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Abstract—With the emerging smart grid technology, 
communication between residential customers and load 
aggregator (LA) is becoming more common which facilitates the 
implementation of incentive-based demand response (IBDR). As 
a type of IBDR, load shedding plays a potential role in reducing 
supply cost and improving extra revenue in electric utilities 
sector as well as increasing the energy efficiency and economic 
income in residential side. In this paper, a residential welfare 
model based on utility function is proposed, by considering the 
electricity consumption preferences to analyze the welfare of 
users after participating in IBDR which includes comfort loss 
and incentives. Subsequently, a comprehensive IBDR strategy is 
presented considering household comfort and economy. The 
purpose of this strategy is to maximize the revenue of load 
aggregators while increasing the welfare of residential sector in 
IBDR event.  

Keywords—demand response, utility function, incentive, 
residential consumption behavior  

I. INTRODUCTION

Due to the shortage of fossil fuels and the increasing 
energy demand, the penetration rate of renewable energy 
resources in the power system is getting higher rapidly, which 
causes the uncertainty of output power and affects the stability 
of the electricity system. To solve this problem, in addition to 
strengthening the management of renewable energy [1], it is 
necessary to make good use of demand-side resources. 

 The response resource of residential part is potential and 
becomes increasingly popular [2,3,4]. The authors in [2] 
regard the residential users’ air conditioners as virtual energy 
storage systems, and proposed a hierarchical dispatch strategy 
for coordinating groups of virtual energy storage systems to 
regulate voltage due to high photovoltaic penetration. In [3], a 
novel consensus-driven distributed control strategy is 
proposed to coordinate virtual energy storage systems, such as 
residential households with air conditioners, to avoid the 
violation of voltage and loading which are part of the main 
power quality issues in the distribution network. When it 
regarded electric vehicles as a demand-side resource, the 
proposed novel blockchain-based energy trading mechanism 
in [4] for electric vehicles in the power market. The 
application of demand-side resources in these articles can be 
seen as an extension of demand response.  

 As one of the most commonly used tools to utilize 
demand-side resources, demand response can enhance the 

living quality of individual residential consumers [5] and have 
a beneficial environmental effect on society [6] by modifying 
customers' power usage and time periods [7], which can be 
divided into price-based and incentive-based. 

Price-based demand response (PBDR) can change the load 
curve of individual residential customers by setting retail 
tariffs. After the implementation of PBDR, the new tariff will 
cause a significant number customers to shift a large amount 
of peak load to off-peak periods, leading the power system to 
confront a new supply-demand balance problem [8]. 
Incentive-based demand response (IBDR) based on load 
shedding is seen as having more potential which avoid the 
above problems.  

It is necessary to study the electricity consumption 
behavior of residents for the implement of IBDR program. 
Some researchers have focused on residential home 
appliances to model residential consumers’ electricity 
consumption behavior [9,10]. In [11], the authors leverage 
artificial intelligence to learn customers' electricity 
consumption behavior in response to electricity prices. And 
some researchers believe that residential users decide their 
behavior according to the welfare they get from electricity 
consumption, and leverage utility function to model the user's 
welfare [12]. The authors in [13] leverage multi-attribute 
utility functions considering cost and convenience factors to 
model electricity consumption behavior. 

By summarizing the existing research results, it is found 
that there are mature optimization scheduling methods for 
integrating user-side resources. There are also theoretical 
models and relatively complete evaluation methods for cutting 
capacity potential. However, there is still a lack of IBDR 
optimization strategies to improve the economic benefits of 
load aggregator (LA) considering the residential user's 
comfort loss, economic income and electricity consumption 
preferences.  

In this paper, the utility theory and the concept of elasticity 
are applied to model the customer’s electricity consumption 
behavior at each time slot in the whole day. On the basis of 
that, the residential welfare model in IBDR event based on 
load shedding is established. Considering the welfare model, 
the customers are divided into three categories. And then, the 
demand response optimizing strategy considering users’ 
preference is proposed to maximize the revenue of LA. The 
main contribution of this paper is the comprehensive 
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consideration consisting of comfort loss, economic income 
and users’ preference in IBDR program to establish IBDR 
optimization strategy.  

The remaining parts of the paper are as follows. Section II 
describe the background of the problem. In Section III 
customer welfare model and the objective functions are 
described. The numerical results and analysis are elaborated 

in Section IV. Section V summarizes and concludes the paper. 

II. PROBLEM STATEMENT

A. Profit Model of LA in Day-ahead Market
In some power markets, such as the PJM market in the

U.S., load retailers are assigned a certain amount of electrical
capacity based on their peak capacity to ensure the safety and
stability of the system. If the demand exceeds this set capacity,
the load retailer has to pay additional charges. Therefore, the
load retailers need to purchase electricity from day-ahead
market (DAM) when their demand exceeds the set capacity.
When there is increasing demand in the market and
insufficient supply, the price in DAM rises.

At this point, LA can act as the representative of the 
consumers to aggregate the demand-side resources from 
residential customers to participate in the DAM and make 
profits as shown in Fig.1. There are two common types of 
IBDR signal for residential users: 1) a signal which informs 
the duration of IBDR event and the amount of kWh to be 
reduced; 2) a signal which informs the duration of IBDR event 
and let the subscribers decide how much they are willing to 
cut. We focus on the second type IBDR signals to understand 
the residential consumption behavior and know how incentive 
rate influence users’ electricity consumption during the IBDR 
event.  

B. Customer Model
Residential electricity consumption is mainly determined

by the utility of electricity and the cost of electricity purchase. 
From residential customers’ perspective, altering load is not 
desirable which cause the loss of comfort when they take part 
in IBDR program. Therefore, incentive compensation is 
necessary to make up for the user's comfort loss. During the 
IBDR event, users’ consumption behavior is affected not only 
by the utility of electricity and the cost of electricity purchase, 
by also by incentive compensation. When the user receives the 
second IBDR signal, the user will decide the electricity 
consumption (load reduction) to maximize the benefit based 
on the information in the signal included baseline and 
incentive price. 

Each consumer has his/her own electricity preferences, 
and the feeling of the comfort loss caused by altering load is 
different from diverse users. Therefore, each residential user 
decides their own electricity consumption according to their 

own preferences and electricity tariff for the reason that 
electric energy could bring equivalent benefits such as 
comfort, health and convenience [13]. Considering household 
comfort and economy, LA needs to classify householders 
according to the feeling of the loss of comfort and design 
incentive rate accordingly. Although quantifying these losses 
(satisfaction) and classifying users into different groups might 
be difficult, it is necessary for LA to develop the optimal 
bidding strategy considering the customers’ electricity 
preferences. The concept of utility function could be adopted 
in this paper, and the customers are classified into economy-
demanding customers (EDCs), standard customers (SCs) and 
comfortable-demanding customers (CDCs). 

III. PROBLEM  FORMULATION

A. Residential Customer Welfare Model
Utility function theory with a long history of growth is

suitable to quantify these benefits in order to analyze 
residential electricity consumption behaviors. As a special 
commodity, electricity can also bring economic utility to users，
which reflects in the power consumption brings convenience, 
comfort and economic output to the user. The economic utility 
obtained through electricity consumption is defined in this 
paper as the electricity economic utility.. This section will 
establish the welfare model before IBDR and demonstrate the 
solving process of model parameters. 

Electricity economic utility model can be established with 
exponential function establish electricity economic utility 
model which can be formulated as [14]: 

 (1) 

Where  is the power consumption and  is the comfort 
coefficient, and different users have various values. CDCs 
with high comfort requirement will have a higher  while 
EDCs focused on economic income which has a lower  .  

The welfare model before IBDR program can be 
expressed as follows: 

 (2) 

Where,  is the retail price which is fixed.  is the 
converted coefficient in order to transform the abstract 
concept of utility into money which is able to compare to the 
electricity cost. The utility in this paper is the total satisfaction 
or benefit derived from consuming electricity. 

The key to calculate the welfare value is to obtain the 
converted coefficient . Under the assumption that 
customers are rational individuals, the users will maximize the 
welfare at each moment of electricity consumption. The 
maximization of welfare can be obtained by the following 
equation: 

 (3) 

Supposing that the initial demand is  and the original 
price is . Considering (1) and (3), the converted coefficient 
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Fig. 1. Profit framework of LA in DAM 
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(4) 

Considering (3) and (4), the electricity load before IBDR 
would be as: 

(5) 

Equation (5) indicates that customers will control their 
consumption in order to maximize welfare in the case of 
electricity price fluctuations. Users will increase (decreases) 
their demand when price is decreasing (increasing). 
According to it, the concept of electricity elasticity is 
introduced here, that is, a normalized measure of the 
sensitivity of customer demand in change of electricity price 
[15]. Electricity elasticity, , can be formulated as: 

(6) 

Considering (5) and (6), the comfort coefficient can be 
calculated by elasticity original demand and price which can 
expressed as: 

(7) 

According to (7), it indicates that the users’ comfort 
coefficient decreases with the increase in the absolute value of 
elasticity. In other words, the more users attach importance to 
comfort, the less load consumption can be reduced  by the 
increase of unit electricity price, and the more difficult it is for 
users to adjust their electricity consumption by changing the 
electricity price. 

B. Residential Customer Welfare Model in IBDR event
In this section, a residential customer welfare model is

developed to analyze the change of users’ welfare when 
householder participate in IBDR event. The customers 
receive incentive compensation when loads are shedding at 
the special period set by LA. The additional welfare with 
IBDR is formulated as follows: 

(8) 

  (9) 

(10) 

The relevant variables in (10) could also be formulated as 
follows: 

(11) 

(12) 

Where, , , ,  and are index for the 
household, index for the time slot, incentive price, baseline 
load in peak time and actual load in peak time respectively. 

The residential customers consume electricity aiming to 
maximize their welfare during the IBDR period. Therefore, 
there are two constraints from customers’ behavior that LA 
needs to satisfy: individual rationality constraint and 
incentive compatibility constraint. The former means that 
users will participate in IBDR event only when the welfare 
after participation are greater than the benefits before 
participation, which can be written as: 

 (13) 

The incentive compatibility constraint refers to the fact 
that, given both the baseline and incentive rate, the 
customer always chooses the electricity consumption that 
maximizes his or her welfare, which can be obtained by 
taking the derivative of (9): 

 (14) 

 (15) 

C. Objective Function
The residential customers will be classified into different

categories according to their own consumption preference. 
The comfort coefficient in every time slot in an IBDR day can 
be calculated by LA from historical and forecasted data. By 
analyzing (11) it indicates that different causes various loss 
of electricity economic utility. In LA’s perspective, various 
price should be applied to diverse customers in order to make 
up utility loss and increase the users’ enthusiasm to participate 
in the IBDR program in the long-term.  

In this section, the objective function of the proposed 
strategy considering users’ consumption preference to 
maximize LA’s benefit will be formulated as follows: 

    (16) 

Where, the whole day is equally divided into 48 segments, 
and the interval of each part is 30 minutes, and  is the set 

for IBDR execution time slots. , and are 
the aggregated cutting capacity from EDCs, SCs and CDCs, 
respectively. , and  are the incentives to 
pay EDCs, SCs and CDCs, respectively. is the 
wholesale price in DAM. 

The relevant variables in (15) are further given as: 
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(21) 

  (22) 

Where, , , and are the index of 
customers, the set of CDCs, SCs and EDCs respectively. 

,  and  are the incentive rate of CDCs, 

SCs and EDCs respectively. are the execution state of 
IBDR as a binary variable, 1 is ON and 0 is OFF, which can 
be extended to and . 

Since the constraints from EDCs and SCs are similar to 
that from CDCs, to avoid repetition, only the individual 
rationality constraint and incentive compatibility constraint 
from CDCs are formulated as follows: 

 (23) 

(24) 

Equation (23) states that CDCs will participate in IBDR 
event only when the welfare after participation are greater 
than the benefits before participation, and the (24) 
describes that CDCs decide electricity consumption to 
maximize their welfare according to the IBDR signal. 

IV. CASE STUDY AND RESULTS

In order to verify the effectiveness of the proposed strategy 
for optimal LA’s benefit and analyze the additional welfare of 
different customers, MATLAB is used for the numerical 
simulation, and the optimization model was solved by 
utilizing CPLEX solver in YALMIP toolbox. The 
experimental data at the Austin, Texas, USA provided by 
Pecan Street Dataport include the residential load data [16]. 
The corresponding price information comes from Austin 
energy [17]. In this section, LA aggregates 72 household 
consumers in the data set to bid in power market. EDCs, SCs 
and CDCs account for one third each, and their elasticity is 
taken as , and , 
respectively. The maximum shedding ratio is taken as 

 assuming both types of users have the same 
reduction potential. Taking a typical day with high DAM price 
in summer as an example, the effectiveness of the proposed 
strategy is discussed by utilizing the following experimental 
results. In the summer, IBDR is implemented from 13:30 to 
18:30 daily for a total of five hours. 

 To the effectiveness of the proposed strategy and enable 
a comparison, the following scenarios were defined: 

• Scenario 1: As the comparison simulation,  the proposed
strategy is not used in this scenario. LA will treat all users
as SCs regardless of their electricity consumption
preferences and give the same incentive rate to them.

• Scenario 2: The proposed strategy is used in this scenario
considering the users’ preferences. LA will give the
different incentive rate to various subscribers according to
their type.

A. Sensitivity Analysis
Considering the preferences of different types of users, a

sensitivtity analysis is performed to investigate the impact of 
incentive rate on reduced capacity of electricity compared to 
baseline. The corresponding results are shown in Fig.2,  it 
denotes the sensitivity analysis of the reduced capacity. The 
incentive rate is varing from 0 $ to 0.1 $, while the cutting 
capacity of different types of users is varing from 0 kWh  to 

260 kWh. 

It can be observed that from Fig. 2 that EDCs are the most 
sensitive to incentive rate, followed by SCs then CDCs. For 
each increase in the unit of incentive rate, EDCs cut the most 
load. The reduced capacity of EDCs reachs the upper limit 
when the incentive rate is 0.017 $, while t hese of CDCs reachs 
the cap when the incentitive rate is 0.065 $. In the same case, 

SUs reaches its maximum load reduction at an incentive price 
of 0.027 $ and will no longer reduced more electricity demand. 
From  the LA’s perspective, higher incentive sensitivity 
means lower incentive compensation. In the scheduling order, 
the LA should first schedule the EDCs with the highest 
incentive sensitivity, followed by the SCs and finally the 
CDCs.  

B. LA Benefit
This section will analyze the LA’s benefit in the two

scenarios. Load shedding for three types of users in the two 
scenarios and DAM price are shown in Fig. 3. It can be seen 
from the figure that the DAM price is relatively high from 
13:30 to 18:30 while the load consumption is also high in 
Fig.3. Based on the proposed strategy, LA needs to invoke the 
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Fig. 2. Sensitivity analysis of reduced capacity to incentive rate. 

TABLE Ⅰ.        COMPARISON OF INCENTIVE RATE AND CUTTING CAPACITY 

Variables 
Scenario 1 

EDCs SUs CDCs 
Incentive 

rate 
($/kWh)

0.027 0.027 0.027 

Cutting 
capacity 
(kWh) 

217.17 217.17 108.59 

Variables 
Scenario 2 

EDCs SUs CDCs 
Incentive 

rate 
($/kWh)

0.017 0.027 0.065 

Cutting 
capacity 
(kWh) 

217.17 217.17 217.17 
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reducible load capacity on the residential side to maximize its 
benefit when the market electricity price is high. 

In Scenario 1, although LA offers the same incentive price 
to all users, they have different sensitivity to the incentive rate 
due to their different preferences for electricity consumption, 
which leads to different electricity consumption behaviors. As 
we can see from Table I, the cutting capacity of CDCs is 
108.59 kWh. As CDCs is not sensitive to the incentive, they 
are more inclined to ensure their own electricity economic 
utility and reduce the cutting their demand compared with SCs 
and EDCs for the same incentive price. Due to the limit of load 
shedding cap, the cutting capacity of EDCs is 217.17 kWh, 
and the amount of load shedding cannot be further increased. 

In Scenario 2, LA calculates incentive rate for different 
users according to their power consumption preferences, and 
their cutting capacity reach their maximum at the action of 
these incentive price. In this case, LA issues the incentive rate 
that will invoke all of the potential user's cutting capacity due 
to the higher upstream market price. This allows users to cut 
the electricity demand as much as possible and LA can 
maximize their profits by bidding in DAM. 

The details of the benefit generated to LA by different 
users in the two scenarios are shown in Table II. The LA’s 
benefit is derived from the revenue in the DAM minus 

incentive compensation to subscribers as shown in (16). In 
Scenario 1, as LA sets the same incentive rate regardless of 
users' electricity consumption preferences, CDCs cannot be 
fully mobilized to participate in IBDR, resulting in small 
cutting capacity. In Scenario 1, the LA’s benefit generated by 
the CDCS is 33.04 $, and in Scenario 2 it is 57.88 $. For EDCs 
users, since the reduction amount has reached the peak when 
the incentive price is 0.017 $/kWh, increasing the incentive 
price to 0.027 $/kWh in Scenario 1 can no longer increase the 
reduction amount, but will lead to an increase in the incentive 
compensation of LA. The incentive compensation of LA to 
EDCs is 5.87 $ in scenario 1 and 3.69 $ in scenario 2. To sum 
up, the total LA’s benefit generated by all consumers in 
Scenario 2 is 192.2$, a 16.36% improvement over Scenario 1. 

C. Customer Welfare
As shown in (10), the customer welfare model includes

three parts: electricity economic utility loss, electricity cost 
savings and incentive compensation. The details of additional 
benefits of different residential consumers in the two scenarios 
are shown in Table Ⅲ. 

Electricity economic utility is used to describe the 
psychological feelings caused by electricity consumption or 
the feelings by changing the original electricity pattern. The 
which loss of different householders as shown in Fig.4. It can 
be observed that electricity economic utility loss of the CDCs 
is larger than that of EDCs and SUs. Therefore, LA needs to 
give CDCs a larger incentive rate to encourage them to cut the 
electricity consumption, so that the incentive compensation 
they get can make up for the loss of utility and meet the 
individual rationality constraint. The reason is that LA does 
not consider electricity consumption preference and sent 
CDCs a higher incentive price,  which leads to them preferring 

Fig. 3. Load shedding in two scenarios. 

TABLE II.        THE COMPONENTS OF CUSTOMERS’ WELFARE 

Type 
of 

Users 

Scenario 1 
Utility cost  

($) 
Electricity cost 

savings ($) 
Incentive 

($) 
Additional 
welfare ($) 

EDCs 16.61 14.83 5.87 4.09 

SUs 17.60 14.83 5.87 3.10 

CDCs 8.80 7.42 2.93 1.55 

Type 
of 

Users 

Scenario 2 
Utility cost  

($) 
Electricity cost 

savings ($) 
Incentive 

($) 
Additional 
welfare ($) 

EDCs 16.61 14.83 3.69 1.91 

SUs 17.60 14.83 5.87 3.10 

CDCs 21.09 14.83 14.06 7.80 

TABLE Ⅲ.        THE COMPONENTS OF LA’S BENEFIT 

Type 
of 

Users 

Scenario 1 
Revenue 

 ($) 
Incentive  

($) 
Benefit 

($) 

EDCs 71.94 5.87 66.07 

SUs 71.94 5.87 66.07 

CDCs 35.97 2.93 33.04 

Total 179.85 14.67 165.18 

Type 
of 

Users 

Scenario 2 
Revenue 

 ($) 
Incentive  

($) 
Benefit 

($) 

EDCs 71.94 3.69 68.25 

SUs 71.94 5.87 66.07 

CDCs 71.94 14.06 57.88 

Total 215.82 23.62 192.20 

Fig. 4. Electricity economic utility loss in Scenario 2. 
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to guarantee their own utility of electricity consumption and 
reduces the enthusiasm  to participate in IBDR event. 

As shown in Table Ⅲ, the electricity economic utility loss 
of CDCs is few in scenario 1, while the electricity purchase 
cost savings and incentive compensation are not high. 
Although the electricity economic utility loss is higher in 
Scenario 2, the overall welfare is higher than in scenario 1 due 
to the more incentive compensation and electricity cost 
savings. In scenario 1, LA assigns all users as SUs for 
economic scheduling, and SUs users' welfare is consistent 
with scenario 2. For EDCs, they receive more incentive 
compensation in Scenario 1, but there is no increase in load 
shedding, which leads to an increase in incentive cost for LA. 

Comparing the customer welfare in Scenario 1 and 
Scenario 2, it can be seen that the proposed optimization 
strategy considering the customer's electricity consumption 
preference can set the incentive price for different customers 
with alignment, which can improve the LA's revenue and save 
the incentive cost, and make the incentive compensation for 
customers more fair. 

V. CONCLUSION

In this paper, we analyze residential electricity 
consumption behavior based on utility function. The 
electricity economic utility which represents the total 
satisfaction or benefit derived from consuming electricity is 
measured by money. Results show that CDCs have higher 
electricity economic utility loss than SUs and EDCs with the 
same electricity consumption. The proposed strategy for 
IBDR considering customer electricity consumption 
preference could effectively enhance LA’s benefit and 
increase the welfare of residential sector in IBDR program. 
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