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ABSTRACT:
Various physical characteristics, including ultrasonic waves, active acoustic emissions, vibrations, and thermal

imaging, have been used for blade fault detection. In this work, we propose using the sound produced by spinning

wind blades to identify faults. To the best of our knowledge, passive acoustic information has not yet been explored

for this task. In particular, we develop three networks targeting different scenarios. The main contributions of this

work are threefold. First, when normal and aberrant data are available for supervised learning, an attention-

convolutional recurrent neural network is designed to show the feasibility of using passive sound information to con-

duct fault detection. Second, in the absence of abnormal training data, we build a normal-encoder network to learn

the distributions of normal data through semisupervised learning, which avoids the requirement of abnormal training

data. Third, when multiple devices are used to collect the data, due to different properties of devices, there is a

domain mismatch issue. To overcome this, we create an adversarial domain adaptive network to close the gap

between the source and target domains. Acoustic signal datasets of actual wind turbine operations are collected to

evaluate our fault detection systems. The findings demonstrate that the proposed systems offer high classification

accuracy and indicate the feasibility of passive acoustic signal-based wind turbine blade fault detection with one step

close to automatic detection. VC 2023 Acoustical Society of America. https://doi.org/10.1121/10.0016998
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I. INTRODUCTION

Wind energy is one of the fastest-growing renewable

energy sources in the world today and has been widely used

globally (Zhang et al., 2018). A wind turbine depends on the

wind to propel its blades to rotate, and then its rotation is

accelerated to promote the generator and facilitate power

production. The blade is the key part of a wind power gener-

ation system, and its safety and reliability play a crucial role

in the operation of wind turbines (Leite et al., 2018). It is

well known that wind turbine blades are prone to aging or

cracking due to their harsh operational environments.

Damaged blades may cause the wind turbine’s yaw angle

and blade angle to be asymmetrical, which affects the aero-

dynamic performance and wind energy conversion effi-

ciency of the wind turbine (Chen et al., 2020). The

maintenance costs for wind turbine blades can be very high,

and fault detection is a challenging task. The operation and

maintenance expenses can be decreased, and wind power

development can be further advanced if blade problems are

identified at an early stage and fixed quickly (Amano, 2017;

Liu and Zhang, 2020b). Therefore, reducing the cost of fault

detection and improving its efficiency have both economic

and research relevance. When a wind turbine blade fails, the

rotational speed, power, vibration frequency, and tempera-

ture of the generator all change significantly. In view of the

changes in these physical characteristics, current nondam-

aged wind turbine blade fault detection methods mainly

include active acoustic emission detection (Chacon et al.,
2015; Hongwu et al., 2015; Liu et al., 2021), vibration sig-

nal detection (Goyal and Pabla, 2016; Kashfi et al., 2019),

and infrared thermal imaging detection (Mori et al., 2007).

Tang et al. (2016) monitored a 45.7 m long blade and used

triangulation to determine the damage location of the blade,

verifying that acoustic emission detection technology can

provide early warnings of wind turbine blade damage.

However, acoustic emission detection technology has poor

noise robustness. The detection accuracy will drastically

decrease at low signal-to-noise ratios if there are numerous

interference sources in the surrounding environments. Liu

and Zhang (2020a) used a sparse augmented Lagrange-

based algorithm to filter the acoustic emission signal and

extract weak defective signals to improve the accuracy of

blade fault detection. However, acoustic emission-based

methods require a transmitter and receiver, which can

increase maintenance costs. Vibration detection technology

has high sensitivity and strong practicability in practice.

Gonz�alez and Fassois (2016) collected a large amount of

vibration data for wind turbine blades in various states.

They also proposed a principal component analysis (PCA)

statistical method with supervised learning to extract the

characteristics of vibration signals. The effectiveness of this
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algorithm was demonstrated through intensive experiments.

Fitzgerald et al. (2010) developed a time-frequency–based

damage detection algorithm using blade vibration signals.

By tracking the dominant frequency in the model over time,

the potential damage is detected. Infrared thermal imaging

detection technology is sensitive to defects on the blade sur-

face and can perform long-distance and large-area detection.

Hwang et al. (2017) developed continuous line laser thermal

imaging technology for the damage visualization of wind

turbine blades in a revolving state, which realizes full non-

contact monitoring of wind turbine blade detection.

Thermographic flow visualization is a noninvasive measure-

ment technique used to identify different flow regimes.

However, to date, it has not been able to visualize separate

flows without explicit additional heating of the measured

object. To address this issue, Dollinger et al. (2018) intro-

duced a measurement method with improved sensitivity to

evaluate the temporal temperature fluctuations of a sequence

of thermographic images by standard deviation and analysis

of selected Fourier coefficients.

Despite the above efforts, the majority of current tech-

nologies for detecting faults in wind turbine blades have lim-

ited detection effectiveness, high detection costs, and

challenging data-gathering procedures. With the develop-

ments of computer hearing technology and artificial intelli-

gence algorithms, the application of intelligent audio is

receiving extensive interest, and fault detection methods

based on audio signals have been gradually applied in indus-

try (Grollmisch et al., 2019). Although still in its early stages

of development, this technology has begun to show promise

as audio signals are noncontact and carry rich information.

Additionally, the equipment used to capture audio signals is

inexpensive, and the acquisition technique is straightforward,

which facilitates the data collection process.

Considering these facts, we propose a wind turbine fault

detection algorithm based on sound event detection.

Specifically, we first investigate the detection of wind tur-

bine blade faults using supervised learning with an

attention-convolutional recurrent neural network (attention-

CRNN) algorithm. The attention mechanism combined with

the CRNN effectively improves fault detection accuracy. To

address the scarcity problem of faulty samples during train-

ing, we then applied semisupervised learning through the

normal-encoder to detect wind turbine blade flaws. By com-

paring the original spectrogram and the reconstructed spec-

trogram, the normal-encoder method offers an effective

fault detection method in a higher-level abstract space.

Furthermore, note that there are offsets between the audio

data recorded by various devices due to different system

response functions. However, deep learning techniques lack

the “transfer learning” capacity to use the same model on

other datasets, as they are often data-dependent (Wang and

Deng, 2018). When the training and evaluation datasets

come from different devices, the detection accuracy may

drop significantly (Ko�smider, 2021). To overcome this prob-

lem, we employ an adversarial domain adaptive network,

where the network learns both domain-invariant and class-

discriminative features, thereby eliminating offsets between

data domains.

The rest of the paper is organized as follows. In Sec. II,

we first introduce the supervised learning algorithm attention-

CRNN and the semisupervised learning algorithm using the

normal-encoder. In Sec. III, we study the fault detection task of

the power component under equipment mismatch conditions.

Next, we introduce our core dataset collection process in Sec.

IV. Simulation results of extensive experiments are presented

in Sec. V, followed by conclusions in Sec. VI.

II. WIND TURBINE BLADE FAULT DETECTION

The general detection system is shown in Fig. 1. Here, the

extracted audio signals’ features are used as the neural network

model’s input. The defect detection result is obtained after

postprocessing the network’s output. We create the attention-

CRNN based on supervised learning and the normal-encoder

method based on semisupervised learning to detect blade faults

and test the viability of wind turbine blade fault identification

based on sound event detection.

A. Feature extraction

Deep neural network has a strong ability to extract fea-

tures from the original waveform. The end-to-end process-

ing method also avoids the manual extraction of audio

features. However, one-dimensional audio signals are less

robust than manually extracted two-dimensional feature

noise. Moreover, the end-to-end processing method requires

a large amount of audio data to support network training, so

the end-to-end fault detection method directly using the

original waveform is the least effective. The spectrogram is

also a commonly used audio signal feature, but it has a large

amount of redundant information, and the linear distribution

of the spectrogram will not be useful enough for feature

extraction, resulting in excessive model computation and low

accuracy. The process of calculating logarithmic Mel spectra

FIG. 1. (Color online) Block diagram of the wind turbine blade fault detection system.
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and mel-scale frequency cepstral coefficients (MFCCs) is simi-

lar, and MFCCs are based on the logarithmic Mel spectrum to

perform discrete cosine transformations to decorrelate the filter

bank coefficients, so as to obtain a compressed representation

of the filter bank. Many machine learning algorithms are based

on the discorrelation between dataset samples, and MFCCs are

very suitable for such machine learning algorithms. Yet, many

deep learning algorithms are less sensitive to highly correlated

inputs, and discrete cosine transform (DCT) is a linear trans-

formation that loses a lot of useful information in the audio

signal during calculation. Thus, log-Mel spectrogram is more

suitable for deep neural networks.

In this work, we extract the log-Mel spectrogram of the

audio signal and apply it as the input to the neural network.

The log-Mel spectrogram is widely used in environmental

sound recognition and the differences between normal and

abnormal sounds are more distinct in the Mel domain than

in the time domain. The typical frame size in speech proc-

essing ranges from 20 to 40 ms, with 50% overlap between

consecutive frames (Mohamed, 2014). Here, overlap means

two neighboring observation time blocks intersect each

other to ensure smooth reconstruction. In this work, the size

of each frame is set to 20 ms with a 10 ms stride (10 ms

overlap) to produce audio signal information. After framing

the input signal, a Hamming window is used to prevent

spectrum leakage. We use a 512-point short-time Fourier

transform (STFT) to calculate the power spectrum. After

passing through the filter banks, the log-Mel spectrogram is

obtained by logarithmic operation of the Mel spectrum. In

our work, the 4 s long audio signal is converted into

(40 128) two-dimensional features, where 128 and 40 repre-

sent the dimension of the Mel frequency and the time frame

length, respectively.

B. Attention-CRNN

We first utilize an attention-CRNN (Shen et al., 2018)

for blade fault detection. As shown in Fig. 2, the network

structure mainly includes two parts: the frequency domain

attention mechanism model and the convolutional neural

network-gated recurrent unit (CNN-GRU) network model.

The attention mechanism (Vaswani et al., 2017) effectively

improves the efficiency in image recognition, target detection,

speech recognition, and speech detection. Here, the attention

module was designed to ignore input spectrum frames that have

minimal bearing on the detection results in favor of the more

significant ones, which are multiplied with larger weights before

being fed into the neural network. The frequency domain atten-

tion model consists of a fully connected layer with N hidden

units and a sigmoid activation function. The input feature passes

through a fully connected layer with 64 hidden units, followed

by a sigmoid operation. We then normalize the weights

obtained along with the frequency axis function. Finally, the

frequency attention weights and the input feature are multiplied

elementwise. The weighted feature �X is calculated by

Ŵn;t ¼ rðVnXþ bnÞ; (1)

Wn;t ¼ Nf
Ŵn;tX

n

Ŵn;t; (2)

and

�X ¼Wn;t � X; (3)

where rðxÞ ¼ 1=ð1þ e�xÞ represents the sigmoid activation

function that introduces non-linearity to increase the model-

ing capacity, X is the log-Mel spectrogram, Vn and bn repre-

sent the weights and bias for the n-th hidden unit,

respectively, Ŵn;t is the frequency attention weight without

normalization, Wn;t is the normalized result, Nf is the num-

ber of frequency points in the Mel domain, and � represents

elementwise multiplication.

The CNN-GRU network is a two-stage model that is

widely applied in sound event detection or classification tasks,

and it utilizes the information of input features in time series

and spatial locations. The two-dimensional convolutional neural

network effectively extracts the features of the input spectral

map in the spatial position, whereas the GRU gate structure

enhances the generalization ability of the model, and it also

works well for learning information in time series. The fully

connected layer is used to classify feature information and out-

put the final detection result.

FIG. 2. (Color online) Attention-CRNN structure framework.
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In our work, the model contains three convolutional

layers with 3� 3 filters and 1� 1 strides. Each convolu-

tional layer is followed by a max-pooling layer with 2� 2

filters. After convolution and max-pooling, there are two

forward-only GRU layers with 256 units, recurrent in the

time dimension. The batch normalization layer (Ioffe and

Szegedy, 2015) is added between all convolutional layers

and activation functions to normalize the input of the activa-

tion function. We use the rectified linear unit (ReLU) func-

tion (Glorot et al., 2011) to improve the non-linearity for all

of the network layers, and ‘2 regularization and dropout are

utilized to prevent overfitting. Here, dropout means tempo-

rarily dropping neural network units out of the network with

a certain probability during training. By doing so, it forces

one neural unit to work with other neural units picked at ran-

dom to achieve good results. As it is a binary classification

task, the model uses cross-entropy, given below as the loss

function:

Loss ¼ 1

N

X
� yi logðpiÞ þ ð1� yiÞlogð1� piÞ½ �; (4)

where yi represents the true label of sample i, with 1 and 0

corresponding to abnormal and normal conditions, respec-

tively, and pi represents the probability of the failure of the

i-th sample.

C. Normal-encoder

While anomaly detection tasks often only have access

to a small amount of aberrant data, supervised learning fre-

quently needs a substantial amount of data for model train-

ing, both in normal and abnormal conditions. In the training

phase, if there are not enough training samples, the classifier

has insufficient ability to describe the sparse class samples

(Koizumi et al., 2019). Hence, it is difficult to classify them

effectively, leading to decision bias. There will be numerous

unknown faults on the blades as a result of the harsh operat-

ing environments of wind turbines, and there is a lack of

training data for these faults. Therefore, in practical applica-

tions, the classification algorithm may miss these unknown

defects in time.

To solve the dataset imbalance problem in anomaly

detection tasks, we utilize a normal-encoder method based

on semisupervised learning. Deep neural networks learning

is a representation learning, and its process is to learn data

features through spatial transformation. When we fit a given

data distribution under the framework of a probability plot,

we need to use an unknown variable (latent variable) to fit

the function. Latent space can transform more complex

forms of raw data into a simpler data representation, which

is more beneficial for data processing. The network learns

the characteristics of the audio signal by compressing and

reconstructing the log-Mel spectrum. In the process of

reconstructing compressed data, the model must learn to

store all relevant information and ignore noise, so that the

network can eliminate irrelevant information and focus only

on the most important features.

In the training phase, only normal audio data are used

for training so that the neural network can effectively learn

normal high-dimensional features and latent space features

of audio. In the testing phase, the test samples without labels

are input into the network, and after neural network coding

and reconstruction, it is judged by calculating whether the

weighted sum of the reconstruction error and coding error is

greater than the predefined threshold to determine whether

the sample is faulty.

As shown in Fig. 3, the normal-encoder network struc-

ture is divided into two subnetworks. The first part is

regarded as a conventional autoencoder network that con-

sists of an encoder GE and a decoder GD. The function of

the encoder is to map the input log-Mel spectrogram M into

a high-dimensional feature vector z, and the decoder recon-

structs z into the original log-Mel spectrogram M̂. The

encoder network consists of five CNN layers with convolu-

tion kernel sizes (16, 32, 64, 128, and 128). The activation

function is used after each layer of the CNN. The activation

effect of the Swish function (Nader and Azar, 2020) is better

than that of the ReLU function in the deep model.

Therefore, the network uses Swish as the activation func-

tion, given by

f ðxÞ ¼ x � rðb � xÞ; (5)

where b represents a constant or trainable parameter. When

b ¼ 0, the Swish function is a linear activation function, and

when b!1, Swish becomes a ReLU function. After con-

volution, the network uses global average pooling (GAP) to

pool the features. GAP can map the category information to

FIG. 3. (Color online) Normal-encoder structure framework.
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the feature map of the convolution layer and integrate the

global spatial information. The network structure of the

decoder includes one fully connected layer and five decon-

volution layers. The sizes of the convolution kernel are 128,

64, 32, 16, and 1.

The second part consists of the encoder E, which maps

the reconstructed spectrogram M̂ into a high-dimensional

feature vector ẑ, which is the core part of the entire network.

It is different from the traditional autoencoder-based anom-

aly detection method, and we only compare the differences

between the original input spectrogram and the recon-

structed spectrogram. The network additionally adds a way

to infer anomalies by comparing the differences between the

original spectrum and the reconstructed spectrum in a

higher-level abstract space, and this additional abstraction

layer improves the noise immunity of the network and learns

a robust anomaly detection model. The encoder E and the

encoder GE are structurally identical, but the parameters

they learn are completely different.

To make the network fully learn the features of normal

audio data, two loss functions are used to optimize each sub-

network. The loss function of the first part of the subnetwork

calculates the reconstruction loss of the autoencoder. The

distance between the original spectrum M and the recon-

structed spectrum M̂ is measured by the ‘2 loss. Through

such constraints, the reconstructed spectrum can be closer to

the real spectrum, given by

Lrec ¼ EM�NjM� M̂j2; (6)

where N represents the normal audio dataset.

The loss function of the second molecular network cal-

culates the coding error of the original spectrum and the

reconstructed spectrum in abstract space, and the ‘2 loss is

also used to measure the distance between the high-

dimensional features of the original spectrum and those of

the reconstructed spectrum, given by

Lenc ¼ EM�Njz� ẑj2: (7)

By weighting the loss function of the two parts, the total

loss function of the model is

L ¼ aLrec þ ð1� aÞLenc; (8)

where a is the weighting parameter that controls the contri-

bution of Lrec and Lenc. Through training, the network model

learns how to encode and reconstruct normal samples. For

abnormal data samples, the distance between the input spec-

trogram and the reconstructed spectrogram cannot be mini-

mized, and the difference between them is high.

D. Postprocessing

To detect whether the input audio contains fault infor-

mation, an anomaly score Sðxt; hÞ is calculated using an

already trained model, where xt 2 R is an input vector calcu-

lated from the observed sound indexed on t 2 [1,2, …,T] for

time and h is the set of the parameters of the trained model.

In this study, xt is composed of handcrafted acoustic fea-

tures, such as log-Mel spectrograms. The anomaly score is

calculated by the trained model. The input of xt is deter-

mined to be anomalous when the anomaly score exceeds a

predefined threshold value k, and the binary decision D is

given by

Dðxt; h; kÞ ¼
0 ðNormalÞ; Sðxt; hÞ � k;

1 ðAbnormalÞ; Sðxt; hÞ > k:

(
(9)

III. DOMAIN MISMATCH

Various recording devices have different system fre-

quency responses during training. The original audio signal

will be corrupted to different degrees when using different

recording equipment, which will result in the data domain

shift. The term “data domain offset” refers to the fact that

when a model is trained using data from the source domain,

its performance on those data is typically strong, but its per-

formance on the target domain is often inferior. The model

developed on the source domain can also be applied to the

target domain if the feature distributions of the two domains

can be aligned. The feed-forward network can be fitted to

the target domain without being affected by the offset

between the two domains when the neural network can learn

similar features between two data distributions. To solve

this issue, we utilize an adversarial domain adaptive net-

work (ADAN) (Ganin and Lempitsky, 2015), and its struc-

ture is depicted in Fig. 4. It is mainly divided into a

pretraining stage and an adversarial domain adaptation stage

and its detail is provided below.

A. ADAN

The purpose of pretraining is to allow the feature

extractor F and the category classifier C to correctly deter-

mine whether the input samples have faults. For each input

feature matrix Q with class label y ¼ 0; 1, the feature extrac-

tor F maps Q into an N-dimensional feature vector f, and hf

FIG. 4. (Color online) ADAN structure framework.
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represents the parameter vector of the feature extractor,

given by

f ¼ FðQ; hf Þ: (10)

The network structure of the feature extractor F consists of

four CNN layers, and each CNN layer is followed by max-

pooling. The category classifier C maps the feature vector f

to obtain the category prediction probability py and uses hc

to represent the parameter vector of C, and the relationship

is

py ¼ CðFðQ; hf Þ; hcÞ: (11)

The class classifier C consists of two fully connected

layers and a sigmoid activation function.

In the pretraining stage, we use source domain data

with class labels for training. Since the problem is a binary

classification problem, to optimize the network parameters,

the binary cross entropy (BCE) function below is used as

the loss function

Loss ¼ 1

N

X
� yi logðpiÞ þ ð1� yiÞlogð1� piÞ½ �; (12)

where yi represents the true label of the ith sample and pi

represents the class prediction probability of the ith sample.

In the process of adversarial domain adaptive optimiza-

tion, it is necessary to make the feature distribution learned by

the feature extractor F from the target domain and the feature

distribution learned from the source domain as similar as possi-

ble. The domain classifier D maps the feature vector f to obtain

the predicted probability pd of the domain label, given by

pd ¼ DðFðQ; hf Þ; hdÞ: (13)

The domain classifier D also consists of two fully connected

layers and a sigmoid activation function.

During the domain adaptation training phase, domain

classifier D is an already trained discriminator, and D can

correctly determine whether the input samples are from the

source domain or the target domain. If the input samples are

from the source domain, the value of pd is close to 1, and if

the input samples are from the target domain, the value of pd

is close to 0. The goal of training is to prevent D from deter-

mining whether the input samples are from the source

domain or the target domain. When the predicted probability

is close to 0.5 (similar to random classification), the features

learned by the feature extractor from the two domains are

very similar. The loss function for domain adversarial adap-

tive training is

Ld ¼
1

N

XN

i¼1

log ðpsi
Þ þ 1

N

XN

j¼1

log ð1� ptjÞ; (14)

where psi
represents the predicted probability of the source

domain samples and ptj represents the predicted probability

of the target domain samples, and N is the number of

samples. In the adaptive training process of the cutting

domain, only a small amount of source domain data and tar-

get domain data with domain labels is used.

Through such a training method, the feature extractor

can simultaneously learn features with class-discriminative

properties and domain-invariance properties. In the testing

phase, we use the pretrained model as the final system

model.

IV. DATASET COLLECTION

To verify the feasibility of the proposed networks, we

recorded the audio signals generated by the wind turbines in

real time, and these datasets are currently mainly used by

developing the algorithms. The recording equipment and the

production of the dataset are described in detail below.

A. Recording equipment overview

In this study, three recording devices are used to collect

the data and each device is described below.

Device A: The SS-ALIM6S2M1–002 voice algorithm

motherboard is a six-microphone array motherboard product

developed by SureSence Technology. The product is exter-

nally connected to AC108, and the output format is a 6-

channel pulse code modulation (PCM) signal with a sam-

pling rate of 16 kHz and a depth of 16 bits. The equipment is

shown in Fig. 5.

Device B: The Zoom H1n recording device uses a stereo

X/Y microphone configuration and supports 24 bit/96 kHz

audio signals. The device features a low-cut filter that reduces

pops, wind noise, and other unwanted low-frequency noise to

improve recording quality, and a compressor can be used to

obtain maximum sound pressure, up to 120 dB SPL, to ensure

that the recording audio is undistorted.

Device C: Sogo AI recorder E1 has a total of eight

microphones, six of which are omnidirectional microphones,

and the remaining two are Harman 10 mm pointing micro-

phones. In addition, the device uses the clairVoice 8 micro-

phone array algorithm and pureVoiceAI noise reduction

algorithm for noise reduction in improving the recording

quality.

FIG. 5. (Color online) SS-ALIM6S2M1-002 voice algorithm motherboard.
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B. Dataset overview

With a wind speed of 3–6 m/s and an air pressure of

976 hPa, we recorded the audio signals generated by the

real-time operation of the wind generator at the wind farm.

The wind turbine is shown in Fig. 6, the height of each wind

turbine is 140 m, and the diameter length of the wind turbine

blade is 56 m. The dataset recording scene is shown in

Fig. 7. The recording equipment is installed in front of the

tower at a height of approximately 2 m above the ground.

We recorded of 60 h of audio data, including 30 h of normal

audio data and 30 h of faulty data. The recorded raw data

were cut into 4 s segments, followed by data cleaning to

remove invalid data, and finally, corresponding labels were

manually added to the audio data of each segment.

The waveforms and spectrograms of normal audio and

abnormal audio are shown in Fig. 8. Due to the surface

faulty of a wind turbine blade, when the wind turbine is run-

ning, the sound of the faulty blade cutting down the air

sounds is sharper. As can also be seen from the spectrogram,

the abnormal audio has more high-frequency components

than normal audio data. This is the important feature that

distinguishes normal audio from abnormal audio.

In the fault detection task under supervised learning

conditions, a total of 40 000 labeled data samples are used,

half of which are normal audio data and half of which are

FIG. 6. (Color online) Wind turbines.

FIG. 7. (Color online) Recording scene.

FIG. 8. (Color online) Waveform and spectrogram comparison of audio data: (a) normal audio data, (b) abnormal audio data. The red rectangular highlights

the difference between the normal and abnormal sounds in Mel domain.
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abnormal. The length of each sample is 4 s, and the total

duration is approximately 40 h. Among them, 70% of the

data are used for network model training, 20% of the data

are used for the validation set, and 10% of the data are used

for the final result test.

In the fault detection task under semisupervised learn-

ing conditions, the dataset size of the training stage is

20 000 labeled normal data samples, and the total duration is

approximately 20 h. In the test phase, 5000 normal data

samples and 5000 abnormal data samples were used to test

the model.

In the fault detection task under device mismatch condi-

tions, the datasets recorded by three recording devices, SS-

ALIM6S2M1-002, Zoom H1n, and Sogo E1, are used to

verify the feasibility and effectiveness of the proposed algo-

rithm. The datasets of these three devices are used as the

source domain data to train the model, and the datasets of

the other two devices are used as the target domain data. In

the training phase, a large amount of source domain data

and a small amount of target domain data are used for train-

ing, and then, the trained model is tested on the target

domain data. The training dataset consists of 18 000 source

domain audio files (20 h in duration) and 1800 target domain

audio files (2 h duration), and the size of the testing dataset

is 3600 target domain audio files (4 h in duration).

V. EVALUATIONS

A. Supervised learning

We compared the performances of the attention-CRNN,

CRNN, ResNet-50, MobileNet, CNN, and recurrent neural

network (RNN) methods. The influence of different audio

characteristics on the detection results are also compared.

The convergence speed of the model training phase, the

average test set accuracy rate, and the size of the model are

mainly used as the main evaluation indicators. As shown in

Fig. 9, in the training phase, attention-CRNN reached con-

vergence at approximately the 10th epoch, the accuracy rate

reached 99%, and the convergence speed was significantly

better than that of the other algorithms. As shown in Table I,

the test set accuracy of attention-CRNN reached 99.6%,

which is higher than that of other models. Compared with

the CRNN algorithm without the attention mechanism, the

frequency domain attention model effectively improves the

convergence speed during training and the accuracy of fault

detection, which shows the benefits of adding the attention

mechanism. As can be seen from Table I, the performance

using log-Mel spectrum is superior, which is consistent with

our early analysis.

To compare the anti-noise performances of the algo-

rithms, the original signals were added with different inten-

sities of Gaussian white noise to obtain the wind turbine

blade audio datasets under different signal-to-noise ratio

(SNR) conditions. In this experiment, SNRs of 10, 5, 0, and

–5 dB are considered. The experimental results are shown in

FIG. 9. (Color online) Accuracy versus epoch for different algorithms.

TABLE I. Performance comparison results of different neural network

algorithms.

Network models Features Accuracy (%) Model size (Mb)

Attention-CRNN Original waveform 76.8 13.4

Spectrogram 83.2

MFCCs 92.1

log-Mel spectrogram 99:6

CRNN Original waveform 77.9 13.1

Spectrogram 79.2

MFCCs 91.7

log-Mel spectrogram 95.1

Resnet-50 Original waveform 76.9 46.2

Spectrogram 85.2

MFCCs 91.6

log-Mel spectrogram 94.3

Mobilenet Original waveform 80.9 8:9

Spectrogram 80.2

MFCCs 88.6

log-Mel spectrogram 92.7

CNN Original waveform 78.9 14.8

Spectrogram 73.2

MFCCs 90.6

log-Mel spectrogram 91.8

RNN Original waveform 84.9 19.9

Spectrogram 72.2

MFCCs 83.6

log-Mel spectrogram 89

TABLE II. Average detection accuracy (%) of each neural network at dif-

ferent SNRs.

Method SNR¼ 10 dB SNR¼ 5 dB SNR¼ 0 dB SNR¼�5 dB

Attention-CRNN 97:2 92:3 90:1 84:2

CRNN 94.3 89.6 85.3 79.6

ResNet-50 93.7 90.9 87.5 80.3

MobileNet 90.1 88.7 82.1 75.0

CNN 89.8 87.1 80.9 72.4

RNN 87.9 82.1 75.3 69.1
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Table II. Under different SNR conditions, the accuracy of

attention-CRNN is always higher than that of the other algo-

rithms, which demonstrates the robustness of the proposed

network.

B. Semisupervised learning

The neural network algorithm of semisupervised

learning aims to solve the data imbalance problem. In this

experiment, we compared the performances of the normal-

encoder, efficient generative adversarial networks (GAN)-

based anomaly detection (EGBAD), anomaly detection

with generative adversarial networks (ANOGAN), varia-

tional auto-encoder (VAE), autoencoder, and restricted

Boltzmann machine (RBM) methods. The area under curve

(AUC) and F1-score are used as the main evaluation indi-

ces of different models. The experimental results are shown

in Table III. The AUC and F1-score of the normal-encoder

are higher than those of the other models. The results show

the feasibility and effectiveness of the normal-encoder

algorithm for fault detection in the absence of fault

samples.

Similarly, to further verify the anti-noise performances

of different models, Gaussian white noise with different

intensities was added to the original signal. As shown in

Fig. 10, the AUC of the normal-encoder remains the high-

est under different SNR conditions. When the SNR is

–5 dB, the AUC values of the other algorithms are all close

to 0.5, and the AUC value of the normal-encoder is still

0.637.

C. Domain mismatch

In this task, the data recorded by three recording devi-

ces, SS-ALIM6S2M1-002 (device A), Zoom H1n (device

B), and Sogo E1 (device C), were used to verify the feasibil-

ity and effectiveness of the proposed algorithm. The datasets

of these three devices were used as the source domain data

to train the model, and the datasets of the other two devices

were used as the target domain data.

The experimental results are shown in Table IV, where

source only means that no method is used, and the target

domain data are directly tested on the model trained in the

source domain. ADAN has the highest detection accuracy in

the equipment matching fault detection task. The ADAN

algorithm enables the model to learn features with domain

invariance and category discrimination through joint train-

ing, which improves the performance degradation caused by

different equipment.

VI. CONCLUSION

To detect wind turbine blade faults, we developed three

networks, attention-CRNN, normal-encoder, and ADAN,

for supervised, semisupervised, and domain adaptations,

respectively. In terms of supervised learning, the proposed

method reaches 99.6% accuracy. When background noise is

present, the proposed method also outperforms others, dem-

onstrating its anti-noise ability. In the case of semisuper-

vised learning, the proposed method attains 67% accuracy,

10% higher than the second best. When domain mismatch

happens, we obtain over 28% accuracy increase than the

source only case. From the above results, the proposed net-

works outperform others, which shows their effectiveness.

More importantly, sound information can be used for wind

blade fault detection. In the future, we will continue to

gather data and create a reliable classification system for dif-

ferent types of faults. The complexity of the algorithms

must be further reduced to expand their practical use in

industrial applications in future research.

TABLE III. Performance comparison results of different fault detection

algorithms.

Method AUC F1-Score Recall Precision

RBM 0.594 0.502 0.688 0.395

Autoencoder 0.651 0.592 0.795 0.471

VAE 0.687 0.598 0.855 0.460

ANOGAN 0.712 0.645 0.788 0.546

EGBAD 0.755 0.674 0.809 0.578

Normal-encoder 0:832 0:776 0:925 0:670

FIG. 10. (Color online) Effect of noise on the AUCs of different

algorithms.

TABLE IV. Fault detection accuracy under device mismatch conditions

(%).

Method Source A A B B C C

Target B C A C A B

CMSoder 59.83 60.14 54.17 59.14 60.59 63.27

Spectrum Correction 69.13 66.78 70.17 68.72 65.34 70.11

DDC 72.58 74.79 73.64 70.71 75.38 72.79

ADAN 77:81 80:19 76:45 78:89 75:81 75:81

Source only 49.61 50.18 47.26 51.02 47.26 51.02
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