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Abstract—Mental health problems are an increasingly common 

social issue severely affecting health and well-being. Multimedia 

processing technologies via facial expression show appealing 

prospects in the consumer field for mental health monitoring, 

while still suffer from intensive computation and low energy 

efficiency. This paper proposes an energy-efficiency memristive 

sequencer network (EMSN) for human emotion classification, 

which offers an environmentally friendly approach for consumers 

with low cost and easily deployable hardware. Firstly, two-

dimensional (2D) materials are employed to construct an eco-

friendly memristor, the efficacy and reliability of which are 

confirmed through performance testing. Then, a sequencer block 

is proposed using memristive circuits. Notably, it is a core 

component of the EMSN, consisting of a bidirectional long short-

term memory circuit, normalisation circuit module, and multi-

layer perception module. After combining some necessary 

function modules, the EMSN can be achieved. Furthermore, the 

proposed EMSN is applied for human emotion classification. The 

experimental results demonstrate that the proposed EMSN has 

advantages in computational efficiency and classification accuracy 

compared to existing mainstream methods, indicating an 

advancement in consumer health monitoring. 

Index Terms—Human emotion classification, memristive 

circuit, two-dimensional (2D) materials, sequencer network.  

I. INTRODUCTION

uman emotion and feeling are fundamental to human 

experience, health and well-being, influencing 

cognition, memory, and targeted activity behavior 

such as learning, communication, and rational decision-making 

[1]. Mental health problems caused by negative emotions 

usually lead to diseases such as depression, addiction, and heart 

attack, which may severely affect quality of life [2]. Mental 

health monitoring is particularly urgent and important, 

especially for the development of sound mind and body. 

Considering facial expression is one of the most natural and 

universal signals for consumers to convey their emotional states 

and behavior intentions, multimedia processing technology 
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using facial expression plays a vital role to understand and 

analyse mental states in consumer health monitoring [3]. 

Advanced research on artificial intelligence and psychology 

technology, numerous artificial neural networks, such as 

multilayer neural networks (MNNs) [4], convolutional neural 

networks (CNNs) [5-7], long short-term memory (LSTM) 

networks [8-10], and transformer networks [11], have been 

conducted on automatic human emotion classification to 

establish the relationship between facial expression and 

consumer mental health. Nevertheless, such multimedia 

processing approaches rely on conventional Von Neumann 

architecture, which requires physical separation of the 

processor and the memory. Meanwhile, this computing 

architecture fails to adequately accommodate the efficient 

parallel computation, active data access, and low-power 

consumption. 

Neuromorphic computing is inspired by the functioning of 

the brain [12]. It has been used to establish an abiotic computing 

system in which the functioning resembles the human brain and 

to create ultra-low-power computers that possess autonomous 

learning and cognitive capabilities. Hence, this strategy makes 

it possible to achieve circuit implementation of different 

multimedia processing systems. So far, a number of 

neuromorphic computing systems have been proposed using 

different consumer electronics devices, such as spintronic 

devices, ferroelectric devices, and complementary phase-

change memory devices [13]. Memristors are two-terminal 

electronic devices that exhibit non-volatility, high density, long 

retention, and long endurance and are potential candidates for 

neuromorphic computing [14]. Memristor was developed by 

Leon O. Chua in 1971 [15]. It is the fourth basic circuit element 

and is also linked to the physical devices introduced in 2008 by 

R. Stanley Williams and his team at Hewlett-Packard Labs [16].

With the development of memristor technology, this

neuromorphic computing device has been proved effective in
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the fields of artificial intelligent and computer vision [17-19]. 

A fully hardware-based memristive multilayer neural network 

demonstrated a recognition accuracy of 93.63% on a 

handwritten digit dataset [17]. The full-circuit implementation 

of the transformer network in accordance with the memristor 

was proposed, it can be used to realize character recognition 

[18]. A multimodal neuromorphic sensory-processing system 

for smart home applications was proposed in [19], offering an 

environmentally friendly method with easily deployable 

hardware. However, the current neuromorphic computing 

systems still suffer from some limitations. At the device level, 

the device variations may cause inaccurate encoding of network 

weights in neuromorphic computing because of immature 

fabrication technology and unstable material performance. 

Therefore, the neuromorphic computing devices with high 

stability are required. At the system level, efforts are needed to 

develop high performance processing algorithms that can 

realize a high-accuracy, consumer-friendly, and energy-

efficient neuromorphic computing system. 

Sequencer networks [20], one of the most important models 

for computer vision, have achieved state-of-the-art recognition 

accuracy and exceeded previous results in image classification. 

Despite the merits of sequencer network, the corresponding 

hardware implementation of sequencer network has not been 

developed due to the complex calculation process and data 

storage. In this work, we propose an energy-efficiency 

memristive sequencer network (EMSN), aiming at solving von 

Neumann bottleneck (mainly refer to high energy consumption) 

emerging in consumer health monitoring. The systemic 

comparison of von Neumann based multimedia processing 

systems and the proposed EMSN is provided in Fig. 1. The 

main contributions of this work are summarised below: 

1) An Ag-Au/MOSe2-doped Se/Au-Ag memristor with high

stability is prepared. It is a promising candidate to emulate high-

accuracy neuromorphic computing for consumer health 

monitoring. 

2) The circuit design of EMSN is proposed, which avoids the

separation of weight representation and computing, enabling a 

parallel-computed and highly integrated neuromorphic 

computing. 

3) The correctness of the proposed EMSN is verified by

human emotion classification. The results show that the 

proposed EMSN outperforms the existing state-of-the-art 

methods with high computational efficiency and good 

robustness. 

The rest of this paper is structured as follows. Section II 

describes the fabrication and performance testing of the Ag-

Au/MOSe2-doped Se/Au-Ag memristor. Section III 

demonstrates the overall architecture and the circuit-level 

design. In Section IV, the proposed system is applied to human 

emotion classification for verification. Finally, Section V 

presents the conclusion and future direction of the study. 

II. MEMRISTOR FABRICATION AND PERFORMANCE TESTING

A. Fabrication of Ag-Au/MoSe2-doped Se/Au-Ag Memristor

The fabrication of the Ag-Au/MOSe2-doped Se/Au-Ag

memristor relies on the hydrothermal synthesis and the 

magnetron sputtering methods [21]. Specifically, the 

hydrothermal synthesis method is adopted to fabricate MoSe2-

doped Se microwires, and the magnetron sputtering method is 

used to prepare the Ag-Au electrodes (as shown in Fig. 2).  

Step 1: Solution A is prepared by dissolving 0.1 moL Se 

powder and 0.1 moL ammonium molybdate 

(NH4)6MO7O24·H2O into 25 mL deionised water. 

Step 2: Solution B is prepared through the addition of 0.05 g 

surfactant (hexadecyl trimethyl ammonium bromide) to 

Solution A, after which it is continuously sonicated for 3 hours 

with the assistance of a magnetic stirrer. 

Step 3: Solution B is placed in a 25 mL Teflon-lined 

container, after which it is heated in a muffle furnace for 48 

hours at 227℃. 

Step 4: Following 3 times centrifugation, the MoSe2-doped 

Se microwire is secured from the heated Solution B. 

Fig. 1. Systemic comparison of von Neumann based multimedia processing systems and the proposed EMSN 
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Step 5: The magnetron sputtering technique is employed to 

generate the Au electrode (space = 400 μm, area = 2,500 μm2) 

on the Si/SiO2 substrate. 

Step 6: A four-probe test is used to select the MoSe2-doped 

Se microwire, after which the microwire ends are fixed in the 

Au electrode and coated with a layer of Ag adhesive, thereby 

preparing the Ag-Au/MoSe2-doped Se/Au-Ag memristor. 
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25 ml

0.1mol(NH4)6MO7O24·H2O 0.1mol Se powder
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Fig. 2. The fabrication flow of Ag-Au/MoSe2-doped Se/Au-Ag 

memristor 

B. Performance Testing

The performance testing of Ag-Au/MoSe2-doped Se/Au-Ag

memristor is carried out through an electrochemical 

workstation (CHI-600D). The electrical characteristics are 

measured with ±3 V scanning voltages with a scan rate of 

0.05 V/s, as shown in Fig. 3. 
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Fig. 3. The performance testing of Ag-Au/ MoSe2-doped Se/Au-

Ag (a) device-to-device analysis; (b) cycle-to-cycle analysis 

The measured I–V curves acquired by 120 memristors are 

indicative of extensive overlap. In addition, the inset comprises 

a structural depiction of the fabricated memristor. The findings 

from the testing indicate that Ag-Au/MoSe2-doped Se/Au-Ag 

memristors possess robust device-to-device steadiness, as 

demonstrated in Fig. 3(a). The overall I–V curves are 

asymmetrical in the positive and negative voltage regions, 

indicating that the fabricated memristors exhibit electronic 

resistive switching memory behavior. Specifically, in the first 

stage, the memristors remain in the high-resistance state (HRS). 

The scanning voltages rise from 0 V to 3 V. For this reason, the 

device currents are virtually unaltered up to the point that the 

scanning voltages surpass 1.5 V, after which the device currents 

begin rising up to the maximum 3 V. This indicates that the 

“SET” process is finished. The memristors continue to 

demonstrate a low-resistance state (LRS) in the second and 

third stages, when the scanning voltages decrease from 3 V to 

−3 V. In the fourth stage, the current progressively declines in

accordance with changes in the scanning voltage from −3 V to

0 V. The memristor alters from LRS to HRS when the scanning

voltage exceeds −1.5 V, thereby indicating completion of the

“RESET” process.

The stability of the memristor can be examined by measuring 

the I–V curves for the 1st, 10th, 50th, 200th, and 500th cycles, 

whereby the inset comprises the resistance variation curve 

under 0.5 V reading voltage for 105 seconds (Fig. 3(b)). It can 

be maintained the extensive overlap in the I–V curves and the 

resistance ratio that is present between the HRS and LRS, 

indicating that the fabricated memristor is sufficiently stable. 

III. CIRCUIT DESIGN OF MEMRISTIVE SEQUENCER NETWORK

A. The Architecture of Sequencer Network

According to [22], Visual Transformer (ViT) and its variants

based on a self-attention module have proved effective in many 

computers vision tasks. Several works have tried to replace the 

self-attention module with other modules (e.g., the global filter) 

[23]. Following this trend, the sequencer network replaces the 

self-attention layer with bidirectional long short-term memory 

(BiLSTM). The specific structure of the sequencer network can 

be seen in Fig. 4. 

The sequencer network can be divided into two parts: the 

sequencer block and the other necessary function modules (e.g., 

the layer normalisation module). Notably, the sequencer block 

is the basic component of the sequencer network and consists 

of two parts: a BiLSTM2D layer and a multi-layer perceptron. 

The BiLSTM2D layer consists of a vertical BiLSTM layer 

and a horizontal BiLSTM layer, which can effectively be spatial 

and global information to memory. The mathematical 

expression of BiLSTM2D is given by: 

( )

( )

BiLSTM

BiLSTM

vertical w

horizontal h

H = X

H = X





 (1) 

( )2 ,vertical horizontalBiLSTM D concatenate H H= (2) 

where Xw and XhRHWC are the input to the vertical BiLSTM 

layer and the horizontal BiLSTM layer, respectively; H and W 

denote the number of sequences in the vertical and horizontal 

directions, respectively; C represents the channel dimension; 

Hvertical and Hhorizontal RHW2D are the output of the vertical 
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BiLSTM layer and the horizontal BiLSTM layer, respectively; 

D = C/4 is the hidden dimension. BiLSTM() refers to the 

BiLSTM layer. It consists of two parallel LSTM layers: one 

takes the input in a forward direction (LSTMforward), while the 

other takes it in a backward direction (LSTMbackward). 

Norm

BiLSTM2D

Norm

Channel MLP

Sequencer Block

Class

Patch Embedding

Sequencer Block

Patch Merging

Sequencer Block

PW Linear

Sequencer Block

PW Linear

Sequencer Block

Layer Norm

Global Average Pooling

Linear

Input

Fig. 4. The structure of sequencer network 

Specifically, we assume �⃗� to be the input series, and �⃖� is the 

rearrangement of �⃗� in reverse order. Then, the outputs of these 

two LSTM layers can be written by: 

( )

( )

LSTM

LSTM

forward forward

backward backward

h = x

h = x





 (3) 

( )concatenate ,forward backwardBiLSTM h h=  (4) 

where LSTM() denoting the LSTM layer can be 

mathematically expressed by: 

( )

( )

( )

( )

( )

, , 1

, , 1

1 , , 1

, ,o 1 o

tanh

tanh

t x i t h i t i

t x f t h f t f

t t t t x c t h c t c

t x o t h t

t t t

i W x W h b

f W x W h b

c f c i W x W h b

o W x W h b

h o c







−

−

− −

−

= + +

= + +

= + + +

= + +

=

  (5) 

where it denotes the input gate that controls the storage of input 

xt; ft denotes the forget gate that controls the previous cell state 

ct-1; ot denotes the output gate that controls the cell output ht 

from the current cell state ct; σ and ʘ are the logistic sigmoid 

and Hadamard product, respectively; weight matrixes W (Wx,i, 

Wx,f, Wx,c,, Wx,o , Wh,i, Wh,f, Wh,c,, Wh,o) are learnable parameters; 

and b (bi, bf, bc, bo) is the bias of LSTM. 

The multi-layer perceptron consists of two-layer linear 

transformations with a ReLU activation function in between, it 

can be written by: 

( ) ( )1 1 1 1 2 2maxo oMLP L L W b W b= + +  (6) 

where MLP() denotes the multi-layer perceptron operation; Lo1 

is the input of the multi-layer perceptron; weight matrixes (W1, 

W2, b1, b2) are all learnable parameters.  

   The output of the last sequencer block is entered into the 

linear classifier by one-layer normalisation and a global average 

pooling layer. 

B. Overall Circuit Architecture

The structure of the proposed EMSN with sequencer blocks

and necessary function modules is illustrated in Fig. 5. 
Emotion Output
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Horizontal BiLSTM
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Multi-layer perceptron module

Analogue adder circuit
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Patch embedding module
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Timing signal generationTiming signal generation
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Fig. 5. The structure of the proposed EMSN 

The sequencer block circuit is the fundamental element of 

EMSN, which consists of three modules: BiLSTM2D circuit 

module, normalisation circuit module, and multi-layer 

perceptron module. The necessary function modules contain 

three function circuits: patch embedding module, global 

average pooling circuit module, and timing signal generation 

module. Specifically, the input images are converted into 

voltage signals via a digital-to-analogue converter. Voltage 

signals are rearranged into voltage blocks by the patch 

embedding module, and each signal is controlled by a timing 

signal. The corresponding row signal can be applied to other 

modules when the efficacy of the timing signal is evident. Once 

the last sequencer block is calculated, the linear classifier will 

output a set of voltage signals.  

C. Circuit Design of Sequencer Block

1) BiLSTM2D circuit module

According to (1) – (5), the LSTM cell is the key to realising

the BiLSTM2D circuit module, which mainly consists of four 

LSTM units to generate it, ft, ot, and ct. The LSTM cell is 

designed using the memristive synapse arrays and some 

peripheral circuits, as shown in Fig. 6(a). Notably, the sneak 
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path is a major obstacle to securing an increase in memristive 

synapse array size [24]. A potential approach is adopting 

selector, a type of nonlinear resistive device that conducts 

current only when the applied voltage exceeds a certain 

threshold (ON state); otherwise, selector allows little current to 

go through (OFF state) [25]. In this way, the memristive 

synapse arrays with the one-selector–one-Ag-Au/MoSe2-

doped Se/Au-Ag memristor (1S1M) configuration can conduct 

matrix-vector multiplication for each LSTM unit. The selector 

and memristor can be stacked on top of each other, giving a 

higher density potential than the one-transistor-one-memristor 

(1T1M) scheme. The input voltage Vx
t(n) (n[1, N]) belongs 

to time step t, and the hidden state voltage Vh
t-1(m) (m[1, M]) 

belongs to time step t−1. The Vbi, Vbf, Vbc, and Vbo are the bias 

voltages of the input gate, forget gate, previous cell state, and 

output gate, respectively.  
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Fig. 6. Circuit design of BiLSTM2D circuit module (a) LSTM 

cell; (b) activation circuits; (c) Hadamard product circuit 

In Fig. 6(a), the weight of the LSTM unit is represented by 

the difference in conductance of two memristors in the 

memristive synapse array. The dot product currents Idot from the 

current subtractors [26] are fetched into the corresponding 

activation circuit (i.e., sigmoid activation circuit and tanh 

activation circuit, labelled by the red/green rectangle in Fig. 

6(b)). Specifically, the sigmoid activation circuit is composed 

of six transistors Ts1–Ts6. The output voltage Vsigmoid and input 

current Idot of the sigmoid activation circuit are located in the 

same node. Since the tanh function has the same shape as the 

sigmoid function, we use the output voltage of the sigmoid 

activation circuit as the input voltage of the tanh activation 

circuit that consists of an amplifier A1 with four resistors Rs1–

Rs4. Then, the output voltages Vi
t, Vf

t, Vo
t of the input gate, forget 

gate, and output gate can be produced from the activation 

circuits. Furthermore, the Hadamard product circuit is used to 

perform a pointwise operation, which consists of eight 

transistors Tm1–Tm8 and two resistors Rm1
 and Rm2, as shown in 

Fig. 6(c). Vinm1 and Vinm2 are the inputs of the Hadamard product 

circuit, and Voutm = Vinm1Vinm2 is the output of the Hadamard 

product circuit. Finally, the cell state voltage Vc
t and the cell 

output voltage Vh
t can be obtained after several steps of 

activation, multiplication, and summation, which are 

implemented by the activation circuit, Hadamard product 

circuit, and analogue adder circuit [26]. The calculation for Vi
t, 

Vf
t, Vo

t, Vc
t, Vh

t in Fig. 6(a) is provided below: 
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(7) 

Based on this, the circuit design of BiLSTM2D can be 

obtained. It consists of four LSTM cells: backward LSTM cell 

in the vertical BiLSTM, forward LSTM cell in the vertical 

BiLSTM, backward LSTM cell in the horizontal BiLSTM, and 

forward LSTM cell in the horizontal BiLSTM.  

2) Normalisation circuit module

The normalisation circuit module is composed of an

inverting amplifier with two resistors RN2 and RN1, two analogue 

switch circuits, and a voltage buffer circuit. The inverting 

amplifier can linearly generate a stable voltage. The analogue 

switch circuit is used as the comparator, and the specific circuit 

implementation is shown in Fig. 7(a). The analogue switch 

circuit is connected to the voltage buffer to reduce the loading 

effect from the upper circuit into the output of the normalisation 

circuit. We can normalise the upper circuit output to the range 

of −VN to VN using the normalisation circuit module. 

3) Multi-layer perceptron module

The multi-layer perceptron module consists of two

memristive synapse arrays with a ReLU activation circuit in 

between, labelled by the yellow rectangle in Fig. 7(b). The 

memristive synapse array with the 1S1M configuration is 

responsible for the linear transformation. The ReLU activation 

circuit is composed of a current rectifier, a voltage follower, and 

an amplifier (labelled by the blue rectangle in Fig. 7(b)). The 

current rectifier provides a compact design to generate rectified 
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voltage VR1 from the input current IinR. The voltage follower can 

generate a stable voltage VR2
 and isolate the upper stage circuit. 

By setting the input resistance and feedback resistance of the 

amplifier, the required ReLU activation function can be 

obtained. The output voltage VoutR of the ReLU activation 

circuit is defined as: 

1 3

2

, 0

0, 0

inR inR

outR

inR

R R
I I

RV

I




= 
 

 (8) 
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Fig. 7. Circuit design of peripheral circuits (a) normalisation 

circuit module; (b) multi-layer perceptron module 

D. Circuit Design of Necessary Function Modules

1) Patch embedding module

Fig. 8(a) illustrates the structure of the patch embedding

module, which consists of an input data control unit and static 

random-access memory groups. The input images from the 

datasets are converted to voltage signals by the digital-to-

analogue converter and sent to the input data control unit that 

selects the required number of voltage signals. Then, the 

selected voltage signals are stored in the static random-access 

memory groups. Depending on the size of the input images, the 

patch embedding module selects a parallel or serial processing 

type and rearranges the voltage signals into blocks, followed by 

subsequent processing.  

2) Global average pooling circuit module

Global average pooling (GAP) involves a convolution

operation in which the convolution kernel values are equal. In 

addition, the GAP is unique, whereas the window and feature 

map sizes are equal. Accordingly, it is possible to determine the 

GAP circuit design. Instead of adopting a memristive synapse 

array, this study employs a basic summing circuit, as shown in 

Fig. 8(b). The formula presented below indicates the 

mathematical meaning of the entire circuit: 

( ), , , ,

1 1

/ , 1,...,
N N

GAP out GAP in j i j i

j j

V V R R j N
= =

=  =    (9) 

where VGAP,in and VGAP,out are the input voltage and output 

voltage of the GAP circuit module, respectively; and Rj,i is the 

resistance in row j and column i. 

3) Timing signal generation module

The proposed EMSN needs timing signals to schedule the

input matrix and save the calculated results in sequence. The 

timing signal generation module is composed of a vertical 

timing generator and a horizontal timing generator, which 

exploits two sets of timing signals, the vertical timing signal 

VLs and the horizontal timing signal HLs, as shown in Fig. 8(c). 

The number of channels is mV and mH, respectively. For the VLs 

(HLs) signals, the clock frequency is reduced by mV (mH) × t 

times by the frequency divider. Then, the output signals are 

counted by the mV (mH) counter. Finally, the decoder decodes 

the counting result into timing signals. 
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Fig. 8. Circuit design of necessary Function Modules (a) patch 

embedding module; (b) global average pooling circuit module; 

(c) timing signal generation module

The necessary circuit parameter settings of the proposed

EMSN are provided in Table I. 

TABLE I 

THE NECESSARY CIRCUIT PARAMETERS SETTING 

Parameters Values Parameters Values Parameters Values 

Ts1 20μ/0.18μ Tm8 2μ/0.22μ Rs4 1kΩ 

Ts2 20μ/0.18μ TN1 3μ/0.18μ RN1 1kΩ 

Ts3 19μ/0.18μ TN2 30μ/0.18μ RN2 1kΩ 
Ts4 18μ/0.18μ TN3 36μ/0.18μ RN3 10kΩ 

Ts5 20μ/0.18μ TN4 36μ/0.18μ Rr1 10kΩ 

Ts6 20μ/0.18μ TN5 6μ/0.18μ Rr2 10kΩ 
Tm1 1.6μ/0.3μ TN6 6μ/0.18μ Rr3 1kΩ 

Tm2 1.6μ/0.3μ TN7 45μ/0.3μ VTb 0.5V 

Tm3 2μ/0.22μ TN8 18μ/0.3μ VDD 1.8V 
Tm4 2μ/0.22μ TN9 18μ/0.3μ VS -1.8V 

Tm5 1.6μ/0.3μ Rs1 1kΩ CN 1pF 

Tm6 1.6μ/0.3μ Rs2 1.7kΩ Rj,i 1kΩ
Tm7 2μ/0.22μ Rs3 1kΩ - - 
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IV. APPLICATION IN HUMAN EMOTION CLASSIFICATION

Facial expression plays an important role in daily life, 

enabling the mental health state of an individual to be conveyed 

and inferred. In this section, the proposed EMSN is applied to 

human emotion classification to provide an efficient and fast 

solution for health monitoring and disease management. To 

verify the feasibility and effectiveness of the proposed system, 

a series of experiments are carried out by comparing the 

proposed system with competitors.  

A. Database and Evaluation Metrics

The proposed system is evaluated on two human emotion

classification datasets: the FER2013 dataset and the extended 

Cohn–Kanade dataset (CK+) [27]. The FER2013 dataset is a 

large-scale and unconstrained database, which comprises 

35,887 greyscale face images of size 48 48. Following 

previous works, 3,589 samples are distributed in a validation 

dataset, 3,589 in a testing dataset, and the remaining 28,709 in 

a training dataset. Each face has one of seven emotion labels: 

“angry”, “disgust”, “fear”, “happy”, “sad”, “surprised” and 

“neutral”. The CK+ dataset consists of 593 video sequences 

from 123 subjects. Each video sequence in CK+ dataset has 

segmented from neutral frame to peak frame of facial 

expressions about 10-60 frames. The last frame of each 

sequence is labelled with one of seven expressions (“angry”, 

“disgust”, “fear”, “happy”, “sad”, “surprised” and “neutral”). 

To collect sufficient images for training, we extract the neutral 

frames and the final three frames with peak formation from the 

labelled sequence to generate 1,236 expression images. 

Following previous works, 309 samples in a testing dataset, and 

the remaining 927 in a training dataset. Then, the common 

performance metric of average accuracy is used to evaluate the 

overall performance. 

B. Hardware Friendly Training Method

The neural network is trained, and the entire process can be

divided into two parts: the feedforward computation and back 

propagation. The feedforward computation is carried out in the 

proposed EMSN; the back propagation (mainly referring to the 

weight updating) is performed in MATLAB 2018b. The 

specific training method with six phases is illustrated in Fig. 9. 

Phase 1. Initialisation: At the beginning, the conductances of 

all Ag-Au/MoSe2-doped Se/Au-Ag memristors in the 1S1M 

array are initialised to an appropriate value by setting the 

voltage across the memristors. 

Phase 2. Data pre-processing: The input images from the 

training datasets are converted to voltage blocks within the 

range of [−3, 3] via the patch embedding module. 

Phase 3. Forward pass: The voltage blocks are injected into 

the proposed EMSN, after which the corresponding output 

voltage can be achieved. 

Phase 4. Error backpropagation: The error backpropagation 

through the stochastic gradient descent approach by a factor of 

10−4 is adopted to compute the intended conductance update 

values. This is performed in the MATLAB environment 

(R2018b). 

Phase 5. Weight update: The conductance is updated on a 

row-by-row or column-by-column basis, as proposed in [28]. 

Evidence exists of the effectiveness of the two-pulse scheme as 
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a means of realising linear and symmetric memristor 

conductance updates. 

Phase 6. Completion: after the entire EMSN settles, the 

training process is completed; otherwise, return to Phase 3.  

This hardware friendly training method combines the 

advantages of the energy efficiency of the 1S1M synapse array 

in performing the analogue MAC operation and the digital logic 

for realising the rest of the training process. 

C. Human Emotion Classification Results and Analysis

The proposed EMSN is used to demonstrate human emotion

classification. Fig. 10 illustrates the circuit progresses of the 

training and testing processes when identifying the expressions 

of emotion of the FER2013 dataset and the CK+ dataset. The 

corresponding output voltage can be achieved with seven states 

(assigned to corresponding emotion expressions), as shown in 

Fig. 10(a) and Fig. 10(b). Once the training process is 

completed, the classifier will output a set of voltage signals 

representing a probability distribution. The classification result 

is determined by the largest output voltage in each period. 
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Fig. 10. The corresponding results obtained by the proposed

EMSN (a) FER2013 dataset; (b) CK+ dataset 

The proposed EMSN is compared with the state-of-the-art 

methods on the FER2013 dataset and the CK+ dataset, as shown 

in Table II.  
TABLE II 

COMPARISON OF DIFFERENT STATE-OF-THE-ART METHODS 

IN HUMAN EMOTION CLASSIFICATION 

References 
FER2013 CK+ 

Acc. Time Acc. Time 

[29] 70.19 457.52 94.47 160.372 

[30] 73.96 502.77 97.10 221.22 

[31] 72.47 389.232 97.83 178.29 
[32] 72.36 455.163 97.35 202.53 

[33] 74.982 524.76 98.893 193.86 

[34] 84.301 523.82 99.301 164.523 
[35] 74.09 495.38 - 192.33 

[36] 74.21 535.43 97.72 220.84 

This work 74.663 28.421 98.912 13.921 

Note: the subscript 1, 2, 3 represent the corresponding ranking results. 

From Table II, the proposed network ranks in the top three 

on the FER2013 dataset and slightly outperforms other 

competitors [29-32, 35, 36]. On the CK+ dataset, it outperforms 

state-of-the-art methods in the human emotion classification 

task [29-33, 35, 36]. Meanwhile, [33, 34] are slightly superior 

to the proposed method in terms of accuracy, while inferior to 

time consumption. The results demonstrate that the trade-off 

between the accuracy and time consumption can be well 

balanced in the proposed memristive sequencer network. Fig. 

11 shows the confusion matrixes of the proposed EMSN on the 

FER2013 testing dataset and the CK+ testing dataset. As shown 

in Fig. 11, the “sad” emotion expression is confused with the 

“neutral” emotion for the FER2013 dataset. The most difficult 

expression of emotion is “fear”, which has the lowest 

recognition rates for both the CK+ and FER2013 datasets. 

Although the training data are unbalanced, the proposed 

network overcomes this problem and improves the overall 

performance. 
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D. Computational Efficiency

Due to the speed advantage of the hardware implementation

of the sequencer network, the proposed system has benefits in 

computational efficiency in terms of time, power. The time 

consumption of the proposed EMSN is analysed by comparing 
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it with a competitor on the FER2013 dataset and the CK+ 

dataset, as shown in Fig. 12. The proposed network is faster 

(approximately 10–20 times) than other software-based neural 

networks. The explanation for this difference may be that 

parallel-computing via 1S1M memristive synapse arrays is 

more efficient. 
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Fig. 12. The time consumption of the proposed EMSN (a) 

FER2013 dataset; (b) CK+ dataset

TABLE III 
THE ENERGY CONSUMPTION OF EMSN 

Module Power consumption/pJ 

BiLSTM2D circuit module 226.73 

Normalization circuit module 27.22 

Multi-layer perceptron module 78.22 
Patch embedding module 327.45 

Global average pooling circuit module 10.66 

Timing signal generation module 11.27 
Total 2057.98 

Table III presents the energy consumption for each circuit 

module and the entire circuit. The energy consumption for 1-bit 

computing is 2,057.98 pJ, and the power consumption for 1-bit 

computing is 20.58 mW with 0.5 V and 100 ns read voltage. 

The circuit is executed using 180-nm CMOS technology, and 

the total area of the proposed system is approximately 

48.63 μm2. In addition, the benefits of the proposed network 

include time, power, and area advantages. These are indicative 

of the cost-saving and energy-efficient character of the 

proposed system. 

E. Robustness Analysis

For practical applications, it is necessary to analyse the

robustness of the proposed EMSN for human emotion. 

1) Anti-noise analysis

Considering that the standard deviation of reading and

writing noise may be inevitable in signal transmission and 

processing, we added reading and writing noise to the proposed 

network. The human emotion classification accuracy is 

demonstrated in Fig. 13(a). When the standard deviation of 

reading and writing noise is over 20%, the classification 

accuracy can be kept over 70% and 90% on the FER2013 

dataset and CK+ dataset, respectively. The experiment results 

demonstrate that the proposed network has good anti-noise 

ability.  
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Fig. 13. Robustness Analysis of the proposed EMSN (a) anti-

noise analysis; (b) device aging analysis; (c) device failure 

analysis

2) Device aging and failure analysis

Device aging or failure may lead to the conductance drifting

or deviating from the correct state [37]. As shown in Fig. 13(b), 

when the percentage of aging reaches about 50%, the 

classification accuracy can be kept over 70% and 90% on the 

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. 
Citation information: DOI10.1109/TCE.2023.3263672, IEEE Transactions on Consumer Electronics



10 

FER2013 dataset and CK+ dataset, respectively. The 

experiment result illustrates that device aging does not affect 

the classification accuracy of the proposed system. The effect 

of device failure on the classification accuracy of the proposed 

network is illustrated in Fig. 13(c). When the memristor is in 

LRS/HRS and the failure ratio reaches about 25%, the 

classification accuracy can be maintained at an acceptable level 

(over 67% and 88% on the FER2013 dataset and CK+ dataset, 

respectively). Once the memristor failure ratio exceeds 30%, 

the accuracy decreases sharply to about 20%. Thus, the 

experiment shows that the proposed EMSN can tolerate up to 

25% failed devices within the architecture. 

The reason maybe that the adjustment of the network weight 

is rather an overall value of 1S1M synapse array than an exact 

value of each memristor. Therefore, the performance of the 

proposed network will not be strongly affected by reading and 

writing noise, device aging, and device failure. 

V. CONCLUSION

In this work, we investigate an energy-efficiency memristive 

sequencer network. Firstly, a kind of eco-friendly memristor is 

fabricated using 2D materials, and the corresponding testing 

performance is conducted to make sure its efficiency and 

stability. Then, the memristor-based sequencer block consisting 

of BiLSTM2D circuit module, normalization circuit module, 

and multi-layer perceptron module is proposed. Based on this, 

the circuit design of the proposed EMSN can be achieved after 

combining some other necessary function circuit modules (i.e., 

patch embedding module, global average pooling circuit 

module, and timing signal generation module). Furthermore, 

the proposed EMSN is applied for human emotion 

classification. The experimental results demonstrate the good 

performance of the proposed EMSN, especially in classification 

accuracy, computational efficiency, and robustness. This work 

provides a new way to achieve the deep integration of 

multimedia processing and neuromorphic computing, which is 

expected to promote the development of consumer electronics 

applications. 

Notably, the energy-efficient memristive sequencer network 

is still in an infancy stage with abundant opportunities and 

challenges. To further develop and apply this work into the real 

life, several aspects can be considered in future research: At the 

algorithmic level, the main training process in this work is 

completed via software platform. The desired memristive 

conductance obtained by MATLAB environment (R2018b) is 

directly mapped to the proposed network without read or write 

to memristive synapse array. Thus, the general learning circuit 

module will be designed to perform back-propagation operation. 

At system level, the human perception function is not 

considered in this work,  the perception data directly comes 

from existing human emotion classification datasets. This work 

will be extended to integrate the brain-inspired approach, 

wearable technology, and nanotechnology for consumer health 

monitoring. Specifically, the brain-inspired system for sensing 

and processing multimodal information in real-time manner 

will be developed. The entire system is expected to be 

integrated into a wearable device for consumer health 

monitoring. 
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