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A B S T R A C T

Credit default swaps and deep out-of-the-money put options can be used for credit protection,
but these markets are not perfectly integrated, leading to different implied hazard rates. The
differences in the implied hazard rates are linked to deviations between consensus rating-based
hazard rate curves in the two markets, and a residual component related to market frictions.
We show that both components diminish over time, but their convergence is asynchronous. A
trading strategy based on a joint signal from the curve and residual differences outperforms
a conventional trading approach that relies on the absolute differences between the implied
hazard rates. Hedge funds are likely to exploit within-market inefficiencies and deviations from
rating-based curve, but they do not seem to profit from market segmentation.

1. Introduction

Both deep out-of-the-money put (DOOMP) options and credit default swaps (CDS) provide protection against firm default,
llowing buyers to recover losses on the underlying stock or bond, respectively. Although CDS and DOOMP option have different
ricing structures, both products can be converted into a unit recovery claim (URC), which pays $1 if the firm defaults and zero
therwise. Carr and Wu (2011) suggest that, if the law of one price holds, a URC on a particular firm should have the same price
egardless of the market (viz. CDS or option) where the claim is traded; any price deviation, in the absence of market frictions, should
ventually converge to zero. The law of one price, however, may not always hold if the markets are segmented or only partially
ntegrated, leading to limited arbitrage, which, together with other market frictions, causes persistent deviations of relative security
rices from their theoretical relations. Another important limitation of the original (Carr and Wu, 2011) approach is an implicit
ssumption of a flat term structure of URC prices. If a non-flat term structure exists, as is the case of CDS (Kolokolova et al., 2019),
aturity mismatch between DOOMPs and CDSs would manifest itself in larger differences in URC prices and potentially hamper

he inference about future convergence. Hence, it is important to understand the association of the term structure of URCs and their
onvergence.

Our paper contributes to the discussion of CDS-DOOMP connections along several dimensions. First, building on the evidence
hat CDS-DOOMP deviations are heterogeneous with respect to firm’s credit quality,2 we characterize each market by the rating-

based hazard-rate curves, implied by URCs of the observed CDS and DOOMP prices. These curves capture not only the average
levels of the hazard rates, but also the curvature as a function of contract maturity. Second, we show that individual hazard rates
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converge to their respective rating curves, and this convergence cannot be captured merely by the average or median values of the
hazard rates. Next, we present evidence on how the term structure of URC-implied hazard rates affects the price discrepancy. The
difference between the rating-based hazard-rate fitted curves of the two markets captures systematic price differences and market
segmentation. The difference between the individual derivative price and its respective rating-based curve captures the relative
idiosyncratic departures from the consensus prices within the markets. We also consider an additional component which is related
to maturity mismatch between CDSs and DOOMPs, and it changes with the relative curvature of two rating-based curves. We find
that the overall time-series convergence (as implied by the law of one price) in the prices of URCs across the two markets depends
on the joint behavior of the differences. The systematic curve difference and the difference in individual deviations from the curves
should go in the same direction as a precursor for convergence. Our evidence shows that convergence in URC prices can be observed
only in about one third of our sample. We contribute to the discussion on how partial market segmentation affects price difference
between the two markets.

CDS market is a perfect laboratory for studying market integration because it is linked to equity, bond, and derivative markets,
ut its participants are predominantly professional traders (see Aldasoro and Ehlers, 2018, Table 1), who may be able to quickly
rade against mispricing. The existing literature largely focuses on relative mispricing across CDS-equity and CDS-bond market pairs.3

Stocks and bonds, however, are largely investment targets, whereas CDSs are mainly used to trade downside risk. A similar goal can
be achieved using DOOMP options, seemingly making these two products close substitutes for one another. Relative mispricing on
CDS and DOOMP markets has not yet received sufficient scholarly attention, although it may be of paramount importance for an
investor choosing an optimal strategy for downside risk management. Instead, current studies emphasize price similarity between
these two markets. Carr and Wu (2011) suggest that URCs derived from DOOMP option and CDS should be the same; any differences
between them can be used to predict their future price movements. Their empirical analysis is based on weekly observations for
121 companies between 2005 and 2008, and uses only options with the strike price under $5. Kim et al. (2013) include a broader
range of options in their analysis and use an implied URC (IURC).4 These IURC’s are more strongly connected to each other than
URCs of Carr and Wu (2011) during the financial crisis of 2007.

Different from those studies, we argue that the law of one price does not perfectly hold as there are a number of fundamental
differences in the market characteristics and in the investor type between CDS and DOOMP markets. CDSs are traded over the
counter and options are exchange traded. The most common CDS contract has a maturity of 5 years (over 80% of our sample),
but the most common DOOMP option has maturity less than six months (77% of our sample). Hence, although CDS and DOOMP
option can both be used to hedge firms’ credit risk, they attract different types of traders, with different investment horizons, distinct
trading strategies, liquidity preferences and risk-aversions. In particular, the DOOMP market is populated by short-term sophisticated
institutional investors, such as hedge funds, whereas insurance companies and banks dominate the CDS market (Aldasoro and Ehlers,
2018; Mengle, 2007). In the presence of partial market segmentation, when only a fraction of investors can trade on both markets
and rebalance their portfolios gradually, a supply shock in one market causes overreaction in prices of risk and under-reaction in
the other market. These discrepancies gradually disappear and the prices of risk across the markets converge over time (Greenwood
et al., 2018).

Methodologically, we first recover the CDS- and DOOMP-implied hazard rates from the individual contracts following Carr and
Wu (2011). As we recognize that credit rating of the underlying firm is an important determinant of the individual CDS spreads
and possibly of the put option prices (Aunon-Nerin et al., 2002), reflecting the firm’s default risk (Altman and Rijken, 2004; Löffler,
2004), in the second step we group the hazard rates of CDS and DOOMP option by firm’s credit rating, and fit the Nelson-Siegel
(NS) term structure curves, following Kolokolova et al. (2019). This process enables us to separate each implied hazard rate into
two components – a NS-model fitted value and a residual term. The fitted values represent the consensus prices in each of the two
markets based on a particular credit rating, whereas the residuals capture the within-market deviations from the consensus prices.

Next, we show that within-market deviations diminish over time, with both CDS- and DOOMP-implied hazard rates converging
to their fitted values on the corresponding NS curves. This finding extends the work of Kolokolova et al. (2019), that shows CDS
spread convergence to the corresponding rating-based curve, to the option market. As for the cross-market curve differences, we
find evidence of the convergence between curves over time. The cross-market differences, however, increase when the two markets
become more disintegrated.

The decomposition of CDS- and DOOMP-implied hazard rates into their fitted and residual components allows us to extract
trading signals related to their potential convergence. The pairs of CDSs and DOOMP options are traded only if both differences
in their systematic and idiosyncratic components point to the same convergence direction. We use a unique CDS trading data set
from GFI to test our strategy. The dataset contains the traded prices, as opposed to composite (average) prices often used in CDS
research. Using the actual trades, we are able to construct a realistic trading strategy, in which each position has its own specific time
of entering and unwinding, with trading costs also taken into consideration. Our proposed long-short strategy results in significant
positive expected returns after transaction costs are deducted, whereas a benchmark trading strategy, based simply on the absolute

3 For example, CDS illiquidity leads to short-term horizon price discrepancy between a CDS and the underlying stock (Kapadia and Pu, 2012). The cross-hedging
trategy between credit and equity markets in five European countries is jeopardized due to insufficient co-movement between credit and equity markets (Fonseca
nd Gottschalk, 2014). Different margin requirements lead to further price dispersion across markets (Garleanu and Pedersen, 2011; Shen et al., 2014). CDS
lope (measured as the difference between 5-year and 1-year CDS spreads) negatively predicts future stock returns and firm fundamentals (He et al., 2017).
DS-bond relative price difference is affected by the interest rate spread between the uncollateralized and collateralized loans (Garleanu and Pedersen, 2011).
ecently, Lee et al. (2021) document the CDS return anomalies stemming from the influence of credit ratings, and the effect of anomalies spills over equity and
ond markets.

4 Carr and Wu (2011) use options with put delta smaller than -15% in absolute value, while Kim et al. (2013) include options with put delta up to −70%.
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differences between CDS and DOOMP-implied hazard rates following Carr and Wu (2011), delivers negative expected returns. The
key reason for such poor performance is that out of 2,930 trades identified based on the absolute differences between CDS- and
DOOMP-implied hazard rates, few trades actually led to convergence. Our proposed signals using the systematic and idiosyncratic
components substantially improve the identification of profitable trades.

To further test the information content of the within-market and cross-market deviations and its potential effect on performance
f arbitrageurs, we construct time series measures of aggregate noise in the CDS and DOOMP markets and an aggregate measure of
arket segmentation based on curve differences. The noise measures capture the level of potential exploitable arbitrage opportunities

n the economy and are positively related to the average returns of hedge funds – institutional investors that are commonly seen
s professional arbitrageurs. Market segmentation, however, seems to be harder to exploit, with the high levels of segmentation
redicting poorer future performance of hedge funds.

Our paper complements the literature related to the law of one price in financial markets, financial market integration, and
ross-market predictability. Studies on the law of one price often investigate foreign exchange rates or commodity prices in different
egions or countries (see, e.g., Parsley and Wei, 1996; Goldberg and Verboven, 2005), international trades (Goodwin et al., 1990),
nd multiple (overseas) stock listings (e.g. Foerster and Karolyi, 1999; Howe and Kelm, 1987). Corporate bond and option markets
re found to be relatively well integrated, which allows estimation of bond credit spreads through a combination of a long equity
osition and a short put option, both with observable market values (Culp et al., 2018). Strong cross-market predictably is found
etween stock and bond markets (Pitkäjärvi et al., 2020). We contribute to the discussion of the law of one price and market
ntegration across markets that are often used for hedging credit risk, viz. CDS and DOOMP option markets. These two markets
re not perfectly integrated and the price of hedging downside risk in these two markets will be in most cases different. From a
ractical point of view, those investors who conventionally use only one of these markets for hedging downside risk may benefit
rom continuous monitoring of both markets, in order to choose a more favorably priced instrument at each point in time.

. Research design and hypotheses

To study the relation between CDS and DOOMP markets, we first calculate the implied hazard rates from CDSs (𝐻𝐶 ) and DOOMP
ptions (𝐻𝑃 ), following Carr and Wu (2011). If the law of one price holds, one would expect the implied hazard rates derived from
he CDS and DOOMP markets to be the same, thus 𝐻𝑃 = 𝐻𝐶 ; any difference in the hazard rates is therefore a white noise.5 At

the same time, these two markets are substantially different from one another. CDSs are traded OTC, while options are exchange
traded contracts. Typical contract maturity of CDSs is much longer than that of DOOMPs. The CDS market is less liquid and exhibits
higher transaction costs. All these differences are likely to attract different types of investors into these markets, with, for example,
different risk aversions, investment horizons and possibly different expectations about firms’ credit risk. These investors may be
unwilling or unable to trade across the markets, making the markets partly segmented. Thus, consensus hazard rates prevailing in
each of the markets may be different from each other, and the differences in observed hazard rates may be more persistent than
implied by the law of one price as suggested by Carr and Wu (2011).

In order to filter out consensus hazard rates in each of the markets, in the next step, following Kolokolova et al. (2019), we fit
Nelson–Siegel (NS) model to the implied hazard rates. We then split the hazard rates into the rating-based fitted values (𝐹𝐶 and
𝐹 𝑃 for CDS and DOOMP markets, respectively) and the residual components (𝑅𝐶 and 𝑅𝑃 ). The rating-based fitted values capture
the consensus level of hazard rates, while the residual components capture contract-specific noise. The technical details of the
decomposition are discussed in Section 3.

Another important issue that arises when comparing the two markets, which is not explicitly dealt with in Carr and Wu (2011),
is the maturity mismatch between the most common CDSs and DOOMPs. The most liquid CDSs have a maturity of five years, while
the most liquid DOOMPs usually have a maturity shorter than three months. If the term structure of hazard rates is flat, the maturity
of the contracts does not matter, and the rating-based fitted values of the hazard rates can be compared as extracted from CDSs and
DOOMPs without any adjustments. However, as we show later in the paper, the term structure of hazard rates is on average concave
for both CDS and DOOMP markets. Hence, the difference in the implied hazard rate also depends on the slope and curvature of the
fitted hazard rate curves.

In this paper we propose to decompose the difference between CDS- and DOOMP-implied hazard rates into the difference in the
fitted rating-based curves, the difference in residual components, and a slope adjustment as follows:

𝐻𝑃
𝜏𝑃

−𝐻𝐶
𝜏𝐶

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
Total difference

= (𝐹 𝑃
𝜏𝑃

+ 𝑅𝑃
𝜏𝑃
) − (𝐹𝐶

𝜏𝐶
+ 𝑅𝐶

𝜏𝐶
) (1)

= (𝐹 𝑃
𝜏𝑃

− 𝐹𝐶
𝜏𝐶
)

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
Difference in fitted values at actual maturities

+ (𝑅𝑃
𝜏𝑃

− 𝑅𝐶
𝜏𝐶
)

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
Difference in residuals

= (𝐹 𝑃
𝜏𝐶

− 𝐹𝐶
𝜏𝐶
)

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
Curve difference

+ (𝐹 𝑃
𝜏𝑃

− 𝐹 𝑃
𝜏𝐶
)

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
Slope adjustment

+ (𝑅𝑃
𝜏𝑃

− 𝑅𝐶
𝜏𝐶
)

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
Difference in residuals

,

here 𝜏𝑃 and 𝜏𝐶 denote maturities of the DOOMP and CDS contracts respectively.
The difference between the two NS-fitted curves (𝐹 𝑃

𝜏𝐶
− 𝐹𝐶

𝜏𝐶
) is likely to be linked to market segmentation, leading to our first

esearch hypothesis.

5 Carr and Wu (2011) explain how option factors may impact the total difference.
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Hypothesis H1. DOOMP-CDS cross-market curve difference is positively related to factors segmenting the two markets.

Since residuals relative to their respective curves capture additional contract-specific noise, their difference (𝑅𝑃
𝜏𝑃

−𝑅𝐶
𝜏𝐶
) is likely

to be related to the relative market inefficiency of the two markets, and hence, we formulate the accompanying hypothesis:

Hypothesis H1a. DOOMP-CDS cross-market residual difference is positively related to factors capturing relative inefficiency of the
two markets.

To test these hypotheses, we estimate a contemporaneous pooled panel regression:

𝐷(𝑖, 𝑡) = 𝛽0 + 𝛽1 𝑋(𝑖, 𝑡) + 𝑑(𝑖, 𝑡) (2)

where 𝐷 is either a curve (𝐹 𝑃
𝜏𝐶
−𝐹𝐶

𝜏𝐶
) or residual (𝑅𝑃

𝜏𝑃
−𝑅𝐶

𝜏𝐶
) cross-market difference in hazard rates for firm 𝑖. 𝑋 is a set of explanatory

variables, and 𝑑 is the error term of the regression. We also include calendar day and rating fixed effects in all the regressions. Since
we always compute the residuals relative to the their rating curve at the actual maturity of the contract in question, in what follows
we suppress sub-indices for residuals.

To create a complete picture of the drivers of the components of the difference in hazard rates, we also use the difference in
itted values at actual maturities (𝐹 𝑃

𝜏𝑃
− 𝐹𝐶

𝜏𝐶
), and the slope adjustment (𝐹 𝑃

𝜏𝑃
− 𝐹 𝑃

𝜏𝐶
) as 𝐷.

Following prior literature, we identify a set of potential explanatory variables. We classify them according to their relationship
o DOOMP-CDS market integration and market efficiency, and explain how they may impact the cross-market differences. Note that
ince curve difference will be the same for all DOOMP-CDS pairs of the same rating on the same day, the loadings on each factor
ill capture the effect of the average characteristic of all contracts on the day of curve fitting.

The first two factors are the level of credit risk and option delta; they capture the investors’ motivation to trade in the two
arkets.

(1) 0.5×(𝐻𝑃 +𝐻𝐶 ): The average of the implied hazard rates reflects the credit risk of a firm. Higher hazard rates indicate higher
redit risk; thus DOOMP options are more likely to be used as credit protection instruments, making them more aligned with CDSs.
e expect the curve difference to reduce as credit risk increases. At the same time, higher credit risk may reduce market liquidity.

ome studies (e.g. Tang and Yan, 2007) find that credit risk is negatively related to trading liquidity. Assuming that the liquidity
f exchange-traded put option market is less sensitive to credit risk than that of the CDS market, residual difference is likely to
ncrease with the level of credit risk.

(2) |Delta|: Option delta represents the moneyness of option. A trader who hedges credit risk is likely to prefer to buy a put option
ith a lower strike price (i.e. more deep out-of-the-money), because such option is cheaper. Hence, when |Delta| is larger, the put
ption behaves more like a traditional option, and is less likely to be traded for the purpose of credit risk protection. Therefore, we
xpect a positive relationship between the curve difference and the |Delta|. At the same time, when |Delta| of a put option is larger,
he connection between the put option and its rating curve weakens; as a result we expect the residual difference to increase too.

The next three factors are put option maturity, bid–ask spread (BAS) for put option, and the BAS for CDS; these three factors
apture structural similarity between the two markets.

(3) Put Maturity: Most exchange-traded options have maturities shorter than one year, whereas most CDSs have a maturity of
years. As put maturity increases6 the two contracts become more similar. Hence, we expect a negative relationship between put
aturity and curve difference. Similarly, the residual difference is likely to be smaller for a put option with a longer maturity, as

ts implied hazard rate is likely to be more aligned with its corresponding rating curve, due to its application as a credit protection
ool. In our regressions, put maturity is calculated by taking natural logarithm of the put maturity expressed in days.

(4) Put BAS: Put option bid–ask spread measures the level of put option illiquidity. Less liquid put options narrow the difference
n liquidity levels between the two markets, and these put options are more likely to be used for credit protection than for the
peculation on stock price movements. Thus, a larger option BAS is expected to be negatively related to the curve difference. Yet,
ow liquidity makes the option market less efficient. The put option price is more likely to deviate from its fundamental value, and
ence the option BAS is expected to be positively related to the residual difference.

(5) CDS BAS: CDS bid–ask spread measures the level of CDS illiquidity. Less liquid CDSs widen the difference in liquidity level
etween the two markets; therefore a larger CDS BAS is expected to be positively related to the curve difference. Similar to put
ption, low liquidity also makes the CDS market less efficient; when CDS price deviates further from its fundamental value due to
lliquidity, the residual difference (𝑅𝑃 − 𝑅𝐶 ) is expected to decrease due to the increase in 𝑅𝐶 .

The next two factors are option open interest and the number of CDS intra-day trades; they capture the depth of market and,
hus, the ease for an investor to switch between the two markets.

(6) Open Interest: Higher option open interest indicates higher demand for the DOOMP options. Given the conjecture that the
OOMP option is used mainly for credit risk protection, a higher demand implies that more investors use DOOMP options as a

ubstitute for CDSs. Therefore, higher open interest should reduce the curve difference.
(7) CDS Trade: The number of CDS intra-day trades captures the depth and liquidity of CDS market. More intra-day trades allow

nvestors to easily switch between the two markets for credit protection. Therefore, we expect the curve difference to be negatively
elated to the number of CDS trades.

Last but not least, we capture the risk aversion of put option investors through option implied volatility.

6 This discussion here focuses only on put option maturity, as only the 5-year CDSs are included in our samples.
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(8) Implied Vol: Option-implied volatility reflects investor’s risk aversion as well as the expectation of the underlying stock price.
nder the classical Black and Scholes (1973) option pricing framework, higher implied volatility corresponds to a higher put option
rice. If the increase in implied volatility is due to a higher level of risk aversion of put option investors, the higher put option price
hould discourage credit protection buyers to use DOOMP option as a substitute of CDS; therefore, the curve difference is expected
o increase. However, if the increase in implied volatility is due to a higher objective expectation of stock price volatility (reflecting
higher probability for the underlying firm to hit the default barrier), the curve difference may not change, as the CDS price and
DS implied hazard rate should also increase due to the same market expectation. Wang et al. (2013) find evidence that option
ariance risk premium (calculated as option implied volatility minus the expected realized volatility) increases the CDS spread. As
result, the expected sign of the effect of the implied volatility on the curve difference cannot be determined ex-ante, as it depends
n the reasons for changes of implied volatility.

.1. Within-market convergence to the rating curve

Hypothesis H1a tests if the residual difference in hazard rates is linked to short-term within-market inefficiencies. If the residuals
𝑅𝑃 and 𝑅𝐶 ) are only driven by these inefficiencies, they are likely to diminish over time, leading to the convergence of individual
azard rates to their corresponding NS fitted curves. Kolokolova et al. (2019) have shown that this is true for the CDS market,
nd CDS-implied hazard rates tend to converge towards the NS rating curves, especially if the deviations are substantial. Here, we
xtend this work to test if such convergence is also present in the DOOMP option market.

ypothesis H2. CDS and DOOMP option implied hazard rates converge to their market-specific rating-based curves.

To test this hypothesis, we estimate the following model:

𝛥𝐻(𝑖, 𝑡1, 𝑡2) = 𝛽0 + 𝛽1 𝛥𝐹 (𝑖, 𝑡1, 𝑡2) + 𝛽2 𝑅(𝑖, 𝑡1) + 𝑒(𝑖, 𝑡2), (3)

where 𝛥𝐻(𝑖, 𝑡1, 𝑡2) is the change in the hazard rate between times 𝑡1 and 𝑡2, 𝛥𝐹 (𝑖, 𝑡1, 𝑡2) is the corresponding change in the NS-fitted
value, and 𝑅(𝑖, 𝑡1) is the residual at time 𝑡1. We estimate Eq. (3) for CDS and put option separately, using the actual maturities of
he contracts when computing the fitted values. We also control for calendar day and rating fixed effects in the regression.

Negative and significant 𝛽2 coefficients would suggest an error correction mechanism where hazard rates 𝐻 converge to their
respective fitted values 𝐹 over time.

2.2. Cross-market convergence of the rating curves

The convergence of individual implied hazard rates to their respective rating curves, suggested in the previous section, implies
that the residual cross-market difference 𝑅𝑃 − 𝑅𝐶 should tend to zero, when both 𝑅𝑃 → 0 and 𝑅𝐶 → 0. If the two markets are
segmented, each of them could have its own rating-based fitted curve. Carr and Wu (2011) show that the total difference between
hazard rates implied by CDSs and DOOMPs narrows over time. We refine this general finding in our final hypothesis, suggesting
that diminishing difference has two main drivers: convergence of hazard rates to their curves and the convergence between curves.

Hypothesis H3. Convergence between CDS and DOOMP implied hazard rates is driven by diminishing fitted-curve difference and
simultaneous reduction in residual difference between these markets.

To test this hypothesis, we regress the change in the difference of the individual implied hazard rates on the residuals from Eq. (2)
that capture curve difference, residual difference, and DOOMP-curve slope adjustment:

𝛥𝐷𝐻 (𝑖, 𝑡1, 𝑡2) = 𝛽0 + 𝛽1 𝑑
𝐹 (𝑖, 𝑡1) + 𝛽2 𝑑

𝑅(𝑖, 𝑡1) + 𝛽3 𝑑
𝑆 (𝑖, 𝑡1) + 𝑒(𝑖, 𝑡2) (4)

where 𝑑𝐹 , 𝑑𝑅 and 𝑑𝑆 are regression residuals obtained from Eq. (2) for the curve difference, residual difference, and DOOMP slope
adjustment, respectively. We also control for calendar day fixed effect. 𝛥𝐷𝐻 (𝑖, 𝑡1, 𝑡2) is the change in the difference between DOOMP-
and CDS-implied hazard rate between times 𝑡1 and 𝑡2, computed at their actual maturities. That is:

𝛥𝐷𝐻 (𝑖, 𝑡1, 𝑡2) =
[

𝐻𝑃
𝜏𝑃
(𝑖, 𝑡2) −𝐻𝐶

𝜏𝐶
(𝑖, 𝑡2)

]

−
[

𝐻𝑃
𝜏𝑃
(𝑖, 𝑡1) −𝐻𝐶

𝜏𝐶
(𝑖, 𝑡1)

]

. (5)

Using the residual term from Eq. (2), instead of using the original differences, allows us to control for the known drivers of
cross-market differences. Moreover, we also estimate the regression in Eq. (4) replacing 𝑑𝐹 , 𝑑𝑅, and 𝑑𝑆 by original values of the
curve difference, residual difference, and DOOMP slope for comparison and robustness check.

A negative value of 𝛽1 implies convergence of the hazard rates due to curve convergence. Similarly, a negative value of 𝛽2 implies
convergence of the hazard rates due to diminishing residual difference. Hence, the convergence of 𝐻𝑃 and 𝐻𝐶 will be the strongest
if 𝑑𝐹 and 𝑑𝑅 share the same sign (both positive or both negative). In other words, we expect a stronger convergence between CDS
and DOOMP option if both curve and residual cross-market differences deviate in the same direction, and a weaker convergence
when their directions are different (𝑑𝐹 > 0 and 𝑑𝑅 < 0, for example). We remain agnostic about the direction of the effect of the
DOOMP-curve slope adjustment (𝛽 ) on the convergence between 𝐻𝑃 and 𝐻𝐶 , and let the data suggest the effect, if any.
3
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3. Hazard rate construction and deviation decomposition

3.1. URC-implied hazard rate

A unit recovery claim (URC) is defined as a security that pays $1 if a firm defaults before time 𝑇 (Carr and Wu, 2011). The price
f a URC (denoted as 𝑈) can be expressed as:

𝑈 (𝑡, 𝑇 ) = E𝑄 [

𝑒−𝑟𝜏𝐼{𝜏<𝑇 }
]

(6)

where 𝑟 is the risk-free interest rate, 𝜏 is the default time, 𝐼 is an indicator function taking the value of 1 if default happens before
and zero otherwise, and E𝑄 is the expectation operator under the risk neutral measure.
If default events follow a Poisson distribution with constant hazard rate 𝐻 , then

𝑈 (𝑡, 𝑇 ) = 𝐻 1 − 𝑒−(𝑟+𝐻)(𝑇−𝑡)

𝑟 +𝐻
. (7)

Based on Eq. (7), the CDS-implied URC (denoted as 𝑈𝐶 ) can be written as

𝑈𝐶 = 𝜁𝑘 1 − 𝑒−(𝑟+𝜁𝑘)(𝑇−𝑡)

𝑟 + 𝜁𝑘
(8)

where 𝜁 is the inverse of loss-given-default (i.e. 1∕(1 − 𝑅𝑅), with 𝑅𝑅 being the bond recovery rate) and 𝑘 is the price of a CDS
contract, that is, the CDS spread. Eq. (8) holds when the default rate has a flat term-structure such that 𝐻 = 𝑘∕(1 − 𝑅𝑅).

Consider now a put-implied URC. An American put option allows investors to sell the underlying security at the pre-determined
trike price. In case of a DOOMP option, the exercise event is most likely to coincide with the firm’s default. Thus, the current put
rice 𝑃𝑟𝑖𝑐𝑒𝑃0 can be expressed as:

𝑃𝑟𝑖𝑐𝑒𝑃0 (𝐾, 𝑇 ) = E𝑄 [

𝑒−𝑟𝜏 (𝐾 − 𝑆𝜏 )𝐼{𝜏<𝑇 }
]

(9)

here 𝑆𝜏 is the asset value at the time when the firm defaults, 𝐾 is the option strike price, and 𝑇 is the time to maturity.
Carr and Wu (2011) prove that as long as the stock price is bounded below by a strictly positive barrier 𝐵 > 0 before default, but

rops below a lower barrier 𝐴 < 𝐵 at default, and stays below 𝐴 thereafter, the price of the DOOMP is entirely driven by the default
robability and not by the stock price or the stock volatility. In particular, the DOOMP option price at time 𝑡 has the following
nalytical representation:

𝑃𝑟𝑖𝑐𝑒𝑃𝑡 (𝐾, 𝑇 ) = 𝐾
[

𝐻 1 − 𝑒−(𝑟+𝐻)(𝑇−𝑡)

𝑟 +𝐻

]

− 𝐴𝑒−𝑟𝑇
[

1 − 𝑒−𝐻(𝑇−𝑡)] . (10)

Using any two American puts (with the same underlying) with strike prices being within the default corridor [𝐴,𝐵], one can
eplicate a pure credit insurance that pays off if and only if the company defaults prior to the option expiry. Combining Eqs. (7)
nd (10), the put-recovered URC (denoted as 𝑈𝑃 ) can be valued as a scaled difference between the two put option prices

𝑈𝑃 =
𝑃𝑟𝑖𝑐𝑒𝑃 (𝐾2, 𝑇 ) − 𝑃𝑟𝑖𝑐𝑒𝑃 (𝐾1, 𝑇 )

𝐾2 −𝐾1
. (11)

or the special case in which stock price falls to zero at default time (i.e. 𝐴 = 0), 𝐾1 = 0, and 𝐾2 = 𝐾 < 𝐵, Eq. (11) simplifies to:

𝑈𝑃 = 𝑃𝑟𝑖𝑐𝑒𝑃 (𝐾, 𝑇 )∕𝐾. (12)

We calculate the put-implied hazard rate (denoted as 𝐻𝑃 ) based on Eqs. (7) and (12). The CDS-implied hazard rate (denoted as
𝐶 ) is computed as 𝐻𝐶 = 𝑘∕(1 − 𝑅𝑅); here, we set 𝑅𝑅 as 0.4 for all our CDSs (Friewald et al., 2014).

.2. Rating-based hazard rate curves

Hazard rates recovered in the previous section capture the credit risk of the firms. Kolokolova et al. (2019) show that rating-based
azard rate curves serve as a benchmark to which investors anchor the CDS prices. Hence, we fit the Nelson and Siegel (1987) term
tructure separately to hazard rates 𝐻(𝜏) for each maturity 𝜏 and for each rating class, to construct the daily rating-based hazard
ate curves for the two markets.7

The Nelson and Siegel (1987) model allows for a humped-shape term structure:

𝐹 (𝜏|𝛽0, 𝛽1, 𝛽2, 𝑚) = 𝛽0 + 𝛽1

(

1 − 𝑒−𝜏∕𝑚

𝜏∕𝑚

)

+ 𝛽2

(

1 − 𝑒−𝜏∕𝑚

𝜏∕𝑚
− 𝑒−𝜏∕𝑚

)

(13)

where 𝛽0 and 𝛽1 are parameters reflecting the long-term and short-term hazard rates, 𝛽2 captures a hump at the medium term, and
𝑚 determines the shape and the position of the hump. Eq. (13) is estimated separately for put option and CDS. The estimation steps
are detailed in Kolokolova et al. (2019).

7 Note that the hazard rates implied by CDSs and DOOMPs can be seen as the average hazard of the underlying over the lifetime of the contract. They
esemble in their spirit the yields to maturity of corporate bonds. While fitting the Nelson–Siegel curves, we construct a type of hazard rate ‘‘yield curves’’ for
ach type of contracts, similar to the approach adopted in Kolokolova et al. (2019).
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We next decompose the CDS and DOOMP implied hazard rates into their fitted and residual components:

𝐻𝜏 = 𝐹𝜏 + 𝑅𝜏 (14)

where 𝐻 is the URC-implied hazard rate obtained from a put or CDS with maturity 𝜏, 𝐹 is the fitted value specific to the credit
rating class, and 𝑅 is the residual. These fitted values and residuals are then used to compute cross-market differences as shown
in Eq. (1).

4. Data

4.1. CDS data

In a CDS contract, the protection buyer makes periodic payments (based on the quote) to the protection seller, and the protection
seller agrees to compensate the buyer for the loss due to a credit event. There are two types of quotes in the CDS market – par
spread and points upfront. Par spread quote (denoted as 𝑘) is the amount the protection buyer pays periodically per $1 notional; it
is determined such that the protection buyer’s pay-off (or the premium leg) is equal to the seller’s pay-off (or the protection leg),
in terms of expected present value. Therefore, a CDS contract based on a par spread quote has zero initial value for the protection
buyer or seller.

In points upfront quote, the periodic payments of a CDS are restricted to a standardized coupon value (denoted as 𝑐). The common
fixed coupon is 25, 100, 300, or 500 bps. Since the coupon value is unlikely to equate the premium leg with the protection leg,
one party of the CDS contract may have advantage over the other. To compensate for this advantage, a one-off upfront payment
(denoted as 𝑢) is made to the disadvantaged party. As a result, a points upfront quote contains two pieces of information – upfront
payment (𝑢) and periodic fixed coupon (𝑐). For example, if the fixed coupon 𝑐 is smaller than the par spread 𝑘, then the protection
buyer pays less than the fair value of the contract. In this case, the protection buyer is asked to pay an upfront payment to the
protection seller. In practice, par spread quote is more popular than points upfront quote.8

A number of data providers supply market CDS quotes. The major ones include GFI, Markit, CMA, Reuters, and Bloomberg.
Yet, there is a concern about the consistency and price representativeness of the CDS data provided by these sources, because none
of these data providers cover all the CDS trades; also, the approaches for constructing CDS prices used by data providers vary
substantially. For example, Reuters provides CDS data in the form of a daily ‘composite price’ which is computed from the quotes
taken from a group of contributors; some of these quotes can be doubtful as they neither represent an actual trading price nor a firm
commitment to trade. CMA uses an aggregation methodology which is based on intra-day prices and the application of different
weights to the contributions.9

The main CDS quotes used in this study are obtained from GFI credit market data. GFI is a leading inter-dealer broker in credit
derivatives, and the company collects, cleans, and stores trading prices in its electronic trading platform, CreditMatch, as well
as in its global brokerage desks. The CDS quotes in GFI data are actual prices with trading commitments from protection buyers
and sellers. The GFI CDS data contains intra-day trading information, including bid/ask prices, CDS maturity, credit event trigger
(i.e. restructure type), and underlying debt seniority, but it does not include protection buyer and seller information.

Our CDS sample is from July 2012 to April 2016 and consists of U.S. single-name CDSs on senior debt with non-restructure
type. The sample contains both types of quotes. Of the total 46,495 observations, only 4.09% (1,901 quotes) are expressed in points
upfront, and the rest are expressed in par spread quote. To standardize all trading information, we convert points upfront quote to
par spread quote. The conversion procedure is explained in the supplementary Online Appendix.

Table 1 reports the descriptive statistics of our CDS sample. The average CDS price is 278.50 bps, with the standard deviation
of 856.77 bps. For less than 1% of quotes only bid (or ask) price is available. In these cases, we use the bid (or ask) price as mid
price. The average bid–ask spread (BAS) is 0.13 bps. The average time to maturity of the CDS is 4.7 years, ranging from a few days
to 10 years. When we break down CDS’s maturity (reported in Panel B), we find that the 5-year CDS constitutes the majority of the
CDS trades (roughly 81%); the least frequently traded maturities are from 7 to 9 years.

We further explore the time-series pattern of CDS trades over our sample period. Fig. 1 plots the number of monthly trades
(presented by a bar chart) and the average number of traded names per day (the line graph) over the period from July 2012 to
April 2016. CDS contracts were traded intensively during the period from July 2013 to October 2014. The number of average daily
traded names follows a similar trend as the number of monthly trades. According to the senior manager at GFI, the recent decline
in CDS trades was partly due to its clients’ trading preference shifting to multi-name CDS products (i.e. a bundled transaction with
several single-name CDSs).

As our CDS data is from a single dealer, one might be concerned if the CDS prices in GFI database are representative for the
whole CDS market. Hence, we compare the GFI CDS prices with the composite CDS prices reported by Markit. We do not find any
significant difference in either average prices or their dynamics. The detailed analysis is reported in supplementary Online Appendix.

8 In our dataset, over 95% of quotes are expressed as par spreads.
9 Mayordomo et al. (2014) pointed out these inconsistencies and provide detailed discussion and comparison among CDS data sources.
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Table 1
CDS intra-day observation descriptive statistics.

Panel A: CDS Intraday Descriptive Statistics

Mean Median STD Max Min N

Spread (bp) 278.50 105.00 856.77 9,966.40 0.00 46,495
BAS (bp) 0.13 0.00 1.47 60.00 0.00 46,056
Maturity (yr) 4.70 5.00 1.48 10.00 0.00 46,495

Panel B: Maturity Distribution

>1Y >2Y >3Y >4Y >5Y >6Y >7Y >8Y >9Y
≤1Y ≤2Y ≤3Y ≤4Y ≤5Y ≤6Y ≤7Y ≤8Y ≤9Y ≤10Y

Count 3,367 994 1,212 968 37,723 334 954 1 0 942
Percent 7.24% 2.14% 2.61% 2.08% 81.13% 0.72% 2.05% 0.00% 0.00% 2.03%
Spread (bp)
Mean 1000.05 758.92 702.43 625.70 155.72 402.14 697.50 350.00 n.a. 739.03
Median 105.00 192.50 255.00 325.00 91.00 350.00 445.00 350.00 n.a. 475.00
STD 2435.54 1663.42 1473.23 996.14 258.06 251.72 1004.71 0.00 n.a. 1068.08
Max 9966.40 9318.95 9870.27 5900.00 8366.53 2317.12 6425.00 350.00 n.a. 8101.99
Min 0.00 7.00 10.00 9.00 9.00 41.00 31.00 350.00 n.a. 92.00

This table reports the descriptive statistics for the GFI intra-day CDS prices over the sample period from July 2012 to April 2016.
Panel A reports the mean, median, STD, maximum, and minimum for the CDS spreads (mid-price), bid–ask spreads (BAS), and
the time to maturity of the sample. Panel B reports the descriptive statistics of the spreads and the number of observations split
according to maturity.

Fig. 1. Number of trades and traded names.
This figure plots the number of CDS trades per month (in bar graph) and the averaged daily traded names per month (in line graph) over the sample period
from July 2012 to April 2016.

4.2. Put option data

Our put option data is obtained from OptionMetrics. We follow three selection criteria (out of five) described in Carr and Wu
2011) to select matching DOOMP options for the CDSs. We use put options with (1) absolute put delta less than 0.15, (2) option
id price larger than zero, and (3) trading volume larger than zero.

We relax the last two selection criteria from the original Carr and Wu (2011) study. Unlike Carr and Wu (2011), we do not restrict
ption strike price to be under $5. Allowing for a wider range of strike prices accounts for heterogeneity of potentially endogenous
efault boundaries of different firms. Many factors, for example, bond liquidity (Feldhütter and Schaefer, 2018) and corporate debt
olicy (Feldhütter and Schaefer, 2021) contribute to firm’s default. In a related study, Davydenko (2012) shows that empirically
orporate default boundaries have a wide range from 30% to 122% of the face value of debt. Other studies (e.g. Kolokolova et al.,
019; Yu, 2006) suggest that the popular traded names are not always those with greater default risks. In fact, CDS contracts for
nvestment grade firms are more popular than those for junk grade firms. Since the investment grade firms are unlikely to have
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Table 2
Put option daily observation descriptive statistics.

Panel A: Put option descriptive statistics

Mean Median STD Max Min N

Price ($) 0.44 0.23 0.61 11.65 0.01 82,623
BAS 0.09 0.05 0.15 4.29 0.00 82,623
Maturity 0.38 0.17 0.50 2.38 0.00 82,623
Open Interest 2,964 556 11,045 344,233 1 82,623
Implied Vol 0.34 0.30 0.15 2.91 0.09 82,623
|𝐷𝑒𝑙𝑡𝑎| 0.08 0.09 0.04 0.15 0.00 82,623

Panel B: Maturity Distribution

>0.5Y >1Y >1.5Y >2Y
≤0.5Y ≤1Y ≤1.5Y ≤2Y ≤2.5Y

Count 63,328 9,295 5,770 2,879 1,351
Percent 76.65% 11.25% 6.98% 3.48% 1.64%
Price ($)
Mean 0.27 0.70 1.16 1.39 1.81
Median 0.17 0.55 0.98 1.18 1.46
STD 0.31 0.60 0.95 1.00 1.25
Max 4.95 6.45 11.65 7.65 7.68
Min 0.01 0.02 0.02 0.03 0.10

This table reports the descriptive statistics for the OptionMetrics options over the sample period from July 2012 to April 2016.
Panel A reports the mean, median, STD, maximum, and minimum for the DOOMP option (mid-price), bid–ask spreads (BAS),
time to maturity, option open interest, implied volatility, and option delta (in absolute value, |𝐷𝑒𝑙𝑡𝑎|) of the sample. Panel B
reports the descriptive statistics of the options and the number of observations split according to maturity.

traded option with strike price under $5, applying this criterion would exclude a large number of CDS trades unnecessarily (see
Kim et al., 2013).10

The other criterion that we omit is the one-to-one matching between a CDS and a put option. In Carr and Wu (2011), if there
are multiple put options matching to a CDS (due to different put maturities), the authors choose the put option with the highest
open interest. We retain this criterion only for pairing CDSs and DOOMPs (as will be discussed later); however, for constructing the
put-implied hazard rate curves we keep all available put options as long as they fit the other three selection criteria.

Based on the three selection criteria and using the underlying equity tickers maintained by GFI, we have identified 82,623 put
option observations. Table 2 reports the descriptive statistics for the put options. The average mid price for puts is $0.44 with the
standard deviation of $0.61. We also observe a rather high bid–ask spread, with the sample average of $0.09. Such high bid–ask
spread indicates higher transaction cost for illiquid put options. In addition, the average time to maturity for the put options of 0.38
years is much shorter than that of CDS contracts.

Panel B of Table 2 reports the maturity distribution of the matched put options. Most of the observations have maturity within
1 year, and we do not find matched options with time to maturity of more than 3 years.

4.3. Pairing CDS and DOOMP option

Before proceeding with our analysis, to properly measure cross-market deviations, we construct pairs of CDS and DOOMP option.
Every day and for every firm we choose a 5-year CDS contract and match it to a put option with the maturity nearest to the CDS,
which in this case will be the longest DOOMP maturity available. We fix the time to maturity for CDSs as 5 years since the 5-year
CDSs are the most popular contracts (in general and in our sample) and are the most liquid. If there are multiple put options
matching the same CDS (e.g. put options with the same maturity but different strike prices), we choose the one with the highest
open interest. This results in 4,268 pairs of CDS and put options over the sample period from July 2012 to April 2016. This forms
the sample we use for the trading analysis later.

After the cross-sectional matching of CDSs and put options, we further match the pairs along the time-series dimension. The
purpose of time-series consistency is twofold: (1) we need the time-series changes in CDS and DOOMP option prices for our proposed
regressions, and (2) with the time-series matching, we are able to further develop a feasible trading strategy with an appropriate
time to unwind or close the positions.

For a feasible trading strategy, one should take into consideration that CDSs and DOOMP options are relatively illiquid products.
It is possible that one may not be able to unwind the CDS-put positions before the option contract expires. Therefore, holding period
is an important factor for the time-series matching. A long holding period can increase the uncertainty of strategy implementation;

10 In our sample, less than 1% of put options have a strike price below $5, rendering the number of paired CDS-DOOMP contracts too small for meaningful
mpirical analysis. To check for sensitivity of our results to the DOOMP option strike price, as a robustness check we repeat the analysis using only those
DS-DOOMP pairs in which the strike price is smaller than the 10th percentile ($12) and smaller than 25th percentile ($22.5) in our sample. The results
eported in Online Appendix Tables S8 to S10 are qualitatively similar compared to the ones reported in the paper.
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yet, a holding period that is too short may close the positions prematurely before the majority of price convergence takes place
and as a result the trading profit is largely consumed by the transaction costs. Based on previous studies (Carr and Wu, 2011;
Kolokolova et al., 2019), we restrict the holding period to be between 7 and 30 calendar days to determine the opportunity to
unwind the position of our 4,268 CDS-put pairs. If multiple opportunities exist during the holding period of 7 and 30 days, we
choose the earliest opportunity to unwind.11 Overall, we identify 2,134 possible trades in our sample. Each trade consists of two
trading opportunities {[𝑘(𝑡1), 𝑃 𝑟𝑖𝑐𝑒𝑃 (𝑡1)], [𝑘(𝑡2), 𝑃 𝑟𝑖𝑐𝑒𝑃 (𝑡2)]}, where [𝑘(𝑡1), 𝑃 𝑟𝑖𝑐𝑒𝑃 (𝑡1)] is the pair of CDS spread and DOOMP option
price for building a trading strategy at time 𝑡1 and [𝑘(𝑡2), 𝑃 𝑟𝑖𝑐𝑒𝑃 (𝑡2)] is the CDS-DOOMP pair of values for unwinding the position
at time 𝑡2. Note that the holding period (𝑡2 − 𝑡1) varies for each trade and we use the daily CDS prices, instead of intra-day prices,
when we test the trading strategies.

5. Results

The CDS and DOOMP-implied hazard rates are computed as described in Section 3.1. Fig. 2 presents the scatter plots for the
implied hazard rates for all paired CDS-DOOMP contracts and three subsamples based on the magnitude of maturity mismatch.
On average, the hazard rates implied by these two markets are reasonably well aligned, with the correlation coefficient of 58%.
The quality of alignment, however, depends substantially on the degree of maturity mismatch between the CDS and the DOOMP
contracts. This correlation decreases to 47% for the subsample with the largest maturity mismatch (Subfigure (ii)) and increases to
85% for the subsample with the smallest maturity mismatched (Subfigure (iv)). This result further highlights the importance of the
maturity adjustment when analyzing the difference between CDS and DOOMP-implied hazard rates.

5.1. Nelson–Siegel (NS) fitted curves

We fit the NS rating curves to the CDS and DOOMP option implied hazard rates every trading day. Since almost all the GFI
CDS contracts are traded on the 5-year tenor, we find that there are insufficient tenors to form a stable curve. Therefore, for CDS
curves, we match GFI CDSs to Markit CDSs, and include the Markit CDS spreads for the other tenors.12 Since the composite prices
in Markit are reported largely on daily basis, the numbers of CDS contracts with different maturities from 6 months to 10 years are
approximately equal, and the fitted curves are not driven by only one maturity. At the same time, the longest maturity of DOOMP
options is 2.5 years. Thus, the parameters of the NS-fitted curves for DOOMPs are determined by the observed dynamics of short-term
contracts. The observations are grouped according to the Markit implied rating when fitting the Nelson–Siegel (NS) curves.13 Having
estimated the daily sets of NS parameters [𝛽0, 𝛽1, 𝛽2, 𝑚] in Eq. (13) for different rating classes of the CDSs and DOOMP options, we
calculate the NS-fitted values of hazard rates for each security using their ratings and times to maturity.14 Table S3 in the Online
Appendix reports the mean, median and standard deviation of the fitted values of the NS curves and the corresponding residuals
for all CDS and DOOMP observations. The average residuals are virtually zero for both CDS and DOOMP curves. The coefficients
of correlation between the residuals and the fitted values are close to zero and not statistically significant.

Fig. 3 plots the average NS-fitted curves for CDS and DOOMP markets for investment grade and junk grade underlyings, together
with the 90% empirical confidence bounds. Fitted average hazard rates are always higher for junk grade underlying for both CDS and
DOOMP market, reflecting their high credit risk. Remarkably, average DOOMP-implied curves are always higher than CDS-implied
ones. The difference is especially persistence for investment-grade underlying. The 90% confidence bounds for the curves do not
overlap for maturities up to 7 years. Even though the average difference in the DOOMP- and CDS-implied curves for junk-grade
underlying is higher, it seems to be much more volatile over time, and two confidence intervals subsume one another, suggesting
that two curves are not significantly different from one another, due to their high volatility.15

We now move to the analysis of the actually traded CDS and DOOMP contracts. We use the matched pairs of CDS and DOOMP
contracts (as discussed in Section 4.3) and report the corresponding fitted values of hazard rates and residuals relative to the
corresponding NS-fitted curves in Table 3. The fitted values and the residuals are computed using the actual maturities of the
corresponding contracts. Thus, the fitted values reflect both the differences between the curves across the two markets as well as
differences in maturities of the contracts. The mean and median fitted hazard rates monotonically increase as the rating worsens,
and the standard deviations of the hazard rates also tend to go up for poorer rating classes. In our sample of CDS-DOOMP paired
contracts, DOOMPs exhibit higher average fitted values of hazard rates than CDSs for all rating classes, except for the riskiest one,
which contains a relatively small number of contracts (30 pairs of contracts).

11 For example, if we observe that one CDS-DOOMP pair can be unwound after 9, 10, and 12 days, we choose to unwind the position on the ninth day.
hen implementing the trading strategy, we also unwind the positions at the earliest opportunity, instead of choosing the most profitable one.
12 We did not use Markit CDS in the trading tests as Markit CDS data does not include bid or ask prices.
13 We use Markit implied rating, because the rating information is not available in our sample period. Implied rating is determined by comparing the

orresponding CDS spread to nearest preset rating boundaries (Markit, 2011). The discrepancy between actual rating and implied rating gives an indication
f gaps between the viewpoints of market perception and rating agency perception regarding firm’s default risk (see Markit analyses: http://www.markit.com/
ommentary/Get/23112015-Credit-CDS-implied-and-credit-agency-ratings-diverge). Our actual rating information is available only from 2002 to 2012. For this
ample we compare the actual rating and implied rating and find a high correlation coefficient between them (66.03% over the period from 2002 to 2012, and
0.79% over the period from 2010 to 2012). Since the implied rating does not systematically deviate from the actual rating, but reflects more promptly market
onditions, we use the implied rating information as our grouping criterion.
14 Note that, since the parameters are calibrated for a group of contracts with the same rating, two CDSs or put options will have the same NS-fitted values
f the hazard rates if they have the same rating of the underlying asset and time to maturity.
15 Figure S2 in the Online Appendix further illustrates the time-series dynamics of the NS-fitted values.
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Fig. 2. CDS and DOOMP-implied hazard rates.
This figure presents the scatter plot for the implied hazard rates from the paired CDS (𝐻𝐶 ) and DOOMP (𝐻𝑃 ) contracts over the sample period from July
2012 to April 2016. Subfigure (i) uses all pairs. Subfigure (ii) uses one third of pairs with the smallest maturity mismatch between CDS and DOOMP contracts,
subfigure (iii) uses one third the pairs with the moderate mismatch, but subfigure (iv) uses one third of pairs with the largest maturity mismatch.

The implied hazard rate curves fit the CDS term structure well. The average residuals for CDSs are zero for all rating classes
apart from the C rating class. For DOOMP option, the rating curves seem to overestimate the implied hazard rates on average, as
the mean residuals are negative for all rating classes, apart from the B rating class. At the same time, DOOMP option residuals are
much more volatile than those implied by CDSs. For example, for the BBB rating class, the standard deviation of 𝑅𝐶 is just 0.004,
whereas that of 𝑅𝑃 is 0.027.

5.2. Results: Cross-market differences

Table 4 reports the results for the panel regression in Eq. (2) for the determinants of the different components of the cross-
market difference in hazard rates. Consistent with our Hypothesis H1, the curve difference increases when CDS and put markets
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Fig. 3. Average fitted NS hazard rate curves.
This figure plots the average Nelson–Siegel fitted curves of hazard rates based on CDS and DOOMP option markets with investment grade (IG) and junk grade
(JG) rating from July 2012 to April 2016. The shaded area represents 90% confidence bounds around the average NS curves. In (ii) only CDS-curve confidence
bounds are plotted for the ease or depiction.

become more heterogeneous and is reduced when the two markets become more homogeneous (column [1]). The residual difference
increases with higher levels of market frictions, which is consistent with our Hypothesis H1a (column [3]). As for the slope
adjustment of DOOMP-curve (column [4]), it increases if DOOMP options have riskier underlyings, longer maturities, and larger
bid–ask spread. At the same time, it reduces if DOOMP options have, on average, higher option deltas and higher implied volatilities.

Notably, many factors have the opposite effect on the curve difference, residual difference and the DOOMP slope adjustment.
or example, the curve difference is smaller for riskier underlyings; yet, both residual difference and the DOOMP slope adjustment
ncrease for riskier underlyings. Put bid–ask spread is negatively related to the curve difference, but positively related to the slope
djustment, and it has no significant relation with residual difference. Also, when the average maturity of traded DOOMP options
s higher, the curve difference and the residual differences both reduce, but the slope adjustment increases.

The resulting effects of these factors on the total deviation in hazard rates are milder in absolute values, as reported in column
5] of Table 4, albeit still statistically significant. As a robustness check, we repeat the analysis for different sub-samples: sub-
eriods, sectors, and underlying credit ratings. The results reported in the supplementary Online Appendix indicate that the signs
nd significance of the determinants for the components of hazard rate differences are consistent across the sub-samples, although
hey are more volatile compared with the full-sample results.

We additionally test if shocks in prime dealers’ equity capital ratio are related to cross-market differences. The relevant results
re reported in the Online Appendix, Table S7. DOOMP option and CDS market attract different types of investors. In particular,
arge financial intermediaries – primary dealers – actively participate in these markets. Following He et al. (2017), we construct a
ariable capturing innovations in the capital ratio16 and include this additional variable in Eq. (2). Shocks to the primary dealers’
apital ratio have only marginal effects in our regressions, and that the effects of the previously discussed key variables remain
ualitatively unchanged after controlling for the capital ratio shocks.

.3. Results: Within-market convergence to the rating curve

Table 5 reports the results for hazard rate convergence to the rating-based curve, as specified in Eq. (3), for the CDS market.
ased on the complete sample (Panel A) we find that the loading on the change in the fitted values 𝛽𝐶1 is 0.158 and the loading
n past residuals 𝛽𝐶2 is −0.063, both significant at the 1% level. The results indicate that the time-series movement of CDS-implied
azard rate is mainly captured by the NS-fitted value 𝐹𝐶 . The negative loading on the NS residual 𝑅𝐶 further supports convergence
f CDS-implied hazard rates to the rating-based curves, consistent with Kolokolova et al. (2019). Panels B to D further report the
esults for different sub-samples. The convergence results are robust, pronounced in all sub-periods, for most industries, and for
oth investment grade and junk grade underlyings. This further highlights the importance of credit rating in the CDS market as a
river of the consensus prices.

16 We first compute the intermediary capital ratio for the sector as the ratio of total market equity to total market assets (the sum of the book value of debt
nd the market value of equity) of primary dealer holding companies. Next we estimate the shocks in the capital ratio as the innovations in its fitted AR(1)
rocess, scaled by its lagged value.
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Table 3
Implied hazard rates: Fitted and residual values for CDS-DOOMP paired contracts.

AA A BBB BB B C

A: Fitted values 𝐹

Panel A1: CDS implied FC

Mean 0.006 0.010 0.016 0.030 0.055 0.144
Median 0.006 0.010 0.016 0.029 0.056 0.127
STD 0.001 0.003 0.003 0.004 0.009 0.068
N 1434 1104 964 484 252 30
Panel A2: DOOMP option implied FP

Mean 0.025 0.028 0.038 0.041 0.064 0.120
Median 0.024 0.027 0.033 0.037 0.055 0.108
STD 0.007 0.010 0.023 0.019 0.031 0.051
N 1434 1104 964 484 252 30
Panel A3: Difference in DOOMP option and CDS implied fitted values FP − FC

Mean 0.019 0.018 0.022 0.011 0.009 −0.024
Median 0.018 0.017 0.016 0.007 0.000 0.000
STD 0.007 0.009 0.023 0.019 0.032 0.076
N 1434 1104 964 484 252 30

B: Residuals 𝑅

Panel B1: CDS implied RC

Mean 0.000 0.000 0.000 0.000 0.000 0.004
Median −0.001 −0.001 0.000 −0.001 −0.002 0.008
STD 0.002 0.003 0.004 0.005 0.011 0.062
N 1434 1104 964 484 252 30
Panel B2: DOOMP option implied RP

Mean −0.004 −0.005 −0.004 −0.001 0.003 −0.013
Median −0.006 −0.006 −0.003 −0.002 0.003 −0.011
STD 0.014 0.013 0.027 0.023 0.036 0.032
N 1434 1104 964 484 252 30
Panel B3: Differences in DOOMP option and CDS implied residuals RP− RC

Mean −0.004 −0.005 −0.004 −0.001 0.004 −0.018
Median −0.005 −0.005 −0.004 −0.002 0.002 −0.028
STD 0.014 0.014 0.027 0.023 0.036 0.066
N 1434 1104 964 484 252 30

Panels A1–A3 report the descriptive statistics for the fitted values of implied hazard rates from the Nelson–Siegel rating based
curves for matched pairs of individual CDS and DOOMP option contracts, and their differences. Panels B1–B3 report the descriptive
statistics of the corresponding residuals. The fitted values are computed using the actual maturities of each contract. The sample
period is from July 2012 to April 2016.

Convergence of DOOMP options to their rating curve is similarly strong (Table 6). 𝛽𝑃1 is positive and highly significant for the
omplete sample and for most of the sub-samples, indicating that changes in the rating-implied consensus values of hazard rates do
rive changes of individual put-implied hazard rates. The only exception is the sector Industrials, where the coefficient is negative
ut not statistically significant. The coefficient 𝛽𝑃2 is negative and highly statistically significant in all specifications, confirming
trong convergence of individual DOOMP-implied hazard rates to their corresponding rating curves.

We now assess the marginal benefits of the NS curve fitting compared to, for example, approximating them by the average or
edian hazard rate in each rating class. We repeat the estimation of the convergence regressions (Tables 5 and 6), but together
ith the changes in the fitted values 𝛥𝐹 and the levels of residuals 𝑅 relative to the NS-fitted curves, we also introduce the changes

n the average (median) hazard rates implied by the corresponding contracts 𝑀𝑒𝑎𝑛𝐶 (𝑀𝑒𝑑𝑖𝑎𝑛𝐶 ) and 𝑀𝑒𝑎𝑛𝑃 (𝑀𝑒𝑑𝑖𝑎𝑛𝑃 ), as well
s the differences between the CDS and DOOMP-implied hazard rates of individual contracts and the mean/median values. The
esults reported in Table 7 indicate that changes in the mean (median) values of the hazard rates within each rating class are strong
redictors of the individual changes in the hazard rates. At the same time, the changes in the fitted values of the NS curves remain
ighly statistically significant. Hence, while the changes in the mean/median hazard rates seem to be capturing well the parallel
hift of the hazard rate curves, the changes in the NS-fitted values further capture the changes in the curvature. Most importantly,
owever, we cannot detect any convergence of CDS and DOOMP-implied hazard rates to their mean/median values. For CDSs, the
oefficients on 𝐻𝐶−𝑀𝑒𝑎𝑛𝐶 and 𝐻𝐶−𝑀𝑒𝑑𝑖𝑎𝑛𝐶 are virtually zero and not statistically significant, while those for DOOMP are positive
nd statistically significant, suggesting possible divergence from the mean/median values. The deviations from the NS-curves 𝑅𝐶

and 𝑅𝑃 remain negative and highly significant, supporting convergence of the implied hazard rates to the NS-curves, which in turn
highlights the effectiveness of the NS-curve fitting approach in the case of CDS- and DOOMP-implied hazard rates.

5.4. Results: Cross-market convergence of the rating curves

The estimation results for the cross-market curve convergence (Eq. (4)) are reported in Table 8. We use the residuals 𝑑𝐹 , 𝑑𝑅
nd 𝑑𝑆 computed from Eq. (2), for all results in Table 8 except for the second row in Panel A, in which we use unconditional raw

𝑃 𝐶 𝑃 𝐶 𝑃 𝑃
ifferences (𝐹𝜏𝐶
− 𝐹𝜏𝐶

, 𝑅𝜏𝑃
− 𝑅𝜏𝐶

, and 𝐹𝜏𝑃
− 𝐹𝜏𝐶

) in Eq. (4) instead for comparison and robustness check.
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Table 4
Determinants of the CDS-DOOMP hazard rate differences.

Dependent variable

[1] [2] [3] [4] [5]
Diff. in Diff. in Diff. in Slope Diff. in
Curve Fitted Values Residuals Adjustment Hazard Rates
𝐹 𝑃
𝜏𝐶 − 𝐹 𝐶

𝜏𝐶 𝐹 𝑃
𝜏𝑃 − 𝐹 𝐶

𝜏𝐶 𝑅𝑃
𝜏𝑃 − 𝑅𝐶

𝜏𝐶 𝐹 𝑃
𝜏𝑃 − 𝐹 𝑃

𝜏𝐶 𝐻𝑃
𝜏𝑃 −𝐻𝐶

𝜏𝐶

Constant 0.037 0.009 −0.070** −0.028 −0.061***
[0.51] [0.32] [−2.55] [−0.38] [−3.55]

0.5 × (𝐻𝐶 +𝐻𝑃 ) −0.274** 0.576*** 0.282*** 0.851*** 0.858***
[−2.54] [14.49] [6.95] [7.69] [33.64]

|𝐷𝑒𝑙𝑡𝑎| 0.091*** −0.072*** 0.246*** −0.164*** 0.173***
[2.89] [−6.21] [20.64] [−5.05] [23.16]

Implied Vol 0.050*** −0.035*** 0.062*** −0.085*** 0.027***
[3.10] [−5.94] [10.30] [−5.16] [7.13]

Open Interest −0.000*** −0.000*** 0.000** 0.000 −0.000***
[−3.74] [−5.76] [2.51] [1.57] [−4.99]

CDS BAS −4.660 3.511 −1.818 8.171 1.693
[−0.16] [0.33] [−0.17] [0.27] [0.25]

Put BAS −0.009** 0.002 0.000 0.011*** 0.002***
[−2.36] [1.44] [0.29] [2.82] [2.71]

CDS Trade −0.000 0.000 −0.000 0.000 −0.000
[−0.15] [0.53] [−0.59] [0.33] [−0.11]

Put Maturity −0.003*** 0.001** −0.008*** 0.004*** −0.007***
[−3.27] [2.51] [−19.80] [4.09] [−27.60]

Time FE Yes Yes Yes Yes Yes
Rating FE Yes Yes Yes Yes Yes
Adj. R-sqr 0.22 0.23 0.41 0.22 0.74
N 4268 4268 4268 4268 4268

This table reports the results for the determinants of different components of the difference between DOOMP and CDS implied
hazard rates. The sample period is from July 2012 to April 2016. The control variables include the average hazard rate, the
absolute value of option delta (|𝐷𝑒𝑙𝑡𝑎|), implied volatility, option open interest, bid–ask spread for CDS or DOOMP, the number
of CDS trades and the logarithm of option maturity. The 𝑡-statistics are reported in brackets. ***, **, and * indicate statistical
significance at 1%, 5%, and 10% levels.

In Panel A, the estimated values of both 𝛽1 and 𝛽2 are negative and statistically significant at the 1% level, implying strong
onvergence in DOOMP- and CDS-implied hazard rates. Importantly, the coefficients remain negative and significant also when
nconditional raw differences are used. Thus, positive curve difference between DOOMP- and CDS-implied hazard rates predicts
n increase in the CDS-implied hazard rate and a decrease in the put-implied hazard rates, supporting our Hypothesis H2,
.e., convergence of the NS-curves over time. Remarkably, the DOOMP-curve slope adjustment does not seem to be strongly related
o hazard rate convergence; it is not statistically significant for both specifications.

The convergence results discussed above imply that it may be possible to construct a trading strategy exploiting this cross-market
onvergence in hazard rates, using as a signal the curve differences and residual differences obtained directly from the implied hazard
ates.

The convergence results are overall robust across different sub-samples as shown in Panels B to D. The only exception is the
echnology sector, for which curve difference seems to predict further divergence in implied hazard rates, and DOOMP slope
djustment is also positively related to future change hazard rate difference.

In the Online Appendix E, we provide further robustness checks on DOOMP-CDS convergence. Our convergence results are shown
o be robust with respect to different contract maturities, portfolio holding periods, as well as variations in recovery rates. The CDS
ata we use in these robustness checks are obtained from Markit.

. Exploiting convergence in trading strategy

The documented convergence between DOOMP- and CDS-implied hazard rates suggests that it may be possible to exploit
he information on relative mispricing of these two products to construct a profitable trading strategy. In particular, time series
onvergence can be predicted by the difference in fitted NS-curve values (computed at a CDS maturity for both contracts), capturing
onvergence of the curves, and the difference in residuals (relative to the NS-fitted values at actual maturity of each of the contracts),
apturing convergence of individual contracts to their respective NS-curves. These two differences constitute a signal at time 𝑡1 for
uture relative change of the DOOMP- and CDS-implied hazard rates and, thus, relative change in the prices of these contracts.
ccording to the signal, one takes a long position in the relatively underpriced security (a CDS or a DOOMP) and a short position

n the relatively overpriced security. The positions are unwound at time 𝑡2, when convergence is realized.
The challenge in assessing the DOOMP-CDS trading return is that DOOMP option and CDS contracts have different payoff

atterns. Even though the trades are conducted between times 𝑡1 and 𝑡2 (the initial positions are taken at 𝑡1 and the offsetting
ositions are taken at 𝑡2), the resulting cash flows are generated even after 𝑡2 on the CDS part. Taking an offsetting position in DOOMP
t 𝑡 is equivalent to not having any DOOMPs in the portfolio after that. Taking an offsetting position in CDS, however, results in
2

201



K.K. Chan, O. Kolokolova, M.-T. Lin et al. Journal of Empirical Finance 72 (2023) 188–213
Table 5
CDS convergence to rating curves.

Model: 𝛥𝐻𝐶
𝑡 = 𝛽𝐶0 + 𝛽𝐶1 𝛥𝐹

𝐶
𝑡 + 𝛽𝐶2 𝑅

𝐶
𝑡 + 𝑒𝑡

𝛽𝐶0 𝛽𝐶1 𝛽𝐶2 Time FE Rating FE Adj. 𝑅2 N

Panel A: Complete Sample

Coef. 0.002 0.158*** −0.063*** Yes Yes 0.29 2134
[0.80] [14.29] [−6.38]

Panel B: Period

2012–13 0.002 0.191*** −0.066*** Yes Yes 0.26 790
[0.75] [8.91] [−4.06]

2014 0.001 0.095*** −0.153*** Yes Yes 0.53 945
[1.42] [7.17] [−9.70]

2015–16 0.005*** 0.212*** −0.122*** Yes Yes 0.52 399
[3.04] [7.00] [−5.70]

Panel C: Sector

Consumer 0.006** 0.066*** −0.007 Yes Yes 0.61 534
[2.18] [3.14] [−0.37]

Material −0.002 0.145*** −0.090*** Yes Yes 0.66 503
[−1.23] [6.37] [−3.86]

Financials 0.007** 0.393*** −0.236*** Yes Yes 0.41 332
[2.08] [9.66] [−4.71]

Industrials 0.002 −1.103** 0.138 Yes Yes 0.41 399
[0.15] [−2.08] [0.32]

Technology 0.003*** 0.178*** −0.046 Yes Yes 0.49 366
[3.26] [6.49] [−1.43]

Panel D: Grade

Investment 0.002** 0.180*** −0.110*** Yes Yes 0.35 1751
[2.45] [12.98] [−12.83]

Junk 0.004 0.117*** −0.051* Yes Yes 0.55 383
[0.93] [3.84] [−1.89]

This table reports the results for CDS convergence to rating curves. The sample period is from July 2012 to April 2016. 𝐻𝐶 is
the URC-implied hazard rate for CDS; 𝐹 𝐶 is the NS-fitted value; and 𝑅𝐶 is the NS residual. Panel A reports the results for full
sample, and Panels B to D report the results for sub-samples. The coefficient 𝑡-statistics are reported in brackets. ***, **, and *
represent statistical significance at 1%, 5%, and 10% levels.

having two distinct CDS contracts in the portfolio, both having the same underlying and maturing in 5 years, but likely different
spreads. Thus, the total profit/loss of the trade consists of a one-off cash flow of the price difference in DOOMPs purchased/sold
between 𝑡1 and 𝑡2, and a stream of future cash flows equal to the difference in the 𝑡1- and 𝑡2- CDS spreads. This stream is generated
up until CDS maturity of 5 years or firm default. Hence, when evaluating performance of trades between DOOMP option and CDS,
one should consider the exact timing of the future cashflows, and not only a nominal difference in the spot prices between 𝑡1 and
𝑡2. To illustrate, in the following we provide an example for the calculation of trading strategy returns.

Consider, for example, a long-CDS and short-DOOMP option case, and build the following strategy.
At the initial time 𝑡 = 𝑡1, the signal is evaluated:

(1) Short-sell one DOOMP option, and generate a positive cashflow of $𝑃𝑟𝑖𝑐𝑒𝑃 (𝑡1).
(2) Buy 𝑃𝑟𝑖𝑐𝑒𝑃 (𝑡1)

𝑁 ⋅𝑘(𝑡1)
units of CDS contracts, written on the same underlying firm. 𝑘(𝑡1) is the CDS spread, thus, $𝑘(𝑡1) is the dollar-price

of CDS contract with the par value of $1, paid every year. 𝑁 stands for the CDS maturity, that is the maximum number of
years the CDS contract remains active. The intuition behind the choice of 𝑁 is that the initial cash flow received from selling
the put option $𝑃𝑟𝑖𝑐𝑒𝑃 (𝑡1) should be sufficient to cover maximum cash flows from buying CDS. In this study we use the most
liquid 5-year CDS contracts, hence, 𝑁 = 5 in our analysis.

At time 𝑡 = 𝑡2, the positions are closed:

(3) Buy back one DOOMP option at price $𝑃𝑟𝑖𝑐𝑒𝑃 (𝑡2).
(4) Short 𝑃𝑟𝑖𝑐𝑒𝑃 (𝑡1)

𝑁 ⋅𝑘(𝑡1)
units of CDS contract at $𝑘(𝑡2) price. Since the trading positions are closed within days after time 𝑡1, the future

CDS cash flows will be netted. The overall netting the CDS leg of the strategy can generate is:

$
[

𝑃𝑟𝑖𝑐𝑒𝑃 (𝑡1)
𝑁 ⋅ 𝑘(𝑡1)

× (𝑘(𝑡2) − 𝑘(𝑡1)) × 𝛼𝑁
]

, (15)

where 𝛼 (0 ≤ 𝛼 ≤ 1) is the adjustment factor for early termination of the CDS contracts due to firm’s default. It equals to the
ratio of the actual surviving time of the underlying firm to the CDS maturity, and it captures the length of the period after the
put position is closed and the trader receives the difference in CDS spreads from the short and long positions in CDS contracts.
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Table 6
DOOMP convergence to rating curves.

Model: 𝛥𝐻𝑃
𝑡 = 𝛽𝑃0 + 𝛽𝑃1 𝛥𝐹

𝑃
𝑡 + 𝛽𝑃2 𝑅

𝑃
𝑡 + 𝑒𝑡

𝛽𝑃0 𝛽𝑃1 𝛽𝑃2 Time FE Rating FE Adj. 𝑅2 N

Panel A: Full sample

Coef. 0.001 0.342*** −0.340*** Yes Yes 0.28 2134
[0.11] [19.23] [−18.51]

Panel B: Period

2012–13 0.003 0.344*** −0.172*** Yes Yes 0.22 790
[0.22] [8.97] [−6.05]

2014 −0.001 0.423*** −0.513*** Yes Yes 0.43 945
[−0.13] [17.92] [−17.97]

2015–16 0.030* 0.161*** −0.247*** Yes Yes 0.17 399
[1.96] [4.17] [−5.98]

Panel C: Sector

Consumer −0.020 0.160*** −0.170*** Yes Yes 0.29 534
[−1.29] [4.76] [−3.84]

Material −0.001 0.235*** −0.337*** Yes Yes 0.40 503
[−0.13] [6.87] [−11.06]

Financials −0.003 0.455*** −0.424*** Yes Yes 0.50 332
[−0.26] [8.46] [−7.53]

Industrials 0.004 −0.025 −0.292*** Yes Yes 0.24 399
[0.49] [−0.48] [−7.70]

Technology 0.004 0.772*** −0.505*** Yes Yes 0.30 366
[0.19] [11.02] [−7.86]

Panel D: Grade

Investment 0.002 0.317*** −0.299*** Yes Yes 0.21 1751
[0.15] [15.41] [−15.25]

Junk 0.018 0.318*** −0.247*** Yes Yes 0.22 383
[0.72] [5.07] [−3.42]

This table reports the results for put convergence to rating curves. The sample period is from July 2012 to April 2016. 𝐻𝑃 is
the URC-implied hazard rate for a put option; 𝐹 𝑃 is the NS-fitted value; and 𝑅𝑃 is the NS residual. Panel A reports the results
for full sample, and Panels B to D report the results for sub-samples. The coefficient 𝑡-statistics are reported in brackets. ***, **,
and * represent statistical significance at 1%, 5%, and 10% levels.

Table 7
CDS and DOOMP convergence to rating curves: Controlling for mean and median.

Dep.: 𝛥𝐻𝐶 Dep.: 𝛥𝐻𝑃

[1] [2] [1] [2]

Constant 0.012 −0.025 Constant −0.001 −0.001
[0.00] [−0.00] [−0.11] [−0.06]

𝛥𝐹 𝐶 0.037*** 0.033*** 𝛥𝐹 𝑃 0.238*** 0.212***
[6.02] [4.41] [15.22] [13.97]

𝑅𝐶 −0.020*** −0.021*** 𝑅𝑃 −0.315*** −0.298***
[−3.52] [−2.92] [−16.85] [−16.42]

𝛥𝑀𝑒𝑑𝑖𝑎𝑛𝐶 0.947*** 𝛥𝑀𝑒𝑑𝑖𝑎𝑛𝑃 0.727***
[69.30] [24.24]

𝐻𝐶 −𝑀𝑒𝑑𝑖𝑎𝑛𝐶 −0.000 𝐻𝑃 −𝑀𝑒𝑑𝑖𝑎𝑛𝑃 0.222***
[−0.00] [8.51]

𝛥𝑀𝑒𝑎𝑛𝐶 0.983*** 𝛥𝑀𝑒𝑎𝑛𝑃 0.797***
[58.69] [27.68]

𝐻𝐶 −𝑀𝑒𝑎𝑛𝐶 0.000 𝐻𝑃 −𝑀𝑒𝑎𝑛𝑃 0.233***
[0.00] [9.01]

Time FE Yes Yes Time FE Yes Yes
Rating FE Yes Yes Rating FE Yes Yes
Adj. R-sqr 0.81 0.72 Adj. R-sqr 0.49 0.53
N 2134 2134 N 2134 2134

This table reports the results for CDS and DOOMP option convergence to their respective rating curves. The sample period is
from July 2012 to April 2016. 𝐻𝐶 and 𝐻𝑃 are the URC-implied hazard rates for a CDS and put option respectively; 𝐹 𝐶 and 𝐹 𝑃

are the NS-fitted values; 𝑅𝐶 and 𝑅𝑃 are the NS residual. 𝑀𝑒𝑎𝑛 and 𝑀𝑒𝑑𝑖𝑎𝑛 are the mean and median values of the corresponding
hazard rates across the contracts with the same rating as that of the contract of interest and all possible maturities. The coefficient
𝑡-statistics are reported in brackets. ***, **, and * represent statistical significance at 1%, 5%, and 10% levels.
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Table 8
CDS-DOOMP convergence.

Model: 𝛥𝐷𝐻 = 𝛽0 + 𝛽1𝑑𝐹 + 𝛽2𝑑𝑅 + 𝛽3𝑑𝑆 + 𝑒

𝛽1(𝑑𝐹 ) 𝛽2(𝑑𝑅) 𝛽3(𝑑𝑆 ) Time FE Adj. R-sqr

Panel A: Full sample

The Model −0.069*** −0.208*** −0.035 Yes 0.17
[−3.35] [−8.98] [−1.63]

Raw Diff −0.040** −0.165*** −0.012 Yes 0.18
[−2.14] [−10.79] [−0.61]

Panel B: Period

2012–2013 −0.054 −0.222*** −0.047 Yes 0.14
[−1.34] [−5.76] [−1.16]

2014 −0.072*** −0.230*** −0.016 Yes 0.28
[−2.67] [−6.85] [−0.59]

2015–2016 −0.156* −0.252*** −0.003 Yes 0.07
[−1.67] [−2.98] [−0.04]

Panel C: Sector

Consumer −0.049 −0.159*** −0.004 Yes 0.20
[−0.94] [−2.61] [−0.08]

Material −0.222*** −0.273*** −0.197*** Yes 0.27
[−3.96] [−5.35] [−3.97]

Financials −0.165 −0.329*** −0.146 Yes 0.20
[−1.44] [−2.89] [−1.26]

Industrials −0.194** −0.582*** −0.312*** Yes 0.27
[−2.22] [−7.54] [−4.09]

Technology 0.160** −0.054 0.290*** Yes 0.27
[2.14] [−0.68] [3.69]

Panel D: Grade

Investment −0.030 −0.140*** 0.007 Yes 0.19
[−0.93] [−5.10] [0.26]

Junk −0.084 −0.241** −0.054 Yes 0.08
[−0.81] [−2.11] [−0.52]

This table reports the results for the CDS-DOOMP convergence. The sample period is from July 2012 to April 2016. The number of
observations is 2,134. 𝐷𝐻 is the difference in DOOMP- and CDS-implied hazard rates. 𝑑𝐹 , 𝑑𝑅, and 𝑑𝑆 are residuals from Eq. (2),
where curve difference 𝐹 𝑃

𝜏𝐶
−𝐹 𝐶

𝜏𝐶
, residual difference 𝑅𝑃

𝜏𝑃
−𝑅𝐶

𝜏𝐶
, and DOOMP slope adjustment 𝐹 𝑃

𝜏𝑃
−𝐹 𝑃

𝜏𝐶
are regressed on the set of

control variables. In Panel A, the full sample is used. ‘‘The Model’’ denotes regression using the residuals 𝑑𝐹 , 𝑑𝑅, and 𝑑𝑆 , while
‘‘Raw Diff’’ denotes the regression where the residuals are replaces with the actual raw differences. Panels B to D report the
results based on sub-samples. The coefficient 𝑡-statistics are reported in brackets. ***, **, and * represent statistical significance
at 1%, 5%, and 10% levels.

If the underlying firm survives until maturity, 𝛼 = 1. In case of early default, there is no extra cash inflow or outflow generated,
since both CDSs have the same underlying. Note that this amount of cash flow covers the whole protection period of the two
CDS contracts.

The total profit and loss (𝑃𝑛𝐿) realized of such strategy over 𝑁 years can be calculated as:

𝑃𝑛𝐿 =
(

𝑃𝑟𝑖𝑐𝑒𝑃 (𝑡1)
𝑁 ⋅ 𝑘(𝑡1)

× (𝑘(𝑡2) − 𝑘(𝑡1)) × 𝛼𝑁
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
netting of the two CDSs

−𝑃𝑟𝑖𝑐𝑒𝑃 (𝑡2)
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

DOOMP buy-back

+𝑃𝑟𝑖𝑐𝑒𝑃 (𝑡1)
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

DOOMP short-sell

= 𝛼
𝑃 𝑟𝑖𝑐𝑒𝑃 (𝑡1)

𝑘(𝑡1)
(𝑘(𝑡2) − 𝑘(𝑡1)) − (𝑃𝑟𝑖𝑐𝑒𝑃 (𝑡2) − 𝑃𝑟𝑖𝑐𝑒𝑃 (𝑡1)).

Relative to the initial DOOMP price of $𝑃𝑟𝑖𝑐𝑒𝑃 (𝑡1), the total return (over 𝑁 years) of the trading strategy will be

𝑟 = PnL
Initial Input =

[

𝛼
𝑃 𝑟𝑖𝑐𝑒𝑃 (𝑡1)

𝑘(𝑡1)
(𝑘(𝑡2) − 𝑘(𝑡1)) − (𝑃𝑟𝑖𝑐𝑒𝑃 (𝑡2) − 𝑃𝑟𝑖𝑐𝑒𝑃 (𝑡1))

]

∕𝑃𝑟𝑖𝑐𝑒𝑃 (𝑡1)

= 𝛼
(

𝑘(𝑡2)
𝑘(𝑡1)

− 1
)

−
(

𝑃𝑟𝑖𝑐𝑒𝑃 (𝑡2)
𝑃𝑟𝑖𝑐𝑒𝑃 (𝑡1)

− 1
)

= 𝛼 ⋅ 𝑟𝐶𝐷𝑆 − 𝑟𝑃𝑢𝑡.
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Approximating the returns on the individual assets using continuously compounded rates, we obtain the following return of the
rading strategy:

𝑟 =

⎧

⎪

⎨

⎪

⎩

𝛼 ⋅ log 𝑘(𝑡2)
𝑘(𝑡1)

− log 𝑃𝑟𝑖𝑐𝑒𝑃 (𝑡2)
𝑃𝑟𝑖𝑐𝑒𝑃 (𝑡1)

, if long/short CDS/DOOMP at 𝑡1,

−𝛼 ⋅ log 𝑘(𝑡2)
𝑘(𝑡1)

+ log 𝑃𝑟𝑖𝑐𝑒𝑃 (𝑡2)
𝑃𝑟𝑖𝑐𝑒𝑃 (𝑡1)

, if short/long CDS/DOOMP at 𝑡1.
(16)

Eq. (16) illustrates how the realized return can be computed for this trading strategy. The parameter 𝛼 is not known ex-ante;
thus, in order to evaluate the expected return of the strategy, it needs to be estimated. One way to do so would be to infer it from
the CDS spreads and hazard rates themselves, with the expected time to default being inverse of the hazard rate. In our analysis,
however, we do not rely on expected returns and, instead, compute the realized returns. The CDS contracts are either held until
maturity or until the default of the underlying, automatically adjusting the total return to the time at CDS maturity/default.

The trading returns in Eq. (16) do not consider the transaction costs, which are likely to be substantial in DOOMP and CDS
markets. We adjust the returns for transaction costs using the reported bid–ask spreads (𝐵𝐴𝑆). The adjusted returns 𝑟′ are computed
by substituting the actual put prices and CDS spreads by transaction-cost adjusted ones. The purchasing prices increase by 1

2 ×𝐵𝐴𝑆,
while selling prices decrease by the same amount, thus, resulting in smaller realized returns.17

The most important decision related to the trading strategy is the choice of a trading signal. First, as a Benchmark strategy, we
use the total difference between DOOMP option and CDS hazard rates 𝐻𝑃 −𝐻𝐶 , as a signal. If it is positive, that is, DOOMP option
is relatively overpriced, we long a CDS and short a DOOMP option at time 𝑡1. If the difference is negative, we short a relatively
overpriced CDS and long a DOOMP option at time 𝑡1. This strategy would be purely based on the arguments discussed in Carr and
Wu (2011). Second, we propose a Decomposition strategy, based on the NS-components of the hazard rate. Recall that the magnitude
of the convergence in hazard rates is stronger, if both differences in rating-based hazard rate curves and residuals have the same
sign (due to the 𝛽1 and 𝛽2 having the same sign in Table 8). Thus, in our Decomposition strategy, we trade only when both differences
(𝐹 𝑃

𝜏𝐶
− 𝐹𝐶

𝜏𝐶
and 𝑅𝑃

𝜏𝑃
−𝑅𝐶

𝜏𝐶
) have the same sign. Specifically, when both differences are positive, we long a CDS and short a DOOMP

at time 𝑡1; when both differences are negative, we short a CDS and long a DOOMP. This strategy is more stringent and therefore
the number of potential trades is lower, but the additional constraint is expected to increase the likelihood of convergence. To
further evaluate the benefits of the Decomposition strategy, we also include an Excluded trading strategy for reference. This strategy
consists of those trades, which are included in the Benchmark strategy, but not in the Decomposition strategy; in other words, we
trade based on the sign of 𝐻𝑃 −𝐻𝐶 , but only if two components (𝐹 𝑃

𝜏𝐶
− 𝐹𝐶

𝜏𝐶
and 𝑅𝑃

𝜏𝑃
−𝑅𝐶

𝜏𝐶
) have different signs. When computing

fitted hazard rates and residuals, we use the NS-curves estimated as of the date of decision (i.e. 𝑡1); thus, the strategy relies only on
past information and can be implemented in real time. As for the holding period, we choose the time 𝑡2 to unwind the position at
the first opportunity after 7 trading days.18

At the same time, convergence, if any, may be stronger for the cases with larger absolute deviations (Carr and Wu, 2011;
Kolokolova et al., 2019). In order to evaluate the relative importance of the size of the total deviation in hazard rates vs. directions
of the components of the deviation, we consider the same strategies – Benchmark, Decomposition, and Excluded – but require the
absolute size of the total deviation in the implied hazard rates to be higher than the historical median absolute deviation.

6.1. Trading strategy performance

For the Benchmark strategy, we identify 2,930 trades with the holding periods ranging from 7 days to more than 1 year. Our
Decomposition strategy reduces the number of valid trading signals to 1,037, as it requires the same sign of the differences in rating-
based fitted values and residuals. Table 9 reports the distribution of holding periods for all trades, as well as for the trades with
the same or different signs for the two differences. The average duration of trades with the same sign is 28.53 days, whereas the
average duration of trades with different signs is 36.93 days; this means that the trading horizons are shorter for the Decomposition
strategy due to stronger convergence upon the joint signal.

Table 10 reports the descriptive statistics of the fitted hazard rates (at maturity of 5-years, 𝐹𝐶
𝜏𝐶

and 𝐹 𝑃
𝜏𝐶

) and residuals (at actual
contract maturities, 𝑅𝐶

𝜏𝐶
and 𝑅𝑃

𝜏𝑃
) for the pairs of contracts included in the Decomposition strategy and the Excluded strategy – those

not included into the Decomposition strategy, but still used in the Benchmark strategy. The DOOMP-implied fitted hazard rates are
generally higher than those of CDSs. The average fitted values of hazard rates for CDSs in the Decomposition strategy are somewhat
higher than in the Excluded strategy, indicating that CDS market participants view these firms as a bit riskier. The values of the
residuals on the DOOMP side are on average positive for the Decomposition strategy, and they are negative for the Excluded strategy.
The Decomposition strategy, thus, includes pairs of CDS and DOOMP which have more similar fitted hazard rates.

Table 11 reports the strategy performance in terms of total returns per trade, as well as risk-adjusted performance measured as the
alpha relative to the Fama–French 5 factors.19 For the case without transaction costs (Panel A), the average return for the Benchmark
strategy (𝑅𝑒𝑡𝐵) is 18.3%, significantly greater than zero at the 1% level. The Decomposition strategy delivers fewer trades but has a

17 For regulated traders such as banks, the final realized return may be further impacted by the need to mark-to-market their positions in derivatives. Such
raders would be required to hold additional capital against these instruments, which reduces the total return (He et al., 2017).
18 In our regression results, we restrict the holding period between 7 and 30 days. Here, to avoid any selection bias and to make the strategy implementable,
e relax this restriction.
19 The alphas are estimated by running a pooled regressions of excess returns on Fama–French 5 factors. The factors are obtained from http://mba.tuck.
artmouth.edu/pages/faculty/ken.french/data_library.html.
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Table 9
Holding period distribution.

≥7D >14D >21D >30D >6M >1Y
≤14D ≤21D ≤30D ≤6M ≤1Y

Panel A: Benchmark strategy, all trades

Count 1440 392 302 713 75 8
Percentage 49.15% 13.38% 10.31% 24.33% 2.56% 0.27%

Mean 33.96
STD 51.65

Panel B: Decomposition strategy, 𝐹 𝑃 − 𝐹 𝐶 and 𝑅𝑃 − 𝑅𝐶 with the same sign

Count 529 151 107 231 19 0
Percent 51.01% 14.56% 10.32% 22.28% 1.83% 0.00%

Mean 28.53
STD 39.17

Panel C: Excluded strategy, 𝐹 𝑃 − 𝐹 𝐶 and 𝑅𝑃 − 𝑅𝐶 with different signs

Count 911 241 195 482 56 8
Percent 48.12% 12.73% 10.30% 25.46% 2.96% 0.42%

Mean 36.93
STD 57.13

This table reports the number and the percentage of trades with different holding periods. Panel A is based on all trades, included
in the Benchamrk strategy, Panel B uses trades from the Decomposition strategy with the same sign of systematic and idiosyncratic
differences (𝐹 𝑃 − 𝐹 𝐶 and 𝑅𝑃 − 𝑅𝐶 ), and Panel C is based on trades from the Excluded strategy with different signs of the two
differences.

Table 10
Fitted and residual hazard rates of traded pairs of CDSs and DOOMPs.

𝐹 𝐶 𝑅𝐶 𝐹 𝑃 𝑅𝑃 𝐹 𝑃 − 𝐹 𝐶 𝑅𝑃 − 𝑅𝐶

Panel A: Decomposition strategy

Mean 0.0175 −0.0002 0.0458 0.0109 0.0284 0.0111
Median 0.0123 −0.0006 0.0341 0.0075 0.0202 0.0074
STD 0.0168 0.0053 0.0674 0.0154 0.0639 0.0150
Max 0.2701 0.0609 1.2938 0.1308 1.2432 0.1346
Min 0.0036 −0.0451 0.0031 −0.0863 −0.0460 −0.0829
N 1037 1037 1037 1037 1037 1037

Panel B: Excluded strategy

Mean 0.0155 −0.0001 0.0443 −0.0122 0.0288 −0.0122
Median 0.0104 −0.0004 0.0352 −0.0098 0.0242 −0.0096
STD 0.0203 0.0078 0.0433 0.0157 0.0397 0.0170
Max 0.3500 0.0961 0.7648 0.1631 0.6115 0.2185
Min 0.0034 −0.2161 0.0055 −0.1776 −0.3022 −0.1794
N 1893 1893 1893 1893 1893 1893

This table reports the descriptive statistics of the fitted values of the hazard rate curves (𝐹 ) and individual contracts’ residuals
(𝑅) for CDSs (𝐶) and DOOMPs (𝑃 ) included in the Decomposition strategy (Panel A) and those in the Excluded strategy, that is,
the traded pairs included in the Benchmark but not in the Decomposition strategy (Panel B).

much higher average return of 30% (𝑅𝑒𝑡𝐷) as compared to the Benchmark strategy. The return difference of 11.7% is positive and
significant at the 1% level. Those trades which are excluded from the Decomposition strategy clearly exhibit weaker convergence
and their average return (𝑅𝑒𝑡𝐸) is 12%, lower than both Benchmark strategy and Decomposition strategy. Since DOOMP-CDS trading
strategy relies on a relative mispricing of individual credit risk, the equity market factors do not contribute to the performance.
Hence, the results based on the 5-factor alphas are very close to those based on total returns discussed above.

Most importantly, the Decomposition strategy is the only strategy that produces positive returns after transaction costs (Panel B).
In general, transaction costs severely reduce the returns. The Benchmark strategy results in a negative return of −8% significant at
he 1% level, whereas the return for the Decomposition strategy is 3.8%, still significant at the 5% level. Trades excluded from the
ecomposition strategy result in the losses of −14.3%, significant at the 1% level.

The performance of the Benchmark based on large absolute differences of the implied hazard rates improves considerably
ompared to the unrestricted Benchmark strategy both pre- and post-transaction cost (Panels C and D). The mean return increases
rom 18.3% to 26.3% pre-transaction cost, while after transaction cost it increases from −8% to 3.1%. Despite such an improvement
n performance, the mean returns are still lower than that of Decomposition strategy from Panels A and B. The performance of
ecomposition strategy further improves to mean returns of 32% and 7.6% in Panels C and D respectively, when the total absolute
ifference is required to be above historical median. Overall, this suggests that although the absolute size of the difference between
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Table 11
Trading performance on CDS-DOOMP convergence.

𝑅𝑒𝑡𝐵 𝑅𝑒𝑡𝐷 𝑅𝑒𝑡𝐸 𝑅𝑒𝑡𝐷 − 𝑅𝑒𝑡𝐵 𝑅𝑒𝑡𝐷 − 𝑅𝑒𝑡𝐸

Panel A: Raw Returns

Mean 0.183*** 0.300*** 0.120*** 0.117*** 0.180***
STD 0.445 0.455 0.426
t-stat 22.188 21.221 12.256 7.174 10.459
FF5 Alpha 0.181*** 0.305*** 0.116*** 0.104*** 0.184***
t-stat 21.752 21.229 11.801 6.266 7.255
N Trades 2930 1037 1893

Panel B: Transaction Cost Adjusted Returns

Mean −0.080*** 0.038** −0.143*** 0.118*** 0.181***
STD 0.501 0.485 0.498
t-stat −8.657 2.525 −12.519 6.684 9.587
FF5 Alpha −0.082*** 0.041*** −0.147*** 0.094*** 0.170***
t-stat −8.768 2.702 −12.711 5.070 6.028
N Trades 2930 1037 1893

Panel C: |𝐷𝐻
| > 𝑀𝑒𝑑𝑖𝑎𝑛(|𝐷𝐻

|) & Raw Returns

Mean 0.263*** 0.320*** 0.182*** 0.057*** 0.138***
STD 0.450 0.455 0.429
t-stat 22.405 20.648 10.398 2.926 5.929
FF5 Alpha 0.262*** 0.324*** 0.169*** 0.048*** 0.147***
t-stat 21.810 20.534 9.470 4.039 4.555
N Trades 1465 863 602

Panel D: |𝐷𝐻
| > 𝑀𝑒𝑑𝑖𝑎𝑛(|𝐷𝐻

|) & Cost-Adj. Returns

Mean 0.031** 0.076*** −0.034* 0.045** 0.110***
STD 0.474 0.467 0.478
t-stat 2.486 4.793 −1.757 2.251 4.391
FF5 Alpha 0.028** 0.078*** −0.046** 0.028** 0.093***
t-stat 2.237 4.842 −2.312 2.323 2.765
N Trades 1465 863 602

This table reports the strategy performance over the sample period from July 2012 to April 2016. 𝑅𝑒𝑡𝐵 is the return for the
Benchmark strategy, based on a total difference in hazard rates signal, 𝑅𝑒𝑡𝐷 is the return for our Decomposition strategy, based on
the both systematic and idiosyncratic differences, and 𝑅𝑒𝑡𝐸 is the return for the trades that are excluded from the Decomposition
strategy. Panel A uses raw returns, and Panel B uses the returns adjusted for transaction costs. Panels C and D use a sub-sample
of trades for which the absolute deviation in hazard rates between CDS and DOOMP is above the median. ***, **, and * represent
the significance of one sample or two sample 𝑡-test at the 1%, 5%, and 10% levels, respectively.

implied hazard rates is an important determinant of convergence, the relative position of rating-based fitted components of the
hazard rates and the residuals complements the effect of the deviation size.

We further check how differences in maturities between DOOMP and CDS affect the performance of the strategies. We evaluate
the performance of the Benchmark, Decomposition, and Excluded strategies using only those trades that include DOOMPs with
maturities less than 6 months, or 6 months and above. Table 12 indicates that the Decomposition strategy statistically significantly
outperforms the Benchmark strategy for both shorter- and longer-maturity DOOMP options. Remarkably, the largest trading
profits are associated with trades based on shorter-term DOOMPs. Here, the total average returns reach 42.5% per trade before
transaction costs and 6.9% after the costs. Trades involving longer maturity DOOMPs generate a significantly negative average
return post-transaction cost for the Benchmark strategy, and a not statistically significant return for the Decomposition strategy.

We also compare the performance of the strategies for different lengths of holding periods. We evaluate the performance of the
Benchmark, Decomposition, and Excluded strategies using only those trades that are closed within the first 14 days after origination
(which roughly corresponds to the median of holding periods), and those that are closed after a longer holding period. Table 13
indicates that the Decomposition strategy statistically significantly outperforms the Benchmark strategy for both holding period sub-
samples. The largest trading profits are associated with longer holding periods. This may suggest that over longer periods of time
convergence between DOOMP- and CDS-implied hazard rates is more likely. Post-transaction cost returns of both the Benchmark
strategy and the Decomposition strategy are negative for short holding periods, although the Decomposition strategy still delivers
statistically significantly higher returns than the Benchmark strategy. For the longer holding horizons, post-transaction cost returns
of the Decomposition strategy are positive and significant of 14.5%, while those of the Benchmark strategy are negative of −2.8%.

The returns discussed above are the total returns for each trade. To assess the trading performance of the strategies over time,
we amortize the total return into the daily equivalents,20 and for each trading day we accumulate the prior daily returns across all
trades which are still active on that day. We compute the cumulative returns with and without transaction costs. Fig. 4 depicts the
results.

20 We divide total return by 5 × 365 since all CDS contracts in our analysis have maturities of 5 years.
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Table 12
Trading performance on CDS-DOOMP convergence: DOOMP maturity effect.

𝑅𝑒𝑡𝐵 𝑅𝑒𝑡𝐷 𝑅𝑒𝑡𝐸 𝑅𝑒𝑡𝐷 − 𝑅𝑒𝑡𝐵 𝑅𝑒𝑡𝐷 − 𝑅𝑒𝑡𝐸

Panel A: Raw Returns (Maturity < 6M)

Mean 0.355*** 0.425*** 0.216*** 0.069** 0.209***
STD 0.526 0.512 0.516
t-stat 17.783 18.214 6.069 2.263 4.915
FF5 Alpha 0.359*** 0.433*** 0.208*** 0.049*** 0.219***
t-stat 17.712 18.351 5.707 3.242 3.918
N Trades 693 482 211

Panel B: Raw Returns (Maturity ≥ 6M)

Mean 0.129*** 0.192*** 0.108*** 0.062*** 0.084***
STD 0.403 0.367 0.412
t-stat 15.161 12.302 10.753 3.519 4.507
FF5 Alpha 0.127*** 0.191*** 0.105*** 0.049*** 0.085***
t-stat 14.771 12.034 10.414 2.587 3.019
N Trades 2237 555 1682

Panel C: Transaction Cost Adjusted Returns (Maturity < 6M)

Mean −0.045* 0.069*** −0.287*** 0.113*** 0.356***
STD 0.603 0.564 0.622
t-stat −1.949 2.677 −6.702 3.295 7.124
FF5 Alpha −0.043* 0.075*** −0.301*** 0.066*** 0.327***
t-stat −1.857 2.847 −6.788 3.715 4.898
N Trades 693 482 211

Panel D: Transaction Cost Adjusted Returns (Maturity ≥ 6M)

Mean −0.091*** 0.011 −0.125*** 0.102*** 0.137***
STD 0.465 0.403 0.478
t-stat −9.276 0.664 −10.763 5.197 6.608
FF5 Alpha −0.093*** 0.010 −0.128*** 0.075*** 0.129***
t-stat −9.450 0.569 −10.920 3.587 4.172
N Trades 2237 555 1682

This table reports the strategy performance over the sample period from July 2012 to April 2016. 𝑅𝑒𝑡𝐵 is the return for the
Benchmark strategy, based on a total difference in hazard rates signal, 𝑅𝑒𝑡𝐷 is the return for our Decomposition strategy, based on
the both systematic and idiosyncratic differences, and 𝑅𝑒𝑡𝐸 is the return for the trades that are excluded from the Decomposition
strategy. Panels A and B use raw returns and trades involving DOOMPs with maturities below or above 6 months, respectively.
Panels C and D report the corresponding transaction cost adjusted returns. ***, **, and * represent the significance of one sample
or two sample 𝑡-test at the 1%, 5%, and 10% levels, respectively.

The Decomposition strategy delivers a more appealing profile over time, resulting in the cumulative total return of 27% before
transaction costs and 8% after transaction costs, while the corresponding returns for the Benchmark strategy are 20% and 3% over
the same period.

These results above provide evidence that decomposition of hazard rates into their rating-based and residual components captures
the price dynamics of these two markets more accurately. Using the refined signal, it is possible to develop a trading strategy with
a positive expected return even after transaction costs.

7. Information content of the aggregate CDS-DOOMP deviations

In the previous sections we have investigated whether individual deviations of hazard rates from their rating curves contain
information about their future dynamics within the CDS and DOOMP markets, and if and how such predictions of cross-market
movements can be exploited to construct profitable investments strategies. The intensity of the within-market deviations from the
rating curves is related to market inefficiencies, while the cross-market differences of the curves are driven by market segmentation.
Hence, while the factors capturing market efficiency and segmentation affect the within-market and cross-market differences in
hazard rates, these differences themselves can serve as a gauge of the level of such inefficiencies. In a similar spirit, Hu et al. (2013)
show that noise in the Treasury bond yields relative to the fitted yield curve contains important information about the aggregate
market liquidity and availability of the arbitrage capital, and it can be used as a priced factor for, for example, hedge fund returns.

In this section, we propose two aggregate measures of CDS and DOOMP market inefficiencies (𝑁𝑜𝑖𝑠𝑒𝐶 and 𝑁𝑜𝑖𝑠𝑒𝑃 ), based on
the residuals relative to the NS hazard rates curves fitted for each market separately, and a measure of market segmentation based
on the cross-curve differences (𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝐶𝑃 ).

To construct the monthly values of 𝑁𝑜𝑖𝑠𝑒𝐶 and 𝑁𝑜𝑖𝑠𝑒𝑃 , we follow a similar procedure as in Hu et al. (2013) for the Treasury bond
noise measure. We compute the square root of the average squared deviations of the individual hazard rates from their corresponding
rating curve, scaled by the corresponding fitted value of the hazard rate. For example, for the CDS market each month we compute:
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Table 13
Trading performance on CDS-DOOMP convergence: Holding period effect.

𝑅𝑒𝑡𝐵 𝑅𝑒𝑡𝐷 𝑅𝑒𝑡𝐸 𝑅𝑒𝑡𝐷 − 𝑅𝑒𝑡𝐵 𝑅𝑒𝑡𝐷 − 𝑅𝑒𝑡𝐸

Panel A: Raw Return (Holding ≤ 14 Days)

Mean 0.101*** 0.178*** 0.057*** 0.077*** 0.120***
STD 0.271 0.318 0.229
t-stat 14.104 12.865 7.542 4.938 7.646
FF5 Alpha 0.098*** 0.183*** 0.053*** 0.069*** 0.139***
t-stat 13.405 12.854 6.911 5.991 6.908
N Trades 1440 529 911

Panel B: Raw Return (Holding > 14 Days)

Mean 0.262*** 0.427*** 0.178*** 0.166*** 0.249***
STD 0.553 0.535 0.543
t-stat 18.239 17.993 10.297 5.971 8.466
FF5 Alpha 0.260*** 0.429*** 0.176*** 0.120*** 0.249***
t-stat 18.111 17.945 10.173 5.437 6.223
N Trades 1490 508 982

Panel C: Return with Transaction Cost (Holding ≤ 14 Days)

Mean −0.134*** −0.064*** −0.173*** 0.070*** 0.109***
STD 0.342 0.373 0.326
t-stat −14.843 −3.961 −16.057 3.748 5.604
FF5 Alpha −0.136*** −0.060*** −0.176*** 0.055*** 0.121***
t-stat −14.813 −3.568 −16.072 4.024 4.767
N Trades 1440 529 911

Panel D: Return with Transaction Cost (Holding > 14 Days)

Mean −0.028* 0.145*** −0.115*** 0.173*** 0.260***
STD 0.612 0.560 0.615
t-stat −1.783 5.817 −5.881 5.862 8.210
FF5 Alpha −0.029* 0.145*** −0.117*** 0.120*** 0.259***
t-stat −1.853 5.806 −5.966 4.822 5.618
N Trades 1490 508 982

This table reports the strategy performance over the sample period from July 2012 to April 2016. 𝑅𝑒𝑡𝐵 is the return for the
Benchmark strategy, based on a total difference in hazard rates signal, 𝑅𝑒𝑡𝐷 is the return for our Decomposition strategy, based on
the both systematic and idiosyncratic differences, and 𝑅𝑒𝑡𝐸 is the return for the trades that are excluded from the Decomposition
strategy. Panels A and B use raw returns and trades involving DOOMPs with holding periods below or above 14 days, respectively.
Panels C and D report the corresponding transaction cost adjusted returns. ***, **, and * represents the significance of one sample
or two sample 𝑡-test at the 1%, 5%, and 10% levels, respectively.
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where 𝑁𝐶 is the total number of CDS contracts traded during the month of interest, 𝐻𝐶
𝑖 (𝑡, 𝜏𝐶 ) is individual CDS-implied hazard

rate for CDS 𝑖 traded during day 𝑡 of the month and having the maturity 𝜏𝐶 . 𝐹𝐶
𝑖 (𝑡, 𝜏𝐶 ) is the fitted value of the NS-curve as of day

𝑡 for maturity 𝜏𝐶 and the same rating as that of CDS 𝑖. 𝑁𝑜𝑖𝑠𝑒𝑃 is computed analogically using DOOMP-implied hazard rates and
NS-curves.

The monthly market segmentation measure 𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝐶𝑃 is computed as the square root of the average squared difference between
he NS-fitted values for CDS and DOOMP curves computed at maturity of 5 years (𝜏 = 5), scaled by the average value of the fitted
alues:
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where 𝑁𝐹 is the total number of fitted curves across all ratings 𝑟 and all days of the month 𝑡, and 𝐹 𝑃
𝑡 (𝜏 = 5, 𝑟) and 𝐹𝐶

𝑡 (𝜏 = 5, 𝑟) are
NS-fitted curve value for DOOMP and CDS markets, respectively, fitted at day 𝑡, for maturity 5 years, and rating 𝑟.

Table 14 reports the descriptive statistics of the resulting noise and market segmentation measure, as well as their correlation
with several factors, capturing market performance and risk. In particular, we use the excess market return over the risk-free rate
(𝑀𝑘𝑡 − 𝑅𝑓 ) from K. French website, the volatility index 𝑉 𝐼𝑋 from CBOE, Pastor and Stambaugh (2003) traded liquidity measure
(𝑃𝑆_𝐿𝐼𝑄), and the illiquidity measure based on noise in Treasury bonds (𝐼𝐿𝐿𝐼𝑄𝑇𝐵) of Hu et al. (2013).21 The original bond

21 The corresponding data are obtained at https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html, https://www.cboe.com/tradable_
roducts/vix/vix_historical_data/, https://finance.wharton.upenn.edu/~stambaug/, and https://en.saif.sjtu.edu.cn/junpan/.
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Fig. 4. Time series plot for cumulative trading returns.
This figure plots the cumulative returns of the Benchmark and Decomposition trading strategies from July 2012 to April 2016 before and after transaction costs.

Table 14
CDS and DOOMP segmentation and noise.

Panel A: Descriptive statistics

Mean Median STD N

𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝐶𝑃 1.04 1.00 0.16 45
𝑁𝑜𝑖𝑠𝑒𝐶 0.25 0.25 0.06 45
𝑁𝑜𝑖𝑠𝑒𝑃 0.81 0.58 1.12 45

Panel B: Correlation matrix

𝑁𝑜𝑖𝑠𝑒𝐶 𝑁𝑜𝑖𝑠𝑒𝑃 𝐼𝐿𝐿𝐼𝑄𝑇𝐵 𝑀𝑘𝑡 − 𝑅𝑓 𝑉 𝐼𝑋 𝑃𝑆_𝐿𝐼𝑄

𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝐶𝑃 −0.37 0.08 0.43 −0.49 0.30 −0.01
𝑁𝑜𝑖𝑠𝑒𝐶 −0.34 −0.06 0.15 −0.14 −0.09
𝑁𝑜𝑖𝑠𝑒𝑃 −0.13 −0.11 0.26 0.14
𝐼𝐿𝐿𝐼𝑄𝑇𝐵 −0.16 0.02 0.14
𝑀𝑘𝑡 − 𝑅𝑓 −0.77 −0.20
𝑉 𝐼𝑋 0.28

This table reports the descriptive statistics of the CDS and DOOMP market segmentation measure (𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝐶𝑃 )
and CDS and DOOMP noise measures (𝑁𝑜𝑖𝑠𝑒𝐶 and 𝑁𝑜𝑖𝑠𝑒𝑃 ), as well as their correlation coefficients of the monthly
values of the market segmentation measure with the Hu et al. (2013) noise measure of the Treasure bond market
(𝐼𝐿𝐿𝐼𝑄𝑇𝐵), the excess return of the market over the risk-free rate (𝑀𝑘𝑡 − 𝑅𝑓 ), the VIX index, and the Pastor
and Stambaugh (2003) traded liquidity measure. The sample period is from July 2012 to April 2016.

oise measure is computed on a daily frequency, and we take the average value within a month to create a monthly time series.
ur market segmentation measure 𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝐶𝑃 is relatively highly correlated to 𝐼𝐿𝐿𝐼𝑄𝑇𝐵 (0.43) and 𝑉 𝐼𝑋 (0.30), and negatively
orrelated with the excess market return (−0.49). This suggests that during periods with low market return, high volatility and lack
f arbitrage capital, CDS and DOOMP markets tend to become more segmented. As for the noise measures, 𝑁𝑜𝑖𝑠𝑒𝑃 is relatively highly
orrelated with 𝑉 𝐼𝑋 (0.26), while the correlations with other factors considered are much lower in absolute values. 𝑁𝑜𝑖𝑠𝑒𝐶 does

not exhibit high correlations with the factors considered. These observations suggest that 𝑁𝑜𝑖𝑠𝑒𝑃 and 𝑁𝑜𝑖𝑠𝑒𝐶 capture inefficiencies
in the DOOMP and CDS markets, which might be due to lack of arbitrage capital in these markets, and these inefficiencies are not
captured by the existing measures – market return, 𝑉 𝐼𝑋, 𝐼𝐿𝐿𝐼𝑄𝑇𝐵 , or 𝑃𝑆_𝐿𝐼𝑄.
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Table 15
Hedge fund descriptive statistics and abnormal returns.

Panel A: Hedge fund portfolios monthly return descriptive statistics

All CTA/MgtF Event Dr Fixed Inc LS Equity Macro Multi Strat Value

Mean 0.47 0.48 0.72 0.47 0.44 0.29 0.53 0.55
Median 0.80 0.89 0.87 0.69 0.61 0.30 0.60 0.97
STD 1.19 1.47 1.03 1.26 1.15 1.65 1.53 1.30

Panel B: Hedge fund performance related to Fung and Hsieh 7 factors

All CTA/MgtF Event Dr Fixed Inc LS Equity Macro Multi Strat Value

Constant 0.106 0.040 0.522*** 0.084 0.079 −0.190 0.137 0.140
[1.30] [0.39] [4.13] [0.85] [1.00] [−1.39] [1.12] [1.31]

Mkt-Rf 0.312*** 0.395*** 0.182*** 0.325*** 0.296*** 0.384*** 0.321*** 0.349***
[10.83] [12.30] [4.85] [11.57] [10.24] [10.74] [6.68] [9.31]

SMB −0.002 0.028 −0.066 0.004 −0.012 0.067 0.073 −0.004
[−0.06] [0.55] [−0.81] [0.09] [−0.29] [1.31] [1.50] [−0.09]

PTFSBD −0.009 0.000 −0.006 −0.006 −0.011* −0.015 −0.015 −0.006
[−1.36] [0.03] [−0.48] [−0.93] [−1.79] [−1.10] [−1.25] [−0.68]

PTFSFX 0.015*** 0.011** 0.025** 0.012** 0.016*** 0.010 0.019** 0.007
[3.41] [2.18] [2.46] [2.56] [3.40] [1.37] [2.25] [1.27]

PTFSCOM −0.007 −0.008 −0.005 −0.007 −0.007 −0.007 −0.008 −0.006
[−1.40] [−1.36] [−0.58] [−1.40] [−1.40] [−0.78] [−0.97] [−0.91]

Bond Mkt −0.009* −0.009* −0.001 −0.010** −0.009* −0.028*** −0.001 −0.011**
[−1.94] [−1.81] [−0.11] [−2.16] [−1.92] [−3.60] [−0.10] [−2.42]

Credit Spr −0.016** −0.018** −0.011 −0.019*** −0.015** −0.032*** −0.027** −0.006
[−2.29] [−2.16] [−1.33] [−2.73] [−2.19] [−4.34] [−2.22] [−0.56]

Adj. R-sqr 0.79 0.81 0.31 0.79 0.77 0.77 0.68 0.71
N 45 45 45 45 45 45 45 45

Panel A of this table reports the descriptive statistics of portfolios of hedge funds following different investment styles. The individual funds come from a union
of the Eurekahedge and Barlayhedge databases. The sample period is from July 2012 to April 2016. Panel B reports the regression results of the hedge fund
portfolio returns on the Fung and Hsieh (2001) seven factors. The standard errors are adjusted for heteroskedasticity and serial correlation using Newey–West
correction and are reported in brackets. ***, **, and * indicate significance at the 1%, 5%, and 10% levels, respectively.

CDS and DOOMP markets are often populated by skilled institutional investors, such as hedge funds. If our new factors capture
he existence of unexploited arbitrage opportunities in those markets, we may see that they significantly affect performance of these
rbitrageurs. In order to test this conjecture, we use the union of the Eurekahedge and Barclayhedge hedge fund databases and create
ortfolios of hedge funds as the simple average of their reported performance during our sample period (July 2012 to April 2016).
e create portfolios of all hedge funds (All), as well as funds following particular investment strategies including CTA/Managed

utures, Event Driven, Fixed Income, Long-Short Equity, Macro, Multi-strategy, and Value. Panel A of Table 15 reports the descriptive
tatistics of the hedge fund portfolio returns. Over our sample period, Event Driven funds exhibit the highest mean return of 0.72%
er month, while Macro funds have the weakest performance with the mean return of 0.29% per month. Panel B of Table 15 further
eports the regression results of hedge fund portfolio returns on the Fung and Hsieh (2001) seven factors.22 Event Driven funds are

the only category exhibiting a positive and significant alpha in our sample of 0.52% per month. Important to note, however, that
the Fung and Hsieh (2001) model has the weakest explanatory power for these funds, with adjusted R-square being 31%.

We further evaluate performance of hedge fund portfolios relative to our noise and market segmentation measures, as well
as 𝐼𝐿𝐿𝐼𝑄𝑇𝐵 of Hu et al. (2013) and Fung and Hsieh (2001) seven factors. Panel A of Table 16 reports the results using
the contemporaneous values of the noise and market segmentation factors.23 𝑁𝑜𝑖𝑠𝑒𝑃 seems to be capturing the existence of
contemporaneous arbitrage opportunities that can be exploited by arbitrageurs almost instantly. This factor is significantly positively
related to performance of almost all hedge fund strategies. On average, one standard deviation increase in 𝑁𝑜𝑖𝑠𝑒𝑃 corresponds to
around 13 basis points increase in the average risk adjusted return of hedge funds. 𝑁𝑜𝑖𝑠𝑒𝐶 relates positively to the performance
of Event Driven and Fixed Income funds, with the effect on performance of Event Driven funds being the strongest. One standard
deviation increase in 𝑁𝑜𝑖𝑠𝑒𝐶 corresponds to about 24 basis points increase in monthly abnormal returns of Event Driven funds. In
the presence of this factor, the abnormal return of Event Driven funds is no longer significant, similar to other funds in our sample.

In Panel B of Table 16 we use the lagged values of noise and segmentation factors to test for their time-series predictability for
hedge fund returns. A remarkable feature emerges in the lagged results: while 𝑁𝑜𝑖𝑠𝑒𝑃 remains positively related to performance of
all hedge funds on average and of some individual strategies, the measure of market segmentation 𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝐶𝑃 is negatively related
to future performance of hedge funds. One standard deviation increase in market segmentation measure predicts a decline by 22
basis points of the average hedge fund abnormal return one month ahead.

Overall, our findings suggest that market-specific noise measures capture the likelihood of existence of exploitable arbitrage
opportunities. During periods with high values of these factors, hedge funds as a group tend to perform better, potentially gaining

22 https://people.duke.edu/~dah7/.
23 We do not report the loadings on the Fung and Hsieh (2001) seven factors and the intercept in this table for the sake of space.
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Table 16
CDS and DOOMP segmentation and noise: Hedge fund performance.

Panel A: Contemporaneous effects

All CTA/MgtF Event Dr Fixed Inc LS Equity Macro Multi Strat Value

𝐼𝐿𝐿𝐼𝑄𝑇𝐵 −0.157 −0.094 0.272 −0.048 −0.232 −0.188 −0.358 −0.228
[−0.98] [−0.46] [1.14] [−0.27] [−1.48] [−0.67] [−1.44] [−1.22]

𝑁𝑜𝑖𝑠𝑒𝐶 1.500 1.722 3.994*** 2.038* 1.328 0.424 −2.585 1.615
[1.58] [1.62] [2.95] [1.88] [1.30] [0.28] [−1.48] [1.32]

𝑁𝑜𝑖𝑠𝑒𝑃 0.114*** 0.128*** −0.039 0.116*** 0.130*** 0.189*** 0.166*** 0.065
[3.74] [3.20] [−0.92] [3.78] [4.09] [4.83] [2.74] [1.28]

𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝐶𝑃 −0.907 −0.636 −1.614* −0.992 −0.986 −0.154 −0.949 −0.053
[−1.31] [−0.72] [−1.86] [−1.42] [−1.41] [−0.16] [−0.90] [−0.07]

Fung & Hsieh factors Yes Yes Yes Yes Yes Yes Yes Yes
Adj. R-sqr 0.81 0.81 0.39 0.80 0.81 0.76 0.71 0.69
N 45 45 45 45 45 45 45 45

Panel B: Lagged effects

All CTA/MgtF Event Dr Fixed Inc LS Equity Macro Multi Strat Value

𝐼𝐿𝐿𝐼𝑄𝑇𝐵 (t−1) 0.009 0.012 0.528* 0.027 −0.024 −0.055 0.063 −0.275
[0.04] [0.05] [1.88] [0.14] [−0.12] [−0.15] [0.20] [−0.97]

𝑁𝑜𝑖𝑠𝑒𝐶 (t−1) 0.443 0.215 3.446 1.970 −0.239 −0.315 −2.302 1.374
[0.32] [0.13] [1.59] [1.31] [−0.17] [−0.11] [−1.28] [0.72]

𝑁𝑜𝑖𝑠𝑒𝑃 (t−1) 0.096** 0.021 0.095 0.091* 0.124** 0.076 0.249*** −0.042
[2.04] [0.38] [1.45] [1.87] [2.51] [1.01] [3.76] [−0.63]

𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝐶𝑃 (t−1) −1.348** −1.144 −2.028** −1.134* −1.502** −1.022 −1.924** −0.135
[−2.22] [−1.52] [−2.11] [−1.81] [−2.43] [−1.06] [−2.40] [−0.18]

Fung & Hsieh factors Yes Yes Yes Yes Yes Yes Yes Yes
Adj. R-sqr 0.82 0.81 0.46 0.80 0.81 0.75 0.74 0.70
N 44 44 44 44 44 44 44 44

This table reports the estimation results of hedge fund portfolio return on the contemporaneous (Panel A) and lagged (Panel B) CDS and DOOMP market
segmentation measure (𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝐶𝑃 ) and CDS and DOOMP noise measures (𝑁𝑜𝑖𝑠𝑒𝐶 and 𝑁𝑜𝑖𝑠𝑒𝑃 ), as well as Hu et al. (2013) noise measure of the Treasure bond

arket (𝐼𝐿𝐿𝐼𝑄𝑇𝐵). The sample period is from July 2012 to April 2016. We control for Fung and Hsieh (2001) seven factors in all the regressions. The standard
rrors are adjusted for heteroskedasticity and serial correlation using Newey–West correction and are reported in brackets. ***, **, and * indicate significance
t the 1%, 5%, and 10% levels, respectively.

rom trading on convergence of individual contracts to rating curves, and further contributing to faster convergence by their trades.
xploiting market segmentation seems to be harder and potentially more costly since it may require moving capital across different
arkets. These opportunities do not seem to be exploited by hedge funds. Instead, current market segmentation tends to preclude

he efficient exploitation of future trading opportunities, leading to reduction in hedge fund abnormal returns one month ahead.
rofessional arbitrageurs seem to benefit from within-market inefficiencies and, by trading on these inefficiencies, they help to
educe them. However, such arbitrageurs do not seem to contribute sufficiently to reduction of cross-market mispricing and market
egmentation.

. Conclusion

Both credit default swap (CDS) and deep out-of-the-money put (DOOMP) options provide protection against firm’s default. If
he law of one price holds, the hazard rates implied by these two types of contracts written on the same underlying firm should be
dentical or very close, except when there are significant market frictions (Carr and Wu, 2011).

In this paper, we argue that the law of one price partially fails as these two markets are very different. They attract different
ypes of investors with different levels of risk aversion, information sets, and optimization horizons. The dynamics of prices in these
wo markets are characterized by a within-market convergence to their respective rating-based consensus pricing curves, and a
ross-market convergence of those rating-based curves. Often, these two movements do not go in the same direction, making the
ndividual CDS and DOOMP prices harder to predict.

The rating-based curves are estimated from the implied hazard rates using the Nelson–Siegel term structure, and represent the
‘rating-consensus’’ components of the hazard rates. The differences in these components for CDS and DOOMP markets decrease
or lower rating classes, where firms have very high hazard rates. The individual deviations from the fitted curves by the implied
azard rates are related to market frictions.

Time-series convergence in hazard rates is driven by two forces: a within-market convergence of individual hazard rates to their
espective rating curves, and a cross-market convergence of the curves. The overall convergence in hazard rates is observed only
f both cross-market differences reduce, that is, when the two markets become closer substitutes for each other and the market
rictions are lower.

We test if the differences in hazard rates and their components can be exploited as trading signals for a cross-market trading
trategy in CDSs and DOOMP options, written on the same underlying. The Benchmark strategy trades on total difference between the
wo implied hazard rates, which is expected to deliver a positive average return according to Carr and Wu (2011). Our Decomposition
212
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strategy requires that both rating-based and residual differences have the same sign. Ignoring transaction costs, both strategies
produce statistically significant positive returns, with the return of the Decomposition strategy being much higher than that of the
Benchmark strategy. When transaction costs are included, our results show a negative expected return for the Benchmark strategy,
whereas the Decomposition strategy still produces a positive return.

Finally, we assess the aggregate information content of within-market deviations of individual hazard rates from the rating-based
urves (noise) and cross-market differences of the curves (market segmentation), and their effect on performance of sophisticated
rbitrageurs, such as hedge funds. The noise measures seem to capture the likelihood of the existence of exploitable arbitrage
pportunities, and they are positively related to the aggregate performance of portfolios of hedge funds. The curve difference,
owever, captures market segmentation. It seems to be costly for capital to quickly flow between the markets; hence, even hedge
unds do not seem to be able to exploit such cross-market differences for their benefit. Such market segmentation, on the contrary,
egatively impacts their future performance.

Overall, our results highlight the benefits and importance of a separate analysis of the dynamics of the rating-based and residual
omponents of implied hazard rates. This decomposition approach allows us to more comprehensively assess price informativeness,
otential convergence between the CDS and DOOMP option markets, the existence of arbitrage opportunities and the overall market
fficiency.
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