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Abstract

Neural network pruning offers great prospects for facilitating the deployment of deep neural networks on computational
resource limited devices. Neural architecture search (NAS) provides an efficient way to automatically seek appropriate neural
architecture design for compressed model. It is observed that, for existing NAS-based pruning methods, there is usually a lack
of layer information when searching the optimal neural architecture. In this paper, we propose a new NAS approach, namely,
differentiable channel pruning method guided via attention mechanism (DCP-A), where the adopted attention mechanism is
able to provide layer information to guide the optimization of the pruning policy. The training process is differentiable with
Gumbel-softmax sampling, while parameters are optimized under a two-stage training procedure. The neural network block
with the shortcut is dedicatedly designed, which is of help to prune the network not only on its width but also on its depth.
Extensive experiments are performed to verify the applicability and superiority of the proposed method. Detailed analysis
with visualization of the pruned model architecture shows that our proposed DCP-A learns explainable pruning policies.

Keywords Artificial Intelligence - Network pruning - Neural Architecture Search - Gumbel-softmax sampling - Attention

mechanism

Introduction

Deep neural networks (DNNs) have achieved remarkable
accomplishments in a variety of applications such as pattern
recognition [5,18,31,41,60], and have also shown sustained
superiorities in comparison to other methods. However, the
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large amount of model parameters and high performance
demand on GPUs have also brought about great challenges
on storage and time costs. Therefore, much research atten-
tion has been devoted to the operation problem of DNNs
on computationally limited devices such as mobile equip-
ments and embedded devices. As a rather popular approach,
neural network pruning offers a great prospect for facilitating
the deployment of DNNs on computational-resource-limited
devices. In general, the widely applied neural network
pruning approaches can be divided into two categories,
namely, weight pruning [8,10,20,63,64] and channel prun-
ing [4,6,12,21,61,62]. Since weight pruning cannot harvest
obvious acceleration for modern networks due to its unstruc-
tured operation manner, we focus on channel pruning in this
paper.

There are two types of channel pruning methods, i.e.,
criterion- and NAS-based channel pruning methods. The
main procedure of the criterion-based channel pruning tech-
niques is to first determine the basic criterion and then prune
filters hierarchically, which would require us to manually
set the pruning ratio for each layer. In practice, the pruning
ratio is usually set to be equal for each layer so as to simplify
the entire process. Unfortunately, such a simplification could
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Fig. 1 An illustration of DCP-A where the policy logits are designed
for all filters in the network and, in each layer, the importance scores
are assessed by a special mechanism to obtain the information among
filters and then guide the optimization of policy logits

lead to poor performance due to the fact that different lay-
ers possess different redundancies. On the other hand, neural
architecture search provides a powerful tool to automatically
seek efficient neural architecture. So far, extensive studies
have been conducted on the neural architecture search prob-
lem with the aim to explore the optimal network structures in
a large design space while taking into account the trade-off
among the model size, the speed, and the accuracy. Note that,
when utilizing traditional NAS-based methods, we usually
confront difficulty in searching a large space with unaccept-
able searching speed. Although some effort has been devoted
to reducing the searching space [12,22,24,28,38], the layer
information, i.e., the information of filters in one layer, has
seldom been taken into consideration when it comes to the
optimization of the pruning policy. Basically, most criterion-
based pruning methods fail to take the correlation among
layers into consideration while NAS-based methods usually
ignore the information of individual filters in a layer.
Inspired by the above discussion, in this paper, we propose
a new differentiable channel pruning framework guided via
attention mechanism (DCP-A), shown in Fig. 1, where cer-
tain policy is used to determine the pruning decision and
the importance scores in a layer are used to guide the opti-
mization of the policy logit. The importance scores can be
obtained by any pruning criterion. In this paper, we choose
the importance scores obtained by /; norm, /; norm and
attention mechanism. Here, the policy logit guided by the
attention mechanism shows the best experiment result. The
attention mechanism is a concept derived from cognitive psy-
chology that allows models to devote limited resources to
more important channels [35]. Pruning policy of pruning-
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or-not is sampled from the policy logit which is defined
for each filter in the network. To obtain layer information,
attention score with attention-guided loss is adopted to reg-
ulate the optimization of policy logit. Hence, the attention
score provides the correlation of filters in layer and, mean-
while, the attention guided loss limits the searching space
for pruning policy. Moreover, a two-stage training procedure
is proposed to ensure that the introduced attention modules
are well-trained and easily removed (without increase of the
final FLOPs of pruned network).

The main contributions of this paper can be highlighted
as follows:

(1) anew NAS-based differentiable channel pruning frame-
work is proposed, where importance scores obtained by
different mechanisms (including the attention mecha-
nism) are adopted to provide a layer information for the
optimization of pruning policy logit;

(2) a two-stage training procedure with designed training
objectives is proposed to optimize the network param-
eters, the policy logits and the attention modules;

(3) for networks with shortcut structure (e.g. ResNet), the
proposed DCP-A algorithm is capable of pruning net-
works not only on the width but also on the depth;

(4) the proposed DCP-A can be easily extended into the
multi-model case;

(5) via extensive experiments, the effectiveness and effi-
ciency of the proposed DCP-A framework are demon-
strated in different databases, and detailed analysis is
provided through structure visualization to show that the
pruning policies learned by DCP-A are explainable.

The remainder of this paper is organized as follows. In
“Related work™ section, we introduce the related works
of model pruning, neural architecture search and attention
mechanism. In “Methodology” section, we describe our
DCP-A framework in detail. The experimental study and
the corresponding analysis are presented in “Experiments”
section. “Conclusion” section gives the conclusions of this

paper.

Related work

In terms of its objectives, the model pruning can be gener-
ally classified into two categories, namely, weight pruning
and channel pruning. On one hand, weight pruning directly
removes connections in filters, which might lead to unstruc-
tured sparsity and, furthermore, make it difficult to accelerate
the inference with general-purpose hardware. On the other
hand, channel pruning prunes entire filters to deploy existing
basic linear algebra subprograms (BLASs) libraries, thereby
achieving better acceleration. Considering how to design the
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pruning policy, we can roughly divide channel pruning meth-
ods into criterion-based pruning and NAS-based pruning.

Criterion-based pruning

Generally, criterion-based pruning methods assess the impor-
tance of filters by utilizing filter weights or filter activations.
In [21], the importance of a filter has been calculated by the
corresponding absolute weights sum, according to which the
unimportant filters have been pruned. Filters with small />
norm have been slightly pruned in [13]. In [14], filters near
geometric median have been pruned with the most replace-
able contribution. In [4], three criteria have been utilized to
find the important filters for satisfying the least replacing
loss, the diversity and the high entropy of weights. It is worth
noticing that all the aforementioned criterion-based methods
use manual settings for the pruning ratio for layers.

NAS-based pruning

In early results concerning NAS, the optimal network struc-
tures have been found by resorting to the reinforcement
learning [68] or evolutionary algorithms [55] which would
consume substantial computation costs. Gradient-based NAS
methods [29,53,54] have been exploited to reduce the cost by
making the searching mechanism differentiable or approxi-
mately differentiable to enhance the searching efficiency. In
[25], a partial order pruning method has been developed to
automatically search the architectures with the best trade-
off between speed and accuracy. In [28], channel number
in each layer has been searched based on the artificial bee
colony algorithm. In [26], the designed hypernetwork has
taken the latent vectors as the input and generated the weight
parameters of the backbone network. It should be pointed out
that, however, the aforementioned methods only take global
network information into account, and there is still a lack of
layer information when conducting the searching.

Attention mechanism

In [16,48], attention modules have been proposed to help
DNNs focus on important channels and achieve a better
performance. Recently, the attention mechanism has been
considered in model pruning as an importance evaluation
criterion of filters. In [52], an attention module has been
embedded into model to generate scaling factors for chan-
nels that are considered as channels importance scores. In [6],
a long short-term memory has been introduced to generate
a strategy indicating the number of pruning filters for each
layer. In this strategy, attention blocks have been embedded in
the network, and filters with less attention scores have been
forbidden in a feed-forward manner. In both the methods

mentioned above, the attention score has been used directly
to rank the filters in a layer.

Methodology
Approach overview

For a network that needs to be pruned, it is our goal to learn
a pruning policy that determines the filter to be pruned with
the least performance loss. Attention module with an atten-
tion score is utilized to evaluate the importance of filters in
the layer. Note that attention modules are not expected to
directly influence the optimization of network parameters
because they will be removed from the pruned network to
avoid increasing the FLOPs. Therefore, we define pruning
policies for all filters in the whole network and use the atten-
tion module as a guided tool only.

In Fig. 2, an overview of our proposed DCP-A training
approach is illustrated, which consists of two stages in the
training epochs: (1) the stage of training parameters of the
network, and (2) the stage of optimizing attention modules
(Squeeze-and-Excitation block used in this paper) as well as
policy logits. To be more specific, such a two-stage approach
is explained as follows.

(a) Stage one: In the first stage, policy logits and parameters
of attention blocks are fixed, while the parameters of net-
work are free (to be optimized). It should be mentioned
that attention modules do not participate in feed-forward
in this stage, and only the average attention score of each
attention block is recorded.

(b) Stage two: In the second stage, the parameters of network
are fixed, while the parameters of attention blocks and
policy logits are set to be free (to be optimized). Here,
attention modules are activated for updating parameters.
Attention scores obtained in the previous stage will be
utilized as a guidance for optimizing the policy logits.

By repeating two stages alternately during training, opti-
mal pruning pattern can be learned, resulting in a well-pruned
network. Gumbel-softmax trick is utilized to make the train-
ing process differentiable. The details of our approach will
be described in the following.

Attention mechanism

In this paper, the Squeeze-and-Excitation (SE) block pro-
posed in [16] is employed to obtain the attention scores. The
SE module (also known as the channel attention module)
is able to select the most useful feature among channels,
thereby improving the effectiveness of the feature representa-
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Fig.2 An overview of DCP-A
training approach where the
policy logits and the attention
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tions. Moreover, SE block is an effective attention block that
can be flexibly embedded into most existing network struc-
tures and, consequently, the SE block has been widely used
in computer vision applications [45]. An SE block contains
two parts in its structure, namely, squeeze and excitation.

(a) Squeeze: In the squeeze part, the global information of
each feature channel is obtained by an average pooling
layer. Assume that the input of /th SE block is X; =
[xll, xlz, el xlc] € RHXWXC then the average global

information of each channel is defined as

1 H W
o = AG) = DD X)) (1)

i=1 j=I

where A(-) is the global average pooling function, and
x[k (i, j) represents the pixel value.

(b) Excitation: In the excitation part, the global information
are fused as follows to obtain the attention score S; of
each channel:

81 = 8§(Wro (W1iz1)) (2
C C

where Wi € R7*xIx1and w, € RE*7>1X1 are the

correlation of channels; r is the reduction ratio; o rep-

resents the activation function ReLU; and § denotes the

activation function Sigmoid.

In the literature, it has been shown that the SE block
possesses the ability to generate importance scores for chan-
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nels and, therefore, enhancing the network performance. As
shown in Fig. 3, pruning filters in one layer can be performed
based on the attention scores. For example, we can set the
threshold to be 0.5, and prune nearly half of filters with atten-
tion scores less than 0.5. However, in the whole network, such
a technique is not applicable anymore as the attention score
only reflects the relationship of filters in the same layer. In
Fig. 4, it can be seen that attention scores of different layers
are extremely separated, while those in the same layer are
relatively concentrated within a very small area. Obviously,
the network pruning would fail if we were to directly set a
threshold for attention scores to prune the whole network.

With the purpose of conquering the above-mentioned dif-
ficulty, we define a policy of pruning-or-not for each filter in
the network.

Network pruning policy

Assume that a neural network has L layers with weights
W, e RKxKxC/ XCIO, where K is the kernel size, CII and CZO
represent the sizes of input and output channels, respectively.

For kth filter f; x in/thlayer, we introduce a binary-valued
variable u; ; to determine pruning or not. It should be men-
tioned that the probability of pruning f; x is sampled from a
discrete probability distribution, and the back-propagation is
not allowed because of non-differentiability problem. Hence,
we employ the Gumbel-Softmax trick [17] to substitute the
original non-differentiable sample (from a discrete distri-
bution) with a differentiable sample (from a corresponding
Gumbel-Softmax distribution) [12,44].
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Fig.3 An illustration of attention score distribution for single layer

We use 77 ¢ = [1 — oy k, oy k] to represent the distribution
vector of u; i, where the logit o indicates the possibility
of pruning f; . Then, in Gumbel-softmax sampling, u; \ is
generated as

up . = argmax{log 7 1 (j) + Gk (j)} (3
Jj€{0,1}

where
Gk = —log(—log Up 1)

is a standard Gumbel distribution with U x sampled from a
uniform i.i.d. distribution /(0, 1). Then, the one-hot vector

Fig.5 An illustration of
training objectives in stage two.
The training losses of accuracy
contain accuracy losses of
optimizing parameters in the
network, SE block and policy
logit. Sparsity regularization
ensures the possibility of

Stage Two

Number of filters

A
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Attention Score

Fig.4 An illustration of attention score distributions for different lay-
ers. If a threshold is set to be 0.6, then filters of three layers (red, blue
and green) will be completely pruned. In contrast, filters of one layer
(purple) will be entirely reserved

of u;  is reformulated to the soft decision v; ; with reparam-
eterization trick as follows:

exp((og 7 x(j) + G1x(j))/T)
ie(0,1y exp((og k(i) + Gk (i) /7)

vk (j) = 5 “

where j € {0, 1} and 7 is the softmax temperature. When
T — 00, the Gumbel-softmax distribution is smooth and
oy x can be optimized with gradient descent. When 7 — 0,
vy, x becomes one-hot.

pruning filters and attention

score guided loss is introduced
to guide the optimization

] LOGIT LOSS

Sampling Policy

[0.5,0.2,0.2, 0.8, 0.9]

Gumbel-softmax Sampling
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Attention Score D D D

i Policy Logit —
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Algorithm 1 The DCP-A framework

Input: training data X; parameters of network Oy ; parameters of SE
block 6s; policy logit 6, ; FLOPs limitation y; Temperature t
Output: pruned network with parameters Gy«

1: Randomly split X into sub-training data X and sub-training data
X2;

2: for epoch =1 to max do

3 Fix Osg and 6.

4 Free Oy .

5. for x in X do

6 Sample policy with 6, and 7 based on (4).

7 Optimize Oy .

8 Record attention score S.

9:  end for

10:  Free Osg and 0.

11:  Fix Oy.

12:  for x in X, do

13: Sample policy with 6, and 7 based on (4).
14: Optimize Osg and 6, with S.

15:  end for

16:  Update t

17: end for

18: Prune network with y and updated policy logit 0.
19: Train the pruned network and obtain Oy

Training objectives

For training objectives, training losses of accuracy contain
L(6w), L(Osg) and L(6,), which represent accuracy losses
of optimizing parameters in network, SE block and policy
logit, respectively.

In consideration of pruning mission, sparsity regulariza-
tion Lgparsiry(07) is adopted to ensure the possibility of
pruning filters, which is defined as

1

LoparsiyOx) = 7 ) <w1 >oa- az,,->) )

l

where w; represents the influence imposed by /th layer on
FLOPs of pruning filters.

In most existing techniques, only Lgpasiry (07 ) and L(0)
are used to optimize 6. Since attention score is introduced
to provide the layer information in this paper, the attention
score guided loss should be taken into consideration as an
objective, which is defined as follows:

1
Louided(0x) =+ ; dist(S;, 1 — ay) (6)

where §; € R1XC js the average attention score of SE
block obtained in the first stage, and disz(-) measures the
cosine distance as follows:

u-v

dist(u,v) =1-— @)

llullllvll
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The exhibition of training objectives in stage two is shown
in Fig. 5.
Finally, the total loss function is defined as

Liotat =LOw) + L(OsE) + L(0x)

+ )Llﬁsparsity (Or) + )L2£guided (07) ®
where A and X, control the weights of Lsparsiry and Lguided,
respectively, and Oy, Os g and 6, will be optimized alternately
during training.

Consequently, we describe the whole DCP-A framework
in Algorithm 1.

Architectural design

Since network block with shortcut has been widely used
nowadays, in this paper, two types of block architecture
(basic block and bottleneck block) are considered with spe-
cial design.

As shown in Fig. 6, for basic block consisting of two con-
volutional layers and a shortcut, we use the same policy logit
for layers in the same block. For a bottleneck block with
three convolutional layers, we use the same policy for the
input and middle layer, and a new policy for the output layer.
The pruning ratios of layers in the same block are set to be
the same. Note that shortcut is protected in our method. Due
to the special architecture of shortcut, the output equals the
input if the policies are zero vectors, which is equivalent to
skipping the whole block. Hence, protecting shortcut will
help DCP-A skip network block and change the depth of the
network.

Extension to multi-model pruning

As shown in Fig. 7, “Widen-Compression” is provided in
DCP-A for multi-model pruning case. Assuming that the
original layer in one model has 4 filters, the policy logit will
be widened to 8 (doubled). When both strategies A and B
choose to reserve a filter in the same position (e.g. the 7th
position in Fig. 7), this filter will be shared in pruned mod-
els. Hence, DCP-A can help design the shared structure in
multi-model pruning.

Experiments

Our implementation is in PyTorch [37] with an NVIDIA
2080Ti GPU. Experiments on different databases have
proved the effectiveness of our method. We also exhibit var-
ious details of pruned model visually to further explore the
rationality of DCP-A.
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Fig.6 Anillustration of architectural design. For basic block, the same Model B
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policy is used for the input and middle layer, and a new policy is used . Filter for Filter for |
for the output layer @ Shared Filter Task A [T Task B |

Experimental settings
Databases

We evaluate our established DCP-A framework on the fol-
lowing databases: (1) CIFAR-10 and CIFAR-100 [19] that
contain 60,000 color images in each database, with 50,000
training images and 10,000 testing images; (2) ILSVRC-
2012 [39] (ImageNet) which is a large-scale dataset con-
taining 1.28 million training images and 50,000 validation
images of 1,000 classes; and (3) NYU-v2 [42] which is com-
prised of 1,449 video sequences from a variety of indoor
scenes as recorded by both the RGB and Depth cameras, and
include 795 images for training and 654 images for valida-
tion. We use 40-class annotation for semantic segmentation.
During the training, we resize the input images to 224 x 224
and test on the full resolution 256 x 512.

Performance metrics

To evaluate the network compression and testing perfor-
mance, the following measures are applied:

Acc.: The accuracy of testing on image classification. Acc.
1 (%) is the accuracy drop between pruned and the baseline
models. The smaller, the better. For CIFAR-10, top-1 accu-
racy is provided, while for ILSVRC-2012, both top-1 and
top-5 accuracies are reported.

FLOPs: The overall floating point operations (FLOPs) is
used as an indicator of computation costs. We use FLOPs |
(%) to describe the percentage of reduced FLOPs.

Pixel Acc.: Pixel Accuracy (Pixel Acc) on semantic segmen-
tation. The higher, the better. It is defined as follows:

k
> i Pii
k k
im0 j=0 Pij

PA = 9)

Fig. 7 An illustration of DCP-A in multi-model pruning. The policy
logit will be widened in multi-model pruning case

where p;; means the number of pixels belonging to ith class
but predicted to be in jth class; k is the number of classes.

mloU: Mean Intersection over Union (mloU) on semantic
segmentation. The higher, the better. It is defined as follows:

k

1 Pii
mloU =
Z T r
kt 1= 5o pij + Yoo pji — Pii

(10)

AT :Following [36,44], a single relative performance with
respect to the baseline is defined for semantic segmentation
of multiple metrics M as follows:

|M|

1
Z(MT,j - Mbaxeline,j)/Mbaseline,j (11)
=0

AT = —
M| -

where | M | represents the number of metrics.
Network architecture

We mainly focus on pruning ResNet [11] which has less
redundancy than VGG-net [43]. An illustration of pruned
MobileNet structure has also been provided in “Pruned result
visualization” section.

Training setting

For image classification, we train the parameters of network
and attention blocks with optimizer (Stochastic Gradient
Descent algorithm, SGD), initial learning rate (0.1), momen-
tum (0.9), batch size (256) and weight decay (0.0005).
Following [44,53], Adam is used for optimizing policy logit
and the constant learning rate is set to be 0.01. t is initial-

@ Springer
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Table 1 Different guidance on DCP

Table 2 Comparison of pruning ResNet on CIFAR-10

Depth Method Acc. (%) Acc.| (%) FLOPs| (%) Depth Method Acc. (%) Acc. | (%) FLOPs | (%)

56 DCP-WOL 93.12 0.47 53.2 32 SFP [13] 92.08 0.55 41.5
DCP-L2-norm 93.28 0.31 53.4 MFIS [4] 92.45 0.18 41.5
DCP-Ll-norm  93.34 0.25 53.1 Ours 92.43 0.20 47.0
DCP-A 93.56 0.03 539 TAS [9] 93.16 0.73 494
Bold indicates the best results of compressed models under similar LFPC [12] 92.12 0.51 52.6
compression ratios FPGM [14] 92.82 —0.19 53.2
MFIS [4] 92.14 0.49 53.2
Ours 92.37 0.26 554
ized as 5 and then decayed to near 0. The loss constraint 56 PFEC [21] 91.31 1.75 27.6
weights A1 and A, are both set to be 0.5. On CIFAR, the Ours 93.58 0.01 4.7
network is trained for 50 epochs to learn the policy logit and CS [15] 93.31 0.40 50.0
the value is 10 for ImageNet. After training, we can obtain SFP [13] 92.26 1.33 52.6
the optimal policy logit of network. Then, we prune the net- FPGM [14]  92.89 0.70 52.6
work according to the limit on FLOPs. Attention blocks will MEFIS [4] 93.27 0.32 52.6
be removed from the pruned network, hence they will not TAS [9] 93.69 0.77 507
increase the FLOPs. Pruned models will be trained for 200 LEPC [12] 93.34 0.25 529
epochs on CIFAR. Pre-trained model is used on ImageNet Ours 9356 0.03 53.9
and the total ep'och 1s 190. Bgsehne training schedule follows 110 PFEC [21] 92.94 061 386
[1164:)] The learning rate is divided by 5x at epoch 60, 120 and SFP [13] 93.38 0.30 408
F. afi the l . te of network ‘ Ours 94.20 —0.52 427
_ Forsegmentation, the learning rate of network parameters FPGM[14] 9385 o7 -

is set to be constant (0.001) with weight decay (0.0001),
. .. L. . . MFIS [4] 94.01 —0.33 52.3

batch size (8), training epoch (50) for optimizing and training
TAS [9] 94.33 0.64 53.0

epoch (50) for warm-up. A and X, are set to be 0.01 and
. .. . . LFPC [12] 93.79 —0.11 60.3

0.1, respectively. The total re-training epoch is 300. 7 is also
Ours 94.24 —0.56 55.5

initialized as 5.

At training time, we randomly split the original training
database into two sub-training databases for two stages.

We compare DCP-A with existing state-of-art pruning
algorithms, namely, MIL [7], PFEC [21], SFP [13], FPGM
[14], TAS [9], MetaPruning [30], ChannelSelection [15],
LSTM-SEP [6] and MFIS [4]. Among them, there exist NAS-
based methods as well as hierarchically pruning methods
with criterion.

Different guidance

In DCP-A, attention score provides layer information for
optimizing policy logit. For comparison, we test DCP with
another layer information calculation as well as without layer
information. As exhibited in Table 1, DCP-WOL represents
performing DCP without layer information. DCP-L1-norm
and DCP-L2-norm describe replacing attention score .S; with
the /; norm and /; norm of weights, respectively. The results
show that layer information has a positive impact on facili-
tating network performance (DCP-L1-norm, DCP-L2-norm
versus DCP-WOL). Moreover, DCP with attention (DCP-A)
performs best because the attention mechanism learns better
layer information.

@ Springer

Bold indicates the best results of compressed models under similar
compression ratios

Table 3 Comparison of pruning ResNet on CIFAR-100

Depth Method Acc. (%) Acc.| (%) FLOPs| (%)
56 MIL [7] 68.37 2.96 39.3

Ours 71.30 0.11 40.0

TAS [9] 72.25 0.93 51.3

LFPC [12] 70.83 0.58 51.6

SFP [13] 68.79 2.61 52.6

FPGM [14] 69.66 1.75 52.6

Ours 71.07 0.34 52.6

Bold indicates the best results of compressed models under similar
compression ratios

Pruning on CIFAR-10

ResNet has a special design for CIFAR that contains basic
blocks, while we use the same policy logit for layers in the
same block as mentioned.

We test DCP-A for ResNet with depth 32, 56, 110 on
CIFAR-10 and compare the results with state-of-the-art



Complex & Intelligent Systems (2023) 9:5611-5624

5619

Table 4 Comparison of pruning ResNet-18 on NYU-v2

Model FLOPs| (%) Semantic segmentation

(Higher better)

mloU  Pixel Acc AT (%)
Uniform baseline - 26.6 57.9 -
Uniform baseline ~ 49.7 25.0 57.0 — 3.8
Ours 50.7 27.1 58.6 +1.5
Uniform baseline  60.2 26.0 59.0 —-0.2
Ours 60.2 26.6 58.4 +0.4
Uniform baseline  69.7 25.7 57.3 —22
Ours 70.0 26.2 58.7 —-0.1

Bold indicates the best results of compressed models under similar
compression ratios

methods in Table 2. Moreover, we choose FLOPs reduced
of 45% and 55% for our methods. The experiment results
validate the effectiveness of the developed method, where

Table 5 Comparison of pruning ResNet-50 on ILSVRC-2012

DCP-A achieves better performances with more FLOPs
reduced in almost all situations. Specifically, for depth 56,
our method shows the results of 0.03% accuracy drop which
is better than 0.25% of LFPC, whereas the acceleration rate
of our method is 1.0% higher than that of MFIS. Likewise,
better results and higher FLOPs drop occur in other depths by
adopting our proposed method. For depth 32, MFIS performs
slightly better (0.02%) while DCP-A earns more FLOPs
reduction (6.5%). For depth 110, although LFPC reduces
more FLOPs (4.8%), DCP-A can improve the performance
with 0.56% compared of 0.11% accuracy improvement by
LFPC.

Pruning on CIFAR-100

We also provide similar experiments on CIFAR-100 with
ResNet-56 and show the results in Table 3. It can be seen
that DCP-A can achieve better results than other methods

Depth  Method Baseline Top-1 Baseline Top-5  Pruned Top-1 Pruned Top-5  Top-1 Top-5 FLOPs|
Acc. (%) Acc. (%) Acc. (%) Acc. (%) Acc.| (%) Acc.| (%) (%)
50 SFP [13] 76.15 92.87 62.14 84.60 14.01 8.27 41.8
LSTM-SEP [6] 76.12 93.00 - - 0.90 0.27 43.0
TAS [9] - - 76.20 93.07 1.26 0.48 43.5
Ours 76.15 92.87 75.66 92.51 0.49 0.36 50.9
MetaPruning [30]  76.60 - 75.40 - 1.20 - 51.2
CS [15] 76.13 - 75.56 - 0.56 0.36 51.3
FPGM [14] 76.15 92.87 74.83 92.32 1.32 0.55 53.5
MFIS [4] 76.15 92.87 75.23 92.50 0.92 0.37 535
LFPC [12] 76.15 92.87 74.46 92.04 1.69 0.83 60.8
Ours 76.15 92.87 74.61 92.18 1.54 0.69 60.9
Bold indicates the best results of compressed models under similar compression ratios
Table 6 Comparison of pruning ResNet on CIFAR-10 and CIFAR-100
Depth Method Acc. (%) Acc. | (%) FLOPs | (%)
CIFAR-10 CIFAR-100 CIFAR-10 CIFAR-100 ALL CIFAR-10 CIFAR-100
32 FPGM [14] 92.75 - 0.43 - - 41.5 -
- 69.44 - 0.84 - - 41.5
MFIS [4] 92.96 70.12 0.22 0.16 0.19 41.5 41.5
Ours 91.02 75.47 1.61 -519 -1.79 42.6 421
56 FPGM [14] 93.55 - 0.21 - - 52.6 -
- 70.51 - 1.28 - - 52.6
MFIS [4] 93.60 71.16 0.16 0.63 0.40 52.6 52.6
Ours 91.67 76.78 1.92 —4.52 -1.30 544 54.6
110 FPGM [14] 94.22 - —0.17 - - 523 -
- 72.80 - 1.08 - - 52.3
MFIS [4] 94.22 73.04 —-0.17 0.84 0.34 523 52.3
Ours 92.50 76.48 1.18 —2.60 -0.71 559 51.5

Bold indicates the best results of compressed models under similar compression ratios
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Fig.8 An illustration of 10 N e S
attention score and policy logit

in the same layer. The value of 08

both are normalized into [0, 1].
We can see that two lines
maintain a similar trend for
channels, which can be
obviously observed in dash 02
boxes
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Fig.9 An illustration of learned policy logit distributions for different
layers. Compared to Fig.4, if a threshold is set to be 0.6, each block
will prune a proper number of filters
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Fig. 10 Accuracies after training and re-training with different FLOPs
limitations

under both 40% and 50% FLOPs reduced limitations, which
also validates the effectiveness of our method.
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Pruning on semantic segmentation

We test DCP-A for semantic segmentation application on
NYU-v2 database. The Deeplab-ResNet [2] with atrous con-
volution is used as a baseline network. For comparison,
we apply uniform pruning with different FLOPs limitation
as uniform baselines. DCP-A also outperforms the uniform
baselines on semantic segmentation as shown in Table 4.

Pruning on ImageNet

The proposed framework is then tested on ILSVRC-2012
with ResNet-50. ResNet-50 has a standard bottleneck block
and we use the same policy for the input and middle layer, and
a new policy for the output layer. The results are described
in Table 5 and compared with state-of-the-art methods.

Pruning in multi-model

Finally, the proposed framework is tested in multi-database
case (CIFAR-10 and CIFAR-100) and compared with FPGM
and MFIS. Note that FPGM is performed on CIFAR-10
and CIFAR-100 separately. MFIS is a multi-task pruning
method and the multi-task pruning results are adopted for
comparison. As shown in Table 6, DCP-A performs better
on CIFAR-100 while MFIS gives better results on CIFAR-
10. Specifically, for depth 32, although MFIS shows the best
result of accuracy drop 0.22% on CIFAR-10, DCP-A can
improve the performance of 5.19% on CIFAR-100 which is
much better than MFIS and FPGM. ‘ALL’ shows the aver-
age accuracy decline on all databases. We can see that the
proposed DCP-A achieves the best results on all depths.

Pruned result visualization

Our approach designs the pruned network automatically and
experiments on several databases have proved the effective-
ness of DCP-A. Next, we are interested in the learned pruning
results. Here, details of pruning results are exhibited to fur-
ther exploit our method in the following.
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Fig. 11 An illustration of pruned ResNet-56 structure

Attention score guidance

Figure 8 shows the attention score and policy logit in one
layer, where the values of both are normalized into [0, 1] to
exhibit the variation tendency clearly. We can see that the
two lines maintain a similar trend for channels, which can be
obviously observed in the dash boxes. The pruned filters in
the same layer will be similar when using the attention score
or policy logit as pruning criterion. Hence, the decision of
pruning filters has been affected by the attention score-guided
loss. This means that attention score acts as a guidance for
optimizing policy logit in DCP-A training.

Policy logits

Figure 4 illustrates why we do not directly use attention score
as a pruning criterion. Here, for comparison, an illustration
of policy logit distributions has been presented in Fig. 9 with
the same layers. Apparently, policy logit can be utilized for
pruning. For example, if we set the threshold to be 0.6, then
each layer will prune proper filters under this constraint.

Pruned results with different limitations

In the following, we will prove that DCP-A does not require
repeated optimizing processes of policy logits under different
FLOPs constraints. As exhibited in Fig. 10, the top figure
shows the accuracies of pruned networks before re-training
with different FLOPs constraints. To verify that the pruned
network structures can lead to good performances, we re-
train 5 pruned networks under FLOPs reduced constraints
from 40% to 60%, and show the results in the bottom figure.
It can be seen that all the pruned networks achieve acceptable
performances with different limitations.

300 Original 1x MobileNet v2
Pruned Network 75%
Pruned Network 50%
250 —— Pruned Network 30%
4
g 200
= '
5 stride=2
@ 150
Eel
€
=
Z 100
stride=2
stride=2
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0 2 4 6 8 10 12 14 16
Block Index

Fig. 12 An illustration of pruned MobileNet v2 structure

é

Remained Filters

gl ol _nls

Block Index

Fig. 13 An illustration of pruned ResNet-20 structure. The 3rd block
and 7th block are removed according to the pruning policy

Pruned network structure

The pruned network structures for ResNet-56 and MobileNet
v2 [40] under different FLOPs limitations have been exhib-
ited in Figs. 11 and 12. We can observe that significant peeks
exist in the pruned network, when there is a down-sampling
operation with a stride 2 depth-wise convolution. Such a
phenomenon also occurs in MetaPruning [30] when prun-
ing MobileNet, which is mainly because network tries to
make up for the loss of information caused by the resolu-
tion degradation in the feature map size. Hence, it proves
that our DCP-A can learn an explainable policy for network
architecture.

Skip block

There exist skipping blocks when pruning network is shown
in Fig. 13. According to the learned pruning policy, all fil-
ters in the 3rd block and 7th block will be pruned and only
the shortcut will be reserved. This equals skipping the 3rd
block and 7th block. Hence, DCP-A can shrink the network
structure not only in width but also in-depth when pruning
the network with a shortcut.
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Fig. 14 Pruning results of Filters in CIFAR100 Model
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Multi-model pruning results

Figure 14 illustrates multi-model pruning results of ResNet-
56 on CIFAR-10 and CIFAR-100. The number of shared
filters is counted as well as the number of filters in a single
model. DCP-A can adaptively design the shared structure of
models. Specifically, there exists no filter sharing in the 2nd,
3rd and 11th module.

Conclusion

In this paper, a new differentiable channel pruning frame-
work guided via an attention mechanism has been proposed
and verified with experiments. Attention mechanism has
been adopted as a guidance to provide layer information for
policy optimization. The training process is differentiable
with Gumbel-softmax sampling and a two-stage training
procedure has been proposed to optimize the network param-
eters, policy logit and attention modules alternately. Special
design has been provided for network blocks with short-
cut and showed that protecting shortcut can assist DCP-A
prune the network not only in width but also in depth.
Detailed analysis has been given with pruned model visu-
alization. Limitations also exist in the proposed method.
More guidance mechanisms can be considered in addition
to attention guidance. Moreover, DCP-A can be extended
into multi-task pruning. In the future, we will 1) consider
more different guidance mechanisms with layer informa-
tion [32,46,47,49,56,57,66], 2) introduce control strategies
to enhance the model robustness [3,27,33,50,51,58], and 3)
extend our approach to other complicated multi-task learning
problems [1,23,34,59,65,67].
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