarua

Hakatere
Hera

Hinemoa
Ihi
JEM

Millie
Punga
Pura

Purity...

Rimu=N, HR=Y, F:0.932

0 1

0
1

(4)
Bella-2-A-19

Hine Taumai-2-B-19
Huhana1-2-16

Queenie-4-A-19

(0)

(12)
Aroha

Aumaria
Dusky

Eva
Gertrude

Kuihi
Marian

Mati-ma
Mukeke
Ninihi...

(20)
Adelaide
Aparima
Aurora

Esperance
Hananui

Hine Taumai
Huarangi
Madison
Makorea

Matariki...

Rimu=Y, HR=N, F:0.909

0 1

0
1

(4)
Apopo

Kuia 1-3-16
Kuihi 2-3-16

Raupeka

(0)

(0)

(5)
Atareta
Queenie

Rimu
Tohu

Tukaha

Rimu=N, HR=N, F:1.000

0 1

0
1

(0)
(3)

F2-2002
Nora-1-A-19

Waikawa-3-A-19

(0)

(20)
Aio
Ako

Alison
Aria

Atatu
Elsie

Galaxy
Gale

Hanariki
Hau...

Rimu=Y, HR=Y, F:0.758

0 1

0
1

(1)
Gromit

(3)
Bella1.1.05
Mokopuna

Suzanne 3-3-16

(3)
Awarua
Jemma
Millie

(23)
Evohe

Hakatere
Hera

Hinemoa
Huhana

Ihi
JEM

Pounamu
Punga
Pura...

Rimu=N, HR=Y, F:0.800

0 1

0
1

(2)
Bella-2-A-19

Queenie-4-A-19

(2)
Hine Taumai-2-B-19

Huhana1-2-16

(14)
Aurora

Esperance
Gertrude
Hananui
Makorea
Marian

Matariki
Mila

Monoa
Ninihi...

(18)
Adelaide
Aparima

Aroha
Aumaria
Dusky

Eva
Hine Taumai

Huarangi
Kuihi

Madison...

Rimu=Y, HR=N, F:0.806

0 1

0
1

(2)
Apopo

Kuihi 2-3-16

(2)
Kuia 1-3-16

Raupeka

(1)
Rimu

(4)
Atareta
Queenie

Tohu
Tukaha

Rimu=N, HR=N, F:0.667

0 1

0
1

(2)
F2-2002

Waikawa-3-A-19

(1)
Nora-1-A-19

(8)
Aio

Elsie
Hau

Konini
Rere

Titapu
Vori

Whaea Jane

(12)
Ako

Alison
Aria

Atatu
Galaxy
Gale

Hanariki
Kohengi

Kuihi-3-B-19
Marama...

Rimu=Y, HR=Y, F:0.822

0 1

0
1

(1)
Gromit

(3)
Bella1.1.05
Mokopuna

Suzanne 3-3-16

(2)
Stella
Waa

(24)
Awarua
Evohe

Hakatere
Hera

Hinemoa
Huhana

Ihi
JEM

Jemma
Millie...

Rimu=N, HR=Y, F:0.815

0 1

0
1

(2)
Bella-2-A-19

Queenie-4-A-19

(2)
Hine Taumai-2-B-19

Huhana1-2-16

(2)
Gertrude

Kuihi

(30)
Adelaide
Aparima

Aroha
Aumaria
Aurora
Dusky

Esperance
Eva

Hananui
Hine Taumai...

Rimu=Y, HR=N, F:0.889

0 1

0
1

(0)

(4)
Apopo

Kuia 1-3-16
Kuihi 2-3-16

Raupeka

(0)

(5)
Atareta
Queenie

Rimu
Tohu

Tukaha

Rimu=N, HR=N, F:0.312

Figure 5.5: Confusion matrices based on the top classification results per method. The results

shown here are from a sample of female chicks, aged 0-75 days, where the samples are based

on the ripe-rimu and hand-reared factors. The individual plots are heat-maps, that display the

F -scores in the titles, and the names of some of the chicks that were classified, with the total

count of chicks in each category displayed above. Here, 0 and 1 stand for unhealthy and healthy

respectively and the true classifications are on the y-axis, whilst the predicted classifications are

on the x-axis. Moving clock-wise, starting from the top-left square on a plot, the results show

the proportion of true negatives, false positives, true positives, and false negatives, with darker

colours representing greater proportions. The results here show us that Method 2 outperformed

all other methods, with an average F1-score of 0.95 across the four samples. Interestingly, the

two distance-related methods (3 and 4) performed the worst, with their F1-scores averaging 0.76

and 0.71 respectively. Meanwhile, the original Method (1) had a more decent average F1-score

of 0.84, though this can be down to the method’s over-tendency to label samples as unhealthy.

169

Arianna Salili-James CHAPTER 5. APPLICATIONS ON OPEN CURVES

each method, for each group of female chicks. In this example, we tested out 13 evenly-

spaced values for the standard deviation scalar, k, used in the boundary for Method 2,

where 1.5 ≤ k ≤ 4.5. Meanwhile, for the standard deviation scalar used in the distance

threshold, m, for Methods 3 and 4, we tested 11 evenly spaced values, where 0 ≤ m ≤ 5.

We remark that the options for the paramaters k and m are different as they are based

on different values, with k relating to a standard deviation of the Karcher mean, and m

is associated with the standard deviation of the distances.

The results here show us that Method 2 always came out on top. Interestingly, despite

the simplicity of Method 1, it performed remarkably well, and outperformed some of the

other methods. Nonetheless, it was Method 2 that was the only method to classify almost

all of the unhealthy chicks correctly in each group. These results were echoed in the tests

made on the male kākāpō chicks sample.

5.1.8 Classifying Growth Curves with Karcher Means

The plots in Figure 5.5 identified our best method. Here, we will take a deeper look

into the algorithm that defines this method, which comprises of Karcher Means and a

boundary to classify the health of kākāpō chicks.

Sampling Growth Curves

Kākāpō chicks are weighed regularly, but that does not mean that they are all weighed

an equal amount of times. Our growth curves are each comprised of a varying amount

of points. Meanwhile, the Karcher mean computations require curves to be of an equal

number of points. Henceforth, this forces us to regulate the points, as otherwise, we

would have to change the Karcher mean. We therefore resample the growth curves for

the computational steps in our algorithm.

Very often, in order to sample curves to have a certain number of points, an interpolation

is performed on the curve, such as a linear interpolation on a fixed set of x-values134.

However, to stay as true as possible to the original growth curve, we opted for a slightly

different sampling method. Fundamentally, the sampling function involves creating an

initial template based on the first and last value of the growth curve. Hereafter, the

134This is especially inconvenient for us as the chicks are weighed at unequal ages.

170

Arianna Salili-James CHAPTER 5. APPLICATIONS ON OPEN CURVES

0 10 20 30 40 50 60 70
Age (days)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

W
ei

gh
t

Growth Curve vs Sampled Growth Curve

Growth curve (Aria)
Sampled curve

Figure 5.6: Example of a growth curve of a female chick (Aria) aged between 0-75 days, with

50 points (circled, black). The plot also features a sampled growth curve containing 25 points

(crossed, blue). The plot shows how similar the sampled growth curve is to the original, despite

the significant cut in the number of points.

closest values in the ages of the growth curve to the template are chosen, and hence the

respective weights to those ages. This function is briefly outlined in Algorithm 11, and

an example plot can be seen in Figure 5.6.

Outside the Boundary

On numerous occasions we have discussed growth curves falling outside of a boundary,

but have scarcely described what that truly means.

Figure 5.7 shows the aligned growth curves of two chicks (Aria - ground truth classifica-

tion: healthy ; F2-2002 - ground truth classification: unhealthy) along with a boundary

section (magenta). Here, one curve is fully inside the boundary, but the other is not,

although its majority is in fact inside. After toying with the idea of using a majority

ratio to determine the classification of a growth curve based on a boundary, we opted

to use a consecutive point approach instead. Thus if a chick had K consecutive points

outside of the boundary, it will be classified as unhealthy. In this particular example, this

would be the case for the latter chick if K ≤ 13.

Similar to previous experiments, we tested out various values for K in order to get an

understanding of the effect it has on the classification algorithm. We used the top method

(Method 2), with varying values for the standard deviation scalar, and output the results

171

Arianna Salili-James CHAPTER 5. APPLICATIONS ON OPEN CURVES

Algorithm 11: Growth Curve Sampling

sample growth curves(T,F,N=40)

Aim:

Sample a growth curve to have a N points.

Input:

A growth curve of a chick with T time-points and weights F at time T.

Code:

1. Create a template: template = numpy.linspace(T[0],T[-1],N).

2. Set newIndex = [0,length(T)−1].

3. Set missingValues = [] and find closest time-points to template:

for ı ∈ N do
index = numpy.where((T ≤ template[i]) & (T≥
template[i− 1]))

if length(index)> 0 then

index = [p
∣∣∀p ∈Index, where, p 6∈ newIndex]

if length(index)!=0 then
newIndex.append(index[-1])

else
missingValues.append(i)

end

else
missingValues.append(i)

end

end

4. search through missingValues, using larger neighbourhoods to try and find more

index values to add to newIndex. If values still cannot be found, then we

arbitrarily select k values from T and append them to newIndex, where k is the

final number of missing values.

5. Let Ts = T[newIndex] and Fs = F[newIndex]

return Ts - sampled T

return Fs - sampled F

172

Arianna Salili-James CHAPTER 5. APPLICATIONS ON OPEN CURVES

Figure 5.7: An aligned Karcher mean (magenta) and a boundary based on the Karcher mean

± a multiple of the standard deviation. The aligned growth curves of two chicks are shown,

Aria (dashed, green) and F2-2002 (dotted, black).

with the highest Fβ=0.15 score. Figure 5.8 displays the confusion matrices from ripe-Rimu

chicks aged, 0-75 days. In this example, there are six values for K, where 3 ≤ K ≤ 15.

Intriguingly, the results show differing outcomes. Whilst they unilaterally perform the

poorest with K = 3, their best results all differ. For instance, the classifications for the

female, non-hand-reared chicks improve with K = 12, 15 but the results from the same

K on the male, non-hand-reared chicks were remarkably worse, the optimal here coming

from a lower K = 9.

At the end of the day, we want to create an algorithm with the highest chance of correctly

classifying the health of chicks. Although it is easy to say that in order to obtain the

most accurate classifications, we can utilize the results of Figure 5.8 to optimize the

K parameter for each sample, in actual fact, the decision is not so simple, as we must

consider the impact on conservation. For example, the greater the value of K is (the

number of consecutive days a chick falls outside a threshold), the longer we will have to

wait in real time, before making a prediction on the health of chicks. Thus, we do not

want the parameter K to be too high. This is why, as with many practical applications,

it is important to work with the experts, in order to make such decisions.

173

Arianna Salili-James CHAPTER 5. APPLICATIONS ON OPEN CURVES

0 1

0
1

(4)
Bella-2-A-19 (0-0;3-7)

Hine Taumai-2-B-19 (0-0)
Huhana1-2-16 (0-1;4-5)

Queenie-4-A-19 (1-3;5-6)

(0)

(19)
Aroha (1-1;6-8)

Aumaria (0-1;6-8)
Aurora (2-4;5-8)
Dusky (2-2;3-4)

Eva (0-1;5-8)
Gertrude (0-1;7-11)
Huarangi (0-1;3-5)

Kuihi (0-2;7-8)
Madison (0-0;2-7)

Makorea (3-4;4-9)...

(13)
Adelaide
Aparima

Esperance
Hananui

Hine Taumai
Matariki

Mila
Monoa
Rakiura

Tumeke...

Female
Consecutive Count: 3.0

F:0.89

0 1

0
1

(4)
Bella-2-A-19 (0-5;0-7)
Hine Taumai-2-B-19

Huhana1-2-16 (0-4;3-7)
Queenie-4-A-19 (1-5;5-11)

(0)

(18)
Aroha (1-5;5-9)

Aumaria (0-3;2-8)
Aurora (2-8)

Dusky (2-3;2-4)
Eva (0-3;1-8)

Gertrude (0-4;5-11)
Huarangi (0-2;1-5)

Kuihi (0-6;8-12)
Madison (0-3;0-7)
Marian (0-3;3-7)...

(14)
Adelaide
Aparima

Esperance
Hananui

Hine Taumai
Makorea
Matariki

Mila
Monoa

Rakiura...

Female
Consecutive Count: 6.0

F:0.893

0 1

0
1

(4)
Bella-2-A-19 (0-15;65-67)

Hine Taumai-2-B-19
Huhana1-2-16 (0-7;4-10)

Queenie-4-A-19 (1-9;17-54)

(0)

(16)
Aroha (1-7;5-12)

Aumaria (0-7;4-18)
Dusky (2-6;3-11)

Eva (0-8;1-19)
Gertrude (0-5;24-40)
Huarangi (0-5;1-6)
Kuihi (0-8;19-32)
Marian (0-5;7-20)
Mati-ma (0-3;2-9)

Mukeke (2-4;2-9)...

(16)
Adelaide
Aparima
Aurora

Esperance
Hananui

Hine Taumai
Madison
Makorea
Matariki
Mila...

Female
Consecutive Count: 9.0

F:0.898

0 1

0
1

(4)
Bella-2-A-19 (0-18;5-44)

Hine Taumai-2-B-19
Huhana1-2-16 (0-8;1-10)

Queenie-4-A-19 (1-11;5-13)

(0)

(12)
Aroha (1-9;2-12)

Aumaria (0-12;2-18)
Dusky (2-8;2-11)

Eva (0-19)
Gertrude (0-8;5-20)
Kuihi (0-11;12-31)
Marian (0-9;2-16)
Mati-ma (0-5;1-9)

Mukeke (2-9)
Ninihi (0-3;2-11)...

(20)
Adelaide
Aparima
Aurora

Esperance
Hananui

Hine Taumai
Huarangi
Madison
Makorea

Matariki...

Female
Consecutive Count: 12.0

F:0.909

0 1

0
1

(3)
Bella-2-A-19 (0-30;0-44)

Hine Taumai-2-B-19
Queenie-4-A-19 (1-12)

(1)
Huhana1-2-16

(6)
Aumaria (0-18)

Gertrude (0-16;4-20)
Kuihi (0-12;10-29)
Marian (0-14;0-16)

Ninihi (0-4;1-7)
Phoenix (0-7;0-8)

(26)
Adelaide
Aparima
Aroha
Aurora
Dusky

Esperance
Eva

Hananui
Hine Taumai
Huarangi...

Female
Consecutive Count: 15.0

F:0.891

0 1

0
1

(4)
Bella-1-A-19 (0-0;3-6)

Ra3-4-16 (0-1;2-3)
SU3 (0-0;0-1)

Tumeke-4-A-19 (1-2)

(0)

(14)
Acheron (0-1;1-3)

Blake (1-2;2-4)
Chicory (0-1;1-3)
Deans (0-0;2-4)
Doc (1-2;2-4)

Horopito (0-1;1-2)
Mackenzie (1-2;1-3)

Major (0-1;4-5)
Potonga (0-0;2-4)
Robbie (1-2;1-4)...

(13)
Fergus
Henry
Horton
Kokoto

Kotahitanga
Milford

Motupohue
Palmersan
Porowhita

Quill...

Male
Consecutive Count: 3.0

F:0.887

0 1

0
1

(4)
Bella-1-A-19 (0-2;41-45)

Ra3-4-16 (0-2;2-7)
SU3 (0-1)

Tumeke-4-A-19 (1-5)

(0)

(15)
Acheron (0-6;0-8)

Blake (1-5;3-7)
Chicory (0-5)

Deans (0-2;1-8)
Doc (1-4;1-5)

Horopito (0-1;1-4)
Major (0-4;3-8)

Palmersan (3-8;4-10)
Potonga (0-2;4-7)

Robbie (1-5;7-11)...

(12)
Fergus
Henry
Horton
Kokoto

Kotahitanga
Mackenzie

Milford
Motupohue
Porowhita

Quill...

Male
Consecutive Count: 6.0

F:0.884

0 1

0
1

(4)
Bella-1-A-19 (0-6;29-45)

Ra3-4-16 (0-6;0-7)
SU3

Tumeke-4-A-19 (1-6;2-7)

(0)

(9)
Blake (1-7;10-22)
Deans (0-8;0-12)

Horopito (0-3;1-4)
Major (0-7;1-11)

Potonga (0-4;8-22)
Robbie (1-7;10-18)

Sage (0-3;2-8)
Takitimu (0-7;6-12)
Tuterangi (1-3;3-6)

(18)
Acheron
Chicory

Doc
Fergus
Henry
Horton
Kokoto

Kotahitanga
Mackenzie
Milford...

Male
Consecutive Count: 9.0

F:0.905

0 1

0
1

(1)
SU3

(3)
Bella-1-A-19

Ra3-4-16
Tumeke-4-A-19

(1)
Tuterangi (1-4)

(26)
Acheron

Blake
Chicory
Deans
Doc

Fergus
Henry

Horopito
Horton

Kokoto...

Male
Consecutive Count: 12.0

F:0.846

0 1

0
1

(1)
SU3

(3)
Bella-1-A-19

Ra3-4-16
Tumeke-4-A-19

(0)

(27)
Acheron

Blake
Chicory
Deans
Doc

Fergus
Henry

Horopito
Horton

Kokoto...

Male
Consecutive Count: 15.0

F:0.913

Rimu and non-Hand-Reared Chicks, aged 0-75 Days

0 1

0
1

(2)
F2-2002 (2-6;14-16)

Waikawa-3-A-19 (0-1;8-9)
(1)

Nora-1-A-19

(9)
Aio (0-1;1-3)

Atatu (0-1;2-4)
Elsie (2-5;4-6)
Hanariki (0-2)
Hau (1-3;3-5)

Kuihi-3-B-19 (0-2;2-4)
Rere (0-2;2-6)

Titapu (3-6;10-13)
Whaea Jane (0-2;1-3)

(11)
Ako

Alison
Aria

Galaxy
Gale

Kohengi
Konini

Marama
Matakana
Toiora...

Female
Consecutive Count: 3.0

F:0.813

0 1

0
1

(2)
F2-2002 (2-10;11-16)

Waikawa-3-A-19 (0-5;6-9)
(1)

Nora-1-A-19

(2)
Atatu (0-4)

Titapu (3-9;8-13)

(18)
Aio
Ako

Alison
Aria
Elsie

Galaxy
Gale

Hanariki
Hau

Kohengi...

Female
Consecutive Count: 6.0

F:0.889

0 1

0
1

(2)
F2-2002 (2-13;11-18)

Waikawa-3-A-19 (0-7;9-14)
(1)

Nora-1-A-19

(1)
Titapu (3-13)

(19)
Aio
Ako

Alison
Aria

Atatu
Elsie

Galaxy
Gale

Hanariki
Hau...

Female
Consecutive Count: 9.0

F:0.913

0 1

0
1

(2)
F2-2002 (2-16;10-20)

Waikawa-3-A-19 (0-9;9-16)
(1)

Nora-1-A-19

(0)

(20)
Aio
Ako

Alison
Aria

Atatu
Elsie

Galaxy
Gale

Hanariki
Hau...

Female
Consecutive Count: 12.0

F:0.959

0 1

0
1

(2)
F2-2002 (2-18;8-20)

Waikawa-3-A-19 (0-11;8-17)
(1)

Nora-1-A-19

(0)

(20)
Aio
Ako

Alison
Aria

Atatu
Elsie

Galaxy
Gale

Hanariki
Hau...

Female
Consecutive Count: 15.0

F:0.959

0 1

0
1

(1)
Waa-2-A-19 (0-2;2-4)

(0)

(9)
Bunker (0-2;1-2)

Kenneth (0-0;2-3)
Kewa (0-3;2-4)
Koraki (1-2;1-2)

Manawanui (0-1;1-2)
Otepoti (0-2;1-3)
Tomua (0-2;0-3)

Tumanako (0-2;1-3)
Uri (0-2)

(12)
Ariki
Bravo
Hikoi

Hondy
Hugh

Kohitatea
Lind

Mahutonga
Margaret-maree-2-B-19

Orion...

Male
Consecutive Count: 3.0

F:0.946

0 1

0
1

(1)
Waa-2-A-19 (0-4)

(0)

(2)
Kenneth (0-1;1-3)

Manawanui (0-1;1-2)

(19)
Ariki
Bravo

Bunker
Hikoi

Hondy
Hugh
Kewa

Kohitatea
Koraki
Lind...

Male
Consecutive Count: 6.0

F:0.968

0 1

0
1

(1)
Waa-2-A-19 (0-6;4-9)

(0)

(4)
Bunker (0-7;2-11)

Kenneth (0-1;2-29)
Manawanui (0-2;1-15)

Orion (1-10)

(17)
Ariki
Bravo
Hikoi

Hondy
Hugh
Kewa

Kohitatea
Koraki
Lind

Mahutonga...

Male
Consecutive Count: 9.0

F:0.96

0 1

0
1

(1)
Waa-2-A-19 (0-8;2-9)

(0)

(2)
Bunker (0-11)

Kenneth (0-3;1-29)

(19)
Ariki
Bravo
Hikoi

Hondy
Hugh
Kewa

Kohitatea
Koraki
Lind

Mahutonga...

Male
Consecutive Count: 12.0

F:0.968

0 1

0
1

(1)
Waa-2-A-19 (0-9;2-11)

(0)

(1)
Kenneth (0-7;1-29)

(20)
Ariki
Bravo

Bunker
Hikoi

Hondy
Hugh
Kewa

Kohitatea
Koraki
Lind...

Male
Consecutive Count: 15.0

F:0.977

Rimu and Hand-Reared Chicks, aged 0-75 Days

Figure 5.8: Confusion matrices for the comparison of different values of K (labelled here as

consecutive count). Each confusion matrix is a heat-map representing (clock-wise, from the

top-left corner) the chicks that were classified as true negatives, false positives, true positives,

false negatives, where the darker the colour is, the greater the proportion is. Inside the boxes,

there are the names of some of the chicks within these proportions. Here we see the results

from chicks born during ripe-Rimu season. As before, unhealthy and healthy classifications are

labelled as 0 and 1 respectively, and F is the Fβ=0.15 score. Additionally, the numbers written

next to the names of the chicks that were classified as unhealthy represent the first and last

segment of ages where the growth curve fell outside of the boundary. For example, in the last

plot (bottom, far-right), we see that the chick Waa-2-A-19 had consecutive points between ages

0-9 and 2-11 days outside of the boundary.

174

Arianna Salili-James CHAPTER 5. APPLICATIONS ON OPEN CURVES

Precautionary Steps

Classification can make a big impact on conservation. Therefore, when it comes to kākāpō

conservation, it is more important than ever to get it right. Hand-rearing an unhealthy

chick (or moving it to another nest) can undoubtedly save its life, ergo a misclassification

of an unhealthy chick could have grave consequences. Concurrently, over-classifying chicks

as unhealthy can also lead to harmful impacts, such as a lack of resources for chicks who

genuinely require more help, or even negative imprinting135. For more details on the

effects of hand-rearing, we refer the reader to (Eason and Moorhouse, 2006). Henceforth,

it is vital to provide an additional safety net to the classification algorithm, just in case,

even if they are rarely required.

1. Misclassifying Unhealthy Chicks (potential false negatives): If after the

initial classification (based on chosen method) a chick has been classified as healthy,

we perform an additional check, in order to reduce the risk of a sample being a false

negative. To do this, we compare the growth curve to a new boundary (lower

bound), this time based on the standard cross-sectional mean. This is similar to

the original method of detecting underweight chicks, however with a much lower

boundary, where the default is currently set at mean−75%. Thus, if a growth curve

is lower than this new extreme boundary, then it is reclassified137 as unhealthy.

Note that this safety net is only applicable in extreme cases and it is rarely utilized.

Nonetheless, it remains in the algorithm, just in case, the original methods fail to

correctly identify the health of a severely underweight chick.

2. Misclassifying Healthy Chicks (potential false positives): If a growth curve

has been classified as unhealthy in the initial classification, in order to decrease the

risk of it being a false positive, we perform an additional test. Here, we compute

the ratio of points in the latter half of the chick’s growth curve that are above

the standard cross-sectional mean. If this ratio is greater than some threshold

(currently set at 0.5), then the chick is reclassified as healthy. Importantly, it must

be noted that there are a few caveats applied here. Firstly, if a chick is on a negative

trend, determined by its gradient at the last three days of its growth curve; or if

135Sirocco136the kākāpō is a notable example of a chick who imprinted on humans after intensive hand-

rearing early on in his life.
136https://www.doc.govt.nz/nature/native-animals/birds/birds-a-z/kakapo/sirocco/
137At present, this additional filter is only applicable on chicks who are ≥ 10 days old, as original

boundaries in the first week of a chick’s life are finer.

175

https://www.doc.govt.nz/nature/native-animals/birds/birds-a-z/kakapo/sirocco/

Arianna Salili-James CHAPTER 5. APPLICATIONS ON OPEN CURVES

Figure 5.9: Example shot of the kākāpō health classification program, developed by Giotto

Frean. A chick can be selected and its health predicted. Furthermore, new points can be added

to the growth curves of the chicks. Note that this page is connected to the live data that is

tracked and collated by the Kākāpō Recovery group.

a chick’s greatest age is much lower than the maximum age138 we have set in the

mean template, then the chick’s health is not reclassified. This safety net is not

too common, but out of a test on 50 chicks, the safety net was incorporated on the

classifications of three of them.

5.1.9 Summary & Significance in Conservation

Throughout this project, the aim has been to create an algorithm to aide with the con-

servation of these marvellous birds. By creating a web-based platform, we unlock the

true functionality of our algorithms and in turn, enable the team at Kākāpō Recovery to

take full advantage by utilizing the classification tool in real-time.

138We require the maximum age in the growth curve to be greater than a fifth of the maximum age in

the mean template for this particular extra filter to be applied.

176

Arianna Salili-James CHAPTER 5. APPLICATIONS ON OPEN CURVES

Kākāpō Chick Health Detection Tool

The results from our research revealed that the top method for chick health classification

was with Method 2 (see Figure 5.8 for example) combined with the safety-net features

discussed earlier. By writing a series of algorithms based on this method and the neces-

sary Python code (examples of which can be seen in Appendix A.1), with the help of a

web developer, Giotto Frean, we created an online tool that can be used to monitor the

health of kākāpō chicks.

Figure 5.9 shows an example of the web interface of the classification program. To make

it as simple as possible, the only mandatory field is the chick name. By selecting a chick,

a growth curve of the chick is shown along with the chick’s predicted classification. Fur-

thermore, the program is linked to the live data that the Kākāpō Recovery group track,

and can provide predictions on-the-go. Moreover, as it is connected to the live database,

the program can identify the sample of the chick (i.e. based on its sex, and ripe-rimu /

hand-reared status), display it and use it optimize parameters.

In collaboration with Kākāpō Recovery, we designed a scheme aimed at enabling the

classification tool to run as smoothly as possible. To do this, we pre-computed values

whenever necessary and categorised the data into three sections:

1. Meta details – the weights of chicks at given timestamps, as well as the additional

parameters we used to sample chicks (sex, ripe-rimu / hand-reared status).

2. Karcher means – to avoid computing the Karcher mean every time a prediction

is made, we pre-compute the means on a daily basis, for each sample group. This

dataset also involves the standard deviation and the average warping function, γ̄,

as utilized in Method 2 (see Section 5.1.7).

3. Optimal parameters – The optimal parameters for each sample group, such as the

standard deviation scalar, or the number of consecutive points we use when defining

the health. Unlike the Karcher means, to reduce the time spent on optimization,

these values are updated less regularly.

Summary

Until now, methods of elastic shape analysis had seldom (if ever) been applied to con-

servation projects. Here, we have seen that such methods can not only be applied, but

177

Arianna Salili-James CHAPTER 5. APPLICATIONS ON OPEN CURVES

can be incorporated successfully in creating useful tools, that have the potential to work

better than current methods that conservationists often employ.

Thus far, we have focused on young, pre-fledged chicks, therefore, our next step is to

create a technique that can be used to classify older, fledged chicks. To do this, we will

train our algorithms on older chicks. This will involve working directly with the Kākāpō

Recovery group, once again, in order to obtain ground truth health classifications. Fur-

thermore one possible challenge that may arise when working with post-fledged chicks, is

based on the historical data the chicks possess. Thus, when performing classification here

as well as additional statistical analysis on the growth curves, we must study the question

how far back should we go in the chick’s growth curve, to include it in the classification?

Throughout this section, we have obtained decent classification results, and thus created

a novel platform to be used by the Kākāpō Recovery group, in order to monitor chicks.

Soon, after the next breeding season, our methods will be utilized to monitor the next

group of chicks. And when this happens, we can begin to see the true performance of our

methods, as well as the potential of the applications of shape analysis in conservation.

And if our techniques prove even just a little helpful in the monitoring of these incredible,

endangered species, then we have made a true difference, and can be proud.

Figure 5.10: A young kākāpō roaming around. Photo taken by A.Digby.

178

Arianna Salili-James CHAPTER 5. APPLICATIONS ON OPEN CURVES

5.2 Kiwi Call Identification

For millions of years, New Zealand flourished with an abundance of birds. With no

mammalian predators, birds thrived, and evolved into some of the most unique and

wonderful species on the planet. Many are/were endemic to New Zealand; from the

flightless South Island Giant Moa (the tallest known bird species to have existed), to the

world’s only alpine parrot, the Kea. However, with the start of human settlements in New

Zealand in the last millennium, everything changed. Over-hunting, habitat-destruction,

and the introduction of invasive species led to the unfortunate extinction of many of these

wondrous birds, such as the mighty Haast’s Eagle, the elegant Huia, and the distinctive

Whēkau (Laughing Owl). This has motivated the need for conservation projects and

bodies139 aimed at protecting the remaining, remarkable birds of New Zealand from

similar, dire fates. Examples of conservation efforts range from simply erecting pest-

proof fences around certain habitats, as described in (Burns et al., 2012) to nationwide

projects such as Predator-Free Wellington141, the Kiwi Recovery Plan142, and Predator

Free New Zealand 2050143.

5.2.1 Introduction to Automatic Birdsong Recognition

It is no secret that birds are rather talkative, to say the least, and are often identifi-

able from their song. Thus, ornithologists and others alike, have used this as the basis

for monitoring species for some time. A common approach is the 5-minute call count,

which, broadly, involves spending 5-minute intervals identifying as many birds as possible

in certain locations. Further details and similar methodologies are described in (Ralph

et al., 1995). Though the premise is simple, these types of listening methods have their

drawbacks, such as being time-consuming, susceptible to human errors, and biased to-

wards species that are not afraid of humans and/or those that live in accessible territories.

Nonetheless, they are commonly used to monitor species in New Zealand today, including

in volunteer projects (Peters et al., 2016).

139For more details regarding some examples of bird conservation projects, check out New Zealand’s

largest independent, conservation organization, Forest & Bird140.
140https://www.forestandbird.org.nz/
141https://www.gw.govt.nz/environment/pest-management/predator-free-wellington/
142https://www.doc.govt.nz/globalassets/documents/science-and-technical/tsrp64entire.

pdf
143https://predatorfreenz.org/the-big-picture/our-vision-taonga/

what-predator-free-2050/

179

https://www.gw.govt.nz/environment/pest-management/predator-free-wellington/
https://www.doc.govt.nz/globalassets/documents/science-and-technical/tsrp64entire.pdf
https://predatorfreenz.org/the-big-picture/our-vision-taonga/what-predator-free-2050/
https://predatorfreenz.org/the-big-picture/our-vision-taonga/what-predator-free-2050/
https://www.forestandbird.org.nz/
https://www.forestandbird.org.nz/
https://www.gw.govt.nz/environment/pest-management/predator-free-wellington/
https://www.doc.govt.nz/globalassets/documents/science-and-technical/tsrp64entire.pdf
https://www.doc.govt.nz/globalassets/documents/science-and-technical/tsrp64entire.pdf
https://predatorfreenz.org/the-big-picture/our-vision-taonga/what-predator-free-2050/
https://predatorfreenz.org/the-big-picture/our-vision-taonga/what-predator-free-2050/

Arianna Salili-James CHAPTER 5. APPLICATIONS ON OPEN CURVES

In recent years, we have seen the rise of cheap, automatic, acoustic recorders that have

revolutionised birdsong monitoring. These devices offer the prospect of monitoring meth-

ods that are far less obtrusive than in-person listening techniques, henceforth there are

now thousands of acoustic recorders deployed in New Zealand. The potential for this data

is enormous, particularly with regards to automatic birdsong recognition. This can prove

a highly useful tool in conservation, for example in estimating species abundance144.

Visualising Birdsong

When analysing audio data from recorders, actual bird-calls are rather infrequent overall.

Therefore, instead of analysing audio in real-time, it is often easier to employ a visual

representation of the recording. A common method in visualising sound data is with

histograms called spectrograms145. An example of a spectrogram plot from a recording

of a male Kiwi can be seen in Figure 5.11. These spectrograms can be thought of as

heat-maps, depicting the frequency (vertical axis) and power (intensity) of a recording,

over time (horizontal axis).

By employing spectrogram representations of audio data, we expand the ways in which we

can automatically analyse birdsong. For example, in (Kahl et al., 2021), image-processing

tools were combined with a deep artificial neural network, to classify bird species from

spectrogram data. In addition to the usual dependence of large training sets in deep

learning, these methods are also susceptible to noise. This has led to literature focusing

on denoising birdsong sound data, such as (Priyadarshani et al., 2016), that can be used

as a pre-processing step for further analysis. Alternatively, by working with spectrograms,

we can turn to the field of shape analysis.

Spectrogram Shapes

Shapes can certainly be found in spectrogram plots. As seen in Figure 5.11, a spectrogram

displays the components of a call: a fundamental frequency together with a set of har-

144Estimating populations via acoustics is particularly important for most bird species, as birds are

genereally more easily heard than seen. Acoustic methods are even more vital for certain New Zealand

bird species, where the birds live in bushes, are nocturnal, and are generally well-camouflaged. Though

we note that there are some exceptions where image-based recognition is helpful such as the research in

(Fretwell et al., 2017), regarding albatrosses.
145We note that we will elaborate on the computation of such graphs later on in this section.

180

Arianna Salili-James CHAPTER 5. APPLICATIONS ON OPEN CURVES

Figure 5.11: Spectrogram from a recording of a male kiwi call. The y-axis corresponds to

frequency, whilst the x-axis corresponds to time. The intensity of the heat-map corresponds to

the power in that frequency.

monics146. These harmonics, and their number, provide a host of information, from the

species anatomy and power, to the distance from the recorder. By gathering information

from the call, we can analyse birdsong from recorders, in order to identify species. Com-

monly, this is done using machine learning algorithms, such as support vector machines

to recognise individual birds in (Cheng et al., 2012), neural networks for classification

in (Qian et al., 2015), or a Markov model approach in (Lakshminarayanan et al., 2009).

However, what we see in spectrograms are simply shapes. This is a shape problem; hence

the question arises, why not use shape methods?.

At present, shapes are seldom studied when it comes to the analysis of audio data. How-

ever, there are few exceptions, for example, the literature found in (Rocha and Romano,

2021) and (Norman et al., 2013), where Geometric Morphometrics techniques, such as a

semi-landmark approach, were employed to study 3D spectrogram data. But the focus in

the aforementioned literature are not on individual curves. Thus the question arises: can

we use shape analysis on the true curves? As elastic shape analysis has not been applied

to audio data147, this motivates us to examine the possibility of applying such methods

for automatic birdsong classification.

5.2.2 Project Introduction

We are interested in the applications of elastic shape analysis to spectrogram curves from

audio data. Therefore, we have began a project in collaboration with AviaNZ148, to

146Note that we will go into more details about such frequency curves later on.
147Excluding very difficult applications to SONAR data, as seen in (Tucker et al., 2013).
148https://www.avianz.net/

181

https://www.avianz.net/
https://www.avianz.net/

Arianna Salili-James CHAPTER 5. APPLICATIONS ON OPEN CURVES

Figure 5.12: Juvenile Little Spotted Kiwi at Zealandia Ecosanctuary, NZ.

investigate whether shape methods can be used to identify individuals within a species.

AviaNZ

AviaNZ is a collaboration between a variety of experts ranging from bird ecologists and

conservationists to mathematicians and data scientists. To tackle the questions regarding

species classification, the team designed a software package, called AviaNZ, to analyse

birdsong; incorporating both manual annotations, as well as automated species detection.

For more details regarding the software, we refer the reader to (Marsland et al., 2019).

The team are involved in numerous conservation projects which involve field-work and

research on automatic species classification using the AviaNZ software.

Kiwi Birdsong Data

Our global aim is to develop methods that can be applied to the acoustic classification of

kiwis. But to begin with, we focus on one species: the North Island brown kiwi (Apteryx

mantelli). As our AviaNZ collaborators already possess a large amount of calling data

from this species, this seemed like a logical choice.

Kiwis are flightless, nocturnal birds that are endemic to New Zealand. They are easily

recognisable by their long and thin beaks (which, with nostrils attached to end, lead to

their great sense of smell), and notable for their egg size (which is the largest in pro-

portion to body size for any bird species); and thus, kiwis make for a rather adorable

national icon. Furthermore, though once abundant throughout most of New Zealand, four

of the five kiwi species are now classed as vulnerable according to the International Union

182

https://www.iucn.org/it
https://www.iucn.org/it
https://www.iucn.org/it

Arianna Salili-James CHAPTER 5. APPLICATIONS ON OPEN CURVES

for Conservation of Nature149. For this reason, there have been numerous conservation

projects to help save the kiwi. In particular, the Department of Conservation150 has set

up various sanctuaries, allowing kiwis to roam free without the threat of predators; for

example, Zealandia151 in Wellington, where the photo in Figure 5.12 was taken.

Kiwis have rather distinctive calls, which are made up of syllables containing multiple

harmonics152. The males have a periodic high-pitched call, whilst the female kiwis have

a lower and more rasping croak-like call. We focus on the male kiwi calls, where a

spectrogram example can be seen in Figure 5.11.

Project Aims

The goal is to design a framework that extracts curves from spectrograms, computes

distances between sets of harmonics, and classifies individuals within a species, by, pri-

marily, comparing the shapes of the harmonics that the individuals produce in their calls.

We begin by focusing on a dataset of recordings taken from 4 male North Island Brown

Kiwi, who were fitted with individual recorders. Furthermore, to develop our methods

on this dataset, our project is split into three sections, which bring together tools from

signal and image processing, elastic shape analysis, and machine learning:

1 – Call Extraction from Spectrograms The first step is to extract calls from

spectrograms, i.e. the curves seen in Figure 5.11. To do this, we use a combination of

signal processing methods (which we will go into more detail about in the next subsection)

and contour extraction methods, as discussed in previous chapters.

2 – Differences in Harmonics Once we have curves describing calls, we can begin

to make comparisons between them. This involves using shape analysis to compute

pairwise distances between curves, as well as computing differences based on additional

information such as the average frequency or length of the harmonic.

3 – Machine Learning Classification Finally, we use the information found in the

previous step and train a machine learning classifier to classify the kiwi calls to the

149https://www.iucn.org/it
150https://www.doc.govt.nz/
151https://www.visitzealandia.com/
152Note that we will come back to the structure of kiwi calls later on in this section.

183

https://www.iucn.org/it
https://www.iucn.org/it
https://www.iucn.org/it
https://www.doc.govt.nz/
https://www.visitzealandia.com/
https://www.iucn.org/it
https://www.doc.govt.nz/
https://www.visitzealandia.com/

Arianna Salili-James CHAPTER 5. APPLICATIONS ON OPEN CURVES

individual.

5.2.3 Signal Processing Fundamentals

In everyday life we don’t often think about visualising audio. And in those moments

when we do ponder about plotting audio, it may be more common to picture waveform

plots, instead of spectrograms, as they’re often seen in logos and popular culture (take

for instance, the album cover for the 2013 album, AM 153, by the indie rock band Arctic

Monkeys). Meanwhile, harmonics, or in general, frequency waves, are also sometimes

referenced in popular culture, albeit more subtly, such as the logo for the streaming

provider, Spotify154. But what do these waveforms and frequency wave curves mean? In

this section, we go through the fundamentals of signal processing tools that allow us to

visualise and mathematically describe audio data.

Visualising Audio

An audio file is a digital representation of sound made by sampling the air pressure at

regular intervals. This is an audio time series which can then be plotted as a waveform,

as in the top plot of Figure 5.13. Waveforms represent the amplitude of a sound wave

over time. Thus, if the waveform is at 0, this can be interpreted as silence.

In order to get a better understanding of an audio signal, we want to visualise not just

the amplitude over time, but the frequency too - this brings us onto spectrograms. For

this we need frequency information.

To compute a spectrogram from an audio signal, the audio is first split into windows, and

a discrete Fourier transform is computed for each window:

Fk =
N−1∑
n=0

an exp
−2πi

N
kn (5.12)

where {Fk} is the spectrum of the frequencies, and {ai} are the discretized amplitudes

sampled from the audio file. In order to compute the discrete Fourier transforms, DFTs,

a Fast Fourier Transform, FFT, algorithm is used, such as the algorithm described in

153https://en.wikipedia.org/wiki/AM_(Arctic_Monkeys_album)#/media/File:%22AM%22_

(Arctic_Monkeys).jpg
154https://www.spotify.com/us/

184

https://en.wikipedia.org/wiki/AM_(Arctic_Monkeys_album)#/media/File:%22AM%22_(Arctic_Monkeys).jpg
https://www.spotify.com/us/
https://en.wikipedia.org/wiki/AM_(Arctic_Monkeys_album)#/media/File:%22AM%22_(Arctic_Monkeys).jpg
https://en.wikipedia.org/wiki/AM_(Arctic_Monkeys_album)#/media/File:%22AM%22_(Arctic_Monkeys).jpg
https://www.spotify.com/us/

Arianna Salili-James CHAPTER 5. APPLICATIONS ON OPEN CURVES

Figure 5.13: A 6-second clip of a recording from a male kiwi call. Top: a waveform plot over

time. Bottom: a spectrogram from the audio.

(Cooley and Tukey, 1965). The output of the FFT is the amplitudes of different frequen-

cies.

We note that Fourier transform analysis assume that signals continue infinitely in time.

Thus, unless the signal in each window is aligned with the entire sampling time, the DFT

will simply produce a spike; which is not so helpful. To overcome this, a window function

is used that decays to 0 outside some range. A commonly used function is the Hann

function:

ω(n) =
1

2
− 1

2
cos

2πn

M − 1
(5.13)

where 0 ≤ n ≤M−1 and M is the chosen number of points in the window155. Throughout

this project, we use this Hann function for our spectrograms. For more details regarding

the Hann window function and other window functions, we refer the reader to the book

(Prabhu, 2014).

The final output is a two dimensional matrix containing the magnitudes of frequencies

over time. This can then be plotted as a heatmap, i.e. a spectrogram. An example of a

spectrogram can be seen in the lower plot of Figure 5.13, where the whiter the colour is,

the stronger the frequency.

155We note that in this project, we stick to a 256-sample Hann window.

185

Arianna Salili-James CHAPTER 5. APPLICATIONS ON OPEN CURVES

Figure 5.13 demonstrates how we can plot sound such as kiwi calls collected from recorders.

We see that the spectrogram plot is far more helpful than the waveform plot, as we can

get an idea of the frequencies involved. The next step is to define the dominant frequency

that those harmonics are based on.

Dominant & Fundamental Frequencies

A spectrogram displays the spectrum of frequencies from an audio signal. Some of these

frequencies may be stronger than others, such as those represented by the brightest curves

displayed in Figure 5.13. The question of how to define these bright curves brings us to

the topics of dominant frequencies and fundamental frequencies.

As described in (Telgarsky, 2013), a dominant frequency is the frequency carrying the

maximum energy with respect to other frequencies found in the spectrum. Meanwhile,

the fundamental frequency is the lowest frequency that has a peak among the other fre-

quencies. Colloquially, this can be thought of as the brightest lowest frequency wave seen

in a spectrogram; as well as the frequency wave which the harmonics in a call are based

on. When the fundamental frequency has the largest amplitude, then it is considered to

be both the fundamental and dominant frequency.

The dominant and fundamental frequencies play a huge part in audio analysis and signal

processing. This is no surprise as they are the prominent frequencies our ears perceieve

when listening to audio signals, (Bruce and Marilyn, 1993). By analysing these frequen-

cies, we learn a lot about the audio signal in question; for this reason they are often used

in applications to signal processing, such as in (Pal et al., 2018), where the fundamental

frequency is used to detect synthetic speech.

Estimating the fundamental frequency is a significant topic in signal processing, as em-

phasised in (Gerhard et al., 2003). Though it is not always a simple task, especially when

the signal is noisy, there exist algorithms that take on the job rather successfully, such

as the well-known YIN algorithm (De Cheveigné and Kawahara, 2002). More often than

not, these algorithms, including YIN, involve the computation of the autocorrelation;

186

Arianna Salili-James CHAPTER 5. APPLICATIONS ON OPEN CURVES

which, in signal processing, is defined as:

Rxx(τ) =
N−1−τ∑
n=0

x(n)x(n+ τ) (5.14)

for a finite, discrete-time signal x(n) of size N . Broadly, by finding the maximum of the

autocorrelation function of a signal, x(n), we can estimate the fundamental frequency.

We will see how the frequencies aide us in extracting curves from spectrograms, in order

to define kiwi calls. Finally, for more details on the evaluation of techniques used to

estimate such frequencies, we recommend (Gerhard et al., 2003).

5.2.4 Extracting Curves from Kiwi Calls

In the simplest terms, we want to compare the calls of individual kiwi birds. But to do

that, we must first define what we mean by a call.

Defining Kiwi Calls

The call of male kiwis can be described as a shrill, repeating trill. Consequently, in high-

quality recordings, this results in spectrograms that contain clear harmonics, of generally

three or more variations, repeated over time. Other species, especially those whose calls

also consist of distinctive high-pitched trills, such as the Ruru (an owl, also known as a

Morepork), produce similar spectrograms. For a detailed analysis on the vocalisation of

a kiwi calls (for Little Spotted Kiwi, specifically), we refer the reader to (Digby et al.,

2013). Additionally, for an overview of calls from a variety of New Zealand bird species,

we recommend the following study on the environmental effects of calls of twenty differ-

ent New Zealand birds, obtained through automatic recorders, in (Priyadarshani et al.,

2018). To hear snippets of calls from kiwi as well as many other species in New Zealand

and elsewhere, check out the AviaNZ cheat sheet156.

Spectrograms display a host of frequency curves for all animals. In general, most an-

imals deliberately make the lowest frequency, called the fundamental frequency, whilst

other frequencies appear as a result of vibrations on the vocal chords. For birds however,

due to the nature of their syrinx (vocal organ), they can emphasise multiple frequencies,

where the one with the most power is labelled the dominant frequency. For this reason,

156https://www.avianz.net/index.php/resources/cheat-sheet/diurnal-birds

187

https://www.avianz.net/index.php/resources/cheat-sheet/diurnal-birds
https://www.avianz.net/index.php/resources/cheat-sheet/diurnal-birds

Arianna Salili-James CHAPTER 5. APPLICATIONS ON OPEN CURVES

Figure 5.14: A spectrogram from a recording of a male kiwi call. The faint green curves

represent the frequencies with the most energy. In order to label the terms we use in this

project, we have highlighted three curves in red. Distinct individual curves representing the

harmonics can be called formants or ridges. A syllable is the grouping of those formants, i.e.

harmonics, into a single piece of a call, separated by silence. In this specific project, we look

at syllables that contain three formants, thus the informal term, trio, may also be used for the

specific syllables in this project.

we can see harmonic curves at different frequencies on spectrograms, as in Figure 5.14.

In Figure 5.14, we show a spectrogram computed from a 5-second recording of a male

kiwi call. As before, the lighter the colour, the stronger the frequency. Here, we have

highlighted three distinct curves (originally in a faint blue) in red for emphasis. The

curves are harmonics, which, here, we will refer to as formants or ridges. These formants

are variations of the same curve. Henceforth, we describe the group of all such variations

as a syllable, and describe a call as a collection of syllables, with silence in-between, as

labelled in Figure 5.14.

We note that in general, male kiwi calls contain multiple harmonics per syllable. The

number of strong formants can certainly vary but in our study, observations showed that

this number was generally greater or equal to 3. Therefore, in this project, for the purpose

of simplicity and consistency, we restrict our syllables to exactly three formants. These

groups may be referred to as a trio.

188

Arianna Salili-James CHAPTER 5. APPLICATIONS ON OPEN CURVES

Extracting Calls from Spectrograms

We wish to extract the curves (represented by x and y coordinates), that form a call of

a kiwi from a spectrogram. For the most part, we treat the spectrograms as images and

utilize contour extraction tools seen in previous sections as well as the Image Processing

chapter. Though, as you will soon see, in one part of the curve extraction, we do not

treat the spectrogram as just an image, and instead, we compute the dominant frequency

curves, based on the recording and its spectrum of frequencies. Overall, we employ a

five-stage process in order to form a dataset of kiwi calls from recordings. We briefly

describe the aforementioned process in the next paragraphs and subsequently outline the

Python code we designed to complete the tasks.

Step 1 – Dominant Frequency Curves The motive of this first step is to gain an idea

about where the harmonics lie in a spectrogram, before turning to image processing tools.

Harmonics produce variations of the same curve. By computing the dominant frequency,

we can find that curve. But we are not just interested in one curve, or ridge, that forms

part of a syllable, we’re interested in multiple ridges, specifically three. Therefore, just

computing the dominant frequency is not enough. For this reason, the true purpose of

this first step is to find the dominant frequency at multiple levels. To do this, a dominant

frequency is found; and then used to alter the spectrum of frequencies, by modifying

the original spectrogram to de-emphasize the area where the dominant frequency was

found. The new spectrogram is then used to find another dominant frequency. This

process is repeated three times. The algorithm used to compute the dominant frequency

is described in (Telgarsky, 2013).

Step 2 – Spectrogram Binarization In this section we restrict the color palette

to two colours. In other words, we binarize the spectrogram plot. Unlike in previous

sections where we binarized images using rather involved techniques, here we incorporate

a much simpler strategy. We start by computing a threshold value, k, estimated for each

data point. This value is based on the mean and standard deviation of the energies from

a spectrogram, S, represented by pixels P . Henceforth, all points with a pixel colour

under k are turned black, whilst the others are turned white i.e. SP≤k 7→ 0, SP>k 7→
1. Moreover, we utilize the original dominant frequency found in the previous step, to

create vertical boundaries that are estimated to not contain any syllables. Consequently,

the pixels of all the points in the spectrogram that are contained within these vertical

189

Arianna Salili-James CHAPTER 5. APPLICATIONS ON OPEN CURVES

boundaries are turned black.

Step 3 – Contour Extraction In this step, we employ the Marching Squares algo-

rithm, (Maple, 2003), just as we did in previous sections, to find all the contours within

the binarized spectrogram. We create horizontal boundaries based on the numerous dom-

inant frequency curves, computed at different levels, in Step 1. We then filter for contours

that include a point that lies within at least one of the horizontal boundaries.

Step 4 – Connecting Neighbouring Contours It is possible that there are contours

found in the previous step that represent the same harmonic; this is an easy mistake, es-

pecially given the simplistic nature of the contour extraction and image binarization

methods employed. We tackle this problem in this step, by connecting neighbouring con-

tours, with the aim of obtaining full ridges. To do this, for each contour in a spectrogram,

we search for neighbouring contours that are to the left or to the right of the contour.

We then join the possible neighbours together into one longer curve. All curves are sub-

sequently smoothed using a univariate spline157, with degree parameter158 k = 1.5, and

are reparameterized to have a chosen number of points (the default is 100 points).

Step 5 – Segmenting Syllables The purpose of this final step is to group ridges

together into syllables. We first compute thresholds based on the average x and y ranges

across all ridges in the spectrogram in order to filter out contours with very different

ranges. Next, we compute the average x coordinate and round it to the nearest multiple

of 10. We then use these values to group contours with similar average x-coordinates, in

order to segment the ridges into groups. We then remove all contours that are in groups

of less than three. An example of the outcome of this step can be seen in Figure 5.15,

where we see syllables containing three ridges on a spectrogram from a recording of a

male kiwi.

157https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.

UnivariateSpline.html
158We note that the degree parameter was chosen experimentally after tests comparing connected ridges

showed that with k = 1.5, the curves were sufficiently smoothed whilst their true shape was retained.
158https://scikit-image.org/docs/0.8.0/api/skimage.measure.find_contours.html

190

https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.UnivariateSpline.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.UnivariateSpline.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.UnivariateSpline.html
https://scikit-image.org/docs/0.8.0/api/skimage.measure.find_contours.html

Arianna Salili-James CHAPTER 5. APPLICATIONS ON OPEN CURVES

Figure 5.15: A binarized spectrogram from a 5-second kiwi call recording. Here, we see two

syllables in red and green, each containing three ridges.

Figure 5.16: A diagram demonstrating Step 5 of Algorithm 15. Top: here we show an example

of a contour c2 being connected to a contour to its left, c1. The blue lines demonstrate the

boundary range for the end-point of c1 and the red line measures the difference in the average

y-values of c1, c2. The variables px, py are the boundary parameters described in Algorithm 15.

Bottom: in this plot, we see the new, connected contour, made up of c1

∣∣
x≤x0 and c2 where x0

is the x-value of the first (left-most) point in c2. Note that the straight line connecting the two

segments is reparameterized in the subsequent smoothing step.

191

Arianna Salili-James CHAPTER 5. APPLICATIONS ON OPEN CURVES

Algorithm 12: Multi-Level Dominant Frequency Extraction

multi dFreq(file,k=4,neighbours=5,p=0.5)

Aim:

Computes a spectrogram and k dominant frequency curves.

Initial Step:

Load the file into a readable format, with some given sample rate.

Code:

1. Compute spectrogram S0, using the Hann window function.

2. Compute the initial dominant frequency curve, d0, from the spectrogram, S0,

using the algorithm described in (Telgarsky, 2013).

3. Find another k − 1 dominant frequency curves:

for i ∈ 1, . . . , k − 1 do
Let Si := Si−1

for (x, y) ∈ di−1 do

• Create neighbourhood around point (x, y) on Si, based on the

neighbours parameter.

• Replace the intensities of the pixels in the neighbourhood with

a series of random values between 0 and 1 (for example, by

using numpy.random.rand).

end

Find dominant frequency curve, di, from Si.

end

4. Split the initial dominant frequency curve, d0, into multiple curves by estimating

the start/end times of syllables. To perform this estimation, two threshold values

t1=np.average(abs((d0)
′
y)) and t2=np.average((d0)y)-(p*np.std((d0)y) are

computed. Points where the absolute value of the derivative falls below t1, but

y-value is greater than t2 are deemed as syllable end-points. A list, Dx, containing

the x-values of the end-point positions is created.

return {d0, · · · , dk−1} - k dominant frequency curves.

return S0 (numpy.array) - original spectrogram.

return Dx (list) - estimated x-values of the syllable end-points.

192

Arianna Salili-James CHAPTER 5. APPLICATIONS ON OPEN CURVES

Algorithm 13: Spectrogram Binarization

binarizeSpec(spectrogram,Dx,p=0.625,nb=30,bound=15)

Aim:

Creates a binarized version of a spectrogram plot.

Initial Step:

Compute spectrogram / syllable end-points, Dx, with Algorithm 12.

Code:

1. Compute threshold value k=numpy.average(S)+p*(numpy.std(S)) where

S=spectrogram.flatten().

2. Make a copy, S∗ of spectrogram, where every pixel, pi ≤ k is turned black, and

every pixel pi > k is turned white.

3. Create vertical segments between the start and end points of syllables. These

segments are based on Dx, whilst their width is also based on the neighbour

parameter u=int(numpy.shape(S∗)[1]/nb). These vertical segments are hence

grouped into a list of lists, V .

4. Recolour all points within the vertical segments, V , as black.

5. Since it is not uncommon to have noise present at the lowest levels of a

spectrogram, we recolour points near the base as black, where the base boundary

is determined with bound.

return S∗ (numpy.array) - k binarized version of spectrogram.

return V - vertical segments between syllable start/end-points.

193

Arianna Salili-James CHAPTER 5. APPLICATIONS ON OPEN CURVES

Algorithm 14: Syllable Contour Extraction

contExtraction(binSpec,dFreqs,ms level=0.8,bound=20)

Aim:

Find all contours of syllables in a binarized spectrogram, binSpec.

Initial Step:

Get dominant frequencies (dFreqs)/binSpec with Algorithms 12/13.

Code:

1. Find all contours in binarized spectrogram, binSpec, using the Marching Squares

algorithm. Note that the level parameter used in the Marching Squares algorithm

is determined by ms level [see Image Processing chapter for more details about

this parameter].

2. Compute boundaries ranges based on each of the dominant frequency curves

{d1, · · · , dk} ∈ DFreqs. For each di, the boundary range is Di = di ± ui% where

the percentage value, ui%, is determined by ui%=min(bound-(i-1)*5,10)%.

3. For each contour (xi, yi) found in the first step, we compute n1, · · · , nk where k is

the total of dominant frequency curves in dFreqs, and nj is the number of points

within the contour (xi, yi), that lie in the boundary Dj:

if (∃n ∈ {n1, · · · , nk} such that n ≥ 1) and (length(xi)> 5)) then
Add contour, (xi, yi), to new contour set, C.

else
Discard (xi, yi).

end

return C - list of lists containing the filtered contours.

return [D1, · · · , Dk] - boundaries for dominant frequency curves.

194

Arianna Salili-James CHAPTER 5. APPLICATIONS ON OPEN CURVES

Algorithm 15: Connecting Neighbouring Contours

connectingContours(C,nb=30,d=1.5,param=True,N=100,px=15,py=15)

Aim:

Join contours that form distinct syllables.

Input:

Filtered list of ridge contours, C, from Algorithm 14.

Code:

1. For each contour ci ∈ C, we create a list of contours, Nbi, that neighbour c1 that

could possibly form part of the same syllable. The neighbouring condition

depends on a boundary range on the x-values based on min((ci)x) - nb and

max((ci)x) + nb. The neighbouring contour list, Nbi, is then filtered to contain

neighbours that are entirely on the left of ci or entirely on the right.

2. For a contour ci ∈ C, with length(Nbi)> 0, Nbi is filtered again to include a

maximum of two neighbouring contours: the closest neighbour on the left, and/or

the closest neighbour on the right. Henceforth, going from left to right, the

neighbouring contours are combined to form one contour. C∗, is then the updated

contour list containing the new contours and those without neighbours.

3. Smooth new set of contours, using a univariate spline with degree d.

4. if reparam == True then
Reparameterize the contours to have N points.

end

5. Check all pairs (ci, cj) ∈C∗, to see if any pairs could be neighbours. This time, the

neighbouring assumption is based on two criteria: one dependent on the x-values

of contours, whilst the other is dependent on the y-values. The former criterion

checks whether max((ci)x)⊂ [min((cj)x)-px,min((cj)x)+px], if ci is to the left of cj,

or min((ci)x)⊂ [max((cj)x)-px,max((cj)x)+px] if it is to the right. The second

criterion is based on the absolute difference between the average y-values, (c)y, i.e.

|(ci)y − (cj)y| < py. If neighbouring, we join ci, cj by a straight line, as seen in the

diagram in Figure 5.16.

· · ·

195

Arianna Salili-James CHAPTER 5. APPLICATIONS ON OPEN CURVES

6. if new neighbours were found in Step 5 then
Repeat steps 3-4, and update C∗ accordingly

end

return C∗ (list) - updated set of smoothed, reparameterized contours

describing syllables from spectrograms.

196

Arianna Salili-James CHAPTER 5. APPLICATIONS ON OPEN CURVES

Algorithm 16: Segmenting Syllables

segmentSyllables(C,xub=2,xlb=0.5,yub=3,nb=30,n ridges=3)

Aim:

Segment ridges in a spectrogram into syllables.

Input:

Filtered and connected ridges, C, from a spectrogram with Algorithms 14, 15.

Code:

1. Compute the x-ranges, X, and y-ranges, Y , for all ridges in C.

2. Create x and y limits. We compute an upper and lower bound, [UBx,LBx], based

on the average x-ranges multiplied by xub and xlb respectively. Furthermore we

compute another upper bound, UBy=Ȳ × yub, where Ȳ is the average y-range of the

ridges.

3. Create a new set C∗, and iterate through ridges: ∀ci ∈ C,

if (Xi ≥ LBx) and (Xi ≤ UBx) and (Yi ≤ UBy) then
Include ci in C∗

end

4. For each ridge c ∈ C∗, compute the average x-coordinate, round it to the nearest

multiple of 10 and append it to the list, X̄.

5. ∀ ridges ci ∈ C∗, create an array, Ni, of neighbouring (average x-)values, where

Ni=numpy.linspace(X̄i−nb,X̄i+nb,k), such that k=(2
10
×nb) + 1 and nb is a

multiple of 10. ∀ci ∈ C∗, we loop through all possible combinations to find

contours in the same syllable, {ci}:
if ∃ j such that Xj ∈ Ni then

cj and ci belong to the same syllable, {ci}.

end

We then create a new set, syllables. ∀ i ∈ [0,length(C∗)]:

if length({ci})≥n ridges then
{ci} is included in syllables.

end

and syllables = numpy.unique(syllables).

return syllables - list of ridges, grouped by syllables.

197

Arianna Salili-James CHAPTER 5. APPLICATIONS ON OPEN CURVES

5.2.5 Quantifying Differences between Kiwi Calls

Now that we have described the structure of kiwi calls and outlined how to extract syl-

lables from spectrograms, we focus on how to analyse these acoustics. Our goal is to

seek out differences between calls represented by curves on spectrograms, by focusing,

primarily, on the shapes of the syllables. This leaves us with a few options on how we

can proceed, such as pairwise distance computations or methods of dimension reduction.

Overall in this thesis, we have obtained successful shape classification results in previous

projects seen in Chapters 4 and in Section 5.1, that employed methods of elastic shape

analysis. Recall that the metrics used in these methods were invariant to shape-preserving

transformations. Although this was useful in those projects, the translation invariance is

not very helpful here, as we lose potentially vital frequency information. Henceforth, in

this project, along with the shapes, we include various frequency information, in order to

classify kiwi based on the syllables in their calls.

In our aim to classify individual kiwis by their calls, once again, we take on a hybrid

approach involving elastic shape analysis and machine learning. Using a dataset of trios

(i.e. syllables containing exactly three ridges), we incorporate a variety of methods to

perform our classification; all of which will employ the SRVF framework. In the following

sub-sections, we will outline our kiwi call project in more detail, describe the varying

methods and algorithms we use, and present some classification results comparing each

of the methods.

Dataset of Trios

In collaboration with AviaNZ, we obtained a dataset of approximately forty call record-

ings of the North Island Brown Kiwi (Apteryx Mantelli) taken from Ponui Island, New

Zealand159. Our dataset featured four individual male kiwi, with a ground truth label of

the caller.

159Though the name may suggest that the species are solely found on New Zealand’s North Island,

North Island Brown Kiwi are also found (and indeed have more stable populations) within off-shore

islands around the North Island, such as Kapiti Island and Ponui Island. For more information on the

North Island Brown Kiwi, and in particular, their calls and birdsong, we refer the reader to (Corfield

et al., 2008).

198

Arianna Salili-James CHAPTER 5. APPLICATIONS ON OPEN CURVES

Our first step in data processing is to segment the audio files into clips of no more than

5 seconds long. This can be achieved using any audio manipulation software or library,

such as the audio manipulation Python library, pydub160. From here, we take on the

5-step process described by the five algorithms in the preceding subsection, in order to

acquire a dataset of ridges, grouped into syllables, from spectrograms of recordings.

Using Algorithm 16 with the default parameters (namely, n ridges=3), we obtain syl-

lables consisting of three or more ridges. Although the code can be easily modified to

restrict the number of ridges to an exact amount (for example by choosing the top three

or the lowest three ridges), we opt for a more manual approach. We plot all ridges found

after Algorithm 16 on spectrogram plots (such as the plot seen in Figure 5.15), and eval-

uate each by-eye. By manually evaluating the spectrogram plots, we can select three

ridges to represent each syllable (for the minority that originally contain greater than

three ridges), using our own judgement, and can also omit poorly represented syllables

and ridges that our algorithms may have missed in the numerous filtering stages. Though

this approach may seem tedious, due to the fairly small amount of original samples, it

does not take too long; especially, as we have found that most syllables extracted using

our methods, do only contain n ridges (three) ridges. In future implementations the

code will be updated to avoid this manual step. Subsequently, after the manual filtering

steps, we obtain training and testing sets, consisting of 87 syllables (trios), thus, a total

of 87 × 3 = 261 ridges. Note that the modest sample size is because this is a proof-of-

concept trial.

In line with our ambition to include frequency information with our analysis, in addition to

the coordinates of the three ridges in each syllable, our dataset also contains the following

data for every ridge, where y-coordinates represent the frequency, and x-coordinates

represent time:

Mode Frequency: To find the mode frequency, we round the y-coordinates of each

ridge to the nearest integer and compute the mode average.

Median Frequency: We compute the median of the y-coordinates rounded to three

decimal places (for cost-saving reasons) for each ridge.

160https://pypi.org/project/pydub/

199

https://pypi.org/project/pydub/
https://pypi.org/project/pydub/

Arianna Salili-James CHAPTER 5. APPLICATIONS ON OPEN CURVES

Ridge Length: We compute the x-range of each ridge. Since the x-coordinates of

our ridges are time-increasing, we define the segment length as simply the first x-value

subtracted from the last. Once again, to save on computational costs, the values are

rounded to 3 decimal places.

Combining Harmonics in the Classifications of Kiwi Calls

Throughout this thesis, the basis has always been the quantification of differences be-

tween two shapes. Here, things are a little different. Our aim remains similar, as we

wish to define a way of quantifying differences between two kiwi calls. However, as each

syllable is made up of three ridges, we are no longer dealing with two shapes, and instead,

we have six.

There are multiple avenues we can explore from here, that will help us classify our col-

lection of calls. We consider three of these avenues in particular:

1. Classification of ridges, without the grouping of syllables.

2. Weighted sum of differences between pairs of ridges in pairs of syllables.

3. Computation of differences of syllables in a product space.

The first approach is no doubt the simplest. Here, we quantify differences between the

shapes of two ridges, without focusing on their group. Though this method generally does

not rely on syllable information, there are ways in which we could incorporate certain

syllable information, such as a ridge’s position within a syllable (i.e. whether it’s the

lowest ridge, the centre ridge, or the highest ridge).

The second approach involves comparisons between pairs of ridges within two syllables.

In other words, for two syllables, S, T , we quantify differences between pairs (si, tj),

∀ si ∈ S, tj ∈ T , where 1 ≤ i, j ≤ 3. This comparison could be a distance com-

putation between the shape of the ridges si and tj and/or the differences between their

frequency information (for example, their segment length). Hereafter, the option remains

to compare all nine pairs of ridges, to focus on the three same-level comparisons, or some

alternative combination. The final comparisons can then be combined into one value,

quantifying the differences between the two calls.

200

Arianna Salili-James CHAPTER 5. APPLICATIONS ON OPEN CURVES

Lastly, we consider the avenue exploring the quantification of differences between sylla-

bles, S, T , in a product space defined by their ridges. We can define an open ridge, s ∈ S,

as the mapping s : I 7→ R2 for some interval I. Thus, a syllable can be thought of as the

product of three ridges, {s1, s2, s3} ∈ R2×R2×R2. The aim of this approach is to define

a metric that computes a distance between the shapes of S and T on the product space;

with the intention that the metric is then incorporated into a desired machine learning

classifier, to classify the kiwi calls. As this approach has not yet been finalised, we discuss

this avenue in the future work section of this project.

Next, we will go into more details about the three aforementioned approaches. In partic-

ular, we focus on the first two methods, which we developed much further. We discuss the

methods of elastic shape analysis used to quantify differences, and outline the machine

learning algorithms we tested and incorporated.

Support Vector Machine Classification

Our first method is aimed at classifying kiwi based on the ridges found in their calls. In

this approach, we incorporate a dataset of ridge information that includes:

• x, y-coordinates of ridge,

• ridge length (range in the x-axis),

• mode frequency of ridge,

• median frequency,

• position in call (either 1-lowest, 2, or 3-highest).

Thus far in this thesis, we have discussed several classification projects, from classifying

mussels to clustering Greek vases. In all of these projects, our analysis has been solely

based on the shapes of the objects in our dataset. For this reason, we dealt with distance

matrices, which led us to incorporate a KNN classifier for the classification step of each

of those projects. As mentioned earlier, one important place where this project differs

from the others, is in its requirement for the inclusion of additional information, as well

as the differences in shapes. Therefore, for N samples in our dataset (where N = 88,

represents the number of individual calls), unless we plan to sum the differences between

the samples (as we will do so in the second approach, which we discuss later), we are no

201

Arianna Salili-James CHAPTER 5. APPLICATIONS ON OPEN CURVES

longer dealing with an N × N distance matrix. Instead, for each of the N samples, we

possess a large array of information (as seen in the list above), leading to a very high-

dimensional dataset. Consequently, we now turn to a different machine learning classifier

to try: support vector machines.

Support vector machines, SVMs, are supervised learning methods, predominantly de-

veloped in the 1990s, by Corinna Cortes and Vladimir Vapnik, (Cortes and Vapnik,

1995), based on methodology first described in the 1960s by Vapnik and the mathe-

matician Alexey Chervonenkis. With their robustness, and ability to work well with

high-dimensional data, whilst not being too computationally expensive, SVMs remain

one of the most widely-used machine learning classification algorithms.

Broadly speaking, the objective of SVM classification is to find optimal decision bound-

aries (or boundary, in binary classification) that best separate the data into the given

classes. Whilst the dimensions of the boundaries are determined by the number of fea-

tures161, the type of boundary can vary as desired, with the simplest example taking a

linear form162, with the aim to find an optimal, (N − 1)-dimensional hyperplane in RN ,

where N is the number of features in the dataset. Here, the algorithm searches for the

hyperplane that best separates out the data by their classes, where the optimality of

the decision boundary is based on a misclassification parameter (often labelled as C),

and, more significantly, on the maximisation of a margin between the hyperplane and

the data-points of each of the classes. More specifically, the margin is measured by the

distance between the decision boundary to points in each class that are closest to this

decision boundary, i.e., the support vectors. Finally, new data-points are classified based

on the sides of the decision boundaries they lie within, when plotted.

The SVM transforms non-linearly-separable data-points into a higher-dimensional space,

where the data-points can be linearly separated. As such transformations may be com-

putationally expensive, the process can be side-stepped, by defining a metric on the new,

higher-dimensional space, using a kernel function. These functions can vary and be cus-

tomised, allowing SVMs to be versatile classification algorithms. Here, we consider the

standard linear approach, as well as the commonly used Radial Basis Function, RBF,

161I.e. the number of categories or information we have of each sample, in a dataset.
162We note that the decision boundary does not need to be linear. Other examples include polynomial

curves.

202

Arianna Salili-James CHAPTER 5. APPLICATIONS ON OPEN CURVES

kernel for our SVM classifiers. The RBF kernel can be described with:

K(v1, v2) = exp−γ||v1 − v2||2L2 (5.15)

where v1, v2 are data-points163, and the parameter, γ > 0, is a scalar determining the

with of the kernel.

For further information regarding support vector machines and the mathematics behind

kernel functions in particular, we recommend (Bishop, 2006). We now move onto the

topic of how SVMs can be combined with elastic shape analysis in order to classify kiwi

calls.

Method 1 – SVMs & Karcher Mean Analysis

In this first method, we are left with a rather large dataset, with a very high number of fea-

tures, due to the x, y-coordinates of each ridge (represented by 100 equally-spaced points)

being included. This is problematic for the classifier; not only due to its size and hence

possibility of over-fitting and expensive computations, but because the x-coordinates and

the y-coordinates will be treated independently, as individual features, which is not ideal.

To overcome this, we transform the shape of the ridges into a handful of values, such as

principal components, computed using tangent PCA (tPCA), which can then replace the

original coordinates, before applying the SVM classifier. We note that for a more concise

overview of tPCA, we refer the reader to Section 2.5.3 of the background chapter, and to

Chapter 7 of (Srivastava and Klassen, 2016).

In this project, for two open curves c1, c2 : I 7→ R2, the elastic distance between the

curves, d(c1, c2), involves a diffeomorphic mapping to match c1 to c2, within the square

root velocity (function), SRVF, framework; using a dynamic programming algorithm to

perform the computations. By incorporating this method and framework, we compute

distances between the shapes of our kiwi ridges, without any linearity approximations

that traditional methods164 often take. This leads to Karcher mean computations that

are more representative of the shapes in the dataset, and hence, more indicative principal

components. In Chapter 4, we saw plots that visualised and emphasised this point (for

163Without loss of generality, v1 can be thought of as a labelled data-point, whilst v2 can be considered

a new data-point, waiting to be classified.
164We refer to methods commonly used for analysing real-world shape data, such as Morphometric

methods.

203

Arianna Salili-James CHAPTER 5. APPLICATIONS ON OPEN CURVES

example, see the shapes of Ancient Greek vases in Figure 4.15 and Figure 4.16). For more

details regarding Karcher PCA and distance computations within the SRVF framework,

we refer the reader to the Background chapter of this thesis.

In order to classify male kiwi by their calls, we apply an SVM classifier to a dataset of ridge

information, where the ridge coordinates are replaced with N principal components, as

discussed. We test out three kernels for our SVM classifier: linear, RBF, and polynomial.

Though they all require the same misclassification penalty parameter, C, the RBF also

requires the variable γ (see previous subsection), whilst the polynomial kernel requires

a degree parameter, δ. As the choice of parameter can have a significant impact on the

classification results, we optimize each of the parameters using a cross-validation search

built within the scikit-learn165 library. The approach involves an exhaustive grid-search

based on initial values we set. Our initial values ranged from an array of uniform random

variables (using the function scipy.stats.uniform(), from the scipy166 library), as well

as manually selected values, where 0.5 ≤ C ≤ 150, 1e− 7 ≤ γ ≤ 1e− 1, and 1.5 ≤ δ ≤ 4.

From here, the method searches for best results, where we opt for the success to be

measured with an F1-score:

Fβ=1(P,R) = (1 + β2)× PR

P (β2) +R
= 2

PR

P +R
(5.16)

where P,R are the precision and recall scores, as seen in Chapter 4.

During the parameter-optimization step, we fix the number of principal components, N ,

prior to further tests being carried out to analyse the affects of the number of principal

components. We set N = 20 as this sufficiently covered the variability in the data whilst

not being too computationally heavy for the optimization step. The training and test sets

contain 102 and 159 ridges respectively, based on a quasi-random sampling, as done in

previous projects. In order to analyse how the number of principal components can affect

the results, we ran an SVM classifier on the test set, using the optimal parameters found

in the earlier step, with N ∈ {3, 5, 15, 20}. The F1-scores from our top two methods (the

linear kernel and RBF kernel) can be seen in Table 5.1:

165https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.

RandomizedSearchCV.html
166https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.uniform.html

204

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.RandomizedSearchCV.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.uniform.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.RandomizedSearchCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.RandomizedSearchCV.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.uniform.html

Arianna Salili-James CHAPTER 5. APPLICATIONS ON OPEN CURVES

SVM Kernel / N 3 5 10 15 20

Linear 0.793 0.792 0.800 0.787 0.767

RBF 0.678 0.719 0.719 0.719 0.713

Table 5.1: F1-scores from SVM classification on kiwi ridges, with varying principal components

(N), alongside additional frequency and call information.

Interestingly, Table 5.1 shows that the results do not vary too much as N is altered,

though in both the linear and RBF kernel, a peak in F1-scores can be seen in the middle

mark, particularly at N = 10. The table tells us that the linear kernel for a SVM classifier,

came out on top, with a maximum F1-score of 0.8. However, recall that our global aim

is to classify kiwi calls, and not specifically ridges. Therefore, in order to obtain a score

on the classification of calls, we compute the mode167 predicted class for each syllable.

By employing such tactic, we find that the F1-scores improve, with the top scores being

0.821 and 0.767, for the Linear and RBF kernel respectively. Though these scores are not

too bad, in the next section, we will see how a different approach in classifying kiwi calls

can result in even better scores.

Method 2 – KNN, Elastic Distances, & Optimization

Previously, in projects such as Mussel Identification in Chapter 4, we implemented a

KNN classifier with a sole required input of a distance matrix. Once again, we return

to this KNN algorithm (as described in Algorithm 9), and its bootstrapping-equivalent

(Algorithm 10), to identify kiwi based on their calls.

In this approach, our main focus when comparing two calls is on the differences between

the shapes of syllables, as well as an additional interest on the frequency of syllables. As

there are six ridges between two syllables, our first step is to decide how to define these

differences between the two syllables, via their ridges. In general, we have seen that the

stronger ridges are closer to the fundamental frequency, with strength slowly diminishing

with every increasing harmonic. Therefore, when comparing two syllables, it is possible

that the lowest ridges are more alike, as are the next two and so on. For this reason, in

this project, we opt for a same-level168 comparison between ridges. In other words, the

167Note that, if multiple mode values are found, the predicted class of the lowest ridge is used.
168For the remainder of this section, we use the term same-level to refer to ridges that have the same

205

Arianna Salili-James CHAPTER 5. APPLICATIONS ON OPEN CURVES

ridges will be sorted from lowest to highest, and direct comparisons will be computed

between the two lowest ridges, the middle ridges, and the highest ridges. These ridge

comparisons will then be part of a weighted sum that we use to define the differences

between two syllables.

Once again, to quantify differences between shapes of ridges and hence syllables, we

return to the method that resulted in the top classification scores (see Section 4.1.9):

namely, elastic distances in the SRVF framework. As we are dealing with open curves

in this project, we employ a dynamic programming algorithm, as outlined in Algorithm

1. Recall that this method compares the shapes between two open curves by minimizing

the distance between the orbits of the square root velocity functions of the curves, as

discussed in 2.4.4. Hence we use this distance metric to compare the distances between

the shapes of our ridges.

Pairwise distances are computed between all same-level curves. Henceforth, for a dataset

containing N syllables in trios, we obtain three N × N distance matrices, one for each

level. Similarly, in order to compare the differences in frequency information, we com-

pute the absolute differences between same-level syllables, which results in three dif-

ference matrices per variable (i.e. for mode frequency, median frequency, and seg-

ment length). Thus in total, we have twelve N × N matrices, comparing kiwi calls.

Our KNN classifier requires only one distance matrix, therefore, we need to find a way to

merge our twelve matrices into one. This can be done using a weighted sum. However,

optimizing twelve parameters would be very computationally expensive, almost regardless

of what optimization method is used. In lieu of this, we test out three options169:

Option 1: We focus solely on the three distance matrices, D1, D2, D3, (i.e. the distances

between the lowest level ridges, the middle-level ridges, and the highest level ridges,

respectively) and form one matrix, D, after optimizing for the parameters w1, w2, w3 ∈ R.

Dopt1 = ω1D1 + ω2D2 + ω3D3 (5.17)

position within their respective syllables, e.g. two ridges that are both the lowest in their trio, can be

described as being same-level.
169An additional, albeit unsuccessful, approach involved a version of Option 2, that excluded the median

frequency difference matrices.

206

Arianna Salili-James CHAPTER 5. APPLICATIONS ON OPEN CURVES

Option 2: Use Option 1 to find optimal parameters for Dopt1. Compute matrix based

on Dopt1 and a weighted sum with scalars αi, βj, γk ∈ R, 1 ≤ i, j, k ≤ 3, for the difference

matrices, Dmode, Dmed, Dlen, representing the mode / median frequency, and segment

length differences respectively.

Dopt2 = Dopt1 +
3∑
i=1

αiD
mode
i +

3∑
i=1

βiD
med
i +

3∑
i=1

γiD
len
i (5.18)

Option 3: We focus on all three distance matrices and one difference matrix. We test

a basic optimization on all matrices DX
i where X ∈ {mode,med, len} and i ∈ {1, 2, 3},

to find the best-performing difference matrix, D∗. Once decided, we optimize the scalars

ω1, ω2, ω3, ω4 ∈ R:

Dopt3 = ω1D1 + ω2D2 + ω3D3 + ω4D
∗ (5.19)

The motivation behind choosing these three options was so that we can learn more about

which ridge level and additional information was more vital when it comes to the clas-

sification of syllables. As all three options involve weights, by optimizing these weights,

we can learn a lot of about the data. A further motivation was due to the relative math-

ematical simplicity and thus computational ease of such methods.

In order to optimize the parameters in the weighted sums presented across all three

options, we employ a naive grid-search approach on a KNN classifier. A traditional

grid-search approach (such as scikit-learn’s cross validation method used in the previous

section) begins with an initial selection of possible values for each parameter, followed

by an evaluation, which in our case involves the implementation of a KNN classifier on

the distance matrix created using the chosen parameters, and an F1-score computed from

the results. The parameters that resulted in the highest F1-score are hence deemed as

the optimal parameters. Where our approach differs from the default algorithms is that

we opt for a more manual approach. Here, a grid-search is applied multiple times, where

the parameter options become denser with each grid-search iteration. Each grid-search

allows us to learn more about the parameters and their relationships with each other,

enabling us to choose the next set of parameters tactically based on the results of previous

iterations, and to also include possible conditions e.g. for two arbitrary scalar parameters

α, β, we can insist that α ≤ β.

As an example, we outline a grid-search method in Algorithm 17, aimed at finding the

207

Arianna Salili-James CHAPTER 5. APPLICATIONS ON OPEN CURVES

Algorithm 17: Grid-Search Parameter Optimisation Example

optimiseDistMat(D,trainTest,I,W1,W2,W3,k=np.linspace(3,6,4))

Aim:

Optimise parameters ω1, ω2, ω3 ∈ R in Equation (5.17). Find the best

parameters from the options ωi ∈ Wi for i = {1, 2, 3}, where the

distance matrices used in the weighted sum make up the variable

D (np.array), i.e. D1=D[0], D2=D[1] and D3=D[2].

Initial Step:

From the index data (containing the name and true classification of

calls in the sample), I, create N training / testing sets, trainTest.

Code:

1. Create parameters all scores==[], top F=0, top params=[0,0,0].

2. Start grid-search process, with a classifier, kNN, (see Algorithm 9).

for ω1 ∈ W1 do

for ω2 ∈ W2 do

for ω3 ∈ W3 do

if ω1 ≥ ω2 then
Dopt1=ω1D[0]+ω2D[1]+ω3D[2]

scores = []

for sample ∈ testTrain do
F=kNN(Dopt1,sample,idxData=I,neighbours=k)

scores.append(F)

end

avg F=np.average(scores)

all scores.append(avg F)

if avg F ≥ top F then
top F=avg F

top params=[ω1,ω2,ω3]

end

end

end

end

end

return all scores - average F1-scores for all parameters.

return top params - optimal parameters.

208

Arianna Salili-James CHAPTER 5. APPLICATIONS ON OPEN CURVES

optimal parameters ω1, ω2, ω3 in Equation (5.17) for Option 1. We test this algorithm

using lists of uniformly distributed values, W1,W2,W3, in order to find the optimal pa-

rameters. Moreover, in this example, we add an extra condition, stating that ω1 ≥ ω2,

as previous results showed that F1-scores were higher when this condition was met.

By taking on a more manual approach to parameter optimization, we gather a better un-

derstanding of the parameters involved, which enables us to improve the initial parameter

estimation values in a grid-search algorithm, as well as the algorithm itself, and hence,

the results. For instance, to test Option 1, we begin by employing the same initial values

across all parameters. In turn, this allows us to make meaningful comparisons of results

between parameters, such as the assumption incorporated in Algorithm 17: that results

improve when ω1 ≥ ω2. This is illustrated in Figure 5.17, which shows a heat map plot of

the average F1-scores for variables ω1, ω2, after a basic, initial, grid-search optimization,

with values between 0 and 1. Similar tests simultaneously revealed another interesting

result, which is that F1-scores are higher when ω3 takes on smaller values whilst ω1, ω2

take on the larger values, as shown in Figure 5.18. By learning this information, param-

eter conditions and initial values can be updated accordingly, in further iterations of the

grid-search process.

We employ a manual grid-search approach to optimize the necessary parameters in all

three options (i.e. Equations (5.17), (5.18), and (5.19)). In total, 10 varying training and

testing sets were made in an attempt to reduce the influences of the training / testing

splits170. For Option 1, we exclusively use all ten training and testing sets in the grid-

search process (which refers to the parameter trainTest in Algorithm 17). Since Option

2 and Option 3 contain more parameters, to speed up the computations, a subset of two

and five training and testing sets, respectively, are used instead.

Out of the three options, the simplest, and computationally least-expensive approach

(in regards to parameter optimization) is undoubtedly Option 1. Here, a grid-search is

enabled, in order to find three optimal parameters ω1, ω2, ω3 ∈ R in Equation (5.17).

Meanwhile, Equation 5.18 for Option 2 holds the most parameters needed to optimize,

namely the three parameters for Dopt1, as well as the nine scalars needed to sum each of

the difference matrices. Finally, as seen in equation (5.19), Option 3 requires only four

170Note that in subsection 5.2.5, we discuss the reasons for these influences in more detail.

209

Arianna Salili-James CHAPTER 5. APPLICATIONS ON OPEN CURVES

Figure 5.17: A plot showing the average F1-scores for parameters ω1, ω2, resulting from a

kNN-based, grid-search, to optimize parameters ω1, ω2, ω3 in Dopt1 (see Equation (5.17)). The

axes represent the list of values tested in the grid-search algorithm (Algorithm 17). The darker

the square, the higher the average F1-score. This plot shows that the average F1-scores are

greater when ω1 ≥ ω2.

scalars, thus, computationally, it may not seem too different to Option 1. However, there

is the added, albeit rather hidden, step of choosing the difference matrix D∗, which can

be done in a variety of ways. In this project, to decide on the matrix, D∗, we run a

grid-search optimization algorithm, similar to Algorithm 17, but catered for four matri-

ces. Here, the variable D contains the three distance matrices D1, D2, D3, as well as an

added difference matrix, D∗. The algorithm also includes an extra variable W4 to find the

optimal scalar for D∗ (corresponding to ω4 in Equation (5.19). This grid-search algorithm

is run with all difference matrices, i.e. for D∗ = DX
i where, X ∈ {mode,med, len} and

i ∈ {1, 2, 3}. The difference matrix resulting in the highest top-average F1-score is then

chosen as the final matrix, D∗, and focused-on in further grid-search optimization tests

for Option 3. The results from all nine tests can be seen in Table 5.2, which shows that

Dmed
2 (i.e. the differences between the median frequencies of the middle-level ridges in

kiwi calls) corresponds with the highest F1-scores.

Overall, the classification results obtained alongside the optimal parameters during the

grid-search processes prove to be rather promising, in particular, for Option 1 and Option

210

Arianna Salili-James CHAPTER 5. APPLICATIONS ON OPEN CURVES

w1

w2

w3

0.9

0.9

0.87

0.88

0.9

0.88

0.86

0.86

0.86

0.9

0.88

0.89

0.86

0.86

0.86

0.88

0.86

0.87

0.86

0.86

0.88

0.86

0.89

0.87

0.86

0.94

0.9

0.9

0.88

0.84

0.94

0.9

0.9

0.87

0.9

0.92

0.9

0.89

0.87

0.87

0.9

0.88

0.89

0.87

0.86

0.9

0.88

0.89

0.87

0.86

0.92

0.94

0.92

0.92

0.92

0.94

0.94

0.9

0.9

0.9

0.92

0.92

0.9

0.89

0.9

0.92

0.92

0.89

0.89

0.89

0.94

0.9

0.9

0.89

0.89

0.9

0.94

0.92

0.92

0.92

0.92

0.94

0.94

0.9

0.9

0.92

0.94

0.92

0.9

0.9

0.92

0.94

0.92

0.9

0.9

0.92

0.94

0.92

0.89

0.89

0.9

0.92

0.94

0.92

0.92

0.92

0.94

0.94

0.92

0.9

0.92

0.94

0.94

0.92

0.9

0.92

0.94

0.92

0.92

0.9

0.92

0.94

0.92

0.92

0.9

0.1

0.1

0.1

0.325

0.325

0.325

0.55
0.55

0.55

0.775

0.775

0.775

1.0

1.0

1.0

1.225

1.225

1.225

Figure 5.18: F1-scores resulting from a grid-search using a kNN classifier to optimize pa-

rameters ω1, ω2, ω3 in Equation (5.17). In this example, all test values were equally uniformly

distributed, with W1,W2,W3=np.linspace(0.1,1,5). The colour of the markers represent the

F1-scores, where the more yellow the colour is, the higher the score. The yellower markers at

the bottom shows us that F1-scores are higher when ω3 decreases.

3, where the top average F1-score is consistently above 0.8, and the maximum F1-scores

are above 0.9. On the other hand, the top average F1-score obtained from the initial

grid-search for Option 2, is around 0.7. This poor performance can be attributed to the

low number of training and testing samples, but more prominently, to the lower number

and wider set of options in the initial value lists for the grid-search, which are purposely

selected to offset the high number of parameters required for the grid-search optimiza-

tion171. Although a second grid-search test was done for Option 2, this time with a denser

list of initial parameter values, the top average F1-score still remains around 0.7. For this

reason, we decided to not pursue this option further.

After numerous grid-search optimization processes, the optimal weighted sums of matrices

171As high numbers of parameters would significantly increase computation rates in a grid-search pro-

cess, we look at 3 possible values, initially, for each parameter, when optimizing for Option 2. In

comparison, for Option 1 and Option 3, the number of parameter in the initial grid-search lists are 5 and

4 respectively. This number is then increased (and the lists were made denser) accordingly in further

iterations.

211

Arianna Salili-James CHAPTER 5. APPLICATIONS ON OPEN CURVES

D∗ F1-Score

Dmode
1 0.824

Dmode
2 0.826

Dmode
3 0.804

Dmed
1 0.870

Dmed
2 0.876

Dmed
3 0.806

Dlen
1 0.804

Dlen
2 0.767

Dlen
3 0.707

Table 5.2: Maximum (average) F1-scores resulting from a grid-search parameter optimization

for ω1, ω2, ω3, ω4 in Dopt3 (see Equation (5.19)), with differing D∗. In this example, all four

parameters in all nine grid-search experiments (as there are three difference matrices at three

levels) use the same, uniformly-distributed, test parameters, namely, np.linspace(0.1,1,4).

Our results show that the highest score, (as highlighted in red), is obtained when D∗ = Dmed
2 .

for Option 1 and Option 3 were as follows:

D∗opt1 = 0.8D1 + 0.45D2 + 0.3D3 (5.20)

D∗opt3 = 0.85D1 + 0.5D2 + 0.5D3 + 0.02D∗ (5.21)

for distance matrices D1, D2, D3, containing the distances between the shapes of same-

level ridges from kiwi calls, in SRVF space, and the difference matrix, D∗ = Dmed
2 , con-

taining the absolute differences between the median frequency of the middle-level ridges.

Interestingly, Equations (5.20) and (5.21) show us that grid-search optimization incorpo-

rating both Option 1 and Option 3 result in similar optimal parameters being found for

the scalars corresponding to the weights of the distance matrices. Although, we remark

that the scalar attributed with the matrix D3 (i.e. the distances between the top-level

ridges, which, as emphasised previously, tend to be the least prominent of the three har-

monics that make up the syllables in our dataset) is weighed noticeably more heavily in

D∗opt3. Another interesting, and rather surprising outcome is the small scalar attributed

with D∗. This tells us that the additional frequency information is not regarded as im-

portant as the distances between the ridges when classifying kiwi calls.

212

Arianna Salili-James CHAPTER 5. APPLICATIONS ON OPEN CURVES

Finally, kNN classification is performed on the matrices D∗opt1, D
∗
opt3 using 10 varying

training and testing sets; the results of which can be seen in Table 5.3. The success rate

in both classification tests are rather remarkable, with the highest F1-scores equalling

0.936, and the average being 0.875 and 0.885 for D∗opt1, D
∗
opt3 respectively. Intriguingly,

despite the fact that scalar used for D∗ in D∗opt3 was so small it could seem disposable,

we find that the overall classification results are slightly better for D∗opt3, than they are

for D∗opt1. This tells us that the added frequency information, though small, can make

a difference. Importantly, these results demonstrate that incorporating a kNN classifier

with elastic distances (as well as median frequency differences) between ridges in kiwi

syllables, can be a highly successful technique in identifying individual kiwi.

Matrix Max F1-Score Average F1-Score Standard Deviation

D∗opt1 0.936 0.875 0.042

D∗opt3 0.936 0.885 0.038

Table 5.3: F1-scores from kNN classification on kiwi ridges. Here, the classifier is implemented

on optimised matrices, D∗opt1, D∗opt3, which incorporate Option 1 and Option 3 respectively. In

total, classification tests are performed on 10 training and testing sets, with the number of

neighbours k=np.linspace(3,6,4). The table shows the maximum F1-score out of the 10

tests, as well as the mean average and the standard deviation of the F1-scores.

A Note on Robustness

Recall that our work here is a pilot test on how we can utilize shape analysis to recognise

kiwi calls. Therefore, we were limited in the amount of data we could analyse, leading

to the small size of our sample and its very unequal proportions of individual kiwis. The

size and the proportions of data can have a great influence on classification. Another

affect on classification could be due to a stronger similarity between the syllables of some

birds, than initially suspected. Thereby, we believe that the variation in classification

results depending on the training and testing split is a direct consequence of the dataset

size, and the syllable similarities, and not necessarily down to a lack of robustness in

our methods. In general, sound data from the wild can be rather noisy and whatever

data extraction technique employed, whether it’s syllable extraction from spectrograms

or not, is not inherently simple. Thus for the classes (i.e., individual kiwi) that only

213

Arianna Salili-James CHAPTER 5. APPLICATIONS ON OPEN CURVES

had a small handful of audio segments, it is no surprise that the classifier often failed to

match ridges. This is why studies in the field of audio classification often employ large

datasets to increase the accuracy of their results, such as in (Ovaskainen et al., 2018),

where the authors used a dataset of almost 200,000 audio segments to create an animal

sound identifier. In order to truly examine the robustness of our methods, a larger dataset

is certainly required. This is something planned for the future of this project.

5.2.6 Summary & Future Work

In this project, we have studied an assortment of methods that can be incorporated, in

order to identify individual kiwi from the syllables of their calls. Overall, these methods

have had varying success, from a top F1-score of 0.821 using an SVM with a linear kernel,

to a top F1-score of 0.936 with a kNN approach; where all results use the same series of

training and testing sets. In lieu of the promising results we have obtained thus far, there

is now more work to be done, following on from our experiments.

Method 3 – Product Space Matching

The final method we introduced earlier, on quantifying differences between kiwi calls, has

yet to be finalised. Nonetheless, we outline the ideas and the foundations of what can

someday be used to analyse kiwi calls, by the product of their ridges.

In this project, kiwi syllables are defined by a triple of ridges. Thus, we consider two

syllables c1, c2, such that c1 = {s11 , s12 , s13}, c2 = {s21 , s22 , s23} where s1i , s
2
i : I 7→ R2, ∀i ∈

{1, 2, 3} for some interval, I. Our aim is to find a way to optimally match the syllable c1

with c2. As studied in the Background chapter, recall that the general goal of an optimal

matching, for example between two ridges s11 , s
2
1 , is to construct a smooth function φ,

such that (φ, s11) = s21 , where (φ, ·) is the action of composition (see section 2.4.2). More

specifically, φ ∈ Diff(Ω) is a diffeormorphism that morphs the shapes of our curves; where

in the case of deformations on ridges, Ω = R2. But the question remains, how can such

optimal diffeomorphism be defined on a set of ridges, i.e. on a syllable? We consider two

possibilities:

1. For two calls, c1, c2, we search for one diffeomorphism φ that acts on all three ridges

in the same way. To do this, we define the calls, c1, c2 as a product of their respective

214

Arianna Salili-James CHAPTER 5. APPLICATIONS ON OPEN CURVES

ridges, such that c1, c2 : I 7→ R2×R2×R2. As R2 is a smooth manifold, the product

space Ω = R2×R2×R2 is also smooth. Thus, we can search for a smooth function

φ ∈ Diff(Ω), such that (φ, c1) and c2 are aligned, where:

(φ, c1) = {s11 ◦ φ, s12 ◦ φ, s13 ◦ φ} (5.22)

From here, one example of how we can find an optimal diffeomorphism, φ∗, is by

introducing a minimization problem as follows:

φ∗ = arg min
φ

3∑
i

d((φ, s1i), s
2
i) (5.23)

for ridges s1i ∈ c1, s2i ∈ c2, and some distance metric, d. In other words, to match

two syllables, c1, c2, we search for a diffemorphism that optimally deforms the curves

in c1, by minimizing the sum of the pairwise distances between deformed curves in

c1 with those in c2.

2. Alternatively, we can consider an optimal diffeormophism in conjunction with in-

dividual diffeormorphisms between same-levels ridges, in two syllables c1, c2. Our

space is defined as a product of smooth manifolds, namely Ω = R2 × R2 × R2. We

then search for diffeomorphisms φi that align s1i with s2i for all i ∈ {1, 2, 3}. Hence

we define φ as:

φ = (φ1, φ2, φ3) (5.24)

To show that φ is also a diffeomorphism, we consider the following:.

Proposition 5.1 (Proposition 3.33 in (Lee, 2010)) A product of continuous

maps is continuous, and a product of homeomorphisms172 is a homeomorphism.173

This tells us that at the very minimum, φ a homeomorphism. However, for φ to

be a diffeomorphism, we require the derivative of the map to also be continuous,

to maintain smoothness. If we define the derivative of φ′ on the product of the

tangents spaces to our smooth manifolds, such that φ′ = (φ′1, φ
′
2, φ
′
3), we find that

φ′ is continuous as each φ′i ∀i ∈ {1, 2, 3} are continuous. Therefore, the function, φ is

smooth. In a similar fashion, it can be shown that the inverse φ−1 = (φ−1
1 , φ−1

2 , φ−1
3)

is also smooth. Hence φ is a diffeomorphism.

172A homeomorphism is continuous function with a continuous inverse. All diffeomorphisms are home-

omorphisms, but the converse is not necessarily true.
173For a proof of this proposition, we refer the reader to (Lee, 2010).

215

Arianna Salili-James CHAPTER 5. APPLICATIONS ON OPEN CURVES

q11

q12

q13

q21

q22

q23

S2

Figure 5.19: Illustration of geodesic paths to analyse two kiwi syllables, c1 (red) and c2 (blue).

In this example, we employ the SRVF framework, in order to simplify geodesic computations.

Recall that this is due to the space of shapes becoming the unit sphere, S2, where geodesics

can be comfortably described with great circles. Here, our syllables are described as c1 =

{s11 , s12 , s13}, c2 = {s21 , s22 , s23}, and the SRVFs are represented by q1i , q
2
i for i ∈ {1, 2, 3}. By

taking on the second approach, we perform an optimal matching by aligning the three same-

level ridges within the two syllables. Note that the dotted lines represent the shortest arcs of

great circles between points on the curves q1i and those on q2i .

Conceptually, the task of such diffeomorphism, φ, can be thought of as the least en-

ergy-consuming way of transforming two shapes. As seen in the Background chapter,

this transformation can be done with geodesics. Furthemore, by finding a geodesic path

between two shapes, we can describe the energy required to transform, or deform, one

shape into another, by computing the squared length of the geodesics. This, in turn, can

be used to quantify differences between shapes, in our case, of kiwi calls.

From this point, it remains to formally define a metric on the product space, which can be

used to quantify differences between two syllables. Though we note that this metric will

be guided by the work done in (Holm et al., 1998). Once this metric has been defined,

we will compute pairwise distances between syllables, and hence we can implement a

machine learning classifier. This classifier will most likely be a k-NN classifier, as we

have learnt, throughout this thesis, that a k-NN classifier works impressively well when

implemented on a matrix containing pairwise elastic distances between shapes.

216

Arianna Salili-James CHAPTER 5. APPLICATIONS ON OPEN CURVES

Additional Future Work

Further Species: Throughout this project, our focus has been on male kiwis, as it is

known that their calls produce distinct curves (harmonics) when plotted on spectrograms.

However, our global here is to expand our work to other species of birds. Though we

must be careful, as we can certainly face some difficulties when branching out. For

example, though male kiwis produce calls that can be extracted via the processing tools

we highlighted in Section 5.2.4, the same cannot be said for the shrieking calls from

female kiwi. However, though we may not see distinct curves, shapes do appear on their

spectrograms, nonetheless. When testing contour extraction methods on a set of various

female kiwi calls, we found that their spectrograms often exhibit rather blob-like shapes.

In order to analyse these shapes, we extract closed curves that surround them. This

extraction is done using similar methods described in this section. We start by finding

the dominant frequency curve. In converse to the extraction of male kiwi calls, this

time round, we only compute the dominant frequency once. This curve is then used

to find gaps in the spectrogram, just as we do in Algorithm 12. Next we binarize the

spectrogram, with a method similar to Algorithm 13. Finally, we extract contours using

a Marching Squares174 algorithm. After some filtering (predominantly based on contour

length and x-range), we find closed contours describing female kiwi calls. An example of

this process can be seen in Figure 5.20, where we plot closed contours on top of a binarized

spectrogram. Though we have designed a process to extract such calls, we have yet to

analyse the calls. This analysis will follow a similar concept to the male kiwis, except

that we will try different algorithms to compute pairwise distances, such as Geometric

Currents and SRVF Path-Straightening, that both focus on closed curves.

Validating Methods: Up until now, we have obtained successful classification results.

However, as our sample size has been rather modest, our next step is to evaluate our

methods on a larger dataset of male kiwi calls. Additionally, we will examine common

methods that are used in classifying birdsong today, that do not utilize any shape analysis;

and we will compare the results to ours. Henceforth, if the great success of our algorithms

is repeated and validated, we can incorporate it onto the AviaNZ software175.

174https://scikit-image.org/docs/0.8.0/api/skimage.measure.find_contours.html
175https://www.avianz.net/index.php

217

https://scikit-image.org/docs/0.8.0/api/skimage.measure.find_contours.html
https://www.avianz.net/index.php
https://scikit-image.org/docs/0.8.0/api/skimage.measure.find_contours.html
https://www.avianz.net/index.php

Arianna Salili-James CHAPTER 5. APPLICATIONS ON OPEN CURVES

0 100 200 300 400 500 600
0

100

200

300

400

500

Figure 5.20: Female kiwi calls on a binarized spectrogram. Here, contours surrounding the

calls are extracted using methods similar to those described earlier, concerning the male kiwi

calls. The closed call-contours are plotted in magenta.

Significance

To the best of our knowledge, elastic shape analysis had never been applied to sound data

until this very project; nor had it been applied to conservation prior to both this project

and the kākāpō project (see Section 5.1). This is all the more reason to feel excited about

the promising results (e.g., in Table 5.3) we have achieved so far. Though this is a pilot

study, we have shown that we can successfully classify individual birds within a species

by analysing the shapes of their calls, when plotted on spectrograms. Thus we truly

believe that the tools we have made can one day play a significant role in acoustic species

identification, used for the conservation of not only kiwis, but many other species too.

218

Chapter 6

Conclusion

In this thesis, we have explored the practical applications of elastic shape analysis on

curves in R2, through a data science lens, with numerous projects on varying types of

data. One common thing we have learnt across these various projects is that shape can

certainly be used to analyse a dataset of objects.

Our research has resulted in novel applications of elastic shape analysis, innovative al-

gorithms that can be used to process image and certain sound data, and overall, a new

framework that can be used to analyse and classify object from their shapes, with the

majority of the code freely available on open-source platforms176. In this final section, we

summarize the work we have done in this thesis whilst highlighting the novel research,

and finally, we outline the future of our research.

6.1 Summary

Applications of Shape Analysis

The datasets in our projects covered several questions and a wide range of areas, from

growth curves to biological image datasets, and archaeological databases to audio data.

Beginning with our work on Greek vases, we learnt that methods of elastic shape anal-

ysis outperform the traditional geometric morphometrics method that is widely used by

176Our public GitHub repository, https://github.com/LittleAri/shapeClassification, provides

code to extract contours from images, use elastic shape analysis on the contour data, such as distance

computations, Karcher means, and code to perform classifications.

219

https://github.com/LittleAri/shapeClassification

Arianna Salili-James CHAPTER 6. CONCLUSION

applied scientists, as well as experts in the field, when it comes to classification-related

questions. Here, we also learnt that the analysis of shapes is best done within the SRVF

framework, whether it is to compute distances that will later be incorporated into a ma-

chine learning classifier, or to cluster shapes or compute means (via a Karcher mean).

Further work in this chapter also showed that Geometric Currents worked rather well in

the classification of objects, particularly when shape differences were subtle.

In our last chapter, our two projects focused on a novel application of functional and

shape data analysis, namely, in wildlife conservation. Our work, in collaboration with

Kākāpō Recovery177, resulted in a new tool that incorporated shape analysis to predict

the health of Kākāpō chicks via the use of Karcher means. In our final project, we

introduced the first real-world application of elastic shape analysis on raw sound data –

more specifically, on recordings of kiwi calls. By combining shape analysis with machine

learning, we designed an algorithm to classify individuals within a species by studying

the shapes of their recorded calls.

Image Processing Endeavours

Throughout this entire thesis, we have made sure to state the importance of the image

processing steps when it comes to shape analysis based on image datasets178. Whilst tra-

ditionally in literature there is little emphasis placed on such image processing techniques,

in this thesis we have developed and optimised image processing methods specifically for

each project’s dataset. This led to a series of robust algorithms that we employed for our

projects, and that can now be utilized by others, in further applications.

The most notable contribution to image processing in this thesis has been the automated

binarization algorithm (as seen in Algorithm 5) aimed at segmenting an object centred in

an image, whilst binarizing it. Though methods do exist that can obtain similar results,

particularly with the use of neural networks, our method provides a much simpler solution

that does not rely on the training of large datasets. This algorithm, or parts of it, were

subsequently used in the data processing step for multiple projects throughout the thesis.

177https://www.doc.govt.nz/our-work/kakapo-recovery/
178Or even non-image datasets, such as the Kiwi call data, which eventually can be treated as images

via the use of spectrograms, as seen in Section 5.2.1.

220

https://www.doc.govt.nz/our-work/kakapo-recovery/
https://www.doc.govt.nz/our-work/kakapo-recovery/

Arianna Salili-James CHAPTER 6. CONCLUSION

Another important image processing contribution appeared in our final project, which

focused on spectrograms. Here, we designed a series of algorithms that incorporated

classical tools from image processing such as contour extraction and image binarization

with signal processing tools, in order to extract smooth harmonic curves from audio data.

Additional endeavours into the field of image processing and computer vision included our

work on automatic vase-handle removal, and our technique of re-purposing an algorithm

known for contour extraction (i.e. Snakes) for smoothing contours, by using a low number

of iterations on an initial snake based on un-smooth contour.

6.2 Future Work

Throughout this thesis, we have discussed the future possibilities of our research in the

relevant sections of our projects. Here, we highlight five future opportunities in particular:

Pairwise-Registration in the Product Space – An open problem in elastic shape

analysis is on the pairwise registration of open curves in a product space. As discussed in

Section 5.2.6, the implications of the defined mathematics can be used to register pairs

of groups of curves. This will potentially lead to numerous applications, from analysing

harmonics in audio data to pattern matching in zoological datasets.

Machine Learning & Elastic Shape Analysis – There remain many potential op-

portunities to explore regarding a combination of elastic shape analysis and machine

learning. Whilst in this thesis we combined the two in order to classify objects based on

geodesic distances, there are further possibilities. For example, we could look at incorpo-

rating an elastic metric within a different machine learning algorithm, such as k-means,

using a Karcher mean instead of the standard Euclidean mean. Alternatively, we can ex-

plore more ways of connecting elastic metrics with deep learning, such as the work done

in (Hartman et al., 2021), which trained a neural network model on elastic distances

within the SRVF framework.

Large-scale Ancient Greek Vase Project – We mention this specific project in our

future work as it has already been planned as a very large collaborative project. In this

thesis, we saw how remarkably well we were able to classify vases, based solely on their

outline shapes, by incorporating elastic shape analysis methods. Now, we want to evolve

221

Arianna Salili-James CHAPTER 6. CONCLUSION

that project by working on a colossal dataset of Greek vases. This project will also require

some work on the handle removal algorithms we previously designed, in order to avoid

any manual manipulations to the images in this vast dataset.

Applications to 3D Surfaces – Throughout the entirety of this thesis, we have fo-

cused on two dimensional curves. Thus, a natural next step would be to consider 3D

surfaces and curves in R3. Indeed, with the increased availability to 3D laser scanners,

3D data is becoming more plentiful. Moreover, there exist methods of elastic shape anal-

ysis that can certainly be applied to three dimensional data. This is the motivation for

future work on the analysis of diverse applications of elastic shape analysis on 3D data,

to answer various questions, such as classification.

Robust Contour Extraction Algorithms – Across our projects, we have worked on

various image processing algorithms. Although these methods have worked well in our

specific projects, we are mindful that they have not been examined much, in isolation,

outside of our projects, apart from some simple tests, such as the experiment seen in

Chapter 3. Thus our next step is to provide a concise comparative analysis with a larger

dataset of images of various objects, on the methods that we have created, and on other

popular methods in image processing, including this time, a neural network approach. By

conducting a detailed experiment, we can utilize the results to improve the robustness of

our algorithms. This work is significant as contour extraction tools are highly important

in shape analysis. Henceforth, we will compile the code into a package or software, so

that it can form part of our guidebook on the applications of shape analysis.

Guidebook for Applied Scientists – At the start of this thesis, we discussed our

motivation for bringing shape analysis to a wider audience, outside of the shape-analysis

community. Furthermore, we discussed the importance of a guidebook detailing how to

analyse shape data with shape analysis, aimed at applied scientists. Such a guidebook

would not only include details surrounding methods of elastic shape analysis, but it would

also include the vital image processing steps, to process the shape data, as well as the

machine learning steps, to utilize the results obtained from shape analysis. Whilst we

hope the contents of this thesis can provide just that, in the future, we will compile a

more concise handbook and make our code publicly available within a Python package,

in order to truly showcase the significance of the applications of elastic shape analysis.

222

Bibliography

Abboud, M., Benzinou, A., Nasreddine, K., and Jazar, M. (2015). Robust statistical shape

analysis based on the tangent shape space. 2015 IEEE International Conference on Image

Processing (ICIP).

Abdullah, N., Ngah, U. K., and Aziz, S. A. (2011). Image classification of brain MRI using

support vector machine. In 2011 IEEE International Conference on Imaging Systems and

Techniques, pages 242–247. IEEE.

Adams, D. C., Rohlf, F. J., and Slice, D. E. (2004). Geometric morphometrics: ten years of

progress following the ‘revolution’. Italian Journal of Zoology, 71(1):5–16.

Amrane, M., Oukid, S., Gagaoua, I., and Ensari, T. (2018). Breast cancer classification using

machine learning. In 2018 Electric Electronics, Computer Science, Biomedical Engineerings’

Meeting (EBBT), pages 1–4. IEEE.

Anson, D. (2017). Analysis and classification of variations in the shape of Mycenaean pictorial

amphoroid kraters from Cyprus and the Levant. Mediterranean Archaeology, 30:1–18.

Bauer, M., Bruveris, M., Marsland, S., and Michor, P. W. (2014). Constructing reparameteriza-

tion invariant metrics on spaces of plane curves. Differential Geometry and its Applications,

34:139–165.

Bauer, M., Eslitzbichler, M., and Grasmair, M. (2015). Landmark-guided elastic shape analysis

of human character motions. arXiv preprint arXiv:1502.07666.

Beazley, J. D. (1956). Attic black-figure vase-painters. Clarendon Press.

Bechshøft, T. Ø., Sonne, C., Rigét, F. F., Wiig, Ø., and Dietz, R. (2008). Differences in growth,

size and sexual dimorphism in skulls of East Greenland and Svalbard polar bears (ursus

maritimus). Polar Biology, 31(8):945–958.

223

Arianna Salili-James BIBLIOGRAPHY

Beg, M. F., Miller, M. I., Trouvé, A., and Younes, L. (2005). Computing large deformation

metric mappings via geodesic flows of diffeomorphisms. International Journal of Computer

Vision, 61(2):139–157.

Benn, J., Marsland, S., McLachlan, R. I., Modin, K., and Verdier, O. (2019). Currents and finite

elements as tools for shape space. Journal of Mathematical Imaging and Vision, 61(8):1197–

1220.

Berndt, D. J. and Clifford, J. (1994). Using dynamic time warping to find patterns in time

series. In KDD workshop, volume 10, pages 359–370. Seattle, WA, USA:.

Bharath, K., Kurtek, S., Rao, A., and Baladandayuthapani, V. (2018). Radiologic image-based

statistical shape analysis of brain tumours. Journal of the Royal Statistical Society: Series C

(Applied Statistics), 67(5):1357–1378.

Bishop, C. M. (2006). Pattern recognition and machine learning. Machine Learning, 128(9).

Bloesch, H. (1940). Formen attischer Schalen von Exekias bis zum Ende des strengen Stils.

Bümpliz, Benteli.

Bock, A. and Cotter, C. (2020). Space-time metamorphosis. arXiv preprint arXiv:2005.08743.

Bookstein, F., Chernoff, B., Elder, R., Humphries, J., Smith, G., and Strauss, R. (1985). The

geometry of size and shape change, with examples from fishes. Philadelphia: The Academy

of Natural Sciences of Philadelphia.

Bookstein, F. L. (1997). Morphometric tools for landmark data.

Bookstein, F. L. and Sampson, P. D. (1990). Statistical models for geometric components of

shape change. Communications in Statistics-Theory and Methods, 19(5):1939–1972.

Brice, C. R. and Fennema, C. L. (1970). Scene analysis using regions. Artificial Intelligence,

1(3-4):205–226.

Bruce, B. and Marilyn, S. (1993). Music in theory and practice.

Brunner, N., Kühleitner, M., and Renner-Martin, K. (2021). Bertalanffy-Pütter models for

avian growth. PLOS ONE, 16(4):e0250515.

Bruveris, M. (2016). Optimal reparametrizations in the square root velocity framework. SIAM

Journal on Mathematical Analysis, 48(6):4335–4354.

224

Arianna Salili-James BIBLIOGRAPHY

Burns, B., Innes, J., and Day, T. (2012). The use and potential of pest-proof fencing for

ecosystem restoration and fauna conservation in New Zealand. Fencing for Conservation,

pages 65–90.

Canny, J. (1986). A computational approach to edge detection. IEEE Transactions on pattern

analysis and machine intelligence, (6):679–698.

Caselles, V., Kimmel, R., and Sapiro, G. (1995). Geodesic active contours. In Proceedings of

IEEE international conference on computer vision, pages 694–699. IEEE.

Caselles, V., Kimmel, R., and Sapiro, G. (1997). Geodesic active contours. International Journal

of Computer Vision, 22(1):61–79.

Chalana, V., Linker, D. T., Haynor, D. R., and Kim, Y. (1996). A multiple active contour

model for cardiac boundary detection on echocardiographic sequences. IEEE Transactions

on Medical Imaging, 15(3):290–298.

Cheng, J., Xie, B., Lin, C., and Ji, L. (2012). A comparative study in birds: call-type-

independent species and individual recognition using four machine-learning methods and

two acoustic features. Bioacoustics, 21(2):157–171.

Cho, M. H., Asiaee, A., and Kurtek, S. (2019). Elastic statistical shape analysis of biological

structures with case studies: A tutorial. Bulletin of Mathematical Biology, 81(7):2052–2073.

Chopina, J., Miklavcic, S., and Lagaa, H. (2013). Selection of parameters in active contours

for the phenotypic analysis of plants. Proc. 20th Int. Congr. Modelling Simulation, pages

510–516.

Christensen, G. E., Rabbitt, R. D., and Miller, M. I. (1996). Deformable templates using large

deformation kinematics. IEEE Transactions on Image Processing, 5(10):1435–1447.

Cooley, J. W. and Tukey, J. W. (1965). An algorithm for the machine calculation of complex

Fourier series. Mathematics of Computation, 19(90):297–301.

Corfield, J., Gillman, L., and Parsons, S. (2008). Vocalizations of the North Island brown kiwi

(apteryx mantelli). The Auk, 125(2):326–335.

Cortes, C. and Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3):273–297.

Cottam, Y., Merton, D. V., and Hendricks, W. (2006). Nutrient composition of the diet of

parent-raised kakapo nestlings. Notornis, 53(1):90.

De Boor, C. (1978). A practical guide to splines, volume 27. springer-verlag New York.

225

Arianna Salili-James BIBLIOGRAPHY

De Cheveigné, A. and Kawahara, H. (2002). YIN, a fundamental frequency estimator for speech

and music. The Journal of the Acoustical Society of America, 111(4):1917–1930.

De Rham, G. (1973). Variétés différentiables: formes, courants, formes harmoniques, volume 3.

Editions Hermann.

Dhondt, A. and Lambrechts, M. M. (1992). Individual voice recognition in birds. Trends in

Ecology & Evolution, 7(6):178–179.

Digby, A. (2013). Whistling in the dark: an acoustic study of Little Spotted Kiwi. PhD thesis,

Victoria University of Wellington.

Digby, A., Bell, B. D., and Teal, P. D. (2013). Vocal cooperation between the sexes in little

spotted kiwi (apteryx owenii). Ibis, 155(2):229–245.

Digby, A., Bell, B. D., and Teal, P. D. (2014). Vocal individuality of little spotted kiwi (apteryx

owenii). Emu-Austral Ornithology, 114(4):326–336.

Dinov, I. D., Petrosyan, P., Liu, Z., Eggert, P., Zamanyan, A., Torri, F., Macciardi, F., Hobel,

S., Moon, S. W., Sung, Y. H., et al. (2014). The perfect neuroimaging-genetics-computation

storm: collision of petabytes of data, millions of hardware devices and thousands of software

tools. Brain Imaging and Behavior, 8(2):311–322.

Dryden, I. L. and Mardia, K. V. (2016). Statistical shape analysis: with applications in R,

volume 995. John Wiley & Sons.

Dupuis, P., Grenander, U., and Miller, M. I. (1998). Variational problems on flows of diffeo-

morphisms for image matching. Quarterly of Applied Mathematics, 56(3):587–600.

Eason, D. K. and Moorhouse, R. J. (2006). Hand-rearing kakapo (strigops habroptilus), 1997-

2005. Notornis, 53(1):116.

Elliott, G. P., Merton, D. V., and Jansen, P. W. (2001). Intensive management of a critically

endangered species: the kakapo. Biological Conservation, 99(1):121–133.

Engelbrecht, D., De Waal, D., Du Plooy, D., Theron, N., Turner, A., and Wilkinson, S. (2007).

Growth curve analysis of hand-reared southern and northern ground hornbill nestlings.

Eslitzbichler, M. (2015). Modelling character motions on infinite-dimensional manifolds. The

Visual Computer, 31(9):1179–1190.

Falls, J. B. (1982). Individual recognition by sounds in birds. Acoustic Communication in Birds,

2:237–278.

226

Arianna Salili-James BIBLIOGRAPHY

Fidler, A. E., Lawrence, S. B., and McNatty, K. P. (2008). An hypothesis to explain the linkage

between kakapo (strigops habroptilus) breeding and the mast fruiting of their food trees.

Wildlife Research, 35(1):1–7.

Firmansyah, Z., Herdiyeni, Y., Silalahi, B. P., and Douady, S. (2016). Landmark analysis of leaf

shape using polygonal approximation. In IOP Conference Series: Earth and Environmental

Science, volume 31, page 012018. IOP Publishing.

Fix, E. and Hodges Jr, J. L. (1952). Discriminatory analysis-nonparametric discrimination:

Small sample performance. Technical report, California Univ Berkeley.

Fretwell, P. T., Scofield, P., and Phillips, R. A. (2017). Using super-high resolution satellite

imagery to census threatened albatrosses. Ibis, 159(3):481–490.

Gerhard, D. et al. (2003). Pitch extraction and fundamental frequency: History and current

techniques. Department of Computer Science, University of Regina Regina, SK, Canada.

Getoor, L. and Taskar, B. (2019). Introduction to Statistical Relational Learning. MIT Press.

Glaunes, J., Qiu, A., Miller, M. I., and Younes, L. (2008). Large deformation diffeomorphic

metric curve mapping. International Journal of Computer Vision, 80(3):317–336.

Gong, S. and Newman, T. S. (2013). A corner feature sensitive marching squares. In 2013

Proceedings of IEEE Southeastcon, pages 1–6. IEEE.

Goodall, C. (1991). Procrustes methods in the statistical analysis of shape. Journal of the Royal

Statistical Society: Series B (Methodological), 53(2):285–321.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep learning. MIT press.

Gower, J. (1971). Statistical methods of comparing different multivariate analyses of the same

data. Mathematics in the Archaeological and Historical Sciences, 138:149.

Grenander, U. and Miller, M. I. (1998). Computational anatomy: An emerging discipline.

Quarterly of Applied Mathematics, 56(4):617–694.

Grove, K. and Karcher, H. (1973). How to conjugate C1-close group actions. Mathematische

Zeitschrift, 132(1):11–20.

Gündemir, M. G., Szara, T., Spataru, C., Demircioglu, I., Turek, B., Petrovas, G., and Spataru,

M. C. (2022). Shape differences of the carina sterni in birds of various locomotion types.

Anatomia, Histologia, Embryologia.

227

Arianna Salili-James BIBLIOGRAPHY

Gunz, P. and Mitteroecker, P. (2013). Semilandmarks: a method for quantifying curves and

surfaces. Hystrix, the Italian Journal of Mammalogy, 24(1):103–109.

Hansen, C. D. and Johnson, C. R. (2011). Visualization handbook. Elsevier.

Harper, G. A., Elliott, G. P., Eason, D. K., and Moorhouse, R. J. (2006). What triggers nesting

of kakapo (strigops habroptilus)? Notornis, 53(1):160.

Hartman, E., Sukurdeep, Y., Charon, N., Klassen, E., and Bauer, M. (2021). Supervised

deep learning of elastic SRV distances on the shape space of curves. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 4425–4433.

Höllig, K. and Hörner, J. (2013). Approximation and modeling with B-splines. SIAM.

Holm, D. D., Marsden, J. E., and Ratiu, T. S. (1998). The Euler–Poincaré equations and semidi-

rect products with applications to continuum theories. Advances in Mathematics, 137(1):1–81.

Holm, D. D., Marsden, J. E., and Ratiu, T. S. (1999). The Euler-Poincaré equations in geo-

physical fluid dynamics. arXiv preprint chao-dyn/9903035.

Huang, S., Jia, J., Cao, R., Li, G., Cheng, M., and Wu, Y. (2011). Automatic segmentation

of the body and the spinal canal in CT images based on a priori information. In 2011 5th

International Conference on Bioinformatics and Biomedical Engineering, pages 1–4. IEEE.

Immerwahr, H. R. (1984). The signatures of Pamphaios. American Journal of Archaeology,

pages 341–352.

Ivins, J. and Porrill, J. (1995). Everything you always wanted to know about snakes (but were

afraid to ask). Artificial Intelligence, 2000.

Iwata, H. and Ukai, Y. (2002). Shape: a computer program package for quantitative evaluation

of biological shapes based on elliptic Fourier descriptors. Journal of Heredity, 93(5):384–385.

Joháczi, S. (2018). A new method in attribution? attempts of the employment of geometric mor-

phometrics in the attribution of Late Archaic Attic lekythoi. Dissertationes Archaeologicae,

pages 371–418.

Joshi, S. H., Klassen, E., Srivastava, A., and Jermyn, I. (2007). A novel representation for

Riemannian analysis of elastic curves in rn. In 2007 IEEE Conference on Computer Vision

and Pattern Recognition, pages 1–7. IEEE.

228

Arianna Salili-James BIBLIOGRAPHY

Joshi, S. H., Prieto-Marquez, A., and Parker, W. C. (2011). A landmark-free method for

quantifying biological shape variation. Biological Journal of the Linnean Society, 104(1):217–

233.

Julina, J. K. J. and Sharmila, T. S. (2017). Facial recognition using histogram of gradients and

support vector machines. In 2017 International Conference on Computer, Communication

and Signal Processing (ICCCSP), pages 1–5. IEEE.

Kahl, S., Wood, C. M., Eibl, M., and Klinck, H. (2021). BirdNET: A deep learning solution for

avian diversity monitoring. Ecological Informatics, 61:101236.

Kambhatla, N. and Leen, T. K. (1997). Dimension reduction by local principal component

analysis. Neural computation, 9(7):1493–1516.

Karcher, H. (1977). Riemannian center of mass and mollifier smoothing. Communications on

Pure and Applied Mathematics, 30(5):509–541.

Kass, M., Witkin, A., and Terzopoulos, D. (1988). Snakes: Active contour models. International

Journal of computer vision, 1(4):321–331.

Kendall, D. G. (1984). Shape manifolds, Procrustean metrics, and complex projective spaces.

Bulletin of the London Mathematical Society, 16(2):81–121.

Kendall, D. G., Barden, D., Carne, T. K., and Le, H. (2009). Shape and shape theory, volume

500. John Wiley & Sons.

Klassen, E. and Srivastava, A. (2006). Geodesics between 3D closed curves using path-

straightening. In European conference on computer vision, pages 95–106. Springer.

Klingenberg, C. P. (2020). Walking on Kendall’s shape space: Understanding shape spaces and

their coordinate systems. Evolutionary Biology, 47(4):334–352.

Kriegl, A. and Michor, P. W. (1997). The convenient setting of global analysis, volume 53.

American Mathematical Soc.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2017). Imagenet classification with deep

convolutional neural networks. Communications of the ACM, 60(6):84–90.

Kuhl, F. P. and Giardina, C. R. (1982). Elliptic fourier features of a closed contour. Computer

graphics and image processing, 18(3):236–258.

229

Arianna Salili-James BIBLIOGRAPHY

Kühleitner, M., Brunner, N., Nowak, W.-G., Renner-Martin, K., and Scheicher, K. (2019).

Best-fitting growth curves of the von Bertalanffy-Pütter type. Poultry Science, 98(9):3587–

3592.

Kuo, T.-Y., Lai, Y.-Y., and Lo, Y.-C. (2010). A novel image binarization method using hybrid

thresholding. In 2010 IEEE International Conference on Multimedia and Expo, pages 608–

612. IEEE.

Kurtek, S. and Srivastava, A. (2014). Handwritten text segmentation using elastic shape analy-

sis. In 2014 22nd International Conference on Pattern Recognition, pages 2501–2506. IEEE.

Laborde, J., Srivastava, A., and Zhang, J. (2011). Structure-based RNA function prediction

using elastic shape analysis. 2011 IEEE International Conference on Bioinformatics and

Biomedicine.

Laga, H., Kurtek, S., Srivastava, A., and Miklavcic, S. J. (2014). Landmark-free statistical

analysis of the shape of plant leaves. Journal of Theoretical Biology, 363:41–52.

Lahiri, S., Robinson, D., and Klassen, E. (2015). Precise matching of PL curves in RN in the

square root velocity framework. arXiv preprint arXiv:1501.00577.

Lakshminarayanan, B., Raich, R., and Fern, X. (2009). A syllable-level probabilistic framework

for bird species identification. In 2009 International Conference on Machine Learning and

Applications, pages 53–59. IEEE.

Le, H. and Kume, A. (2000). The Fréchet mean shape and the shape of the means. Advances

in Applied Probability, 32(1):101–113.

Lee, J. (2010). Introduction to topological manifolds, volume 202. Springer Science & Business

Media.

Leighton, L. R. (2011). Analyzing predation from the dawn of the Phanerozoic. Quantifying

the Evolution of Early Life, pages 73–109.

Leoni, G. (2017). A first course in Sobolev spaces. American Mathematical Soc.

Lloyd, S. (1982). Least squares quantization in pcm. IEEE transactions on information theory,

28(2):129–137.

Lorensen, W. E. and Cline, H. E. (1987). Marching cubes: A high resolution 3D surface

construction algorithm. ACM SIGGRAPH Computer Graphics, 21(4):163–169.

230

Arianna Salili-James BIBLIOGRAPHY

Mackay, A., Joháczi, S., Salili-James, A., Leroi, A. M., Mannack, T., and Marsland, S. (2021).

Measuring the shapes of ancient Greek vases. Available at SSRN 4012965.

Mackay, E. A. (2010). Tradition and originality: a study of Exekias. Archaeopress.

Magbayao, R. A., Arboleda, E. R., and Galas, E. M. (2020). Identification of Asian green

mussel perna viridis’ sex using image processing, fuzzy logic and k–nearest neighbor. Int. J.

Sci. Technol. Res, 9(01).

Maple, C. (2003). Geometric design and space planning using the marching squares and march-

ing cube algorithms. In 2003 international conference on geometric modeling and graphics,

2003. Proceedings, pages 90–95. IEEE.

Mardia, K. and Dryden, I. (1989). The statistical analysis of shape data. Biometrika, 76(2):271–

281.

Marsland, S. (2015). Machine learning: an algorithmic perspective. CRC press.

Marsland, S., Priyadarshani, N., Juodakis, J., and Castro, I. (2019). AviaNZ: A future-proofed

program for annotation and recognition of animal sounds in long-time field recordings. Meth-

ods in Ecology and Evolution, 10(8):1189–1195.

Marsland, S. and Shardlow, T. (2017). Langevin equations for landmark image registration

with uncertainty. SIAM Journal on Imaging Sciences, 10(2):782–807.

Marsland, S. and Sommer, S. (2020). Riemannian geometry on shapes and diffeomorphisms:

Statistics via actions of the diffeomorphism group. In Riemannian Geometric Statistics in

Medical Image Analysis, pages 135–167. Elsevier.

Marsland, S. and Twining, C. J. (2004). Constructing diffeomorphic representations for the

groupwise analysis of nonrigid registrations of medical images. IEEE Transactions on Medical

Imaging, 23(8):1006–1020.

Matuk, J., Mohammed, S., Kurtek, S., and Bharath, K. (2020). Biomedical applications of geo-

metric functional data analysis. In Handbook of Variational Methods for Nonlinear Geometric

Data, pages 675–701. Springer.

Michor, P. W. and Mumford, D. (2007). An overview of the Riemannian metrics on spaces

of curves using the Hamiltonian approach. Applied and Computational Harmonic Analysis,

23(1):74–113.

Miller, M. I. (2004). Computational anatomy: shape, growth, and atrophy comparison via

diffeomorphisms. NeuroImage, 23:S19–S33.

231

Arianna Salili-James BIBLIOGRAPHY

Minaee, S., Boykov, Y. Y., Porikli, F., Plaza, A. J., Kehtarnavaz, N., and Terzopoulos, D.

(2021). Image segmentation using deep learning: A survey. IEEE Transactions on Pattern

Analysis and Machine Intelligence.

Minchin, D., Maguire, C., and Rosell, R. (2003). The zebra mussel (dreissena polymorpha pallas)

invades ireland: human mediated vectors and the potential for rapid intranational dispersal.

In Biology and Environment: Proceedings of the Royal Irish Academy, pages 23–30. JSTOR.

Mio, W., Srivastava, A., and Joshi, S. (2007). On shape of plane elastic curves. International

Journal of Computer Vision, 73(3):307–324.

Miskelly, C. M. and Powlesland, R. G. (2013). Conservation translocations of New Zealand

birds, 1863–2012. Notornis, 60(1):3–28.

Mitteroecker, P. and Gunz, P. (2009). Advances in geometric morphometrics. Evolutionary

Biology, 36(2):235–247.

Moffett, J. (1992). The beazley archive: Making a humanities database accessible to the world.

Bulletin of the John Rylands Library, 74(3):39–52.

Mosier, C. I. (1939). Determining a simple structure when loadings for certain tests are known.

Psychometrika, 4(2):149–162.

Mostofi, F. and Khashman, A. (2014). Intelligent recognition of ancient Persian cuneiform

characters. In IJCCI (NCTA), pages 119–123.

Mottini, A., Descombes, X., and Besse, F. (2014). Axonal tree classification using an elastic

shape analysis based distance. In 2014 IEEE 11th International symposium on biomedical

imaging (ISBI), pages 850–853. IEEE.

Mouine, S., Yahiaoui, I., and Verroust-Blondet, A. (2013). A shape-based approach for leaf clas-

sification using multiscaletriangular representation. In Proceedings of the 3rd ACM conference

on International conference on multimedia retrieval, pages 127–134.

Munshi, P. and Mitra, S. K. (2012). A rough-set based binarization technique for fingerprint im-

ages. In 2012 IEEE International Conference on Signal Processing, Computing and Control,

pages 1–6. IEEE.

Niblack, W. (1985). An introduction to digital image processing. Strandberg Publishing Com-

pany.

232

Arianna Salili-James BIBLIOGRAPHY

Norman, M., Jonathan, K., and Kate, E. (2013). Geometric morphometric approaches to

acoustic signal analysis in mammalian biology. Virtual Morphology and Evolutionary Mor-

phometrics in the New Millenium., page 110.

Okumura, M. and Araujo, A. G. (2019). Archaeology, biology, and borrowing: A critical

examination of geometric morphometrics in archaeology. Journal of Archaeological Science,

101:149–158.

Otsu, N. (1979). A threshold selection method from gray-level histograms. IEEE Transactions

on Systems, Man, and Cybernetics, 9(1):62–66.

Ovaskainen, O., Moliterno de Camargo, U., and Somervuo, P. (2018). Animal sound identifier

(asi): software for automated identification of vocal animals. Ecology letters, 21(8):1244–1254.

Pal, M., Paul, D., and Saha, G. (2018). Synthetic speech detection using fundamental frequency

variation and spectral features. Computer Speech & Language, 48:31–50.

Pan, S. J. and Yang, Q. (2009). A survey on transfer learning. IEEE Transactions on knowledge

and data engineering, 22(10):1345–1359.

Pennec, X. (1999). Probabilities and statistics on Riemannian manifolds: Basic tools for geo-

metric measurements. In NSIP, volume 3, pages 194–198. Citeseer.

Peters, M. A., Hamilton, D., Eames, C., Innes, J., and Mason, N. W. (2016). The current

state of community-based environmental monitoring in New Zealand. New Zealand Journal

of Ecology, 40(3):279–288.

Prabhu, K. M. (2014). Window functions and their applications in signal processing. Taylor &

Francis.

Priddy, K. L. and Keller, P. E. (2005). Artificial neural networks: an introduction, volume 68.

SPIE press.

Prieto-Márquez, A. and Joshi, S. H. (2015). Morphological variation of pelvic skeletal elements

of hadrosaurid dinosaurs quantified using Riemannian analysis of elastic curves. In Biological

Shape Analysis : Proceedings of the 3rd International Symposium, pages 138–155. World

Scientific.

Priyadarshani, N., Castro, I., and Marsland, S. (2018). The impact of environmental factors in

birdsong acquisition using automated recorders. Ecology and Evolution, 8(10):5016–5033.

Priyadarshani, N., Marsland, S., Castro, I., and Punchihewa, A. (2016). Birdsong denoising

using wavelets. PLOS ONE, 11(1):e0146790.

233

Arianna Salili-James BIBLIOGRAPHY

Priyadarshani, N., Marsland, S., Juodakis, J., Castro, I., and Listanti, V. (2020). Wavelet filters

for automated recognition of birdsong in long-time field recordings. Methods in Ecology and

Evolution, 11(3):403–417.

Qian, K., Zhang, Z., Ringeval, F., and Schuller, B. (2015). Bird sounds classification by large

scale acoustic features and extreme learning machine. In 2015 IEEE Global Conference on

Signal and Information Processing (GlobalSIP), pages 1317–1321. IEEE.

Ralph, C. J., Droege, S., and Sauer, J. R. (1995). Managing and monitoring birds using point

counts: standards and applications. In: Ralph, C. John; Sauer, John R.; Droege, Sam,

technical editors. 1995. Monitoring bird populations by point counts. Gen. Tech. Rep. PSW-

GTR-149. Albany, CA: US Department of Agriculture, Forest Service, Pacific Southwest

Research Station: p. 161-168, 149.

Rath, T. M. and Manmatha, R. (2003). Word image matching using dynamic time warping.

In 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition,

2003. Proceedings., volume 2, pages II–II. IEEE.

Robinson, D. T. (2012). Functional data analysis and partial shape matching in the square root

velocity framework. PhD thesis, Florida State University.

Rocha, P. C. and Romano, P. S. (2021). The shape of sound: A new R package that crosses the

bridge between bioacoustics and geometric morphometrics. Methods in Ecology and Evolution,

12(6):1115–1121.

Rohlf, F. J. and Marcus, L. F. (1993). A revolution in morphometrics. Trends in Ecology &

Evolution, 8(4):129–132.

Rousselle, J.-J., Vincent, N., and Verbeke, N. (2003). Genetic algorithm to set active contour.

In International Conference on Computer Analysis of Images and Patterns, pages 345–352.

Springer.

Rydning, D. R.-J. G.-J. (2018). The digitization of the world from edge to core. Framingham:

International Data Corporation, page 16.

Salili-James, A., Mackay, A., Rodriguez-Alvarez, E., Rodriguez-Perez, D., Mannack, T., Rawl-

ings, T. A., Palmer, A. R., Todd, J., Riutta, T. E., Macinnis-Ng, C., et al. (2021). Classifying

organisms and artefacts by their shapes. arXiv preprint arXiv:2109.00920.

Schneider, S., Taylor, G. W., and Kremer, S. (2018). Deep learning object detection methods for

ecological camera trap data. In 2018 15th Conference on computer and robot vision (CRV),

pages 321–328. IEEE.

234

Arianna Salili-James BIBLIOGRAPHY

Selden Jr, R. Z. (2019). Ceramic morphological organisation in the Southern Caddo Area: the

Clarence H. Webb collections. Journal of Cultural Heritage, 35:41–55.

Sheets, H. D., Covino, K. M., Panasiewicz, J. M., and Morris, S. R. (2006). Comparison of

geometric morphometric outline methods in the discrimination of age-related differences in

feather shape. Frontiers in Zoology, 3(1):1–12.

Sibson, R. (1978). Studies in the robustness of multidimensional scaling: Procrustes statistics.

Journal of the Royal Statistical Society: Series B (Methodological), 40(2):234–238.

Smola, A. and Vishwanathan, S. (2008). Introduction to machine learning. Cambridge Univer-

sity, UK, 32(34):2008.

Snell, O. (1892). Die abhängigkeit des hirngewichtes von dem körpergewicht und den geistigen

fähigkeiten. Archiv für Psychiatrie und Nervenkrankheiten, 23(2):436–446.

Srivastava, A., Klassen, E., Joshi, S. H., and Jermyn, I. H. (2011a). Shape analysis of elastic

curves in Euclidean spaces. IEEE Transactions on Pattern Analysis and Machine Intelligence,

33(7):1415–1428.

Srivastava, A. and Klassen, E. P. (2016). Functional and shape data analysis, volume 1. Springer.

Srivastava, A., Wu, W., Kurtek, S., Klassen, E., and Marron, J. S. (2011b). Registration of

functional data using Fisher-Rao metric. arXiv preprint arXiv:1103.3817.

Strait, J., Kurtek, S., Bartha, E., and MacEachern, S. N. (2017). Landmark-constrained

elastic shape analysis of planar curves. Journal of the American Statistical Association,

112(518):521–533.

Su, Z., Klassen, E., and Bauer, M. (2017). The square root velocity framework for curves in a

homogeneous space. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition Workshops, pages 1–10.

Suzuki, S. et al. (1985). Topological structural analysis of digitized binary images by border

following. Computer vision, graphics, and image processing, 30(1):32–46.

Telgarsky, R. (2013). Dominant frequency extraction. arXiv preprint arXiv:1306.0103.

Thompson, D. W. (1917). On growth and form. Cambridge University Press.

Trouvé, A. (1995). An infinite dimensional group approach for physics based models in pattern

recognition. International Journal of Computer Vision - IJCV.

235

Arianna Salili-James BIBLIOGRAPHY

Trouvé, A. and Younes, L. (2005). Metamorphoses through Lie group action. Foundations of

Computational Mathematics, 5(2):173–198.

Tucker, J. D., Wu, W., and Srivastava, A. (2013). Analysis of signals under compositional noise

with applications to SONAR data. IEEE Journal of Oceanic Engineering, 39(2):318–330.

Twining, C. J. and Marsland, S. (2003). Constructing diffeomorphic representations of non-

rigid registrations of medical images. In Biennial International Conference on Information

Processing in Medical Imaging, pages 413–425. Springer.

van der Walt, S., Schönberger, J. L., Nunez-Iglesias, J., Boulogne, F., Warner, J. D., Yager,

N., Gouillart, E., Yu, T., and the scikit-image contributors (2014). scikit-image: image

processing in Python. PeerJ, 2:e453.

Venier, L., Mazerolle, M., Rodgers, A., McIlwrick, K., Holmes, S., and Thompson, D. (2017).

Comparison of semiautomated bird song recognition with manual detection of recorded bird

song samples. Avian Conservation and Ecology, 12(2).

Wang, J., Qian, W., and Chen, G. (2021). Combining quantitative analysis with an elliptic

Fourier descriptor: A study of pottery from the Gansu-Zhanqi site based on 3D scanning and

computer technology. Journal of Archaeological Science: Reports, 36:102897.

Wyvill, G. and Anson, D. (2004). Extracting measurements from existing photographs of ancient

pottery. In Proceedings Computer Graphics International, 2004., pages 614–617. IEEE.

Yang, Q. and Marchant, J. A. (1996). Accurate blemish detection with active contour models.

Computers and Electronics in Agriculture, 14(1):77–89.

Younes, L. (1998). Computable elastic distances between shapes. SIAM Journal on Applied

Mathematics, 58(2):565–586.

Younes, L. (2010). Shapes and diffeomorphisms, volume 171. Springer.

Zadeh, L. A. (1996). Fuzzy sets. In Fuzzy sets, fuzzy logic, and fuzzy systems: selected papers

by Lotfi A Zadeh, pages 394–432. World Scientific.

Zhang, M. and Fletcher, P. T. (2015). Finite-dimensional Lie algebras for fast diffeomorphic

image registration. In International conference on information processing in medical imaging,

pages 249–260. Springer.

Zhang, Z. (2016). Derivation of backpropagation in convolutional neural network (CNN). Uni-

versity of Tennessee, Knoxville, TN.

236

Appendix A

Kākāpō Classification Code

In light of our project in collaboration with Kākāpō Recovery179, detailed in Section 5.1 of this

thesis, we present a summary of the algorithms that make up our new Kākāpō Health tool.

In the following section, we detail the inputs and outputs of some of the functions used in the

classification code. For more details regarding this code, and for examples, we refer the reader

to our Github repository, kakapoClassification180181.

Note that in the following code, boolean type variables (bool), take in 1 and 0 for True / False.

179https://www.doc.govt.nz/our-work/kakapo-recovery/
180https://github.com/LittleAri/kakapoClassification
181As this a private repository between us and the Kākāpō Recovery team, please contact us for access.

237

https://www.doc.govt.nz/our-work/kakapo-recovery/
https://github.com/LittleAri/kakapoClassification
https://www.doc.govt.nz/our-work/kakapo-recovery/
https://github.com/LittleAri/kakapoClassification

Arianna Salili-James APPENDIX A. KĀKĀPŌ CLASSIFICATION CODE

A.1 Algorithms

A.1.1 Sampling Functions

The aim of the functions in this subsection is to create a sample of chicks and their weights.

Such samples can be used to compute Karcher mean templates and so on.

Algorithm 18: createWeightsSample
createWeightsSample(birdNames, weightsData, metadata, sex="Female",

sample=1, rimu=0, HR=0, minAge=0, maxAge=75, sampLength=40,

leeway=0.75, minLength=3, HRInbetween=0, minMaxAge=0, healthFilter=0,

healthFilterColumn="health")

Weights/ages from chicks in a sample, within a given range.

Parameters:

• birdNames - list of bird names in original sample.

• weightsData (pd.DataFrame) - all weights data.

• metadata (pd.DataFrame) - all meta data (e.g. ripeRimu information etc).

• sex - sex filter for sample birds. Set sex=0 to not filter by sex.

• sample (bool) - Set sample=1 to sample the ages (using 11). Else, the original weights

and ages in the given age range, in the filtered sample will be returned.

• rimu - Rimu filter. Set rimu=‘Y’ to filter for chicks born during rimu season etc.

• HR - Hand-rearing filter. Set HR=‘Y’ to filter for hand-reared chicks etc.

• minAge (np.float) - minimum age of chick.

• maxAge (np.float) - maximum age of chick.

• sampLength (np.int) - number of samples in the age template used for sampling ages.

This is only used if sample==1. Note that if the sampled age of a chick is less than

sampLength, then it won’t be included.

• leeway (np.float) - If sample==1, we filter for chicks whose first values in their

sampled ages is within minAge ± leeway, and last is within maxAge ± leeway.

• HRInbetween (bool) - If HRInbetween!=0, then those with handReared status “YN”,

will be included in the HR filter. For example, if HR==‘‘Y’’ and HRInbetween==1 then

sample will be filtered for chicks with handReared=‘Y’ or handReared=‘YN’.

238

Arianna Salili-James APPENDIX A. KĀKĀPŌ CLASSIFICATION CODE

• minMaxAge (np.float) - filters for chicks whose max age is greater than the

minMaxAge. This is only used when sample=0.

• healthFilter (bool) - only includes chicks in sample whose general health is set

to 1. To not have a health filter, set healthFilter=0.

• healthFilterColumn (str) - the name of the health column that healthFilter

uses to filter the sample.

return sampledWeights - M weights and ages of chicks in new sample.

return sampleNames - names of chicks in new sample.

return sampLength

239

Arianna Salili-James APPENDIX A. KĀKĀPŌ CLASSIFICATION CODE

A.1.2 Defining Boundaries / Health

In this subsection, we detail out the functions used to create boundaries, as seen earlier. We

also present the functions used to define a health classification, for example, if a certain number

of consecutive points in a growth curve fall outside of a boundary.

Algorithm 19: createBounds

createBounds(KarcherMean,standardDeviation,k=1.5,percentageScale=0)

Create boundary around a mean.

Parameters:

• KarcherMean (np.ndarray) - Karcher mean, of size (2,M). Note that this could

be replaced by any desired mean.

• standardDeviation (np.ndarray) - one-dimensional array consisting of the

standard deviation based on the aligned weights (of length M).

• k (np.float) - scalar used to create the boundary.

• percentageScale (bool) - if percentageScale == 1, the function will create a

boundary based on a multiple of KarcherMean using k. Otherwise, the boundary

is created using KarcherMean ±(k×standardDeviation).

return xBoundary (list) - x values of the boundary, of size (1, 2M).

return yBoundary (list) - y values of the boundary.

240

Arianna Salili-James APPENDIX A. KĀKĀPŌ CLASSIFICATION CODE

Algorithm 20: defineHealth

defineHealth(T, F, KMlength, consecutiveCount, xBoundary,

yBoundary, maxRatio=0.5, lowerBound=0, printPoints=0)

Initial health prediction based on the boundary created in 19

Parameters:

• T - list of ages of a chick (asc.).

• F - list of weights corresponding to the ages in T.

• KMlength (int) - length of Karcher Mean, (i.e. half the size of the boundary, M).

• consecutiveCount (int) - number of consecutive points used to define health. If

consecutiveCount consecutive points fall outside of the boundary, then this

causes the initial classification to be 0 (unhealthy) etc.

• xBoundary - x values of boundary.

• yBoundary - y values of boundary.

• maxRatio - this parameter is only used if the number of values in T is less than

consecutiveCount. In this case, if the ratio of points outside of the boundary

and total points, is greater than maxRatio, the initially health classification would

be 0.

• lowerBound (bool) - if this parameter is set to 1, then we would only check

whether values lie underneath the boundary, instead of checking whether it falls

outside of the boundary as a whole.

• printPoints (bool) - used only if you are interested in seeing the age of the

chick at which it had the relevant number of consecutive points outside of the

given boundary. Shows the first and last instance that this occurred. [Can only be

seen for chicks classed as unhealthy, except those that used maxRatio for their

classification.]

return predictedHealth (bool) - initial health classification (1 for healthy

etc).

return consecutivePoints (list) - consecutive points, empty unless

printPoints=1.

241

Arianna Salili-James APPENDIX A. KĀKĀPŌ CLASSIFICATION CODE

Algorithm 21: extraFilter

extraFilter(mean, x, y, currentPrediction, majorityScalar=0.5,

maxAge=75, minMeanValue=0, boundScalar=0.75)

Updated health prediction, based on result of 20 and further conditions.

Parameters:

• mean - Mean, where mean[0] holds the x values and mean[1] the y values.

• x (np.ndarray) - ages of a chick (asc).

• y - list of weights of a chick at the ages listed in x.

• currentPrediction (bool) - initial health classification as defined by 20.

• majorityScalar (np.float) - used as an additional filter for chicks with initial

health classification 0. If the ratio of the second half of the growth curve being

over the mean is greater than majorityScalar, along with some other conditions,

then the health classification is reverted to 1.

• maxAge (np.float) - If the initial classification is 0, but if max(x)<maxAge/5,

then the initial classification is accepted no matter what.

• minMeanValue (np.float) - the minimum value that we accept a point in the

mean to be. Can be used as a safety net for negative numbers in the mean for

example.

• boundScalar (np.float) - If a chick has an initial classification of 1, but falls

under a new lower bound (mean - (mean×boundScalar)), then its health is

reclassified as 0. Note that this step can only be used when min(x)>=10 days.

return newPredictedHealth (bool) - updated health classification.

242

Arianna Salili-James APPENDIX A. KĀKĀPŌ CLASSIFICATION CODE

A.1.3 Computing Means

The following is used to compute mean weights from any desired group (e.g. Females, non-Rimu

etc). It can be used to create the pre-computed Karcher means and optimal variables.

Algorithm 22: computeMeans
computeMeans(birdNames, birdWeights, metaData, ripe, hr, birdSex,

minAge=0, maxAge=75, sampLength=40, leeway=0.75, stdLBound=0.005,

kScalar=2,showBounds=0)

Compute mean, Karcher mean, aligned weights etc, of groups of chicks.

Parameters:

• birdNames - list of chick names.

• birdWeights (pd.DataFrame) - age and weights of chicks in sample.

• metaData (pd.DataFrame) - meta details of all chicks (e.g. sex, ripeRimu etc).

• ripe - ripeRimu filter, e.g. “Y” to filter for those born in Rimu season.

• hr - handReared filter, e.g. “N” to filter for non-hand-reared chicks.

• birdSex - sex filter.

• minAge (np.float) - minimum age of chick in growth curve.

• maxAge (np.float) - maximum age of chick in growth curve.

• sampLength (np.int) - length of template in sampling function.

• leeway (np.float) - refers to the leeway variable in (18).

• stdLBound (np.float) - minimum value in standard deviation (can be used as a safety

net to exclude negative numbers or zeros).

• kScalar (np.float) - scalar used to create boundary with the Karcher mean and

standard deviation (as seen in 19).

• showBounds (bool) - if showBounds==0, then the previous parameter is ignored and

the boundary ranges won’t be computed, and an empty list is returned instead.

243

Arianna Salili-James APPENDIX A. KĀKĀPŌ CLASSIFICATION CODE

return testWeights - ages and weights of chicks in new sample (training and

testing).

return testNames - list of names of chicks in new sample.

return mean - mean weights in new sample. mean[0] for x values, and mean[1]

for y.

return KarcherMean - Karcher mean of chicks in training sample. Size

(2,sampLength).

return averageGamma - average gamma function from training sample.

return standardDeviation - standard deviation of weights in new sample.

return alignedWeights - aligned weights of chicks in new sample.

return boundary - boundary curve, size (2,2×sampLength).

244

Arianna Salili-James APPENDIX A. KĀKĀPŌ CLASSIFICATION CODE

A.1.4 Health Classification

These are the main functions in the health classification code. The former is used to train

and test the prediction algorithm, whilst being used to test out an array of different parameter

options. The latter function is used to predict the health of one chick, and would likely form

the basis of any classification web-page.

Algorithm 23: trainTestKakapo
trainTestKakapo(birdNames, birdWeights, metaData, healthDetails,

birdSex, ripe=0, hr=0, method=1.4, minAge=0, maxAge=75, sampLength=40,

leeway=0.75, minLength=3, HRInbetween=0, excludeOutliers=1,

excludeTraining=0, beta=0.15, average="weighted",

percentageScalars=np.linspace(0.1, 0.5, 9), stdScalars=np.linspace(1.5,

4.5, 13), distanceLimitScalars=np.linspace(0, 5, 11),

consecutiveNumbers=np.linspace(3, 12, 10), percentageScale=0,

lowerBound=0, testAlign=1, stdLowerBound=0.005, majorityScalar=0.5,

printPoints=0, stdRound=0, minMaxAge=0, extraFilterScalar=0.75)

Function to train and test methods, and optimise parameters.

Parameters:

• birdNames - list of chick names.

• birdWeights (pd.DataFrame) - age and weights of chicks in sample.

• metaData (pd.DataFrame) - meta details of all chicks (e.g. sex, ripeRimu etc).

• healthDetails (dict) - health details e.g. healthDetails[chick][‘healthy’]=1.

• birdSex - sex filter.

• ripe - ripeRimu filter, e.g. “Y” to filter for those born in Rimu season.

• hr - handReared filter, e.g. “N” to filter for non-hand-reared chicks.

• method - Use method=1.4 for our best method, or method=0 for the original method.

• minAge (np.float) - minimum age of chick in growth curve.

• maxAge (np.float) - maximum age of chick in growth curve.

182https://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_score.

html
183https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.

html

245

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html

Arianna Salili-James APPENDIX A. KĀKĀPŌ CLASSIFICATION CODE

• sampLength (np.int) - length of template in sampling function (11).

• leeway (np.float) - refers to the leeway variable in (18).

• minLength (np.int) - minimum length of growth curve to predict health on.

• HRInbetween (bool) - refers to the HRInbetween variable in (18).

• excludeOutliers (bool) - excludes outliers in standard deviation computations.

• excludeTraining (bool) - excludes training sample when testing.

• beta (np.float) - refers to the beta variable in an Fβ-score (see Equation (4.4)).

• average - refers to the average variable required in sklearn’s precision182and

recall183scores, used in the computation of the Fβ-score.

• percentageScalars - list containing percentage scalars to test for the boundary

(e.g. used for method=0, in 19).

• stdScalars - list containing standard deviation scalars to test for the boundary

(e.g. used for method=1.4, in 19).

• distanceLimitScalars - distance scalars. Used only when method=2 or

method=3.

• consecutiveNumbers - list of integers used for consecutiveCount variable in 20.

• percentageScale (bool) - option to use base boundary on percentage of mean,

rather than the standard deviation.

• lowerBound (bool) - refers to lowerBound in 20.

• testAlign (bool) - if set to 0, testing will be done on the non-aligned weights.

• stdLowerBound (np.float) - minimum accepted value for the standard

deviation.

• majorityScalar (np.float) - refers to the majorityScalar variable in 21.

246

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html

Arianna Salili-James APPENDIX A. KĀKĀPŌ CLASSIFICATION CODE

• printPoints (bool) - refers to the printPoints variable in 20.

• stdRound (bool) - if set to 1, then the mean used 21 will be decreased by a

quarter of the standard deviation.

• minMaxAge (np.float) - minimum maximum age of chicks in samples.

• extraFilterScalar (np.float) - refers to the boundScalar variable in 21.

return classification - true and predicted health classification.

return scoresAndVariables (dict) - classification test details e.g. top Fβ.

return outliers (np.int) - total aligned growth curve outliers.

return rainNames - List of chicks in training sample.

return testNames - List of chicks in testing sample.

247

Arianna Salili-James APPENDIX A. KĀKĀPŌ CLASSIFICATION CODE

Algorithm 24: predictHealth
predictHealth(Name, birdNames, metaData, birdWeights, optimalVariables,

method=1.4, T=0, F=0, HRInbetween="N", useHRBackUp=0, minAge=0,

maxAge=75, sampLength=40, birdSex=0, ripe=0, hr=0, lowerBound=0,

testAlign=1, percentageScale=0, percentageScalar=0,

stdLowerBound=0.005, majorityScalar=0.5, stdRound=0,

backupSex="Female", useBackUp=0, KarcherMeanDetails=0, optVariables=[],

extraFilterScalar=0.75)

Predict health of chick.

Parameters:

• Names - name of specific chick to predict health.

• birdNames - list of chick names.

• metaData (pd.DataFrame) - meta details of all chicks (e.g. sex, ripeRimu etc).

• birdWeights (pd.DataFrame) - age and weights of chicks in sample.

• optimalVariables (pd.DataFrame) - top parameters for variables for all groups, such

as the boundary scalar k for 19.

• method - Use method=1.4 for best method.

• HRInbetween - replacement for those with handReared classified as “YN”. Only used

when useHRBackUp==1, else the training set will be based only on “YN” chicks.

• useHRBackUp (bool) - see above.

• ripe - ripeRimu filter, e.g. “Y” to filter for those born in Rimu season.

• percentageScalar (np.float) - percentage scalar for boundary in 19.

• backupSex - back-up sex if sex is unidentified. Only used if useBackUp==1.

• useBackUp (bool) - see above.

• KarcherMeanDetails (pd.DataFrame) - Karcher mean, gamma, and standard

deviation details for all groups.

248

Arianna Salili-James APPENDIX A. KĀKĀPŌ CLASSIFICATION CODE

• optVariables (list) - optimal variables can be passed to use for all groups of

chicks, in place of the optimalVariables parameter.

Note: for all other variables, please refer to the descriptions listed previously in

23. return results (dict) - all results: predicted health (“predictedHealth”),

original weights (“originalWeight”), aligned weights (“alignedWeight”), Karcher

mean for chick’s group (“KarcherMean”), average gamma function for group

(“averageGamma”), original weights of group (“sampleOriginalWeights”),

aligned weights of group (“sampleAlignedWeights”), names of chicks in original

training sample in group (“sampleNames”).

249

Arianna Salili-James APPENDIX A. KĀKĀPŌ CLASSIFICATION CODE

A.2 Code Examples

In order to visualise what the underlying code behind our Kākāpō tool (see 5.9) may look like,

we provide an example of some Python code that can be used to predict the health of kākāpō

chicks from their growth curves, which incorporate the functions outlined in the previous section.

1 # Imports

2 from sourceFunctions.kakapomeans import predictHealth

3 import pandas as pd

4

5 # Load datasets:

6 meta = pd.read_csv(’Data// Kakapo_Meta_Updated.csv ’)

7 all_weights = pd.read_csv(’Data// All_Records_Filtered.csv ’)

8 Birdnames_ageKnown = np.unique(list(all_weights [~np.isnan(all_weights

[’Age ’])][’birdName ’]))

9 optVariables = pd.read_csv(’Data// optimalVariables_Updated.csv ’,

converters ={’Variables ’: eval})

10

11 KMeanData = pd.read_csv(’Data// kmeanDetails_allGroups.csv ’,converters

={’KarcherMean ’: eval ,’standardDeviation ’: eval , ’averageGamma ’:

eval})

12 # Choose chick and growth range:

13 name = "Kura"

14 minAge = 0

15 maxAge = 75

16

17 # Predict health:

18 results = predictHealth(name ,Birdnames_ageKnown ,meta ,all_weights ,

optVariables ,KarcherMeanDetails=KMeanData ,minAge=minAge ,maxAge=

maxAge)

19

20 print(results[’predictedHealth ’])

250

	List of Algorithms
	Introduction
	What Is Shape?
	Shape Data

	Analysing Shape Data
	Morphometrics
	Shape Analysis & Functional Data Analysis
	Elastic Matching

	Our Research
	Motivation & Objectives
	Datasets

	Thesis Outline

	Background
	Introduction
	History & Literature Review
	Procrustes Alignment
	Background Chapter Outline

	Shapes & Invariances
	Parametrising Curves
	Shape-Preserving Transformations
	Pre-Shape and Shape Space

	Transforming Shapes
	LDDMM Framework
	Finding Geodesics

	Registering Curves in the SRVF Framework
	Motivation for Pairwise Registration
	Square Root Velocity Functions
	Invariance to Shape-Preserving Transformations
	Geodesics & Distances

	Implementations in the SRV Framework
	SRVF Path-Straightening
	Pairwise Registration of Open Curves
	Averages in the Shape Space

	Image Data Processing
	Introduction to Curves in Images
	Deep Learning for Image Segmentation
	Difficulties in Automatic Contour Extraction
	A New Combination of Tools

	Image Binarization
	What Is an Image?
	Introduction to Image Binarization
	Image Binarization Algorithms

	Contour Extraction
	Marching Squares
	Snakes

	Experiments
	Our Contour Extraction Approach
	Comparisons to Other Methods

	Applications of Elastic Shape Analysis to Closed Curves Extracted from Images
	Classifying Ancient Greek Vases
	The Shapes of Vases
	Shape Analysis for Vase Classification
	Data
	Removing Vase Handles
	Vase Image Binarization
	Finding Vase Outlines
	Quantifying Vase Shape Variation
	Machine Learning Classification
	Classification Results
	Means & Principal Components
	Repeating the Method on Other Datasets
	Overview

	The Effectiveness of Images
	Measuring the Shapes of Vases
	Project Overview

	Classifying Mussels
	Objectives
	Previous Classification Methods
	Method
	Summary

	Applications of Elastic Shape Analysis on Open Curves
	Kakapo Health Classification
	Growth Curves
	Kakapo Growth Monitoring with Shape Analysis
	Kakapo Weight Data
	Karcher Means of Kakapo Growth Curves
	Distances between Growth Curves & Means
	Boundaries on Growth Curves
	Method Comparison Experiment
	Classifying Growth Curves with Karcher Means
	Summary & Significance in Conservation

	Kiwi Call Identification
	Introduction to Automatic Birdsong Recognition
	Project Introduction
	Signal Processing Fundamentals
	Extracting Curves from Kiwi Calls
	Quantifying Differences between Kiwi Calls
	Summary & Future Work

	Conclusion
	Summary
	Future Work

	Kakapo Classification Code
	Algorithms
	Sampling Functions
	Defining Boundaries / Health
	Computing Means
	Health Classification

	Code Examples

