
Citation: Su, C.; Yang, Q.; Wu, X.; Lai,

C.S.; Lai, L.L. A Two-Terminal Fault

Location Fusion Model of

Transmission Line Based on

CNN-Multi-Head-LSTM with an

Attention Module. Energies 2023, 16,

1827. https://doi.org/10.3390/

en16041827

Academic Editor:

Djaffar Ould-Abdeslam

Received: 21 December 2022

Revised: 16 January 2023

Accepted: 10 February 2023

Published: 12 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

A Two-Terminal Fault Location Fusion Model of Transmission
Line Based on CNN-Multi-Head-LSTM with an
Attention Module
Chao Su 1, Qiang Yang 1,* , Xiaomei Wu 2,*, Chun Sing Lai 3,* and Loi Lei Lai 2

1 College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China
2 Department of Electrical Engineering, School of Automation, Guangdong University of Technology,

Guangzhou 510006, China
3 Brunel Interdisciplinary Power Systems Research Centre, Department of Electronic and Electrical Engineering,

Brunel University London, London UB8 3PH, UK
* Correspondence: qyang@zju.edu.cn (Q.Y.); epxm_wu@gdut.edu.cn (X.W.); chunsing.lai@brunel.ac.uk (C.S.L.)

Abstract: Most traditional artificial intelligence-based fault location methods are very dependent
on fault signal selection and feature extraction, which is often based on prior knowledge. Further,
these methods are usually very sensitive to line parameters and selected fault characteristics, so the
generalization performance is poor and cannot be applied to different lines. In order to solve the
above problems, this paper proposes a two-terminal fault location fusion model, which combines a
convolutional neural network (CNN), an attention module (AM), and multi-head long short-term
memory (multi-head-LSTM). First, the CNN is used to accomplish the self-extraction of fault data
features. Second, the CBAM (convolutional block attention module) model is embedded into the
convolutional neural network to selectively learn fault features autonomously. Furthermore, the
LSTM is combined to learn the deep timing characteristics. Finally, a MLP output layer is used to
determine the optimal weights to construct a fusion model based on the results of the two-terminal
relative fault location model and then output the final location result. Simulation studies show that
this method has a high location accuracy, does not require the design of complex feature extraction
algorithms, and exhibits good generalization performance for lines with different parameters, which
is of great importance for the development of AI-based methods of fault location.

Keywords: fault location; convolutional neural network; long short-term memory; attention module

1. Introduction

Transmission lines are located in the field with harsh outdoor operating environments,
and faults occur frequently which may lead to long-term line outage. Identifying the
accurate location of transmission line faults is very useful for quick fault recovery, which is
of great significance to ensure the safety of power systems [1].

Traditional fault location methods are mainly divided into two categories: fault
analysis method and traveling wave method [2–5]. The former includes the single-end
method [6,7] and the double-end method [8] according to the data source. The fault distance
can be obtained by solving the equation according to the relationship between voltage,
current, and fault position, but is greatly affected by transition resistance and the transmis-
sion error of the transformer. The latter needs the support of hardware equipment, and its
reliability cannot be guaranteed due to the difficulty of wavefront calibration [9].

In recent years, intelligent fault location methods have been introduced in the re-
search on fault location of transmission lines. Early intelligent location methods have
mainly focused on signal feature extraction and specific construction of intelligent regres-
sion algorithms, such as Fourier transform [10]; discrete Fourier transform [11]; wavelet
transform [12,13]; discrete wavelet transform [14,15]; Hilbert–Huang transform [16,17];
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wavelet packet decomposition [18], which combines complex-valued neural networks [10];
K-nearest neighbor algorithm [11,18]; radial basis function neural network [12]; artificial
neural network [11]; support vector regression [15]; generalized regression neural net-
work [13,19]; support vector regression [17]; generalized regression neural network [15];
and other shallow regression algorithms for fault location. The application effect of shallow
regression algorithm depends on the mapping and correlation between features and labels,
so it is very dependent on the selection and extraction of features and the accurate modeling
of the fault line [20].

With the development of deep learning, the idea of end-to-end modeling has been
applied to transmission line fault location. Many methods in the literature have been used
to extract fault features, such as auto-encoder [21–23], convolutional neural network [24,25],
and RNN network [26], which are combined with a regression model for fault location. End-
to-end modeling can reduce the dependence on prior knowledge in feature extraction and
has achieved good results in fault location [27]. However, most of the existing intelligent
fault location methods based on deep learning are for specific lines. The trained models are
sensitive to line parameters. Different lines require specific modeling, and the generalization
performance of the models needs to be improved.

Reference [28] reported a multi-view clustering method with local and global in-
formation fusion. It was demonstrated that the fusion approach is superior to other
state-of-the-art multi-view clustering methods. In order to solve the above problems, this
paper proposes a two-terminal fault location method based on the fusion model FCMLA
(CNN-multi-head-LSTM with an attention module embedded). The integration of different
intelligent techniques, such as LSTM, is needed for better solutions, as reported in [29,30].
For example, in LSTM, there is sensitivity to different random weight initializations and
overfitting could also easily occur. Therefore, the attention module is first embedded into
the CNN network, focusing on specific channels and abrupt variables of waveform records,
so as to enhance the feature self-extraction ability of the CNN. Second, a regression model
combined with LSTM is constructed. Finally, in order to further improve the fault location
accuracy, an MLP layer is used to find the optimal combination weight and construct the
combination model. The example analysis shows high fault location accuracy and good
generalization performance for transmission lines with different parameters.

2. CNN-Multi-Head-LSTM Model with an Attention Module Embedded (CMLA)
2.1. Overall Architecture of CMLA

The overall architecture of the CMLA model proposed in this paper is shown in
Figure 1.
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As shown in Figure 1, after the input data is normalized, the local features of the data
are extracted through multiple CNN layers, and the output data of CNN is mapped to a
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suitable plane and inputted into a multi-head LSTM network. Then, the output is spliced,
the distributed features are connected with the tag values through a fully connected neural
network (MLP), and, finally, the results are obtained.

2.2. Convolutional Neural Network

Considering the advantages of the CNN in local feature extraction, it is very suitable for
processing time series-type fault waveform data [31–33]. The input of the model is in time
series fault waveform record data at both ends of the line, so one-dimensional convolution
neural network is used to extract fault features. Deep data features are extracted through
layer-by-layer convolution and pooling operations, as shown in Equations (1) and (2).

hct = σcnn(Wcnn ∗ xt + bcnn) (1)

where Wcnn is the weight coefficient (convolution kernel) of the filter, xt is the t-th input sam-
ple, * is the discrete convolution operation, bcnn is the bias coefficient, σcnn is the activation
function, and hct is the t-th feature map obtained after performing the convolution.

yq
t = Maxpooling

(
hi

ct

)
(2)

where hi
ct is the activation value of the i-th neuron in the t-th feature map in the pooling

layer and yq
t is the output value of the q-th neuron in the t-th feature map.

2.3. Attention Module

In fault location research, the fault features are mainly reflected in the sudden change
of electrical quantity, so temporal characteristics in the time dimension are not of the same
importance. Compared with the features of the smooth operation period, the features of
the sudden change moment are more important. The standard CNN model may ignore the
important features; therefore, the attention module is embedded into the CNN network.

The attention mechanism is a calculation that measures the similarity between a query
and a key, and performs weighted summation on the values corresponding to the query. It
has been widely used in the RNN network. With the deepening of research, a lightweight
attention module can be flexibly embedded into the CNN network, which can effectively
enhance the feature extraction ability of the CNN at the cost of a small increase in the
number of parameters. In this paper, a CBAM module (convolutional block attention
module) [34] is introduced into the CNN network to weigh all input features individually,
focusing on a specific space and channel, so as to realize the extraction of important features
of the recorded data. CBAM constructs a spatial attention module (SAM) and a channel
attention module (CAM) to integrate the attention information of the two aspects to obtain
more comprehensive feature information. The structure is shown in Figure 2.
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For a characteristic F(H×W)the mathematical expression of channel attention is given
as follows: 

Avgp = MLP[AvgP(F)]

Maxp = MLP[MaxP(F)]

Mc(F) = σ(Avgp + Maxp)

(3)
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where AvgP(∗) and MaxP(∗) are the average and max pooling, respectively, MLP(∗)
is the neural network, σ is the activation function, and Mc(F) is the channel attention
characteristic matrix (W × 1).

The mathematical expression of spatial attention is given as follows:{
M(F) = [AvgP(F), MaxP(F)]

Ms(F) = σ( f (M(F)))
(4)

where [] represents the channel stitching operation, f represents the convolution operation,
and Ms(F) is the obtained spatial attention characteristic matrix (H × 1).

The calculation equation of the fused characteristic matrix is given as follows:

F′ = F⊗M (5)

where F′ is the fused characteristic matrix and ⊗ represents the multiplication of corre-
sponding elements. CBAM first obtains the channel attention characteristic matrix Mc(F)
by passing the characteristic matrix F through SAM, and then obtains the characteristic
matrix F′ after F and Mc(F). Then, the spatial attention characteristic matrix Ms(F) is
obtained through CAM, and the final characteristic matrix F′′ is obtained after the fusion of
F′ and Ms(F). In this paper, in order to ensure the integrity of recording data input of each
channel, the convolution kernel size is set as 1 × 3.

The attention module includes channel attention, spatial attention, and CBAM which
combines them. The type, number, and location of attention modules will affect the model.
The CNN model in this paper consists of two convolution pooling layers: a single channel
and spatial attention, and one or more CBAM modules. Experiments were performed
and the results are shown in Appendix A. The experiments show that the single attention
module cannot improve the performance of the model as much as the CBAM module, and
the effect of one CBAM model is less than that of two CBAM modules. Therefore, CBAM
modules are added after each convolution pooling layer to form the CNN-CBAM model.

2.4. Multi-Head-LSTM Network

The LSTM model has a built-in forget gate on the basis of the RNN to overcome the
gradient vanishing problem. LSTM has two hidden states, ht and St, and the forget gate
determines the probability of forgetting the state of the upper layer of hidden cells.

ft = σ(WFh(t−1) + U f xt + b f ) (6)

In the equation, σ is the sigmoid activation function. The input gate consists of two
parts. The first part outputs it and uses the sigmoid function, while the second part outputs
gt and uses the tanh function.

it = σ(Wih(t−1) + Uixt + bi) (7)

gt = tanh(Wah(t−1) + Uaxt + ba) (8)

The status is updated from St−1 to St.

St = S(t−1) � ft + it � gt (9)

ht = σ(W0h(t−1) + U0xt + b0)� tanh(St) (10)

where is the Hadamard product and ht is the output result of the output gate.
In practice, the multi-layer stacked LSTM network can complete more complex pre-

diction tasks, but the serial training structure is prone to the problems of gradient disap-
pearance, over fitting, and a long training time. In order to reduce the depth of the model
and improve the network training performance, this paper proposes a multi-head-LSTM
network to solve the problem of fault location, and its structure is shown in Figure 3. The
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improvement idea of multi-head-LSTM comes from the multi-head attention mechanism
in the transformer model reported in [35].
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Figure 3. Structure of the multi-head-LSTM.

In Figure 3, the feature data extracted by the two-layer CNN is reshaped into the input
form for the multi-head-LSTM network through one layer of a reshape network. The inputs
of all LSTM layers originate from the same data, but the weight matrix values of each layer
are different in the process of model training, which strengthens the ability of the model to
capture information from different perspectives. In addition, the depth of the model will
not increase with the number of LSTM layers, which is equivalent to changing the original
multi-layer LSTM network running in series into a multi-head LSTM network running
in parallel, which is conducive to accelerating the convergence of the model. The role of
the module MLP (multilayer perceptron) is mainly to link the information obtained from
model training with the tag value through dimensionality reduction.

3. Fault Location Based on CMLA Model
3.1. Basic Process

The overall process of fault location of transmission line proposed in this paper is
shown in Figure 4.
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The time series data of 12 electrical quantities, including three-phase voltage and three-
phase current collected by two terminals, are used as the input of the model. These voltage
and current timing data, which contain the characteristic information of fault location, are
coupled into vectors and form a dimension of 12 × 40 characteristic graphics. Since the
dimension of the input data is not too large, there is no need to design a network structure
that is too deep. This model is designed as a combination of a two-layer convolution
pooling CNN structure, two CBAM attention modules, and a two-layer LSTM structure,
one of which is a multi-head-LSTM layer.

Consistent with the input dimension, the CNN model is designed as one-dimensional
convolution (Conv1D), the size of the convolution kernel is 1×3, and the number is 64.
The maximum pooling (Maxpooling1D) is selected, and the size is 2. After a convolution
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pooling operation and assessment of the CBAM module, this module does not change the
dimension of the input data, but only gives differential weights to specific channels and a
feature matrix. After a layer of convolution pooling and attention module, the extracted
feature matrix is obtained. TimeDistributed is added to the outer layer of the convolution
pooling layer for dimension expansion, and then the Reshape operation is performed to
access the LSTM network layer. Finally, by passing through a fully connected layer (MLP),
the prediction result of the model is obtained.

3.2. Hyperband Optimization Algorithm

Hyperparameters have a significant impact on the performance of a machine learning
model. Based on the tensorflow 2.0 development platform, this paper uses the Hyperband
algorithm [36] to optimize the hyperparameters. The Hyperband algorithm is an extension
of the Successive Halving algorithm. Compared with Grid Search and Random Search in the
early days of machine learning, the Hyperband algorithm is more purposeful. Compared
with Bayesian optimization, the Hyperband algorithm has a higher resource utilization
efficiency and a faster calculation speed.

3.3. Fusion CMLA Model with the MLP Output Layer (FCMLA)

It should be noted that this model is supervised learning, and the setting of the label
value is related to the observation point. A large number of experimental results show
that the fault location accuracy of the model at different observation points (M end, N end)
fluctuates in a small range and chases each other, especially for the examples where the
line length of the training set is greatly different from that of the test set, and the fault point
is biased to one side.

In order to avoid the interaction between long and short lines and fault points, and
strengthen the generalization ability of the model to different lines, this paper proposes a
fault location method based on the double end fusion model to optimize the original model.
If the results of different observation points are fused for training and learning, higher fault
location accuracy may be obtained. The basic idea is as follows:

Input1 is the input of Model M, including the electrical quantity data at both ends.
The input matrix is the same as that described above, as shown in Figure 5a, and output1 is
the output of Model M, and its value is the fault distance relative to the M end. Input2 is
the input of Model N, and its data is the same as input1, but the composition of the input
matrix has changed, as shown in Figure 5b. In addition, by adding the line length to the
input vector, the model can adjust the fault location results according to the line length.
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By adding another MLP output layer, the fault location results of the models on both
sides are combined, as shown in Figure 5. The MLP output layer adopts the distributed
training method. Since Model M has been trained above, only one Model N and one
integrated MLP output layer need to be trained. In order to save time and improve the
training efficiency of the model, this paper transfers the weight parameter values trained
based on Model M to Model N without parameter adjustment. After several iterations,
a more satisfactory result can be obtained. The structure of the MLP output layer in this
paper is (16,64,8,1), and the sigmoid activation function is adopted.
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3.4. Experimental Evaluation Index and Optimization Algorithm

This paper uses three error indicators to evaluate the results, namely the root mean
square error ( RMSE), the mean absolute error (MAE), and the mean absolute percentage
error (MAPE).

XRMSE =

√√√√( N

∑
t=1

[x(t)− x̂(t)]2/(N − 1)

)
(11)

XMAE =

(
N

∑
t−1
| x(t)− x̂(t) |

)
/N (12)

XMAPE =
100%

N

N

∑
t−1
| [x(t)− x̂(t)]/x(t) | (13)

where x(t) is the actual value of the fault distance, x̂(t) is the model predicted value, and N
is the number of test samples.

4. Simulation and Analysis
4.1. Transmission Line Simulation Model Building

According to the commonly used conductor type and length distribution information
of 220 kV transmission lines in a certain area of Guangdong Power Grid, a double-ended
transmission line model is established with PSCAD/EMTDC. The simplified schematic
model is shown in Figure 6, and the line parameters are given in Appendix B. We obtain
the training data through different parameter settings of the simulation system, which was
set to fail at 0.4 s, with a failure duration of 60 ms and a total simulation time of 0.1 s. Lines
1, 2, and 3 have 1872, 1944, and 2592 sets of fault data, respectively. The total training data
size is 6408, and the ratio of training data to validation data is 9:1.
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4.2. Location Accuracy Analysis of the Model

In order to verify the effectiveness of the FCLMA model, the CNN model and the
LSTM model are used for comparative experiments. The two-layer convolution pooling
structure of Conv 1D, Max pooling1D, Conv 2D and Max pooling2D are studied with the
CNN model. The size of the convolution kernel is 1 × 3 (1D) and 3 × 3 (2D). The LSTM
model adopts the two-layer LSTM, and the number of neurons and super parameters in
the model are determined by the Hyperband algorithm.

Table 1 gives the prediction performance analysis of the single model and decomposed
combined model. It shows that the FCMLA model has a better performance than the
single CNN model and the LSTM model, and the one-dimensional convolution structure
of the CNN-LSTM model has a better feature extraction effect than the two-dimensional
convolution structure.
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Table 1. Fault location performance of different models.

Predictive Model XRMSE X MAE X MAPE

CNN (1D) 0.8460 0.6521 8.22%
CNN (2D) 1.1760 0.8665 10.87%

LSTM 1.0916 0.7840 8.53%
CNN-LSTM (1D) 0.5773 0.5323 3.99%
CNN-LSTM (2D) 1.0829 0.8461 9.62%

FCMLA 0.5418 0.3714 4.60%

The performance of the FCMLA module is more stable and accurate than other models,
and its performance on the test set is shown in Figures 7 and 8. In Figure 7, except for the
FCMLA, the rest of the models have serious deviations in some data points. CNN (1D) and
CNN (2D) show significant deviations (with relatively large location errors) when the fault
distance is closer, while LSTM has larger errors when the fault distance is located at the
middle of the line, and the combined CNN and LSTM model performs better. In Figure 8,
the combined model CNN-LSTM (1D) performs better than CNN-LSTM (2D), which is due
to the fact that the input of the model is fault-recorded data, which is different from the
images and has a strong temporal correlation, and it is appropriate to use one-dimensional
convolution. On the other hand, the FCMLA performs even better, and the samples of
the test set are closer to the actual values with less error, indicating that the addition of
the attention mechanism can help to obtain more valuable feature data and improve the
accuracy of the model.

Energies 2023, 16, x FOR PEER REVIEW 9 of 15 
 

 

 
Figure 7. Predicted and real values for different decomposition models. 

 
Figure 8. Distribution of location results from No. 95 to No. 120. 

Compared with previous shallow intelligent algorithms combining data processing 
methods, such as SVR, KNN, and DT, the performance of different models is shown in 
Table 2. The data preprocessing may ignore important features, and the nonlinear fitting 
ability of the shallow model is not as good as the deep model; previously leading shallow 
intelligent algorithms perform worse. Compared with the SAE model, which also uses 
feature self-extraction, CNN-CBAM has better feature extraction performance and a 
higher location accuracy. 

In order to verify the effectiveness of the CMLA model, this paper uses the CMLA 
single model to conduct comparative experiments. 

Table 2. Fault location performance of different models. 

Predictive Model XRMSE  X MAE X MAPE 
KNN 2.729 1.768 16.43% 
SVR 1.414 0.957 7.20% 
DT 0.663 0.218 3.31% 

WT-DT 1.431 0.377 2.09% 
FFT-DT 1.470 0.461 2.62% 

SAE 0.886 0.421 3.4% 
CLMA 0.5418 0.3714 4.60% 

For the mixed data set composed of line 1, line 2, and line 3, the location performance 
of the CMLA model is shown in Figure 9, and the error is mainly concentrated between 

Figure 7. Predicted and real values for different decomposition models.

Energies 2023, 16, x FOR PEER REVIEW 9 of 15 
 

 

 
Figure 7. Predicted and real values for different decomposition models. 

 
Figure 8. Distribution of location results from No. 95 to No. 120. 

Compared with previous shallow intelligent algorithms combining data processing 
methods, such as SVR, KNN, and DT, the performance of different models is shown in 
Table 2. The data preprocessing may ignore important features, and the nonlinear fitting 
ability of the shallow model is not as good as the deep model; previously leading shallow 
intelligent algorithms perform worse. Compared with the SAE model, which also uses 
feature self-extraction, CNN-CBAM has better feature extraction performance and a 
higher location accuracy. 

In order to verify the effectiveness of the CMLA model, this paper uses the CMLA 
single model to conduct comparative experiments. 

Table 2. Fault location performance of different models. 

Predictive Model XRMSE  X MAE X MAPE 
KNN 2.729 1.768 16.43% 
SVR 1.414 0.957 7.20% 
DT 0.663 0.218 3.31% 

WT-DT 1.431 0.377 2.09% 
FFT-DT 1.470 0.461 2.62% 

SAE 0.886 0.421 3.4% 
CLMA 0.5418 0.3714 4.60% 

For the mixed data set composed of line 1, line 2, and line 3, the location performance 
of the CMLA model is shown in Figure 9, and the error is mainly concentrated between 

Figure 8. Distribution of location results from No. 95 to No. 120.

Compared with previous shallow intelligent algorithms combining data processing
methods, such as SVR, KNN, and DT, the performance of different models is shown in
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Table 2. The data preprocessing may ignore important features, and the nonlinear fitting
ability of the shallow model is not as good as the deep model; previously leading shallow
intelligent algorithms perform worse. Compared with the SAE model, which also uses
feature self-extraction, CNN-CBAM has better feature extraction performance and a higher
location accuracy.

In order to verify the effectiveness of the CMLA model, this paper uses the CMLA
single model to conduct comparative experiments.

Table 2. Fault location performance of different models.

Predictive Model XRMSE X MAE X MAPE

KNN 2.729 1.768 16.43%
SVR 1.414 0.957 7.20%
DT 0.663 0.218 3.31%

WT-DT 1.431 0.377 2.09%
FFT-DT 1.470 0.461 2.62%

SAE 0.886 0.421 3.4%
CLMA 0.5418 0.3714 4.60%

For the mixed data set composed of line 1, line 2, and line 3, the location performance
of the CMLA model is shown in Figure 9, and the error is mainly concentrated between +0.5
km and −0.5 km. Table A4 shows that structure and parameters of the CMLA combined
model.
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4.3. Generalization Performance Analysis of the Model

The trained fusion model from the training sets of lines 1, 2 and 3 is used to derive the
fault location of new lines 4 and 5, which are not in the training sets, and the results are
shown in Table 3.

Table 3. Fault location performance of different models.

Line Length (km) Fault Location
(km)

Average Fault Location Result (km)

Forecast Result Error

4 30 15 14.512 0.488
5 70 40 40.765 −0.765

It can be seen from the results in Table 3 that the two-terminal fusion CMLA model is
able to meet the fault location requirements of various lengths of lines.

The error statistics of a large number of test sets with different fault parameter settings
in lines 4 and 5 are shown in Table 4. It can be seen that the fusion FCMLA model has a
better fault location performance than the single model, and even though lines 4 and 5 are
not in the training set, the fault location accuracy is satisfactory.
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Table 4. Fault location performance of different models.

Predictive Model XRMSE X MAE X MAPE

CMLA (single)-M 0.5418 0.3714 4.60%
CMLA (single)-N 0.5513 0.4023 3.60%

FCMLA (fusion MCLA) 0.4625 0.3042 0.84%

4.4. Comparison of Training Speed of Different Depth Models

In this paper, several different deep learning models are built with tensorflow, in-
cluding CNN1D, CNN2D, CNN2D-LSTM, and Conformer [37] models. By using the
same training set, the best performance of each model is compared in the verification set
when the number of training rounds is 200. The results are shown in Figure 10. Among
them, the training speed of CNN1D is 0.2 s/round, that of CNN2D is 5 s/round, that
of CNN2D-LSTM is 11s/round, that of Conformer is 33 s/round, and that of FCMLA is
7 s/round.
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Figure 10. Performance comparison of each model training for 200 rounds.

From Figure 10, the best performance in 200 rounds of training is given by the Con-
former and FCMLA model, but from the perspective of training time, the CMLA model is
significantly better than the Conformer. Compared with the traditional multi-layer CNN-
LSTM model, the FCMLA model not only has fast training speed, but also has superior
performance. The main reason is that the LSTM layer in CNN-LSTM is connected in series,
and the parameters of the previous layer need to be calculated before proceeding to the
next layer. The LSTM layers in the FCMLA model are connected in parallel, and multiple
LSTM layers can be trained simultaneously, thus reducing the depth of the model and
increasing the width, which is conducive to improving the training speed. Moreover, the
parameters learned by each LSTM layer are different, so as to collect the characteristics of
the data set in a larger range and improve the performance of the model.

5. Conclusions

Aiming at addressing the issues that traditional intelligent fault location algorithms
require a manual design of complex feature extraction methods and line-specific modeling,
as well as the generalization performance not being high, this paper proposes a fusion
model based on CNN-multi-head-LSTM with an attention module to realize power trans-
mission line fault location, through theoretical analysis and experimental verification, the
following conclusions are obtained.

(1) Compared with the artificially designed feature extraction method, the proposed
FCMLA model (fusion CNN-multi-head-LSTM with an attention module) obtains
more important feature distributions through selective feature self-learning, which is
beneficial to the subsequent LSTM to capture the timing characteristics and achieve
accurate fault location.
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(2) The multi-head LSTM model based on the “multi-head” idea not only obtains a higher
fault location accuracy, but also improves the training speed of the multi-layer depth
model. The reason is that the original multi-layer series LSTM layer is transformed
into a parallel connection, so as to realize the synchronous training and comprehensive
feature extraction of multiple LSTM networks.

(3) Due to the difference in the fault location accuracy of the model when the fault point
is close to different sides, the stability of the final fault location result is improved by
adding a full connection layer to fuse the results of the models on both sides.

(4) The final fault location results of the FCMLA model proposed in this paper can meet
the needs of practical applications. The simulation results show that its generalization
ability can adapt to the differences of line length and parameters.

Author Contributions: Q.Y. and L.L.L. guided the framework of the paper and provided professional
guidance. C.S. and X.W. performed the simulation and wrote the paper. C.S.L. provided academic
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the manuscript.
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Appendix A

Table A1. Performance of the model with different positions of the attention module.

Type of Attention
Module

Location
Evaluation Indicators

RMSE MAE MAPE

CAM Maxpooling1 0.776 0.544 6.4%
SAM Maxpooling1 0.720 0.4764 4.6%

CBAM Maxpooling1 0.7582 0.4745 5.34%
CBAM Maxpooling2 0.5836 0.4047 3.99%
CBAM Maxpooling1,2 0.5418 0.3714 4.60%

Table A2. Parameters of different lines.

Parameter Type Zero-Sequence
Parameter

Positive-Sequence
Parameter Line

R/(Ω/km) 0.22846 0.01979
Line 1L/(mH/km) 2.77238 0.87579

C/(uF/km) 8.5809 × 10−3 13.310 × 10−3

R/(Ω/km) 0.3 0.03648
Line 2L/(mH/km) 3.639 1.348

C/(uF/km) 6.166 × 10−3 8.68 × 10−3

R/(Ω/km) 0.1148 0.02083
Line 3L/(mH/km) 2.28858 0.8984

C/(uF/km) 5.2809 × 10−3 12.910 × 10−3

R/(Ω/km) 0.3089 0.023
Line 4L/(mH/km) 2.5874 0.9372

C/(uF/km) 6.3502 × 10−3 13.71 × 10−3

R/(Ω/km) 0.3674 0.054
Line 5L/(mH/km) 3.323 1.086

C/(uF/km) 5.019 × 10−3 11.068 × 10−3
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Table A3. Fault settings for different lines.

Parameter Type Parameter Setting Number of
Parameters Line

Voltage level 220 kV 1

Line 1

Fault type LG, LLG, LLL 3
Line length (km) 25, 20, 15 3

Phase angle difference (degree) 5, 30, 60 3

Fault distance (km) L0 = 2,3(initial)
Step length = 2 26

Transition resistance (Ω) 0.01, 10, 20, 50, 80, 100,
120, 150 8

Voltage level 220 kV 1

Line 2

Fault type LG, LLG, LLL 3
Line length (km) 60, 55, 50 3

Phase angle difference (degree) 5, 30, 60 3

Fault distance (km) L0 = 5,6,8(initial)
Step length = 3,4 36

Transition resistance (Ω) 0.01, 10, 20, 50, 80, 100,
120, 150 8

Voltage level 220 kV 1

Line 3

Fault type LG, LLG, LLL 3
Line length (km) 45, 35, 30 3

Phase angle difference (degree) 5, 30, 60 3

Fault distance (km) L0 = 3.5,4(initial)
Step length = 3,4 27

Transition resistance (Ω) 0.01, 10, 20, 50, 80, 100,
120, 150 8

Voltage level 220 kV 1

Line 4

Fault type LG, LLG, LLL 3
Line length (km) 30 1

Phase angle difference (degree) 5, 30, 60 3

Transition resistance (Ω) 0.01, 10, 20, 50, 80, 100,
120, 150 8

Voltage level 220 kV 1

Line 5

Fault type LG, LLG, LLL 3
Line length (km) 70 1

Phase angle difference (degree) 5, 30, 60 3

Transition resistance (Ω) 0.01, 10, 20, 50, 80, 100,
120, 150 8

Appendix B

Table A4. Structure and parameters of the CMLA combined model.

Input (12 × 40) M Input (12 × 40) N

Time Distributed (Conv1D (64,3)) Time Distributed (Conv1D (256,3))
Time Distributed (Maxpooling (2)) Time Distributed (Maxpooling (2))

CBAM CBAM

Time Distributed (Conv1D (32,3)) Time Distributed (Conv1D (64,3))
Time Distributed (Maxpooling (2)) Time Distributed (Maxpooling (2))

CBAM CBAM

Time Distributed (Flatten ()) Time Distributed (Flatten ())
LSTM (64) LSTM (100)
Dense (1) Dense (1)

Output
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