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a b s t r a c t 

Prediction of bubble growth rate is very important for the development of accurate models for bubble de- 

parture diameter and thus the heat transfer rates in nucleate boiling. This paper presents an evaluation 

study to the existing homogeneous and heterogeneous bubble growth models using our experimental 

data for bubble growth in saturated pool boiling of deionized water on a plain copper surface. The ex- 

periments were conducted at pressures 1, 0.5 and 0.15 bar and superheat in the range 5.1 – 19.5 K. To 

start with, the paper presents a critical review on bubble growth models in homogeneous and heteroge- 

neous boiling. It was found that homogeneous growth models achieved some partial agreement with the 

experimental data at some conditions and thus they should be used carefully in heterogeneous boiling. 

There was a good agreement between some of the models that were suggested based on the assumption 

that bubble growth occurs due to evaporation from the superheated boundary layer around the bubble. 

The models based on microlayer evaporation only could not explain the experimental data, i.e. partial 

agreement at some conditions. The model that predicted the data very well at all conditions was the 

“relaxation boundary layer” model by Van Stralen [25] . This model was generalized in the current study 

by suggesting two new empirical models for the departure diameter and departure time. 

© 2023 The Author(s). Published by Elsevier Ltd. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Boiling exists in many applications such as refrigeration and air 

onditioning, power generation including nuclear plants and cool- 

ng of high heat flux electronic devices. The performance of a boil- 

ng heat transfer surface is usually inferred from the classical boil- 

ng curve – a relation between wall heat flux q w 

and wall su- 

erheat ( �T w 

= T w 

− T sat ). A surface has a superior performance 

hen q w 

increases rapidly with small changes in �T w 

, i.e. when 

he curve is nearly vertical. Thus, prediction of the boiling curve 

n nucleate boiling (from the onset of boiling to the onset of crit- 

cal heat flux) is very crucial for the design of any boiling heat 

ransfer equipment. Historically, the work conducted by Jakob and 

is research group, in the 1930s, may be the first attempt to sug- 

est a phenomenological model for the prediction of heat trans- 

er rates in nucleate boiling based on bubble-agitation mechanism 

heat transfer is enhanced by turbulence in the liquid bulk and the 

all thermal boundary layer). This work is summarized in chapter 
∗ Corresponding author: Department of Mechanical and Aerospace Engineering, 
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9 in the textbook by Jakob [1] . Based on this mechanism, sev- 

ral models have since emerged, such as the models suggested by 

ohsenow [2] and Forster and Zuber [3] . With the advent of 1960s, 

ifferent heat transf er mechanisms were suggested based on one 

ingle bubble and thus several models have been emerged. Exam- 

les are the models proposed by Han and Griffith [4] and Mikic 

nd Rohsenow [5] , who assumed that the heat transfer mecha- 

ism, in the area of bubble influence, is periodic quenching of the 

urface by the cold liquid that rushes down towards the nucleation 

ite after bubble departure. At locations outside the area of bubble 

nfluence, the heat transfer mechanism was assumed to be natu- 

al convection. In literature, this quenching mechanism was origi- 

ally called by [4] “bulk-convection”, while it was also referred to 

s transient conduction. This modelling approach was also called 

n literature “heat flux partitioning approach”, i.e. the total heat 

ux is resulting from the summation of heat fluxes due to each 

eparate mechanism. Other examples include the models by Yu 

nd Cheng [6] , Kim and Kim [7] and Zupan ̌ci ̌c et al. [8] who as-

umed natural convection, transient conduction and evaporation. 

espite the large number of models in literature, there are still 

arge discrepancies amongst these models. For example, Mahmoud 

nd Karayiannis [9] plotted the boiling curve predicted using 26 
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Nomenclature 

Abbreviations 

A Asymptotic 

I Inertia 

MAE Mean Absolute Error 

ONB Onset of Nucleate Boiling 

WTBL Wall Thermal Boundary Layer 

A factor in Eq. (13) and (42) , [ J/kg ] 
1 / 2 

A bc bubble base contact area, [m 

2 ] 

A P projected area, [m 

2 ] 

Ar Archimedes number, Ar = ( g/ν2 
L 
) ( σ/ρL g ) 

3 / 2 
, [-] 

B factor in Eq. (16) and (42) , [ m/s 0 . 5 ] and constant in 

Eq. (21) 

Bo Bond number, �ρgR 2 c /σ , [-] 

b curvature factor in Eq. (30) and (46) and coefficient 

in Eq. (49) , [ m/s 0 . 5 ] 

b ∗ factor in Eq. (36) , [-] 

c bubble shape factor in Eq. (49) and (73) , [-] 

c b empirical constant in Eq. (49) , [-] 

C 1 bubble growth constant in R = C 1 t 
n , [ m/s n ] 

C 2 constant in δ0 = C 2 
√ 

νt , [-] 

c pL liquid specific heat, [J/kg K] 

c pv vapour specific heat, [J/kg K] 

D bubble diameter, [m] 

D s diameter of heat transfer surface, [m] 

F factor defined in Eq. (17) , [-] 

f bd bubble departure frequency, [Hz] 

f ρ density factor, ( 1 − ρv /ρL ) , [-] 

f θ bubble shape factor, [-] 

g gravitational acceleration, [m/s 2 ] 

h heat transfer coefficient, [W/m 

2 K] 

h b boiling heat transfer coefficient, [W/m 

2 K] 

h v vapour heat transfer coefficient, [W/m 

2 K] 

h f g latent heat, [J/kg] 

Ja Jakob number, ρl c pl �T sL /ρv h f g , [-] 

k cu thermal conductivity of copper, [W/m K] 

k L thermal conductivity of liquid, [W/m K] 

L characteristic length for natural convection, [m] 

l ch length scale in Eq. (17) and (19) , [m] 

m v vapour mass, [kg] 

N Stephan number, c pL �T sL /h f g , [-] or number of ex- 

perimental data points 

N m 

dimensionless factor in Eq. (77) , [-] 

N 1 factor in Eq. (75) , [-] 

N 2 factor in Eq. (75) , [-] 

N q factor in Eq. (75) , [m/s 

n time exponent in the growth law, [-] 

Nu Nusselt number, Nu = hD s /k l , [-] 

P pressure, [Pa] 

P C critical pressure, [Pa] 

P r reduced pressure, [-] 

P sat saturation pressure, [Pa] 

P v vapour pressure, [Pa] 

P L ∞ 

liquid pressure at infinity, [Pa] 

�P pressure difference, [Pa] 

P r Prandtl number, [-] 

Q mL heat transfer rate across the microlayer, [W] 

q heat flux, [W/m 

2 ] 

q Lb heat flux towards the liquid bulk, [W/m 

2 ] 

q mL heat flux across the microlayer, [W/m 

2 ] 

q sL heat flux from superheat liquid, [W/m 

2 ] 

r radial distance, [m] 

r cont bubble contact radius, [m] 
i

2 
R F ritz bubble radius from Fritz-Ende model, [m] 

R a v average bubble radius, [m] 

R c cavity mouth radius, m] 

R 0 radius of bubble embryo, [m] 

R bubble radius, [m] 
˙ R bubble growth velocity, [m/s] 

R̈ bubble growth acceleration, [m/s 2 ] 

R 1 radius due to inertial growth, [m] 

R 2 radius due to asymptotic growth, [m] 

R d departure radius, [m] 

R exp measured radius, [m] 

Ra Rayleigh number, βL g( T w 

− T l ) D 

3 
s /αν , [-] 

R pred predicted radius, [m] 

R + dimensionless radius, see Eq. (42) 

R 2 correlation coefficient, [-] 

t time, [s] 

t ch characteristic time scale in Eq. (19) , [s] 

t d departure time, [s] 

t 0 characteristic time scale in Eq. (17) , [s] 

t wt waiting time, [s] 

t δ boundary layer penetration time, [s] 

T temperature, [K] 

t + dimensionless time in Eq. (16) and (19) , [-] 

T sat saturation temperature, [K] 

T 5 thermocouple no. 5 below the surface 

T Lb liquid bulk temperature, [K] 

T w 

boiling surface temperature, [K] 

T L ∞ 

liquid temperature at infinity, [K] 

T sL superheated liquid temperature 

T max maximum temperature, [K] 

�T temperature difference, [K] 

�T w 

wall superheat, ( T w 

- T sat ) , [K] 

�T sL liquid superheat, ( T L - T sat ) , [K] 

�T ∞ 

liquid subcooling, ( T sat - T L ) , [K] 

u L liquid velocity, [m/s] 

V b bubble volume, [m 

3 ] 

y vertical distance, [m] 

�y distance between T 5 and the surface, [m] 

Greek Symbols 

αL liquid thermal diffusivity, [m 

2 /s] 

βL thermal expansion coefficient [1/K] 

β1 .. 5 Empirical constants in Eqs. (59) - (63) 

β bubble growth factor, [-] 

γ coefficient in Eq. (23) and Eq. (75) 

δ transient boundary layer thickness, [m] 

δth thermal boundary layer thickness, [m] 

δe f f effective boundary layer thickness, [m] 

δ0 initial microlayer thickness, [m] 

δLs bubble boundary layer thickness, [m] 

ζ direction normal to the bubble, [m] 

θ contact angle, [deg] 

κ density ratio ρv /ρL , [-] 

μL liquid viscosity, [Pa. s] 

ν kinematic viscosity [m 

2 /s] 

ρL liquid density, [kg/m 

3 ] 

ρv vapour density, [kg/m 

3 ] 

σ surface tension, [N/m] 

ψ interface permeability factor, [-] 

odels for water at atmospheric pressure and reported a wide 

catter, e.g. for a fixed heat flux value of 250 kW/m 

2 , the wall su-

erheat (or surface temperature) predicted by one model was 28 K 

hile it was about 4 K by another model (about times 7 difference 

n the heat transfer coefficient). The large discrepancy amongst 
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he models may be attributed to the following: (i) lack of under- 

tanding of several fundamental aspects and the complex effects 

f several factors such as bubble dynamics (growth rate, depar- 

ure diameter, departure frequency), fluid properties and surface 

icrostructure that affect the active nucleation site density. (ii) all 

henomenological heat transfer models depend on sub-models for 

he prediction of bubble departure diameter and frequency, which 

epend strongly on bubble growth rate. The problem is that there 

s a wide scatter amongst the existing bubble growth models as re- 

orted by Mahmoud and Karayiannis [10] and as will be presented 

nd discussed later in the current study. This could be a reason 

or the discrepancy amongst nucleate boiling heat transfer mod- 

ls. Additionally, some researchers estimated bubble growth rate in 

ucleate boiling using models suggested for homogeneous boiling, 

hich may not be valid. 

Based on the above, there is a need for more experimental re- 

earch with careful measurements of bubble growth rate, which 

an help evaluate the existing bubble growth models and thus un- 

erstand the reasons of discrepancies. In the current study, bub- 

le growth rate was measured in saturated pool boiling of de- 

onized water on a smooth copper surface at three pressures 0.15, 

.5 and 1 bar and superheat 5.1 – 19.5 K. The measurements were 

onducted using a high-speed, high-resolution video camera inte- 

rated with a microscopic lens. The bubble growth characteristics, 

he forces acting on the bubble during its growth period, and the 

echanisms of heat flow to the bubble were discussed in a sep- 

rate publication, see Mahmoud and Karayiannis [9] . The current 

tudy focuses on discussing and evaluating the existing homoge- 

eous and heterogeneous bubble growth models using our experi- 

ental data. This will help understand the differences amongst the 

odels and the bubble growth mechanism(s). Additionally, a rec- 

mmendation will be given at the end of the paper for the accu- 

ate prediction of bubble growth rate in saturated boiling of wa- 

er. The paper is organised as follows: Section 2 presents the bub- 

le growth fundamentals to help the reader track the differences 

mongst the models, Section 3 gives a description of the exper- 

mental system and validation and Section 4 presents the evalua- 

ion of the bubble growth models. Section 5 gives recommendation 

or predicting bubble growth rate while Section 6 gives the conclu- 

ions of the study. 

. Bubble growth fundamentals 

It is well-known that bubble growth can be divided into two 

ain categories: symmetric growth in uniformly superheated liq- 

id (the whole bubble is surrounded by superheated liquid – ho- 

ogeneous boiling) and asymmetric growth in non-uniformly su- 

erheated liquid (part of the bubble is surrounded by superheated 

iquid as is the case in growth on a heated surface – heteroge- 

eous boiling). From now on, “homogeneous” will refer to uni- 

orm superheat while “heterogeneous” will refer to non-uniform 

uperheat. It is important to start with a brief description to the 

ubble growth problem without going into the complex details of 

he equations. In homogeneous boiling, the bubble growth prob- 

em was usually formulated by applying the laws of mass, momen- 

um and energy conservation. Applying the mass and momentum 

onservation for a spherical bubble results in Eq. (1) , which was 

iven by Scriven [11] and was also called the extended Rayleigh 

12] equation. This equation was obtained based on the follow- 

ng simplifying assumptions: (i) spherical symmetry for a bubble 

rowing in an infinite medium, (ii) Newtonian fluid with constant 

roperties, (iii) compressibility effects, external and body forces are 

gnored, (iv) the pressure and temperature inside the bubble are 

niform, (v) the liquid surrounding the bubble flows with a ve- 

ocity u L = ( 1 − ρv /ρL )( d R/d t ) , due to mass transfer across the in-

erface (vi) the bubble grows without translational and rotational 
3 
otion. 

P v − P L ∞ 

( 1 − ρv /ρL ) ρL 

= R 

d 2 R 

dt 2 
+ 

3 

2 

(
dR 

dt 

)2 

+ 

2 σ

( 1 − ρv /ρL ) ρL R 

+ 

4 μL R 

( 1 − ρv /ρL ) ρL 

dR 

dt 
(1) 

The different stages of bubble growth can be understood from 

q. (1) , with the help of the schematic drawing in Fig. 1 , for in-

iscid liquids (ignoring the last term in the r.h.s. of Eq. (1) ) and

gnoring the vapour to liquid density ratio ( ρv /ρL � 1 for most flu- 

ds). Bubble growth in stage 1 (left schematic) occurs isothermally 

 T v = T L ∞ 

) at the beginning (time t ≈ 0 ) when the bubble nucleus

uctuates around its initial equilibrium radius R 0 . In this case the 

elocity and acceleration are very small and thus the liquid inertia 

erms (1st and 2nd terms in the r.h.s. of Eq. (1) ) are negligible. Ac-

ordingly, the dynamic growth will be driven by the pressure dif- 

erence P v − P L ∞ 

= 2 σ/R , which is called the “surface tension domi- 

ated stage”. In stage 2 (mid schematic), the growth occurs isother- 

ally similar to stage 1 but the bubble grew to a radius slightly 

arger than the initial radius R 0 . Thus, the surface tension term 

3rd term in the r.h.s.) becomes negligibly small and thus bubble 

rowth will be dominated by the liquid inertia, which is called the 

inertia-controlled growth”. It is worth mentioning that the time 

cale in the first and second stages is very small, in the order of 

icroseconds. For example, Sernas and Hooper [13] and Forster 

nd Zuber [14] reported that dynamic effects diminish after 50 μs 

based on experimental measurements) and after 100 μs (based 

n numerical analysis), respectively. In stage 3 (right schematic), 

hen time increases further, evaporation occurs at the bubble sur- 

ace and a thin thermal boundary layer develops around the bub- 

le, which was called by Plesset and Zwick [15] “the cooling ef- 

ect”. Thus, the vapour temperature drops from its initial superheat 

o the saturation temperature and consequently the vapour pres- 

ure P v becomes equal to the liquid pressure P L ∞ 

(system pressure). 

his makes the l.h.s. of Eq. (1) vanishes and the dynamic effects 

o not drive the bubble growth anymore. Accordingly, another 

echanism must takeover, which is the “heat diffusion mecha- 

ism” driven by the temperature difference T L ∞ 

− T v , which was 

ommonly called “heat transfer-controlled growth” or “asymptotic 

rowth”. From now on, we shall use “asymptotic” to refer to the 

eat transfer-controlled growth. It is worth mentioning that there 

s no analytical solution to Eq. (1) but there are either approxi- 

ate solutions for each separate stage of growth or a complete nu- 

erical solution. For example, Rayleigh [12] simplified the bubble 

rowth problem by ignoring the surface tension stage, ignoring the 

apour to liquid density ratio ( ρv /ρL ) and assuming that the bub- 

le grows isothermally (no heat transfer), i.e. (P v − P L ∞ 

) remains 

onstant with time. This led to the well-known Rayleigh solution 

or the “inertia-controlled growth” given by Eq. (2) , which indicates 

hat the radius increases linearly with time R ∝ t , i.e. bubble grows 

t a constant rate. 

 = 

√ 

2 

3 

P v − P L ∞ 

ρL 

t (2) 

To generalize the bubble growth problem and include heat 

ransfer at the bubble interface, the energy equation (see below) 

ust be coupled with the dynamic equation ( Eq. (1) ). The cou- 

ling between the two equations was usually conducted through 

he pressure difference term ( P v − P L ∞ 

) in Eq. (1) , which can be re-

ated to the degree of liquid superheat ( T L ∞ 

− T v ) through some 

implifying assumptions, e.g. Clausius–Clapeyron equation as de- 

ned in Eq. (3) . The liquid temperature at the bubble interface, 

hich equals the vapour temperature in thermodynamics equilib- 

ium, can be obtained from the solution of the transient energy 

quation without heat generation ( Eq. (4) ) with the commonly 
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Fig. 1. Schematic drawing for the different stages of bubble growth in homogeneous boiling. 
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Fig. 2. Schematic drawing for the vapour pressure curve showing the linear ap- 

proximation adopted by Plesset and Zwick [15] and the Clausius–Clapeyron approx- 

imation adopted by Forster and Zuber [14] . 
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P

[

sed boundary condition at the bubble interface defined in Eq. (5) . 

ccordingly, the solution of Eq. (1) coupled with Eq. (4) with the 

ppropriate initial and boundary conditions describe the full bub- 

le growth problem including the whole stages of growth (surface 

ension, inertia and heat diffusion), which can be solved numeri- 

ally. Because numerical solutions did not give an explicit expres- 

ion for the bubble radius and because the dynamic effects are im- 

ortant only for very short time intervals at the beginning, many 

esearchers ignored the complex initial growth stages (surface ten- 

ion and inertia) and gave approximate analytical solutions for the 

symptotic stage in which the bubble radius was found to be pro- 

ortional to the square root of time ( t 1 / 2 ). The asymptotic solu- 

ion can be obtained simply from the energy balance at the inter- 

ace ( Eq. (5) ) provided that the temperature gradient ( ∂ T /∂ r ) r= R is 

nown. In the following sub-sections, the bubble growth models 

n homogeneous and heterogeneous boiling will be reviewed and 

iscussed. 

P = P v − P L ∞ 

= 

ρv h f g 

T sat 
( T L ∞ 

− T v ) (3) 

∂T 

∂t 
+ 

( 1 − ρv /ρL ) R 

2 

r 2 
dR 

dt 

∂T 

∂r 
= 

1 

αL 

1 

r 2 
∂ 

∂r 

(
r 2 

∂T 

∂r 

)
(4) 

 L 

(
∂T 

∂r 

)
r= R 

= ρv h f g 

dR 

dt 
(5) 

.1. Bubble growth in homogeneous boiling 

.1.1. Asymptotic growth models 

Historically, Fritz and Ende [16] were the first to suggest a 

odel for bubble growth in homogeneous boiling, which was 

ased on energy balance at the bubble interface (see Eq. (5) ), i.e. 

alance between conduction and evaporation heat fluxes. They as- 

umed that the temperature drops across a thin boundary layer 

round the bubble (thin boundary layer approximation) and thus 

he effect of bubble curvature can be neglected. This allowed for 

he assumption that the temperature gradient at the bubble in- 

erface can be obtained from the well-known solution of the 1D 

ransient heat conduction equation in a semi-infinite plate, i.e. 

 ∂ T /∂ r ) r= R = k L �T sL / 
√ 

παL t . In other words, the effect of liquid 

adial motion and bubble curvature on the temperature gradient 

ere ignored. With this energy balance, the bubble radius was ob- 

ained as: 

 F ritz = 

2 √ 

π
Ja 
√ 

αL t (6) 
4

The Fritz and Ende [16] model may be considered as a bench- 

ark because it ignored the effect of bubble curvature and liq- 

id motion (convection) on temperature gradient and consequently 

n bubble growth. To consider these effects, Plesset and Zwick 

15] and Forster and Zuber [14] independently solved the dynamic 

quation Eq. (1) coupled with the energy equation ( Eq. (4) ). Firstly, 

he two groups of researchers obtained the temperature at the in- 

erface by solving Eq. (4) for a spherical geometry with a moving 

oundary using two different mathematical approaches. To get a 

onvergent solution, they simplified the problem by adopting the 

thin boundary layer approximation”, as was done by Fritz and 

nd [16] . Secondly, the obtained interface temperature was used to 

chieve the coupling between the energy and the dynamic equa- 

ions. The difference between the coupling method adopted by the 

wo researchers was the assumption of the relation between the 

apour pressure and temperature. Plesset and Zwick [15] assumed 

inear relationship between �P and �T while Forster and Zuber 

14] used the linearized Clausius–Clapeyron equation. It is worth 

oting that the linearized Clausius–Clapeyron equation underpre- 

icts the pressure difference especially as the superheat increases 

s seen in Fig. 2 . Finally, the two groups of researchers ignored the 

nertia and surface tension stages of growth and gave an approx- 

mate solution to the asymptotic stage defined by Eq. (7) for the 

lesset and Zwick [15] model and Eq. (8) for the Forster and Zuber 

14] model. It is obvious from the two equations that the differ- 
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nce between the two models is 10%. Bankoff [17] followed the 

ame approach and assumptions as [15] except that a temperature 

ondition was imposed at the bubble interface rather than a heat 

ux condition. He adopted this approach to make the solution con- 

erge more rapidly. Although the boundary condition was different, 

e obtained exactly the same solution as [15] . Prisnyakov [18] con- 

idered the bubble as a thermodynamic system and applied the 

rst law of thermodynamics, rather than the dynamic momentum 

quation, with the assumption that the vapour behaves as an ideal 

as and the effect of bubble curvature was neglected. Thus, the 

onduction heat flux at the bubble interface was the same as that 

ssumed by Fritz and Ende [16] and the difference was the expan- 

ion work included in the 1st law of thermodynamics. This energy 

alance resulted in Eq. (9) , which was reported to be valid for Ja

p to 500. Comparing Eqs. (7) , ( (8) and (9) with the Fritz and Ende

16] model in Eq. (6) indicates that the difference is only a con- 

tant factor equals 2 / 3 in the Prisnyakov [18] model, 
√ 

3 in the 

lesset and Zwick [15] model and π/ 2 in the Forster and Zuber 

14] model. 

 = 

√ 

3 

2 √ 

π
Ja 
√ 

αL t = 

√ 

3 R F ritz (7) 

 = 

π

2 

2 √ 

π
Ja 
√ 

αL t = 

π

2 

R F ritz (8) 

 = 

4 

3 

√ 

π
Ja 
√ 

αL t = 

2 

3 

R F ritz (9) 

Since the emergence of the above models, some researchers 

laimed that the “thin boundary layer approximation” may not be 

ccurate, especially at small Jackob numbers. Scriven [11] solved 

he mass, energy and momentum conservation equations numer- 

cally without adopting the assumption of “thin boundary layer”. 

hus, a complete numerical solution was obtained rather than 

he above approximate solutions. The bubble interface was consid- 

red permeable, i.e. liquid and vapour can flow across the inter- 

ace due to the difference in liquid and vapour density. Based on 

hat he correlated the obtained numerical solution, for the asymp- 

otic growth stage, in the form given by Eq. (10) . The growth fac-

or β in Eq. (10) was plotted versus c pL �T sL /h f g for different val- 

es of vapour to liquid density ratio ( ρv /ρL ) and specific heat ra- 

io ( c pL − c pv ) /c pL . It is worth mentioning that the sensible heat 

f liquid and vapour was included in the energy balance, which 

as ignored by other researchers. He fitted the general numer- 

cal solution for β with two separate equations, one for super- 

eat �T sL < 1 K and one for �T sL > 1 K. Because the wall super-

eat in nucleate boiling is always much larger than 1 K, the equa- 

ion for the high superheat was commonly reported in literature as 

q. (11) . 

 = β
√ 

αL t (10) 

= 

⎧ ⎪ ⎨ 

⎪ ⎩ 

√ 

12 
π

[
1 [ 

1 
Ja + ρv 

ρL 
− ρv 

ρl 

c pv 
c pL 

] 
]

general case 

√ 

12 
π Ja when ρv /ρL � 1 

(11) 

Eq. (11) indicates that the general numerical solution by Scriven 

11] is exactly equivalent to the Plesset and Zwick [15] model when 

he density ratio is ρv /ρL � 1 , which is the case for all fluids of in-

erest such as water. He also concluded that the error in the Ples- 

et and Zwick [15] model becomes very large only when the su- 

erheat is less than 1 K and when the density ratio is very large.

vdeev and Zudin [19] obtained an analytical solution to the gen- 

ral bubble growth problem (mass, energy and momentum conser- 

ation) assuming that the bubble interface is permeable, i.e. there 

s enhancement in heat transfer at the interface due to the liquid 
5 
nd vapour motion induced by the density difference. The effect 

f interface permeability was captured by a factor ψ defined be- 

ow, which was called by them “interface permeability factor”. The 

btained analytical solution for the bubble growth factor β was 

iven by Eq. (12) . This equation is general and valid for all val-

es of Ja and density ratios. For example, when the density ratio is 

ery small and negligible, the value of N goes to zero and ψ goes 

o 1. As the Ja increases and ψ = 1 (ignore interface permeability 

ffects), β reduces to 
√ 

12 /π , which is similar to the Plesset and 

wick model [15] . They reported that their analytical solution de- 

iates by 4% from the full numerical solution given by Scriven [11] . 

= 

√ 

3 

π
J aψ + 

√ 

3 

π
( J aψ ) 

2 + 2 J a , ψ = 1 + 

√ 

π

2 

(
1 √ 

1 − N 

− 1 

)
, 

 = 

c pL �T sL 

h f g 

= 

ρv 

ρL 

Ja (12) 

.1.2. Inertia-asymptotic growth models 

In the above section, the solution of the bubble growth prob- 

em was only given for the asymptotic growth stage. At low sys- 

em pressure and/or very large superheat, the bubble growth may 

e affected by the liquid inertia. Mikic et al. [20] were the first 

o suggest a method to combine the inertia and asymptotic stages 

nto one model. With the help of the schematic shown in Fig. 2 ,

here are two extremes for bubble growth. The first extreme oc- 

urs when T v equals T L ∞ 

(isothermal growth), which results in the 

inertia-controlled growth”. The second extreme occurs when T v 
quals T sat , which results in the “asymptotic growth”. In the transi- 

ion between the two extremes, the vapour temperature and pres- 

ure are in the range T sat ≤ T v ≤ T L ∞ 

and P L ∞ 

≤ P v ≤ P v ( T L ∞ 

) , respec-

ively. Mikic et al. [20] used the Rayleigh [12] solution ( Eq. (2) )

or the inertia stage and the Plesset and Zwick [15] solution 

 Eq. (7) ) for the asymptotic stage. In other words, they connected 

he Rayleigh bubble growth velocity ( Eq. (13) ) with the Plesset 

nd Zwick [15] bubble growth velocity ( Eq. (14) ). They related the 

ressure difference ( P v − P L ∞ 

) in Eq. (13) with the temperature 

ifference ( T v − T sat ) using the linearized Clausius–Clapeyron. The 

wo solutions (inertial and asymptotic) were connected through 

he vapour temperature T v by substituting the term 

( T v −T sat ) 
�T sL 

from 

q. (13) into Eq. (14) . On doing so, a quadratic equation, Eq. (15) ,

as obtained, which satisfies the two extreme solutions. The solu- 

ion of Eq. (15) resulted in the bubble growth radius written in a 

imensionless form in Eq. (16) . 

dR 

dt 

)
inertia 

= 

√ 

2 

3 

( P v − P L ∞ 

) 

ρL 

= 

√ 

2 

3 

ρv h f g ( T v − T sat ) 

ρL T sat 

( T L ∞ 

− T sat ) 

( T L ∞ 

− T sat ) 

= A 

√ 

( T v − T sat ) 

�T sL 

, A = 

√ 

2 

3 

ρv h f g ( T L ∞ 

− T sat ) 

ρL T sat 
(13) 

dR 

dt 

)
asymptotic 

= 

1 

2 

√ 

12 

π
Ja 

√ 

αL 

t 

( T L ∞ 

− T v ) 

�T sL 

= 

1 

2 

√ 

12 

π
Ja 

√ 

αL 

t 

{ 
1 − ( T v − T sat ) 

�T sL 

} 
(14) 

1 

A 

2 

(
dR 

dt 

)2 

+ 

2 

√ 

t (√ 

12 αL /π
)

Ja 

dR 

dt 
− 1 = 0 (15) 

 

+ = 

2 

3 

[ (
t + + 1 

)3 / 2 −
(
t + 
)3 / 2 − 1 

] 
(16) 
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+ = 

AR 

B 

2 
, t + = 

A 

2 t 

B 

2 
, B = 

√ 

12 

π
αL Ja 

Theofanou and Patel [21] adopted the same method as Mikic 

t al. [20] but with the following modifications: (i) the vapour den- 

ity should not be assumed constant as was done by [20] who 

stimated the vapour density at the system pressure, which un- 

erestimates the value and consequently over-estimates the Jackob 

umber and the growth rate in the asymptotic regime, see Eq. (14) . 

ccordingly, they suggested considering the initial to final vapour 

ensity ratio, especially when this ratio is much larger than 1. The 

nitial vapour density was defined based on P v ( T L ∞ 

) , (see Fig. 2 for

ore clarity) while the final vapour density is the density de- 

ned at system pressure P v ( T sat ) . (ii) a linear relation was used

o relate the vapour pressure with temperature rather than the 

lausius–Clapeyron equation used by [20] which underpredicts the 

apour pressure and thus under-estimates the inertial growth ve- 

ocity, see Eq. (13) . In conclusion, a linear interpolation between 

he initial and final states was conducted for the vapour pres- 

ure and vapour density. Comparing the original model [20] with 

he modified version [21] indicated that the two models give ex- 

ctly similar results when the initial to final density ratio is be- 

ow 2. For water, this density ratio value corresponds to an initial 

uperheat of about 22 K, which is a large range for boiling ap- 

lications. In other words, assuming constant vapour density and 

sing the Clausius–Clapeyron assumption adopted by Mikic et al. 

20] is valid up to superheat degrees below 25 K. Avdeev and 

udin [19] adopted the same approach as [20] except that in the 

symptotic stage, the heat flux at the bubble interface was cor- 

ected by the “interface permeability factor ψ” to account for heat 

ransfer enhancement at the interface due to liquid/vapour flows: 

 = ψk L �T sL / 
√ 

αL t = ρv h f g d R/d t . Note that the Plesset and Zwick

15] solution for the asymptotic stage was used by Mikic et al. 

20] . They managed to get an analytical equation for some spe- 

ial cases such as when the term N = c pL �T sL /h f g in the permeabil-

ty factor → 1 . However, in the general case 0 ≤ N < 1 , they failed

o obtain a closed form solution similar to Mikic et al. [20] due 

o the complexity of the polynomials and inverse hyperbolic func- 

ions encountered in their analysis. Accordingly, they suggested the 

ollowing approximate equation that combines inertia and thermal 

rowth stages, which was based on dimensionless scaling analysis: 

R 

l ch 

= 

r 1 (
1 + F 3 

)1 / 3 
(17) 

 ch = 

αL 

Ja 2 
√ 

2�P/ 3 ρL 

, F = 

2 ( t/t 0 ) 
1 / 4 

3 ψ 

, r 1 

= 

4 

3 

[(
1 + 

√ 

t/t 0 

)3 / 2 

−3 

(
1 + 

√ 

t/t 0 

) 1 
2 + 2 

]
, t 0 = 

αL 

Ja 2 ( 2�P/ 3 ρL )

.2. Bubble growth in heterogeneous boiling 

Bubble growth in heterogenous boiling is more complex com- 

ared to homogeneous boiling due to the presence of the wall 

hermal boundary layer, which makes the superheat around the 

ubble nonuniform. In the above homogeneous models, the ra- 

ius R is proportional to t 1 / 2 in the asymptotic growth stage while 

n heterogeneous boiling, the exponent of time could be smaller 

han ½. For example, Strenge et al. [22] measured bubble growth 

n saturated boiling of n-pentane and diethyl ether at atmospheric 

ressure and found that the radius follows the relation R ∝ t n , 

ith n ranged from 0.19 to 0.475. The key differences amongst 

ubble growth models in heterogeneous boiling in the asymptotic 
6 
tage arise from the assumption of the heat transfer mechanism to 

he bubble. Two main mechanisms were assumed by researchers 

amely: (i) growth due to evaporation of the liquid trapped in the 

icrolayer underneath the bubble and (ii) growth due to evapora- 

ion from the superheated boundary layer around the curved sur- 

ace of the bubble. From now on, to distinguish between the two 

echanisms, the first one will be called “microlayer evaporation”

nd the second one will be called “boundary layer evaporation”. 

ig. 3 depicts a schematic drawing for bubble growth mechanisms 

dopted by some researchers to help the reader understand the 

ifference between each model. In Fig. 3a , the bubble grows due 

o evaporation from the boundary layer carried by the bubble from 

he boiling surface. In Fig. 3b , the bubble protrudes outside the 

all thermal boundary layer (WTBL) and grows as a hemisphere 

ue to microlayer evaporation. The mechanism in Fig. 3c is similar 

o Fig. 3a except that the boundary layer was displaced and thus 

overs only part of the bubble. In Fig. 3d , the bubble grows due 

o a combined evaporation from the microlayer and from the su- 

erheated layer around the bubble. The different models suggested 

y researchers for bubble growth in heterogeneous boiling are dis- 

ussed in the following sub-sections. They are classified into (i) 

mpirical models, (ii) boundary layer evaporation models and (iii) 

icrolayer evaporation models. It is worth mentioning that in all 

eterogeneous growth models, the average wall superheat ( �T w 

) 

as used in the definition of Ja number rather than the liquid su- 

erheat �T sL ( �T sL = T L ∞ 

− T sat ) in homogeneous boiling. 

.2.1. Empirical models 

Some researchers suggested bubble growth models in hetero- 

eneous boiling based on fitting their experimental data. Cole and 

hulman [28] measured bubble growth at high Jakob numbers (24 

792) in saturated boiling of toluene, acetone, n-pentane, CCl 4 , 

ethanol and water on a polished zirconium ribbon. They used 

heir data to evaluate some of the homogeneous growth models 

nd concluded that the experimental growth factor β = f ( Ja ) was 

mall compared to the homogeneous models, which was attributed 

o the nonuniform superheat in heterogeneous boiling. They corre- 

ated their data in the form given by Eq. (18) . The effect of the

onuniform superheat appears in the empirical constant (2.5) and 

he smaller exponent of Ja compared to homogeneous boiling (the 

xponent of Ja in homogeneous boiling is 1). 

 = 2 . 5 Ja 0 . 75 
√ 

αL t (18) 

Lee et al. [29] studied bubble growth in saturated boiling of R11 

nd R113 on a glass substrate. Compared to homogeneous mod- 

ls, they found that the time exponent was 0.2, which is smaller 

han the 0.5 value in homogeneous boiling. In addition to the 

wo tested refrigerants, they collected data from literature for n- 

utane and water and suggested an empirical model based on 

imensionless analysis. They correlated the dimensionless radius 

 R + = R/l ch ) with the dimensionless time ( t + = t/t ch ) in the form

iven by Eq. (19) using characteristic length scale l ch and time scale 

 ch defined below. 

 

+ = 

R 

l ch 

= 11 . 2 

(
t + 
)0 . 2 

tanh 

[ 
0 . 345 

(
t + 
)0 . 8 
] 

+ 0 . 072 (19) 

 ch = 

√ 

27 

2 

JaαL 

√ 

ρL R d 

σ
, t ch = 

9 

4 

JaαL 
ρL R d 

σ

Du et al. [30] collected data from literature for saturated boiling 

f water on copper, stainless steel, nickel and silver in the pres- 

ure range 0.02 – 95.7 bar ( Ja = 0.0904 – 2689). They found that 

he bubble growth can be fitted in the form given by Eq. (20) with

he growth factor β depends on Ja while the time exponent n de- 

ends on system pressure. The variation of the exponent n with 

ressure was attributed to the dominant factors that control the 
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Fig. 3. Asymptotic bubble growth mechanisms in heterogeneous boiling: (a) and (c) boundary layer evaporation, Zuber [23] , Han and Griffith [24] , and Van Stralen [25] . (b) 

microlayer evaporation, Cooper [26] , (d) combined microlayer and superheated liquid evaporation, Cooper [26] and Van Stralen et al. [27] . WTBL: wall thermal boundary layer . 
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rowth rate, e.g. at low pressure, the growth is controlled by in- 

rtia while at high pressure it is controlled by heat transfer. Ben- 

amin and Balakrishnan [31] collected data from literature for satu- 

ated boiling on upward facing flat metallic surfaces and fluids in- 

luding water, CCl 4 , n-hexane, n-pentane and acetone. They found 

hat the data can be fitted by Eq. (21) . 

 = βα1 / 2 
L 

t n , β = 2 . 1077 Ja 0 . 7902 (20) 

 = 1 . 0012 e −P/ 0 . 3257 − 0 . 9624 e −P/ 0 . 6161 + 0 . 5 , P: in MPa 

 = 

1 

2 

BAr 0 . 135 Ja 0 . 5 
√ 

αL t (21) 

r = ( g/ν2 
L 
) ( σ/ρL g ) 

3 / 2 
, B = 1 . 55 , [water, CCl4, n-hexane] and B =

 / 1 . 55 , [n-pentane and acetone] 

Abdollahi et al. [32] proposed a semi-empirical model for bub- 

le growth in nucleate boiling. The functional form of the model 

as derived first for homogeneous boiling then used to fit experi- 

ental data in heterogeneous boiling. They ignored the bubble cur- 

ature and used the temperature gradient from the 1D transient 

eat conduction equation in the energy balance at the bubble in- 

erface and thus obtained Eq. (22) for the bubble growth veloc- 

ty. The vapour temperature in Eq. (22) was assumed to vary with 

ime according to the relation in Eq. (23) , which satisfies the two 

xtreme cases of growth (inertia) ( T L ∞ 

= T v ) at t = 0 and asymp-

otic stage ( T sat = T v ) at t = ∞ . The coefficient γ in Eq. (23) de-

ends on fluid properties and with small values, the vapour tem- 

erature approaches the saturation temperature slowly and with 

arge values it decreases rapidly to the saturation temperature. Ac- 

ordingly, substituting from Eq. (23) into (22) resulted in Eq. (24) . 

n the inertia-controlled stage ( t → 0 ), Eq. (24) reduces to Eq. (25) .

omparing Eq. (25) with the Rayleigh inertial growth velocity in 

q. (13) , the coefficient γ was obtained as Eq. (26) . 

dR 

dt 
= 

1 √ 

π

√ 

αL 

t 
Ja 

T L ∞ 

− T v 

T L ∞ 

− T sat 
(22) 

T L ∞ 

− T v 

T L ∞ 

− T sat 
= er f 

(
γ

√ 

t 
)

(23) 

dR 

dt 
= 

√ 

αL 

π
Ja 

er f 
(
γ

√ 

t 
)

√ 

t 
(24) 

dR 

dt 

∣∣∣∣ = 

√ 

αL 

π
Ja 

2 γ√ 

π
(25) 
t=0 

7

= 

π√ 

6 

√ 

c pL 

αL T sat 

1 

Ja 3 / 2 
( T L ∞ 

− T sat ) (26) 

In other words, this model combines the inertia and asymptotic 

tages in a similar manner to Mikic et al. [20] but adopting a differ-

nt assumption for the variation of vapour temperature with pres- 

ure rather than the Clausius–Clapeyron equation. The obtained fi- 

al expression for bubble growth in uniformly superheated liquid 

as thus given as: 

 = 

√ 

αL 

π
Ja 

{√ 

t er f 
(
γ

√ 

t 
)

+ 

2 

αL 

√ 

π
exp 

(
−γ 2 t 

)}
+ R 0 (27) 

They reported that the second term in brackets is small and 

hus can be ignored and the above equation was reduced to: 

 = 

√ 

αL 

π
Ja 

√ 

t er f 
(
γ

√ 

t 
)

+ R 0 (28) 

They used the above function form and fitted experimental 

ata collected from literature for nucleate boiling (water, ethanol, 

ethanol, benzene and CCl 4 ) using the same characteristic time 

nd length scale defined in Eq. (19) adopted by Lee et al. [29] and

btained the following equation: 

 = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

6 . 9577 

√ 

3 

√ 

JaαL 

√ 

t er f 
(

3 . 8323 t 1 / 2 

t ch 

)
+ 0 . 028425 l ch , Ja > 24 

2 . 5 

√ 

3 

√ 

JaαL 

√ 

t r f 
(

0 . 1966 t 1 / 2 

t ch 

)
+ 0 . 7 l ch Ja < 15 √ 

αL 

π Ja 
√ 

t er f 
(
γ

√ 

t 
)

+ 

2 σ T sat 

ρv h f g �T w 
24 ≤ Ja ≤ 15 

(29) 

.2.2. Boundary layer-based models 

Zuber [23] modified the homogenous growth model suggested 

y Fritz and Ende [16] to capture the non-uniform superheat in 

eterogeneous boiling. The model was based on heat balance at 

he interface with the “thin boundary layer” approximation, which 

as a uniform thickness 
√ 

παL t . In homogeneous boiling, there is 

nly one heat flux vector in the direction towards the bubble in- 

erface (the bubble is surrounded by a superheated shell insulated 

rom the liquid side). On the contrary, in heterogeneous boiling, 

ecause the temperature of the liquid bulk is smaller than the 

emperature around the bubble, part of the heat can be trans- 

erred towards the bubble surface with the temperature potential 
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 T max − T sat ) and another part can be towards the liquid bulk with

emperature potential ( T max − T Lb ). In other words, the liquid tem- 

erature inside the boundary layer around the bubble has a peak 

alue T max and it decays towards the bubble interface and towards 

he liquid bulk. This peak temperature was assumed equal to the 

oiling surface temperature T w 

and thus the part of heat flux to- 

ards the liquid bulk q Lb was assumed equal the wall heat flux. 

ased on this, the energy balance at the bubble interface was mod- 

fied in heterogeneous boiling as Eq. (30) and resulted in the bub- 

le radius in Eq. (31) . 

v h f g 

dR 

dt 
= b 

[
k L 

T w 

− T sat √ 

παL t 
− q Lb 

]
(30) 

 = b 
2 √ 

π
Ja 
√ 

αL t 

[
1 − q w 

√ 

παL t 

2 k L ( T w 

− T sat ) 

]
(31) 

The factor b was used to correct for the effect of bubble cur- 

ature on the temperature gradient arising from the assumption 

f flat interface, 1 ≤ b ≤ √ 

3 , with a recommended value b = π/ 2

ased on comparison with experimental data. Han and Griffith 

24] assumed that the bubble grows as a truncated sphere and 

emains surrounded with the wall thermal boundary layer during 

ts growth period and thus the bubble grows due to evaporation 

rom the superheated liquid in this layer. To simplify the problem, 

hey ignored the bubble curvature and thus solved the 1D tran- 

ient heat conduction equation for a semi-infinite plate with the 

ssumption that the initial temperature distribution in the bound- 

ry layer is linear. The thickness of the superheated liquid layer 

round the bubble was assumed uniform and equal to the tran- 

ient conduction thickness estimated at the end of the waiting 

ime, δ = 

√ 

παL t w 

. To account for the spherical geometry of the 

ubble, the 1D solution of the semi-infinite plate assumption was 

orrected using shape factors (for volume and surface area) that 

epend on the dynamic contact angle θd . The total heat transfer 

ate entering the bubble was assumed consisting of two compo- 

ents: heat transfer due to vapour convection at the bubble base 

dry area) and heat transfer due to conduction across the bubble 

nterface, see Eq. (32) for the energy balance. 

v h f g ϕ v 4 πR 

2 dR 

dt 
= ϕ c ϕ s 4 πR 

2 k L 

(
∂T 

∂x 

)
x =0 

+ ϕ b 4 πR 

2 h v ( T w 

− T sat ) 

(32) 

In the above equation, ϕ v is volume correction factor 

 0 . 25( 2 + cos θd ( 2 + sin 

2 θd ) ) ] , ϕ c is curvature correction factor 1 ≤
 c ≤

√ 

3 , ϕ s is surface area correction factor [ 0 . 5( 1 + cos θd ) ] , ϕ b is 

ubble base correction factor [ 0 . 25 sin 

2 θd ] and h v is a vapour con- 

ection heat transfer coefficient. They gave a general equation for 

he curvature correction factor, Eq. (33) that depends on the wait- 

ng time and average radius. The solution of Eq. (32) resulted in 

q. (34) for the bubble radius a function of time. 

 c = 

[√ 

3 + 

θd 

π

(
1 −

√ 

3 

)][ (
1− θd 

π

)(√ 

3 π/ 2 

)
R a v + 

√ 

παL t w 

R a v + 

√ 

παL t w 

+ 

θd 

π

] 

(33) 

 a v = 

1 

t 

t 

∫ 
0 

R ( t ) dt 

 = R c + 

ϕ s ϕ c 

ϕ v 

ρl c pl α

ρv h f g 

×
{ 

2�T w √ 

πt 
t 

1 
2 − �T w − �T ∞ 

δ

δ2 

4 αL 

[ 

4 αL t 

δ2 
erf 

δ√ 

4 αL t 
+ 

2 √ 

π

√ 

4 αL t 

δ

8 
× exp 

(
− δ2 

4 αL t 

)
− 2 erf 

δ√ 

4 αL t 

] } 

+ 

ϕ b h v �T w 

ϕ v ρv h f g 

t (34) 

T w 

= T w 

− T sat , �T ∞ 

= T L ∞ 

− T sat , δ = 

√ 

παL t w 

, t w 

= 

9 

4 παL 

[ 

( �T w 

+ �T sub ) R c 

T w 

− T sat 

[
1 + 2 σ/ 

(
R c ρv h f g 

)]
] 2 

Van Stralen [25] assumed that when the bubble grows, it did 

ot carry the wall thermal boundary layer as was suggested by 

an and Griffith [24] . Instead, the superheated liquid at the upper 

urface of the bubble is displaced and with the radial expansion of 

he bubble, this superheated liquid accumulates around the bubble 

p to a certain height y measured from the boiling surface which 

ay be smaller than or equal to the bubble height. He assumed 

hat the boundary layer around the bubble up to this height has 

 uniform thickness and he called it the “relaxation layer”. Thus, 

he bubble was assumed to grow due to evaporation at a spheri- 

al segment with height smaller than the bubble height as if the 

ubble is partially heated. Contrary to the above models that as- 

umed constant superheat during the entire growth period. Van 

tralen [25] assumed that the liquid superheat in the “relaxation 

ayer” decreases exponentially with time from its initial maximum 

alue ( �T w 

) , see Eq. (35) . This was inspired from the relaxation

henomenon in physics, i.e. when a system at equilibrium is per- 

urbed it takes a delay time to return back to its initial equilib- 

ium state. Thus, the bubble growth was assumed to follow the 

elaxation phenomenon by disturbing the wall superheat (thermal 

oundary layer) periodically after the waiting period. Van Stralen 

25] considered bubble departure time t d as the characteristic time 

n Eq. (35) . Conducting the energy balance for a partially heated 

ubble including the time dependant superheat resulted in a solu- 

ion similar to the Plesset and Zwick [15] model for homogeneous 

oiling ( Eq. (36) ) but multiplied by a factor b ∗ ≤ 1 ( b ∗ = y/ 2 R ) de-

ned by Eq. (37) which represents the fraction of bubble surface 

rea covered with the superheated liquid layer. 

T = �T w 

exp 

(
−
√ 

t 

t d 

)
(35) 

 = b ∗
√ 

12 

π
Ja exp 

(
−
√ 

t 

t d 

)√ 

αL t (36) 

 

∗ = 

2 . 7183 R d ρv h f g √ 

12 /π
√ 

ρL c pL k L �T w 

√ 

t d 
(37) 

Mikic et al. [20] extended their homogeneous growth model 

 Eq. (16) ) that combines the inertia and asymptotic stages to be 

pplicable for heterogeneous boiling. In the inertial growth veloc- 

ty, Eq. (13) was assumed valid also in heterogeneous boiling but 

he factor 2/3 should be replaced with π/ 7 . It is worth mention-

ng that the 2/3 factor is the theoretical value in the 2nd term of 

he r.h.s. of Eq. (1) for symmetric bubble growth in an infinite liq- 

id body. In heterogeneous boiling, bubble growth is asymmetric 

nd thus the inertia term should be smaller than that of homoge- 

eous boiling. That is why they recommended a factor π/ 7 . For 

he asymptotic growth stage, they solved the transient 1D heat 

onduction equation in semi-infinite plate assuming that heat is 

ransferred from the wall into the liquid bulk by conduction dur- 

ng the waiting period. At the end of the waiting period, the bub- 

le forms and thus heat is transferred from the superheated liq- 

id into the bubble (the bubble was assumed a sudden heat sink 

n the wall thermal boundary layer). On doing so, they obtained 

he temperature distribution in the liquid near the wall over the 

ntire ebullition cycle (from reformation of the boundary layer up 
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o departure) as given by Eq. (38) and the temperature gradient 

equired for energy balance at the bubble interface was given by 

q. (39) and corrected for bubble sphericity using the factor 
√ 

3 

btained by Plesset and Zwick [15] . The energy balance ( Eq. (40) )

esulted in the asymptotic growth velocity ( Eq. (41) ) which was 

onnected with the inertia growth stage through T v in a similar 

anner as they did in the homogeneous model. The final model 

quation was given as Eq. (42) , which is valid for t + � 1 . 

T − T L ∞ 

T w 

− T L ∞ 

= er f c 
y √ 

4 αL t 
− er f c 

y √ 

4 αL ( t + t w 

) 
(38) 

∂T 

∂y 
= 

√ 

3 

{ 

T w 

− T v √ 

παL t 
− T w 

− T L ∞ √ 

παL ( t + t w 

) 

} 

(39) 

v h f g 

dR 

dt 
= 

√ 

3 k L 

{ 

T w 

− T v √ 

παL t 
− T w 

− T L ∞ √ 

παL ( t + t wt ) 

} 

(40) 

dR 

dt 
= 

B 

2 

√ 

t 

{
T w 

− T v 

�T 
− T w 

− T L ∞ 

T w 

− T sat 

(
t 

t + t w 

)1 / 2 
}

(41) 

 

+ = 

√ 

t + 

{ 

1 − T w 

− T L ∞ 

T w 

− T sat 

[ (
1 + 

t + w 

t + 

)1 / 2 

−
(

t + w 

t + 

)1 / 2 
] } 

(42) 

 

+ = 

AR 

B 

2 
, t + = 

A 

2 t 

B 

2 
, B = 

√ 

12 

π
αL Ja, A = 

√ 

π

7 

ρv h f g ( T L ∞ 

− T sat ) 

ρL T sat 

Forster [33] assumed that the bubble grows as a hemisphere 

ue to evaporation from the superheated liquid around the bubble. 

n his derivation, the liquid superheat in the wall thermal bound- 

ry layer was assumed to decrease exponentially with the verti- 

al distance y according to Eq. (43) . Ignoring the bubble curvature, 

riting the distance y in polar coordinates and assuming that the 

D transient heat conduction in semi-infinite plate is valid, he ob- 

ained Eq. (44) for the temperature gradient at the interface. Using 

his gradient in the energy balance around the bubble surface in 

olar coordinates resulted in Eq. (45) , which describes the asymp- 

otic bubble growth on a heated surface. The integral in this equa- 

ion was solved using power series, as given by Eq. (46) . It is in-

eresting to note that the general solution in Eq. (46) can be re- 

uced to the homogeneous growth models when the ratio R/δth is 

ery small, i.e. the bubble is smaller than the wall thermal bound- 

ry layer and thus R ∝ t 1 / 2 . When the bubble becomes larger than

he wall boundary layer, the exponent of time decreases to 0.25. 

q. (46) was corrected by a factor b in the l.h.s to account for the

urvature which was ignored in the semi-infinite body. 

T = �T w 

exp ( −y/δth ) (43) 

∂T 

∂r 
= 

�T w 

exp ( −r cos ϕ/δth ) √ 

παL t 
(44) 

2 √ 

π
Ja 
√ 

αL t = 

R 

∫ 
0 

rdr 

δth 

(
1 − e −r/δth 

) (45) 

b 
2 √ 

π
Ja 
√ 

αL t 

= R 

{ 

1 + 

1 

4 

R 

δth 

+ 

1 

36 

(
R 

δth 

)2 

+ 

∞ ∑ 

n =4 , 6 ,.. 

( −1 ) 
n 
2 +1 

n ! ( n + 1 ) 

1 

4 

(
R 

δth 

)n 
} 

, 

b = 

1 

2 

[ 
1 + 

√ 

1 + 2 π/Ja 

] 
(46) 
g

9 
Lesage et al. [34] presented a model for bubble growth in sat- 

rated boiling assuming that bubble growth occurs due to evap- 

ration from the superheated layer, which is valid for low Bond 

umber ( Bo = �ρgR 2 c /σ ). In their model, the bubble shape was a 

runcated sphere with cylindrical neck pinning to the cavity, i.e. no 

preading over the surface. The assumed bubble shape was based 

n a numerical model suggested by them, which was validated us- 

ng data for saturated boiling of n-pentane on a surface with single 

avity of diameter 90 μm at superheat 2 and 6 K. The temperature 

rofile of the liquid in the wall thermal boundary layer was as- 

umed the same as given by Mikic et al. [20] in Eq. (38) . The dif-

erence between the two models is that Mikic et al. corrected the 

ffect of curvature on temperature gradient by a factor 
√ 

3 and the 

ubble boundary layer thickness was uniform δ = 

√ 

παt , which is 

he same as the wall thermal boundary layer thickness. On the 

ontrary, Lesage et al. claimed that the boundary layer thickness 

round the bubble is smaller than the wall boundary layer thick- 

ess δ. Thus, they suggested an effective bubble boundary layer 

hickness δe f f measured in the direction ζ normal to the inter- 

ace. They considered the factor 
√ 

3 used by Mikic et al. [20] to be 

quivalent to the ratio δ/δe f f . On doing so, the temperature profile 

q. (38) was modified as given by Eq. (47) . This temperature gra- 

ient was used in the energy balance at the interface and the final 

quation for bubble growth was given as Eq. (48) . In this equa- 

ion, R c is the cavity mouth radius and is valid for Ja ≤ 237 and

ow Bo < 0 . 07 . It is worth mentioning that for this range of Bo, the

ubble shape is spherical. 

T − T L ∞ 

T w 

− T L ∞ 

= er f c 
ζ√ 

4 αL t/ 3 

− er f c 
ζ√ 

4 α
(
t + δ2 /παL 

)
/ 3 

(47) 

 

R + 

√ 

R 

2 + R 

2 
c − R c 

] 
= 

4 Ja 
√ 

αL √ 

π/ 3 

( 

√ 

t −
√ 

t + 

δ2 

παL / 3 

+ 

√ 

δ2 

παL / 3 

) 

, 

δ = 

√ 

παL t w 

(48) 

Cho and Wang [35] assumed that the temperature distribution 

n the wall thermal boundary layer is linear and an applied en- 

rgy balance at the bubble interface taking into account the bub- 

le shape as a function of contact angle. The bubble shape was 

ssumed to be a static pendant bubble that protrudes outside the 

hermal boundary layer with a fixed static contact angle during 

ts growth cycle. They also included contribution from microlayer 

vaporation through an empirical coefficient c b . Based on the en- 

rgy balance at the interface, they obtained the following equation: 

 = 

⎧ ⎨ 

⎩ 

2 δth 

c 

[ 
1 − exp 

(
− c b bc 2 �T w 

√ 

t 
δth 

)] 
0 ≤ t < t δ

√ 

2 

√ 

c b bδth �T w 

√ 

t − δ2 
th 

( ln 4 −1 ) 

2 c 2 
t ≥ t δ

(49) 

 = 2 cos θ2 , t δ = ( 
δth ln 2 

c b bc 2 �T w 
) 

2 
c b = 0 . 534 – based on data for water

n saturated boiling, 

th = 3 . 22 

k L 
h b 

, b = 

k L 
[
( π − 2 . 4 ) cos θ + 2 . 4 sec θ

2 

]
2 πρv h f g 

√ 

αL 

The characteristic time t δ is the time for the bubble to pro- 

rude outside the thermal boundary layer. Their model indicates 

hat when the bubble is inside the boundary layer the radius is 

roportional to the square root of time while when it protrudes 

utside the boundary layer the relation follows t 0.25 , which agrees 

ith Forster [33] . 

.2.3. Microlayer-based models 

In all microlayer-based models, the bubble was assumed to 

row as a hemisphere, i.e. the bubble shape did not change during 
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he whole growth period. The advantage of these models is that 

t did not depend on the waiting time and the temperature field 

round the bubble as reported by Cooper [26] . Additionally, the 

ubble growth rate can be obtained from a balance between heat 

onduction across the microlayer (with an average initial thickness 

 δ0 / 2 )) and the latent heat of evaporation, as given by the follow-

ng equation: 

 L A bc 

2�T w 

δ0 ( t ) 
= 

d 

dt 

(
m v h f g 

)
(50) 

For a hemisphere and assuming constant vapour density and 

atent heat, the above equation can be written as: 

 L πR 

2 2�T w 

δ0 ( t ) 
= ρv h f g 

1 

2 

4 πR 

2 dR 

dt 
(51) 

dR 

dt 
= 

k L �T w 

ρv h f g δ0 ( t ) 
(52) 

Thus, the key parameter in all microlayer-based models is the 

etermination of the instantaneous microlayer thickness. Cooper 

nd Lloyd [36] assumed that when the bubble grows rapidly in the 

nitial growth stage, a viscous boundary layer develops underneath 

he bubble in a manner similar to flow over a flat plate. Thus, 

hey conducted boundary layer analysis by solving the Navier- 

tokes equation assuming that bubble growth follows a power law 

 = C 1 t 
n . In their model, an analytical solution was only possible

or a case when n = 0 . 5 . 

0 ( t ) = 

π2 

π2 + 1 

√ 

π

2 

√ 

νL t = C 2 
√ 

νL t = 0 . 8 

√ 

νL t (53) 

It is worth mentioning that the theoretical constant C 2 depends 

nly on the exponent of time n in the power law and thus the

alue 0.8 was for n = 0 . 5 . Substituting Eq. (53) into Eq. (52) and

fter integration, the well-known bubble growth model suggested 

y Cooper [26] will be obtained, which is defined by Eq. (54) . 

 = 2 . 5 JaP r −1 / 2 
√ 

αL t (54) 

Cooper [26] gave another equation for a bubble which pro- 

ruded outside the wall thermal boundary layer ( R � δth ) and 

ombined the microlayer evaporation with evaporation from that 

urved part of the hemispherical bubble immersed inside the wall 

hermal boundary layer. The heat flux from the superheated liq- 

id was modelled in a similar manner as the homogeneous growth 

odel by Plesset and Zwick [15] while Eq. (54) was used for the 

ontribution from the microlayer evaporation. On doing so, he ob- 

ained Eq. (55) for the combined contribution of microlayer evapo- 

ation and evaporation/condensation at the curved part of the bub- 

le. In saturated boiling, the first term in Eq. (55) becomes zero 

ecause T Lb = T sat . When the bubble size is smaller than the ther-

al boundary layer, the bubble remains surrounded with the su- 

erheated liquid with superheat equals nearly the wall superheat. 

n this case, he recommended Eq. (56) that considers evaporation 

rom microlayer and evaporation from the whole curved surface of 

he bubble. 

 = 

√ 

12 

π

T Lb − T sat 

T w 

− T sat 
J a 
√ 

αL t + 2 . 5 J aP r −1 / 2 
√ 

αL t (55) 

 = 

(
1 + 0 . 78 

√ 

P r 
)
2 . 5 JaP r −1 / 2 

√ 

αL t (56) 

Van Ouwerkerk [37] assumed that bubble growth follows the 

elation R ∝ t 1 / 2 as was adopted by Cooper and Lloyd [36] . Firstly,

e solved the Navier-Stokes equation and obtained the initial mi- 

rolayer thickness given by Eq. (57) . Secondly, he solved the con- 

ugate heat transfer problem numerically assuming that bubble 

rowth occurs due to microlayer evaporation and evaporation from 
10 
he hemispherical surface of the bubble. He included the heat ca- 

acity of the liquid in the microlayer, which was ignored in Cooper 

26] model. The approximate solution ( R = β
√ 

αL t ) for the growth 

onstant β that fitted their numerical data was given as Eq. (58) . 

0 ( t ) = 0 . 9 

√ 

νL t (57) 

= 

√ 

2 νL 

{
0 . 9 

ρL 

ρv 

(
1 + 

0 . 405 P r 

F 2 

)−1 / 2 

+ 

√ 

6 

3 

√ 

π
JaP r −1 / 2 

}
F 

= 

c pL �T w 

3 

√ 

πh f g 

(58) 

Labuntsov and Yagov [38] , as cited in Zudin [39] , divided the 

ubble base area into microlayer (thin layer) and macrolayer (thick 

ayer) and assumed that the bubble grows as a truncated sphere 

ue to evaporation from these two regions. The thermal capac- 

ty of the liquid in the microlayer was ignored similar to Cooper 

26] and thus heat is transferred from the boiling surface to the 

ase area by conduction. Because the geometry of the micro and 

acro-layers cannot be determined accurately from the experi- 

ents, they lumped all unknowns into empirical constants. For ex- 

mple, the microlayer thickness was assumed to vary linearly with 

he radial distance from the nucleation site, δ0 = β1 r with β1 an 

mpirical constant. The heat transfer rate by conduction across the 

icrolayer was given as: 

 ml = 

R mL ∫ 
0 

k L 
�T w 

δ
2 π rdr = 

R mL ∫ 
0 

k L 
�T w 

β1 r 
2 π rdr = 

2 π

β1 

k L �T w 

R mL 

= 

2 π

β1 

k L �T w 

β2 R = β3 k L �T w 

R (59) 

3 = 

2 πβ2 

β1 

In the above equation, the microlayer radius R mL was related to 

he bubble radius R through another empirical constant β2 ( R mL = 

2 R ). For the macro-layer (thick curved part near the wall), the 

eat flux was calculated from the homogeneous model given by 

lesset and Zwick as follows: 

 sL = β4 k L 

√ 

12 

π

�T w √ 

αL t 
(60) 

The empirical factor β4 in the above equation was used to ac- 

ount for the fraction of bubble surface area surrounded by the su- 

erheated liquid in the macro-layer and the fact that the liquid su- 

erheat should be a fraction of the wall superheat. Thus, the heat 

ransfer rate conducted to the bubble through the macrolayer was 

iven as Eq. (61) . Applying the total energy balance at the bubble 

ase results in Eq. (62) . 

 sL = β4 k L 
�T w √ 

αL t 
R 

2 (61) 

v h f g 

dV 

dt 
= Q mL + Q sL = β3 k L �T w 

R + β4 k L 
�T w √ 

αL t 
R 

2 (62) 

 

dR 

dt 
= β4 JaαL + β5 RJa 

√ 

αL 

t 
(63) 

Substituting from R = β
√ 

αL t into Eq. (63) and lumping all em- 

irical constants into two constants χ and E resulted in the fol- 

owing quadratic equation for the bubble growth factor β: 

1 

2 

β2 − χ Ja β − E Ja = 0 (64) 

Solving for β results in: 

= χ Ja + 

√ 

( χ Ja ) 
2 + 2E Ja (65) 
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The empirical coefficient χ and E that fitted a wide range of 

xperimental data (0.1 < Ja < 500) was found to be 0.3 and 6, 

espectively. 

Van Stralen et al. [27] suggested a model that combines con- 

ribution from the relaxation layer, microlayer and liquid inertia. 

he bubble growth due to relaxation layer was given previously as 

q. (36) . For the contribution from the microlayer, they obtained 

he initial microlayer thickness assuming the flow underneath the 

ubble is similar to laminar boundary layer in parallel flow over 

 uniformly superheated flat plate. This allowed them to use the 

ohlhausen exact solution for heat transfer in the boundary layer 

ver a flat plate defined by Eq. (66) , for the local Nusselt number.

dditionally, to calculate Reynolds number, they assumed that the 

adius of the hemisphere R follows the relation R ∼ t n and thus the 

hermal boundary layer thickness was obtained from Eq. (66) as 

iven by Eq. (67) . For the asymptotic growth case when n = 0 . 5 ,

he microlayer thickness was given as Eq. (68) which when sub- 

tituted in Eq. (52) results in the bubble growth radius R due to 

icrolayer evaporation defined by Eq. (69) . 

u ( r ) = 

hr 

k L 
= 

q w 

( r ) r 

k L �T 
= 

k L �T r 

k L �T δth ( r ) 
= 

r 

δth ( r ) 
= 0 . 332 Re 0 . 5 ( r ) P r 

1
3

= 0 . 332 

(
ρ ˙ R R 

μ

)1 / 2 

P r 1 / 3 (66)

th = 

k L �T w 

q w 

= 3 . 012 

(
r 

R 

∗

)1 / 2 n (νL R 

˙ R 

)1 / 2 

P r −1 / 3 

= 3 . 012 

(
r 

R 

)1 / 2 n (νL t 

n 

)1 / 2 

P r −1 / 3 (67) 

th = 4 . 26 P r −1 / 3 
√ 

νL t , (68) 

 = 0 . 47 P r −1 / 6 Ja 
√ 

αL t (69) 

It is worth mentioning that the difference between the micro- 

ayer thickness obtained by Van Stralen et al. [27] compared to 

ooper and Llyod [36] and Van Ouwerker [37] is arising from the 

act that [27] obtained the thickness based on heat transfer anal- 

sis while [ 36 , 37 ] obtained the thickness based on hydrodynam- 

cs analysis. Van Stralen et al. [27] combined the contribution from 

iquid inertia R 1 defined below, microlayer evaporation and evapo- 

ation from the relaxation layer into one model in the form given 

y Eq. (70) . The contribution of microlayer and relaxation layer 

ere added together and given as R 2 defined below. The factor b ∗

as defined previously in Eq. (37) . 

 = 

1 

1 /R 1 + 1 /R 2 

= 

R 1 R 2 

R 1 + R 2 

(70) 

 1 = 0 . 8165 

√ 

ρv h f g �T w 

exp 

(
−√ 

t/t d 
)

ρL T sat 
t 

 2 = 1 . 9544 

{
b ∗ exp 

(
−
√ 

t/t d 

)
+ 

�T Ls 

�T w 

}
Ja 
√ 

αL t 

+0 . 373 P r −1 / 6 exp 

(
−
√ 

t/t d 

)
Ja 
√ 

αL t 

Mei at al. [40] solved numerically the conjugate heat transfer 

roblem assuming that the bubble grows due to microlayer evap- 

ration only. The bubble was assumed to be a truncated sphere 

ith a microlayer of wedge shape with a wedge angle ϕ << 1 rad. 

o capture the bubble shape, a shape factor c = r cont /R , which was

elated to the wedge angle through the initial microlayer thickness 

iven by Cooper and Lloyd [36] in Eq. (53) except that the theoret- 

cal constant 0.8 was left to be determined empirically. The change 
11 
n bubble volume was captured by a shape function f (c) as defined 

n Eq. (71) ; c = 0 for a sphere and c = 1 for a hemisphere. Apply-

ng the energy balance and considering the bubble shape function, 

he bubble growth equation was given by Eq. (72) . The shape factor 

(depends on Ja ) and the front constant in the initial microlayer 

hickness of Cooper and Lloyd [36] were determined empirically as 

iven by Eqs. (73) and (74) . This model was validated using data 

rom literature for Ja = 0.52 – 1974 and fluids including water and 

ydrocarbons. 

 b = 

4 

3 

πR 

2 f ( c ) , f ( c ) =1 −0 . 75 

[ 
1 −
√ 

1 −c 2 
] 2 

+ 0 . 25 

[ 
1 −
√ 

1 −c 2 
] 3 

(71) 

 = 

c 2 

c 1 f ( c ) 
JaP r −1 / 2 

√ 

αL t (72) 

 = 

{ (
0 . 4134 Ja 0 . 1655 

)−6 + ( 1 − exp (−0 . 0 0 05 Ja ) 
−6 
} −1 / 6 

(73) 

 1 = 0 . 00525 Ja 0 . 752 P r −0 . 5 

(
k L 
k w 

)−0 . 113 (
αL 

αw 

)−0 . 117 

(74) 

Prisnyakov [18] claimed that neglecting the expansion work in 

he energy balance equation results in overestimation to the bub- 

le growth. Thus, he applied the first law of thermodynamics in- 

luding the expansion work for a truncated bubble growing at a 

eated surface and assumed that the vapour obeys the ideal gas 

aws. The heat transfer rate to the bubble was assumed to be from 

he liquid side through the curved surface and from the base side 

hrough the microlayer. The heat flux at the bubble interface from 

he liquid side was obtained from the semi-infinite plate assump- 

ion (similar to Fritz and Ende [16] ) while the heat flux at the bub-

le base was assumed equal the wall heat flux. The interfacial area 

nd volume of the truncated bubble were corrected by a shape fac- 

or (depends on the shape angle). With this energy balance, they 

ave Eq. (75) for bubble growth, which is valid for Jakob number 

p to 500 with its simplified version Eq. (76) when ρv /ρL � 1 or 

 f ρ= 1) and 2 σ/R � P sat . (
1 + 

γ

γ − 1 

f ρN 1 

)
( R − R 0 ) + 

2 

3 

3 f ργ − 1 

γ − 1 

N 2 R 0 ln 

R 

R 0 

= f θ Ja 

[
2 √ 

π

√ 

αL t + f q N 3 t 

]
(75) 

 = R 0 + 

2 

3 

f θ Ja 

[
2 √ 

π

√ 

αL t + f q N 3 t 

]
(76) 

 1 = 

P sat 

ρv h f g 

, N 2 = 

σ

ρv h f gR 0 

, N 3 = 

q w 

ρL c pL �T 
γ = 

[
1 − 2 P sat 

ρv h f g 

]−1 

, 

f θ = 

0 . 5 ( 1 + cos θ ) 

0 . 5 

(
1 + 0 . 5 cos θ

(
1 + sin 

2 θ
)) , f q = 

1 

2 

( 1 − cos θ ) , f ρ

= 1 − ρv /ρL 

Buyvich and Webbon [41] assumed that the bubble is a spher- 

cal segment separated from the wall by a microlayer, which was 

ssumed to be flat (the wedge shape was ignored). They claimed 

hat formulating the bubble growth problem through applying the 

omentum conservation is not appropriate due to the uncertain 

ocal stresses acting on the bubble and its surrounding liquid. Ac- 

ordingly, they suggested formulating the dynamic equation using 

hermodynamics principles assuming that the total mechanical en- 

rgy (kinetic and potential energy) is constant during the whole 
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ourse of bubble growth. The kinetic energy included the displace- 

ent of the bubble centre of mass in the vertical direction and 

he bubble expansion that results in motion in the radial direction. 

he potential energy included the potential energy in the gravity 

eld, the surface tension energy and the vapour compression en- 

rgy. The surface tension force between the liquid and vapour was 

ncluded and it was found that it affects the bubble shape and its 

irection is similar to the buoyancy force. This was not included in 

he momentum balance adopted by other researchers. After formu- 

ating the dynamic equation, they solved the boundary layer prob- 

em to obtain the initial microlayer thickness as, δ0 = 1 . 294 
√ 

νL t . 

n formulating the asymptotic bubble growth, the heat flux to the 

ubble was divided into two components; one from the microlayer 

 mL = k L �T /δ0 and one from the liquid side, q sL = k L �T /δsL . The

onduction layer thickness in the liquid side δsL was obtained from 

he homogeneous bubble growth models as δsL = ( 2 /C ) 
√ 

αL t where 

he growth law is R = C Ja 
√ 

αL t . The constant C equals (1 – 2) but

hey left it to be an empirical parameter. They envisioned the bub- 

le growth problem as follows: at early stage of growth the bub- 

le shape is hemisphere due to the strong effect of liquid inertia 

hat flatten the bubble while at a late stage of growth near depar- 

ure the shape becomes spherical due to dominance of buoyancy 

nd surface tension forces. The time after which the bubble shape 

hanges from hemispherical to spherical was given as: 

 

3 / 2 + 

6 σ t 1 / 2 

( 1 −κ) [ CJa ( 1 + N m 

) ] 
2 ρl gαl 

= 

3 

4 

( 1 + κ/ 5 ) CJa ( 1 + N m 

) α0 . 5 
l 

( 1 − κ) g 
, 

κ = ρv /ρl , N m 

= 1 /CHP r 1 / 2 , H = 1 . 294 (77)

For time less than or equal the time predicted from the above 

quation, the bubble grows as a hemisphere with radius predicted 

sing Eq. (78) but for time larger than the above time the bubble is 

 sphere and the radius was given as Eq. (79) . The dimensionless 

arameter N m 

was introduced to estimate the contribution from 

he microlayer; when its value is less than 1, most of the heat en-

ers the bubble from the superheated liquid. 

 = CJa ( 1 + N m 

) 
√ 

αL t (78) 

 = CJa 
√ 

αL t , when N m 

≤ 1 (79) 

. Experimental setup 

.1. Boiling chamber and test section 

Fig. 4a depicts the schematic drawing of the experimental fa- 

ility. It consists of the following: (i) rectangular boiling chamber 

250 × 250 × 300 mm) made of stainless steel with four trans- 

arent visualization windows (158 × 220 mm), (ii) two helical coil 

eat exchangers (one on the top side of the chamber to work as a 

ondenser and one immersed in the liquid to work as a liquid sub- 

ooler), (iii) circulation chiller to supply the cooling water-glycol 

ixture to the condenser and the sub-cooler, (iv) test section in- 

ulation block made of Polyether Ether Ketone (PEEK) that accom- 

odate the copper test piece, see Figs. 4b and 4c , (v) immersion 

artridge heater of power 1500 W to control the liquid bulk tem- 

erature and conduct liquid degassing before the test, (vi) data log- 

er cDAQ from National Instruments, connected to a PC with Lab- 

iew software to record the data, (vii) 1.5 kW DC power supply 

Electro-Automatik) for supplying the heat to the test section, (viii) 

igh-speed video camera (Phantom Miro Lab110) with NAVITAR 

2X zoom lens system, (ix) two T-type thermocouples for measur- 

ng the liquid and vapour temperature and one pressure transducer 

Omega, PX319, 0 – 3.5 bar) for measuring the system pressure. 

The test section was made of oxygen-free copper and was in- 

ulated with a PEEK housing as seen in the exploded view in 
12 
ig. 4b and the assembly drawing in Fig. 4c . The copper test piece

as a diameter of 30 mm and a height of 42.5 mm. It has five holes

f diameter 0.6 mm at 6 mm equal distance along the vertical cen- 

reline to insert five thermocouples (T 1 -T 5 with T 5 below the sur- 

ace), and an O-ring shoulder of size 2.5 mm width and 2 mm 

epth leaving 25 mm diameter as a boiling surface, see Figs. 5b 

nd 5c . The test piece was connected to a copper heater block us- 

ng M10 thread connector (made of copper) and the thermal con- 

act resistance was reduced by a thermal paste, see Fig. 5a for 

he assembly of the test section and the heater block. The heater 

lock has four vertical holes (see Fig. 5c ) with diameter 12 mm 

o accommodate four cartridge heaters (400 W each), which are 

onnected to the DC power supply. The test section was man- 

factured using High Precision Micro Milling Machine (HERMLE 

20U) and the boiling surface was finished by diamond turning 

achine to obtain a smooth surface. The surface was analysed us- 

ng Surface Metrology System (NP FLEX-3D) and the S a value of 

he tested surface was 49.6 nm. The surface wettability was char- 

cterized by measuring the static contact angle for a water droplet 

t room temperature using contact angle measurement instrument 

irst Ten Angstroms (FTA10 0 0 series). The measured contact angle 

n the plain copper surface was 85.5. 

The temperature reading of the five vertical thermocouples was 

lotted versus the vertical distance and the gradient was used to 

alculate the applied flux q using Eq. (80) . The measured temper- 

ture versus distance exhibited linear fitting with a correlation co- 

fficient R 

2 0.99 except the lowest heat flux with R 

2 0.95, which 

erifies the 1D assumption in calculating q . The temperature dif- 

erence between the wall and the saturation temperature (wall su- 

erheat) was calculated using Eq. (81) . The saturation temperature 

as based on the pressure measured using the pressure trans- 

ucer, which matched the measured liquid and vapour tempera- 

ures. Because the last thermocouple ( T 5 ) was located at distance 

y = 3.5 mm below the surface, the wall temperature was cor- 

ected using Eq. (82) to account for this temperature drop. All ther- 

ocouples were calibrated and the maximum systematic error in 

he temperature measurements was ± 0.5 K while the random er- 

or was ± 0.003 K, resulting in combined uncertainty of ± 0.5 K 

0.7% of the reading). The systematic and random errors were cor- 

ected using the calibration equation. The propagated uncertainty 

nalysis was calculated according to the method given in Coleman 

nd Steel [42] and the highest uncertainty in the heat flux was 7%. 

 w 

= −k cu 
dT 

dy 
(80) 

T w 

= T w 

− T sat (81) 

 w 

= T 5 − q w 

�y 

k cu 
(82) 

The experiments were conducted using de-ionized water as 

 test fluid at atmospheric and sub-atmospheric pressures. The 

hermophysical properties of the fluid required for the calcula- 

ions were obtained from the Engineering Equation Solver software 

EES). All experiments were conducted after degassing the liquid 

nd the boiling surface simultaneously. Liquid degassing was con- 

ucted by boiling the liquid vigorously using the 1.5 kW immersion 

eater and surface degassing was conducted by heating the test 

ection until most of the nucleation sites become active (at about 

0% of the critical heat flux value). The degassing process was 

eemed to be complete when the measured system pressure be- 

omes equal to the saturation pressure at the measured liquid tem- 

erature (the measured liquid and vapour temperature are equal). 

fter degassing, the heat supplied to the test section was switched 

ff until the surface cools down to a temperature below the satu- 

ation temperature (all nucleation sites become deactivated). Then, 
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Fig. 4. (a) Schematic drawing of the experimental facility, (b) Exploded view of the test section, and (c) The test section assembly, [9] . 
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he heat flux was increased gradually in small steps until boiling 

tarts. The details of the bubble size measurements are described 

n ref. [9] . 

.2. Experimental validation 

Many researchers validated their experimental system by con- 

ucting boiling experiments and comparing the experimental boil- 

ng curve with the well-known Rohsenow [2] pool boiling correla- 

ion. This approach may not be accurate because boiling depends 

trongly on the surface microstructure. In the present study, exper- 

mental system validation was conducted using natural convection 

ingle-phase experiments rather than boiling experiments. Fig. 6 

epicts the heat flux plotted versus the temperature difference be- 

ween the surface ( T w 

) and the liquid ( T L ). The results were com-

ared with the natural convection correlation reported in Bergman 

t al. [43] , see Eq. (83) . It is obvious that there is a good agree-

ent between the measurements and the prediction with average 

eviation of 8.8%, which verifies the accuracy of the experimental 

easurement system. 

u = 

{
0 . 54 Ra 1 / 4 10 

4 ≤ Ra 
〈
10 

7 
, P r 

〉
0 . 7 

0 . 15 Ra 1 / 3 10 

7 ≤ Ra < 10 

11 
, all P r 

(83) 
13 
. Models assessment 

This section presents and discusses the assessment of the ho- 

ogeneous and heterogeneous bubble growth models presented 

n Section 2 . The models are assessed using experimental data for 

hree pressures (0.15 – 1 bar) and different values of wall super- 

eat. In the current study, the models are assessed based on the 

rend comparison and the mean absolute error percentage (MAE%) 

efined by Eq. (84) . It is worth mentioning that the comparison 

ased on the MAE% may result in a misleading conclusion espe- 

ially when the growth model is used to predict the departure ra- 

ius. For example, a model may predict a trend that crosses the ex- 

erimental data with reasonable MAE% but the error at departure 

ay be very large. Because the latent heat transfer rate depends on 

he cube of departure radius ( Q LH = ( 4 / 3 ) πR 3 ρv f bd h f g ), any small

rror in the departure radius will result in large error in the pre- 

icted heat transfer rate. For instance, a 30% error in the departure 

adius will result in about 120% error in the latent heat transfer 

ate. Accordingly, the MAE%-based comparison will be used as a 

ough guide to infer the performance of the assessed models. 

AE % = 

1 

N 

N ∑ 

1 

∣∣R exp − R ped 

∣∣
R exp 

× 100 (84) 
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Fig. 5. (a) CAD drawing of the copper test section and the heater block connected with M10 copper threaded connector, (b) CAD drawing for test section (top) and copper 

heater block (bottom), and (c) 2D drawing of the test section (top) and heater block, [9] . (Dimensions are in mm). 

Fig. 6. Experimental validation using single-phase natural convection, [9] . 
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.1. Assessment of homogeneous models 

It is important to assess bubble growth models in homogeneous 

oiling because some researchers used these models in the pre- 

iction of bubble departure diameter and heat transfer rates in 
14 
ucleate boiling. Eleven models were included in the comparison 

nd the equations are summarized in Table A1 in the Appendix A . 

igs. 7 , 8 and 9 show the experimental data compared with the 

odels at P = 1, 0.5 and 0.15 bar, respectively. All experimental 

ata indicates that the bubble grows at a faster rate at the begin- 

ing for a short time period then it grows at a much slower rate. 

ahmoud and Karayiannis [9] discussed these results in more de- 

ail and concluded that all experimental data are in the asymptotic 

rowth stage, i.e. heat transfer-controlled growth. In other words, 

he initial rapid growth is not due to the inertia-controlled growth 

tage which is also obvious from the comparison with the Rayleigh 

12] model included in figures. The MAE (averaged over the whole 

rowth period) for each model is summarized in Table 1 for the 

hree tested pressures and superheats while Table 2 summarises 

he error at departure. The following points can be concluded: 

1. Pressure 1 bar: Fig. 7 (a-d) shows the comparison at atmo- 

spheric pressure and superheat 5.6, 9.4, 10 and 15 K. It shows 

that the models by Fritz and Ende [16] (curve 1), Prisnyakov 

[18] (curve 10) and Abdollahi et al. [32] (curve 11) always un- 

derpredict the experimental data with MAE in the range 18.5 –

31.6%, 44.8 – 52.6% and 58 – 63.4%, respectively. These models 

predicted the data at departure (end point in each curve) with 

error 0.1 – 18.7%, 33.4 – 45.8% and 49.8 – 58.7% in the same 

order. The small error at departure predicted by the Fritz and 
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Fig. 7. Evaluation of homogeneous bubble growth models at P = 1 bar. 

Table 1 

Summary of the mean absolute error percentage (MAE%) of homogeneous bubble growth models. 

Model P = 1 bar P = 0.5 bar P = 0.15 bar 

MAE % 

@@Average 

MAE % MAE % MAE % 

5.6K 9.4K 10K 15K 12.7K 17.1K 19.5K 15.1K 16.3K 18.4K 

Fritz and Ende [16] 25.1 23.1 31.6 18.5 86.2 95.4 63.4 283.6 243.5 210 108.04 

Forster and Zuber [14] 15.1 22.5 12 26.8 192.6 205.8 156.7 502.5 439.6 386.9 196.1 

Plesset and Zwick [15] 26.4 31.7 18.14 39.5 222.6 237 183.1 564.4 495 436.9 225.5 

Scriven [11] 27.1 32.9 19 41.5 226.5 242.5 188.4 573.9 504.2 446.4 230.2 

Mikic et al. [20] 21.5 28 14.9 33 184.3 203.9 156.8 304.3 282.3 249.7 148 

Avdeev and Zudin [19] 30.8 35.5 21.14 43.4 229.7 245.6 191 576.9 507 448.9 233 

Theofanous and Patel [21] 21.4 27.9 14.7 32.4 180.5 199.4 152.7 277.9 257.8 225.1 139 

Avdeev and Zudin [19] ( I + A ) 24.9 31 17.4 38.3 196.4 219.2 170.8 335.4 312.5 280.1 162.6 

Forster [33] 24.5 26.4 14.3 30.6 199 211 160.7 505.9 442.5 389.3 200.4 

Prisnyakov [18] 48.6 49.3 52.6 44.8 25.4 30.9 14.3 155.7 129 106.7 65.7 

Abdollahi et al. [32] 59.4 61.7 63.4 58 16 13.5 18.6 92.2 72.1 55.2 51 

15 
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Table 2 

Summary of the error percentage of homogeneous bubble growth models at departure. 

Model P = 1 bar P = 0.5 bar P = 0.15 bar 

MAE % 

@@Average 

MAE % MAE % MAE % 

5.6K 9.4K 10K 15K 12.7K 17.1K 19.5K 15.1K 16.3K 18.4K 

Fritz and Ende [16] 18.7 0.1 18 0.12 132.5 163.4 108 407.8 319.7 291.2 145.9 

Forster and Zuber [14] 27.7 56.9 28.8 56.9 265.3 313.8 226.8 697.8 599.2 514.6 278.8 

Plesset and Zwick [15] 40.8 73 42 73 302.8 356.1 260.4 779.6 626.9 577.7 313.2 

Scriven [11] 41.5 74.6 43.4 75.5 307.6 363.9 267 792.3 638.2 589.6 319.4 

Mikic et al. [20] ( I + A ) 37.4 68.3 38.1 67.7 274.1 329.5 240.3 537.7 451.1 419.6 246.4 

Avdeev and Zudin [19] 45.9 78.1 46.1 77.9 311.6 368 270.6 796.3 641.6 592.8 322.9 

Theofanous and Patel [21] ( I + A ) 37.2 67.9 37.8 67 271 325.8 237 506.1 425.2 392.7 236.8 

Avdeev and Zudin [19] ( I + A ) 41.3 74 43 74.8 289.3 350 257.6 580.4 488.6 458.1 265.7 

Forster [33] 38.5 65.2 35.3 61.8 273.3 320.8 231.8 702.3 562.8 517.5 280.9 

Prisnyakov [18] 45.8 33.4 45.3 33.4 55 75.6 38.7 238.5 179.8 160.9 90.6 

Abdollahi et al. [32] 58.7 49.8 58.8 50 16.5 13.5 4.1 154.2 110.1 95.8 61.2 

 

 

 

Ende model is because the values predicted by the model ap- 

proach the experimental data as time increases while the trend 

of the other two models is nearly parallel to the experimental 

trend. As mentioned in Section 2 , the Fritz and Ende [16] model 

can be considered as a benchmark because it ignored the ef- 

fect of bubble curvature and radial motion on the tempera- 

ture gradient around the bubble. Prisnyakov [18] also ignored 

the effect of bubble curvature but included the expansion work 

in the first law of thermodynamics. This model predicted val- 

ues which are lower than that predicted by the Fritz and Ende 

[16] model but with a trend nearly similar to the experimen- 

tal trend, which means that including the bubble expansion 

work in the energy balance results in a lower growth rate. The 

model by Abdollahi et al. [32] assumed a certain function for 

the instantaneous vapour temperature in the bubble bound- 

ary layer rather than the Clausius–Clapeyron equation used in 

other models. In other words, they assumed that the superheat 

varies with time rather than a fixed superheat as adopted in 

the other models. Additionally, they ignored the effect of bub- 

ble curvature, which is similar to the Fritz and Ende [16] and 

the Prisnyakov [18] models. The model predicted values which 

are lower than the values predicted by [16] and [18] . It is worth

mentioning that the curvature and radial motion have the ef- 

fect of increasing the temperature gradient and thus evapora- 

tion heat flux. Accordingly, as expected, these three models pre- 

dicted values which are significantly lower than the values pre- 

dicted by the other models (curves 2 – 9) in Fig.7 which con- 

sidered the effect of curvature and radial motion. These models 

(curves 2 – 9) exhibited excellent predictions up to about 4 –

6 ms then they overpredicted the data with the deviation in- 

creasing with time. The small differences amongst these models 

is due to the fact that they were based on nearly similar analy- 

sis (solution of momentum and energy equations). Additionally, 

it is obvious that there is no significant difference between the 

complex models that combined the inertial growth stage with 

the asymptotic growth (curves 5, 7, 8) and the simple asymp- 

totic models (curves 2, 3, 4, 6, 9). Based on Fig. 7 , the best per-

forming model in terms of MAE is the Forster and Zuber model 

[14] which predicted the data of the four superheats with MAE 

in the range 12 – 26.8% and error at departure in the range 27.7 

– 56.9%. Additionally, it is obvious from Table 1 , at P = 1 bar,

that some models exhibited low MAE% only for some super- 

heat. Additionally, Table 2 indicates that although some models 

predicted the data with low MAE values, they gave large devia- 

tion at departure. In other words, if these models were used to 

predict the departure radius provided that the departure time 

is known, and were used in the heat transfer models, signifi- 

cant discrepancies will result. 
16 
2. Pressure 0.5 bar: Fig. 8(a-c) show the comparison at 0.5 bar 

and superheat 15.1, 17.2 and 19.5 K. The following observations 

can be drawn from these figures: (i) the slope of the curve 

that represents Rayleigh [12] solution for the inertia-controlled 

growth decreased slightly and agreed with all models only in 

the first 0.5 ms after which a clear deviation was observed. 

None of the experimental data points agreed with the inertia- 

controlled growth as was the case at atmospheric pressure. (ii) 

the models by Prisnyakov [18] and Abdollahi et al. [32] , which 

underpredicted all the data at atmospheric pressure with high 

MAE, exhibited better performance at 0.5 bar. These models 

predicted the data with MAE in the range 14.3 – 30.9% and 13.5 

– 18.6% with error at departure 38.7 – 75.6% and 4.1 – 16.5%, 

respectively. Thus, in terms of the MAE and the error at depar- 

ture, the model by Abdollahi et al. [32] is the best performing 

model at 0.5 bar. Although the Fritz and Ende [16] model ex- 

hibited reasonable performance at atmospheric pressure (MAE 

18.5 – 31.6% and error at departure 0.1 – 18.7%), it significantly 

overpredicted the data with MAE 63.4 – 95.4% and error at de- 

parture 108 – 163.4%. (iii) the models described by curves 2 

– 9, which predicted part of the growth curve at 1 bar very 

well (up to 4 – 6 ms), significantly overpredicted the data at 

0.5 bar in the whole growth period. The MAE of these mod- 

els ranged from 152.7 to 245.6% and error at departure 226.8 –

368%. The poor performance of these models at 0.5 bar com- 

pared to data at 1 bar may be attributed to the change in 

bubble shape. At atmospheric pressure, the bubble shape is 

nearly spherical during most of the growth period which agrees 

with the assumptions adopted in these models, e.g. symmetric 

growth of spherical bubbles. At sub-atmospheric pressure, the 

bubble shape changes from hemisphere in the early stages to a 

flattened spheroidal shape in most of the growth period. Addi- 

tionally, the smaller bubble size and the nearly spherical shape 

at atmospheric pressure may help keep most of the wall ther- 

mal boundary layer around the bubble, which makes the bub- 

ble share part of the uniform superheat assumption in homoge- 

neous models. At sub-atmospheric pressure, the flattened shape 

and large bubble size makes evaporation restricted to small part 

of the bubble surface area near the wall. Another reason could 

be due to the error arising from the Clausius–Clapeyron as- 

sumption in the models (2 – 9), which seems to be valid at 

high pressures. 

3. Pressure 0.15 bar: Figs. 9(a-c) show the comparison at 0.15 bar 

and superheat 15.1, 16.3 and 18.4 K. The following differences 

can be observed compared to the comparison at 1 and 0.5 bar: 

(i) the slope of the inertia-controlled growth curve by Rayleigh 

decreased significantly and the curve crossed the data predicted 

by some of the other asymptotic growth models up to about 
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Fig. 8. Evaluation of homogeneous bubble growth models at P = 0.5 bar. Fig. 9. Evaluation of homogeneous bubble growth models at 0.15 bar. 

17 
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Table 3 

MAE% and error at departure predicted using empirical growth models. 

Model P = 1 bar P = 0.5 bar P = 0.15 bar 

MAE % 

@@Average 

MAE % MAE % MAE % 

5.6K 9.4K 10K 15K 12.7K 17.1K 19.5K 15.1K 16.3K 18.4K 

Cole and Shulman [28] 18.7 26.9 34.9 34.3 40.7 44.4 20.6 109 84.2 61.3 47.5 

Du et al. [30] 18 12.7 9.2 8.6 66.3 69.6 41.6 100.6 83.4 61.9 47.2 

Lee et al. [29] 54.4 17.1 7 16 85.1 73.3 47 52.2 35.4 31.6 41.9 

Benjamin and Balakrishnan [31] 14 31.5 39.9 45.2 15.5 14.7 21.9 14.6 16.4 29.4 24.3 

Abdollahi et al. [32] 61.1 53 34.3 20.4 135.9 124.7 81.6 145.1 118.2 85.5 85.9 

Error at departure 

Cole and Shulman [28] 11.3 3.9 21.9 20.2 75.7 94.4 53.4 175.1 125 103.6 68.5 

Du et al. [30] 22.1 33 7.8 7.8 101.6 121.7 75.2 168.3 128 107.9 77.3 

Lee et al. [29] 57.6 29 11.6 15.7 132.8 144.4 96.3 140 88.1 53 76.9 

Benjamin and Balakrishnan [31] 5.9 9.9 27.9 33.8 26.6 30.1 0.7 25.6 3.8 8.9 17.3 

Abdollahi et al. [32] 59.1 100.9 60.9 47.7 194.3 202.3 130.9 221.8 165.9 133.4 131.7 
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10 ms. (ii) The Prisnyakov [18] and Abdollahi et al. [32] mod- 

els, which predicted the data very well at 0.5 bar, overpre- 

dicted the data with MAE 106.7 – 155.7% and 55.2 – 92.2% and 

error at departure 160.9 – 238.5% and 95.8 – 154.2%, respec- 

tively. (iii) the models described by curves 2 – 9 that exhibited 

nearly similar performance at 1 and 0.5 bar (some models were 

nearly coincident) showed clear differences and separate curves 

at 0.15 bar. For example, models 5, 7 and 9 exhibited nearly 

similar performance at 1 and 0.5 bar while they behaved dif- 

ferently at 0.15 bar. These three models combined the inertia 

and asymptotic growth stages using different assumptions for 

the relation between pressure difference and temperature dif- 

ference. The performance of the models described by curves 1 

– 9 was getting poor with MAE in the range 210 – 573.9% and 

error at departure as 291.2 – 796.3%. 

In conclusion, the evaluation of homogeneous growth models 

emonstrated that some models predict part of the growth curves 

t atmospheric pressure in the early stage of growth up to 4 –

 ms followed by large deviation when the experimental data en- 

ers the slow growth stage. At 0.5 bar, the models by Prisnyakov 

18] and Abdollahi et al. [32] gave reasonable predictions while 

ther models exhibited poor prediction. At 0.15 bar, none of the 

odels could predict the experimental data. Thus, the homoge- 

eous growth models should be used in heterogeneous boiling 

ith some precautions. 

.2. Assessment of heterogenous models 

Because heterogeneous bubble growth models were suggested 

ased on different assumptions regarding the mechanism of heat 

ransfer to the bubble, it is better to segregate the models into the 

ollowing three categories: (i) empirical models which are based 

n fitting a range of experimental data as a function of dimension- 

ess groups. (ii) models based on evaporation from the superheated 

oundary layer around the curved surface of the bubble. (iii) mod- 

ls that include evaporation from the superheated liquid trapped 

n the microlayer underneath the bubble. All heterogeneous bub- 

le growth models included in the comparison are summarized in 

able A2 of the Appendix A . 

.2.1. Empirical models 

The experimental data were compared with five empirical mod- 

ls as seen in Figs. 10 , 11 and 12 for the three tested pressure; 1,

.5 and 0.15 bar, respectively. The comparison includes the models 

uggested by Cole and Shulman [28] , Du et al. [30] , the Lee et al.

29] , Benjamin and Balakrishnan [31] and Abdollahi et al. [32] . The 

tatistical assessment of these models is summarized in Table 3 . 
18 
1. Pressure 1 bar: Fig. 10a indicates, for 5.6 K superheat, that the 

models suggested by Benjamin and Balakrishnan [31] (curve 4), 

Du et al. [30] (curve 2), and Cole and Shulman [28] (curve 1) 

predict the experimental data and trend very well with MAE 

14, 18 and 18.7% and error at departure 5.9, 22.1 and 11.3%, 

respectively. As presented in Section 2 , the Cole and Shulman 

[28] and the Benjamin and Balakrishnan [31] models predict 

that R ∝ t 1 / 2 and the exponent of Ja was 0.6 and 0.5, respec-

tively. This may explain the small difference between the two 

models. The model by Du et al. [30] predicts that the time 

exponent depends on system pressure (the exponent is 0.271 

at 1 bar), which is smaller than the 0.5 value in [28] and 

[31] and the exponent of Ja was 0.79, which is larger compared 

to [28] and [31] . This explains why this model predicts val- 

ues larger than those predicted by [28] and [31] . The model by 

Abdollahi et al. [32] (curve 5) underpredicted the data signifi- 

cantly with MAE 61.1% and error at departure 59.1% while the 

Lee et al. [29] model (curve 3) overpredicted the data signifi- 

cantly with MAE 54.4% and error at departure 57.6%. Fig. 10b in- 

dicates, for 9.4 K, that the Cole and Shulman [28] and the 

Benjamin and Balakrishnan [31] models exhibited nearly sim- 

ilar performance and underpredicted the data with MAE 26.9 

and 31.5% and error at departure 3.9 and 9.9%, respectively. The 

small error at departure is because the values predicted using 

these models approach the experimental data towards the end 

of the curve. The Du et al. [30] model exhibited excellent pre- 

dictions up to about 7 ms after which the model deviated from 

the experimental data with overprediction by MAE 12.7% and 

error at departure 33%. The small MAE is due to the partial 

agreement with the data over part of the growth period. The 

Lee et al. [29] model behaved nearly similar to the Du et al. 

[30] model except that the model predicts a slower growth rate. 

The MAE of this model was MAE 17.1% and the error at depar- 

ture was 29%. The Abdollahi et al. [32] model exhibited small 

deviation at the beginning then the deviation increased signifi- 

cantly with time with MAE 53% and error at departure 100.9%. 

At 10 K superheat, Fig. 10c shows that the performance of the 

Cole and Shulman [28] and the Benjamin and Balakrishnan 

[31] models was nearly similar to Fig. 10b where they under- 

predicted the data with MAE 34.9 and 39.9%, respectively and 

error at departure 21.9 and 27.9%. The Lee et al. [29] model ex- 

hibited excellent agreement in terms of values and trend with 

the lowest MAE of 7% and error at departure 11.6%. Also, the Du 

et al. [30] model gave excellent prediction with MAE of 9.2% 

although the trend was slightly different compared to the ex- 

perimental data. The Abdollahi et al. [32] model showed the 

same performance as Fig. 10b but with a lower MAE value of 
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Fig. 10. Assessment of empirical heterogeneous bubble growth models at P = 1 bar. 

 

 

34.3% and error at departure 60.9%. Fig. 10d indicates, for the 

highest superheat, that the difference between the Cole and 

Shulman [28] and the Benjamin and Balakrishnan [31] mod- 

els is getting large compared to Figs. 10 (a-c) for lower super- 

heat. They underpredict the data with MAE 34.3 and 45.2% and 

error at departure 20.2 and 33.8%, respectively. The Lee et al. 

[29] model underpredicted the data for time below 10 ms then 

overpredicted the data up to departure (the model crosses the 

data) with MAE of 16% and error at departure 15.7%. The Du 

et al. [30] model exhibited excellent prediction up to 2 ms 

then slightly underpredicted the data with excellent predic- 

tion towards the end of the growth period. The MAE of this 

model was 8.6% and the error at departure was 7.8%. Contrary 

to the large MAE predicted by the Abdollahi et al. [32] model 

at low superheats, it showed excellent prediction up to 6 ms 

then overpredicted the data with deviation that increases with 

time. Due to the partial agreement, the MAE decreased to 20.4% 

while the error at departure was 47.7%. Based on Table 3 , it may

be concluded that the best performing model at atmospheric 

pressure is the Du et al. [30] model in terms of the MAE while
19 
based in the error at departure the Cole and Shulman [28] has 

the lowest deviation. 

2. Pressure 0.5 and 0.15 bar: Figs. 11 and 12 depict the com- 

parison at 0.5 and 0.15 bar, respectively. The behaviour of all 

models was similar to that occurred at 1 bar except that the 

trend predicted by the Lee et al. [29] model has changed. Af- 

ter the early stage of growth, it predicted slow growth rate at 

atmospheric pressure, which was nearly similar to the exper- 

imental data. By contrast, at 0.5 and 0.15 bar, the model pre- 

dicted a faster growth rate compared to the atmospheric pres- 

sure case, i.e. it was nearly linear at 0.15 bar. The Benjamin and 

Balakrishnan [31] exhibited the lowest MAE for the three su- 

perheats at 0.5 bar with values in the range 14.7 – 22% and 

error at departure 0.7 – 30%. The performance of this model 

did not change significantly at 0.15 bar where the MAE ranged 

from 16.4 to 29.4% and the error at departure was 3.8 – 25.6%. 

The Cole and Shulman [28] model gave a MAE value below 30% 

only for the 19.5 K superheat at 0.5 bar. All other models gave 

MAE in the range 40.7 – 135.9% at 0.5 bar and 31.6 – 145.1% at 

0.15 bar. Based on Table 3 , the model by Benjamin and Balakr- 
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Fig. 11. Assessment of empirical heterogeneous bubble growth models at 

P = 0.5 bar. 

Fig. 12. Assessment of empirical heterogeneous bubble growth models at 

P = 0.15 bar. 

20 
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ishnan [31] exhibited the best overall performance for the three 

examined pressures at different superheat. It predicted all data 

with MAE 24.3% and error at departure 17.3%. The better per- 

formance of this model may be attributed to the inclusion of 

the Archimedes number, which considers the effect of gravity, 

which was ignored by all other models. 

.2.2. Boundary layer-based models 

Seven models [ 20 , 23–25 , 33–35 ] for bubble growth due to evap-

ration from the superheated liquid in the boundary layer around 

he bubble are evaluated in this section. Because bubble growth 

ate in uniform superheat represents the upper limit of growth, 

t is expected that the effect of nonuniform superheat is to re- 

uce the growth rate in heterogeneous boiling. Zuber [23] as- 

umed spherical bubble which is initially fully surrounded with 

he wall thermal boundary layer of uniform thickness and super- 

eat ( T sL ≈ T w 

). When evaporation starts, the bubble surface cools 

own to the saturation temperature T sat and thus part of the heat 

ill be conducted towards the bubble surface with temperature 

ifference ( T w 

− T sat ) while the other part will be conducted to- 

ards the liquid bulk with temperature difference ( T w 

− T Lb ) due 

o the nonuniform liquid superheat. If the liquid bulk tempera- 

ure T b equals the superheated wall temperature (uniform super- 

eat), the model is reduced to bubble growth in homogeneous 

oiling. This model predicts that the R ∝ t 1 / 2 . Forster [33] con- 

idered the effect of nonuniform superheat by assuming that the 

ubble grows in a wall thermal boundary layer in which the liq- 

id superheat decreases exponentially in the direction normal to 

he boiling surface. This model predicts that the R ∝ t 1 / 2 when the 

ubble is inside the wall thermal boundary layer and the relation 

hanges to R ∝ t 1 / 4 when it protrudes outside the boundary layer. 

an and Griffith [24] assumed that the bubble grows as a trun- 

ated sphere and is fully surrounded with the wall thermal bound- 

ry layer, which is formed periodically during the waiting period. 

he superheat was assumed to vary linearly in the bubble thermal 

oundary layer. It is difficult to infer the time exponent from their 

odel but in the case of uniform superheat and spherical bubble, 

he model was reduced to homogenous growth models with time 

xponent 0.5. Van Stralen [25] assumed that the bubble is a trun- 

ated sphere similar to [24] but is partially surrounded with the 

uperheated boundary layer. Contrary to the above models which 

ssumed that the superheat does not vary with time during the 

hole bubble growth period, Van Stralen [25] assumed that bub- 

le growth is a relaxation phenomenon, i.e. the superheat around 

hat part of the bubble decreases exponentially during a relaxation 

ime (delay time), which was taken as the departure time. He as- 

umed that the bubble grows with a fixed shape with a fixed con- 

act shape angle of 60 °. In conclusion, he modified the homoge- 

eous growth model to account for partial heating and the time 

ependant superheat. The bubble height which is surrounded with 

he superheated layer “relaxation layer” was related to the shape 

ngle. Because this angle was assumed fixed, the part of the bubble 

urrounded with the boundary layer can be obtained at any time, 

ecommended at departure. This model predicts that in the early 

tage, the radius follows the relation R ∝ t 1 / 2 and the exponent de- 

reases rapidly with time. The model was also based on satisfying 

hat the growth velocity tends to zero towards departure. Mikic 

t al. [20] gave a model assuming that a spherical bubble forms at 

he end of the waiting period due to evaporation from superheated 

iquid in the boundary layer after subtracting the conduction heat 

ux towards the liquid bulk. This principle is nearly similar to Zu- 

er [23] but it considers the effect of waiting time. When the wait- 

ng time is zero or when the liquid bulk temperature equals the 

uperheated wall temperature (uniform superheat), the model re- 

uces to the Plesset and Zwick [15] model. Finally, they combined 

his asymptotic solution with the Rayleigh solution to consider the 
21 
nertia-growth stage. Lesage et al. [34] assumed spherical bubble 

onnected with the surface with a cylindrical neck and corrected 

he temperature profile in the wall thermal boundary layer used 

y Mikic et al. [20] to account for the premise that the bubble 

oundary layer thickness should be smaller than the wall ther- 

al boundary layer thickness adopted by all researchers. Cho and 

ang [35] assumed that the bubble grows as a truncated sphere 

rotruding outside the wall thermal boundary layer in which the 

iquid temperature was assumed to decrease linearly. The bubble 

as assumed to grow due to evaporation from that curved part of 

he bubble surface immersed in the wall thermal boundary layer. 

hey also included a factor determined empirically to account for 

ontribution from the microlayer. In their model, they identified a 

ritical time after which the bubble penetrates the boundary layer. 

he overall performance of these models is summarized in Table 4 . 

Fig. 13a indicates, for the lowest superheat, that six models pre- 

icted the data very well with MAE below 30%. These models are 

rranged as follows: (1) the Mikic et al. [20] model (MAE 3.2% and 

r d 4.1%). It is worth mentioning that the waiting time required 

or this model was predicted from the Han and Griffith [24] model. 

2) the Lesage et al. [34] model (MAE 5.7% and Er d 8.9%). As men-

ioned above, this model was based on the temperature distribu- 

ion used in the Mikic et al. [20] corrected by the effective bubble 

oundary layer thickness. (3) the Zuber [23] model (MAE 7.3% and 

r d 14.7%). (4) the Han and Griffith [24] model (MAE 12.2% and Er d 
.5%). (5) the Forster [33] model (MAE 19.7% and Er d 12.5%). (6) the 

an Stralen [25] model (MAE 23.9% and Er d 3.6%). This model pre- 

icted rapid growth with large deviation at the beginning then a 

ignificant decrease in bubble growth rate with small deviation, 

.g. the growth rate approaches zero near departure. The model 

y Cho and Wang [35] underpredicted the data significantly at this 

uperheat with MAE 46% and error at departure 43.7%. The under- 

rediction may be attributed to the fact that the model assumes 

ubble growth due to evaporation at the curved part of the bubble 

urface immersed in the wall thermal boundary layer. This is con- 

rary to the other models that considered the bubble is surrounded 

ith the wall thermal boundary layer. The same conclusion can be 

eached in Figs. 13b , c , d for superheat 9.4, 10 and 15 K where the

ame six models predicted the data very well with better perfor- 

ance for the Van Stralen [25] model, see Table 4 for the error val-

es. The only exception was the model by Forster [33] which un- 

erpredicted the data with MAE 37.7%. It is obvious that this model 

hows a clear jump after certain time (see curve 2). This time cor- 

esponds to the moment when the bubble protrudes outside the 

all thermal boundary layer (according to the model the exponent 

f time changes from 0.5, when the bubble grows inside the wall 

oundary layer, to 0.25, when it grows outside the wall boundary 

ayer). Additionally, this model described the bubble growth using 

ne continuous function, i.e. smooth transition between the two 

tages (inside and outside the wall boundary layer). It is worth 

entioning that the fraction of the bubble surface which is sur- 

ounded with the relaxation layer was supposed to be less than 

r equal to 1 according to the Van Stralen [25] model. However, 

he predicted value at departure as recommended by the model 

as in the range 1.6 – 2. In other words, the bubble is fully sur- 

ounded by the wall thermal boundary layer at atmospheric pres- 

ure. This is justified by the perfect prediction in terms of values 

nd trend by this model. Generally, it is obvious that most of the 

oundary-layer based models predicted the data at atmospheric 

ressure very well. 

Fig. 14 shows the comparison at 0.5 bar and superheat 12.7, 

7.1 and 19.5 K. Contrary to the atmospheric pressure case that 

xhibited good performance for all models except the Cho and 

ang [3] model, only three models exhibited excellent agreement 

t 0.5 bar. These models are the Van Stralen [25] , the Forster 

33] and the Cho and Wang [35] models which predicted the data 
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Table 4 

MAE% and error at departure predicted using boundary layer-based models. 

Model P = 1 bar P = 0.5 bar P = 0.15 bar 

MAE % 

@@Average 

MAE % MAE % MAE % 

5.6K 9.4K 10K 15K 12.7K 17.1K 19.5K 15.1K 16.3K 18.4K 

Zuber [23] 7.3 15.2 8.8 12.9 177 201.6 144.5 462 388.6 339.8 171.3 

Forster [33] 19.7 8.9 21.1 37.7 29 17.6 18.1 40.7 20 30.2 24.3 

Han and Griffith [24] 12.2 15.4 20.1 14.2 111 132.2 100.1 341.2 292.7 254.3 129.3 

Van Stralen [25] 21.5 3.2 5.2 10.5 22.1 21.7 20.9 18.8 22.9 15.6 16.2 

Mikic et al. [20] 3.2 7.7 14.7 9.7 107 147.4 68.2 333.7 281.3 228.8 118.5 

Lesage et al. [34] 5.7 7.7 18.2 14.1 89.7 133.9 95.2 304.2 253.5 203.7 164.8 

Cho and Wang [35] 46 48.6 53.9 53 13 19.4 9.1 53.8 28.3 20.7 34.6 

Error at departure ( Er d ) 

Zuber [23] 14.7 39.5 9.2 12.5 237.2 258 192 620.2 467.4 427.1 225.4 

Forster [33] 12.5 1.4 21.1 38.4 67.2 24 10 40 4.5 14.3 23.3 

Han and Griffith [24] 5.5 15.7 4.6 6.6 162.3 212 154.4 480.5 379.8 374.4 179.6 

Van Stralen [25] 3.6 0.2 2.3 5.2 22.8 25.1 18.8 29.9 24 21.4 15.3 

Mikic et al. [20] 4.1 13.1 8 5.4 113 177 67.2 369 271.4 224.8 122.9 

Lesage et al. [34] 8.9 6.6 13.6 12 141.2 153.8 100.8 326.5 235.5 192 195.1 

Cho and Wang [35] 43.7 34.8 46.9 48.1 24.8 36.5 2.6 67.6 19 3.4 32.7 

Fig. 13. Assessment of superheated layer-based models at P = 1 bar. 

22
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Fig. 14. Assessment of superheated layer-based models at P = 0.5 bar. Fig. 15. Assessment of superheated layer-based models at P = 0.15 bar. 
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Table 5 

MAE% and error at departure predicted using microlayer-based models. 

Model P = 1 bar P = 0.5 bar P = 0.15 bar 

MAE % 

@@Average 

MAE % MAE % MAE % 

5.6K 9.4K 10K 15K 12.7K 17.1K 19.5K 15.1K 16.3K 18.4K 

Cooper [26] 21.6 27.9 16.5 25.8 177.6 206.7 164.6 359.5 324.8 283.4 160.8 

Van Ouwerker [37] 25.8 24.1 31.4 24.7 81.9 99.2 70.5 272.3 239.5 206.5 107.6 

Labuntsov and Yagov [38] 21.5 31.4 39.1 39.2 32 37.7 17.6 123.3 105.1 83.3 53 

Van Stralen et al. [27] 39.1 38.6 44.4 39.2 50.2 66 43.2 163.2 143.4 119.6 74.7 

Van Stralen et al. [27] (BL + ML + I ) 21.5 3.2 5.2 10.5 22.1 27.7 17.6 18.8 22.9 15.6 16.5 

Mei et al. [39] 42 22.2 11.5 12.6 86.8 77.5 43 81.7 60.7 35.2 47.3 

Prisnyakov [18] 41.1 41.3 46.7 39.8 40.4 55.8 35.4 286.2 171.3 144.8 90.3 

Buyvich and Webbon [41] 6.9 17 16.9 32.6 23.5 29.2 24.7 209.1 185.8 171.9 71.8 

Error at departure ( Er d ) 

Cooper [26] 25.3 67.7 38.5 55.7 246.5 313 236.7 504.6 419 383.9 229.1 

Van Ouwerker [37] 19.5 0.3 17.7 8.1 127.1 168.1 117.1 390 318.7 286.8 145.3 

Labuntsov and Yagov [38] 14.6 9.9 27 26.3 64.8 85.4 47.8 194 150.6 131.1 75.2 

Van Stralen et al. [27] 34.9 19.3 33.4 25.1 57.8 123.5 82.3 246.4 197.4 177.3 99.7 

Van Stralen et al. [27] (BL + ML + I ) 3.6 0.2 2.3 5.2 22.8 25.1 47.8 29.9 24 21.4 18.2 

Mei et al. [39] 58.9 56.3 25.5 16.8 133.2 139 82 139.1 96.4 70.6 81.8 

Prisnyakov [18] 37.4 22.8 35.8 26.1 75.7 110.9 73.8 192.4 233 210.9 101.9 

Buyvich and Webbon [41] 12.1 39 2.4 16.1 17.5 20.7 1.6 306.6 249.1 243.1 90.8 
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ith MAE 9 – 13.9%, 17.6 – 19% and 9.1 – 19% with error at de- 

arture 18.8 – 25.1%, 10 – 67.2% and 2.6 – 36.5%, respectively. The 

uber [23] , the Han and Griffith [24] , the Mikic et al. [20] and the

eseage et al. [34] overpredicted the data significantly. The same 

onclusion can be reached in Fig. 15 at 0.15 bar. It may be con-

luded that the model by Van Stralen [2] predicted the data very 

ell at all pressures. It worth noting that the growth curve pre- 

icted by the Cho and Wang [35] model exhibited a sudden drop 

t a certain time for some conditions (see Fig.14 b, c). This drop is

ue to the fact that this model gave two equations for the bubble 

rowth problem, see Eq. (49) . The first equation describes bubble 

rowth when the bubble size is smaller than the thickness of the 

all thermal boundary layer, while the second equation describes 

ubble growth when the bubble protrudes outside the wall ther- 

al boundary layer. They gave an expression for t δ (see Eq. (49) ), 

he critical time at which the bubble protrudes outside the wall 

hermal boundary layer. The appearance of the sudden drop in the 

rowth curve at some conditions and the absence at some other 

onditions is due to the fact that the critical time depends on fluid 

roperties and wall superheat. Thus, when the critical time is very 

mall (less than about 1 or 2 ms), we only see one equation and

annot detect the sudden drop observed at some conditions. 

.2.3. Models including microlayer evaporation 

This section compares 8 models that attributed bubble growth 

ither to microlayer evaporation only such as Cooper [26] , Van 

tralen et al. [27] , and Mei et al. [39] or considering the microlayer

s one of the contributing mechanisms such as Labuntsov and 

agov [38] , Van Stralen et al. [27] , van Ouwerkerk [37] , Prisnyakov

18] and Buyvich and Webbon [41] . Figs. 16 , 17 and 18 shows the 

omparison at pressure 1, 0.5 and 0.15 bar, respectively. The sta- 

istical performance of each model is summarized in Table 5 . The 

ollowing points can be concluded from this comparison for each 

odel: 

1. The Cooper [26] (curve 1) exhibited excellent agreement with 

the experimental data up to 4 – 6 ms at atmospheric pressure, 

see Fig. 16 . After this time, the model overpredicted the data 

with deviation increasing with time. The partial agreement of 

this model at atmospheric pressure resulted in low MAE (16.5 

– 27.9%) while the error at departure was large (25.3 – 67.7%). 

This model has been discussed extensively in Mahmoud and 
24 
Karayiannis [9] and the excellent agreement up to 4 – 6 ms 

was coincident with the end of the expansion stage (maximum 

contact radius), i.e. end of microlayer evaporation. Additionally, 

this good agreement was due to the fact that the initial mi- 

crolayer thickness was predicted based on 0.5 time exponent, 

which is similar to the experimental exponent in this stage. In 

other words, the microlayer model should be compared with 

the data up to the end of microlayer evaporation (expansion 

stage) and the overprediction is expected because the model 

did not consider the growth during the departure stage. It is 

worth mentioning that, as discussed in the introduction sec- 

tion, Cooper [26] gave another two models that include con- 

tribution from microlayer evaporation and the boundary layer. 

In his formulation, the contribution was conducted in an addi- 

tive manner. Because the comparison indicated that the micro- 

layer only agrees partially at low time and overpredict the val- 

ues at large times, it is expected that the other additive models 

will overpredict the data significantly. Thus, they were not in- 

cluded in the current comparison. Figs. 17 and 18 demonstrates 

that the Cooper [26] model exhibited poor performance at sub- 

atmospheric pressure with significant overprediction. This can 

be attributed to the fact that the initial microlayer thickness 

given in Cooper model represents a special case when the time 

exponent is 0.5. In fact, the initial microlayer thickness depends 

on the time exponent during the early stage of growth, which is 

expected to be larger than 0.5 in the first few milliseconds, see 

ref. [9] for more details. Accordingly, to generalize the Cooper 

microlayer evaporation model, a general expression for the ini- 

tial microlayer thickness is required. 

2. Van Ouwerker [37] solved the conjugate heat transfer problem 

including contribution from the microlayer and boundary layer 

without neglecting the heat capacity of the liquid in the mi- 

crolayer as was done by Cooper [26] . This model (curve 2) al- 

ways underpredict the experimental data with a trend that ap- 

proaches the data towards the end of the growth period. It did 

not show excellent agreement in the first 4 – 6 ms as was the 

case by Cooper [26] model and gave reasonable prediction at 

atmospheric pressure as seen in Fig. 16 . It predicted the data 

with MAE in the range 24.1 – 31.4% and low error at departure 

0.3 – 19.5%. It is worth mentioning that this model was based 

on assuming that the bubble growth follows the law, R = βt 1 / 2 . 

Similar to the Cooper [26] model, the performance of the Van 
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Fig. 16. Assessment of microlayer-based models at P = 1 bar. 

 

 

Ouwerker [37] was poor at sub-atmospheric pressure with large 

overprediction. 

3. Labuntsov and Yagov [38] presented a semi-empirical model 

that combines evaporation from the thin microlayer in the con- 

tact area and the thick layer below the bubble in the wedge 

region. They lumped all physical unknowns into empirical con- 

stants that were determined from experimental data. The com- 

parison of this model (curve 3) indicates that the model al- 

ways underpredicts the data at atmospheric pressure as seen in 

Fig. 16 with MAE 21.5 – 39.2% and error at departure 9.9 – 27%. 

At 0.5 bar, the model achieved some good agreement with the 

data in the early stage of growth then overpredicted the data 

as time increases, as seen in Fig. 17 . The MAE of this model at

0.5 bar was 17.6 – 37.7% and error at departure 47.8 – 85.4%. 

The model overpredicted the data significantly at 0.15 bar dur- 

ing the whole growth period as seen in Fig. 18 . In conclusion, 

the empirical constants should be optimized for the model to 

be more general. 

4. Van Stralen et al. [27] suggested a model for bubble growth due 

to microlayer evaporation only. The microlayer thickness was 

obtained based on heat transfer over flat plate rather than solv- 

ing the Navier-Stokes equations as adopted by Cooper [26] and 

Van Ouwerker [37] . The solution was obtained for a case when 

the time exponent is 0.5. The model (curve 4) underpredicted 

all the data at atmospheric pressure as seen in Fig. 16 with 
25 
MAE in the range 38.6 – 44.4% and error at departure 19.3 –

34.9%. Contrary to the underprediction at atmospheric pressure, 

the model overpredicted the data at 0.5 and 0.15 bar as seen 

in Figs. 17 and 18 . Again, the reasonable performance at atmo- 

spheric pressure and the poor performance at sub-atmospheric 

pressure may be due to the assumption of 0.5 exponent in 

the growth law, which was used to estimate Reynolds num- 

ber to obtain the microlayer thickness. Again, for the model to 

be more general, the time exponent should be formulated as a 

function of operating conditions. The same authors [27] com- 

bined their microlayer evaporation model with the relaxation 

boundary layer model suggested by them as discussed in the 

previous section and incorporated the inertia-controlled growth 

in one model. This model is described here as curve 4 ∗. In this

model, the contribution of each mechanism was combined sim- 

ilar to the total electric resistance connected in parallel, rather 

than the additive approach adopted by other researchers. In 

other words, the model prediction approaches the most dom- 

inant mechanism. This model exhibited excellent prediction at 

all pressures where it gave MAE 3.2 – 21.5% at 1 bar, 17.6 –

27.7% at 0.5 bar and 15.6 – 22.9% at 0.15 bar. The over MAE 

of this model is 16.5%. It is worth noting that the performance 

of this model that combines all mechanisms in a complex way 

was not better than the simple “relaxation boundary layer”

model suggested by them and discussed in the above section. 
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Fig. 17. Assessment of microlayer-based models at P = 0.5 bar. 

Fig. 18. Assessment of microlayer-based models at P = 0.15 bar. 
5. Mei et al. [39] solved the conjugate heat transfer problem in- 

cluding microlayer evaporation only as a contributing mech- 

anism for bubble growth. The model was sharing the func- 

tional form of the initial microlayer thickness given by Cooper 

[26] except that they left the front constant to be determined 

empirically. The difference between the Cooper [26] and the 

Mei et al. [39] model was small at low superheat then the dif- 
26 
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ference is getting larger as superheat increases (the values by 

the Mei et al. model are always smaller than those predicted by 

the Cooper model). Fig. 16 indicates that the model gave rea- 

sonable prediction at atmospheric pressure except the lowest 

superheat with MAE in the range 11.5 – 42% and error at de- 

parture 16.8 – 58.9%. Similar to Cooper model, the model over- 

predicted the data significantly at 0.5 and 0.15 bar as seen in 

Figs. 17 and 18 . 

6. Prisnyakov [18] included the microlayer contribution in a dif- 

ferent way. He did not model the initial microlayer thickness 

as was done in the above models. Instead, he applied the first 

law of thermodynamics and assumed that the total heat trans- 

fer rate entering the bubble is the sum of the heat flux at the 

contact region and the heat flux at the curved part of the bub- 

ble. The heat flux in the contact region was assumed equal to 

the wall heat flux. Thus, his model depends on the average 

wall heat flux. At atmospheric pressure as seen in Fig. 16 , the 

model performance was nearly similar to the microlayer model 

given by Van Stralen et al. [27] , i.e. it always predicts slightly 

lower values at all superheats. It underpredicted the experi- 

mental data by MAE 39.8 – 46.7% and error at departure 22.8 –

37.4%. The model overpredicted the data at 0.5 and 0.15 bar as 

seen in Figs. 17 and 18 . 

7. Buyvich and Webbon [41] applied the mechanical energy equa- 

tion rather than the momentum equation and assumed bub- 

ble growth due to microlayer and boundary layer evaporation. 

The microlayer thickness was obtained from the Navier-Stokes 

equation and the boundary layer evaporation was modelled us- 

ing the homogeneous growth model. It was assumed that the 

bubble has different shapes during its growth period, i.e. the 

shape changes from hemispherical to sphere. Thus, they could 

give an equation to predict the time at which the transition 

from shape to shape occurs. Fig. 16a indicates for the low- 

est superheat case that the model (curve 7) is one continu- 

ous curve indicating that the bubble grows with hemispheri- 

cal shape. Increasing the superheat, as seen in Figs. 16b - c , the

model is a two-part curve, where the bubble grows as a hemi- 

sphere for few milliseconds then the shape changes to a sphere. 

The two-part curve became very clear in Fig. 17 . In other words, 

the sudden drop observed at some conditions is due to the 

two different equations used in the description of the bubble 

growth in this model. The model exhibited reasonable predic- 

tion at 1 and 0.5 bar as seen in Figs. 16 and 17 with MAE in

the range 6.9 – 32.6% and 23.5 – 29.2% respectively and er- 

ror at departure 2.4 – 39% and 1.6 – 20.7%, in the same order. 

On the contrary, at the lowest pressure, Fig. 18 demonstrates 

that the model overpredict the data significantly. This can be 

attributed to the fact that the predicted time at which transi- 

tion from hemispherical to spherical growth occurs is extremely 

larger than the bubble growth period at the lowest pressure. 

This is obvious from observing one continuous curve that repre- 

sent the hemispherical growth stage. At 0.5 bar, this transitional 

time occurred after nearly 50% of the growth period while 

the hemispherical growth period was much shorter at atmo- 

spheric pressure. It is worth mentioning that this model left the 

growth constant to be determined empirically without any rec- 

ommendation. For the sake of comparison, a value π/ 2 , which 

is in the mid-range was used (it should be between 1 and √ 

3 ). 

It may be concluded from the above comparison that the 

icrolayer evaporation only or combined with boundary layer 

vaporation could not explain the bubble growth at the three 

xamined pressures. There is only some partial agreement at 

ome experimental conditions. This is contrary to the boundary 

ayer models discussed above, which seems to explain the bubble 
27 
rowth in nucleate boiling much better than the microlayer-based 

odels. 

. Recommendation 

Based on the results of evaluating 11 models for bubble growth 

n homogeneous boiling and 20 models in heterogeneous boil- 

ng, only the “relaxation boundary layer” model suggested by Van 

tralen [25] predicted all the data very well in terms of trend and 

alues. It predicted all data with MAE 16.2% and error at departure 

f 15.3%. The limitation of this model is that the time and radius 

t departure must be known in advance. In the above comparison, 

he departure time and radius were taken directly from the exper- 

mental data. Accordingly, for the Van Stralen model to be gener- 

lized, accurate models for bubble departure radius and time are 

eeded. To get an idea about the effect of superheat and pressure 

n departure radius and time, the experimental data are plotted 

n Fig. 19 . The figure indicates that for a fixed pressure, the de- 

arture radius and departure time increase as superheat increases. 

dditionally, at the lowest pressure (0.15 bar), the departure radius 

nd time increase at a higher rate compared to the 1 and 0.5 bar. 

he increase of departure radius with superheat is due to the in- 

rease in the excess enthalpy in the boundary layer around the 

ubble which increases the bubble growth rate and size. The in- 

rease in departure time with superheat can be attributed to the 

act that as the superheat increases the initial bubble growth rate 

ecomes larger and thus the bubble grows with a hemispherical 

hape with larger inertia force for a longer period, which means 

hat the size of the bubble contact area becomes larger, see Mah- 

oud and Karayiannis [9] for more details. Accordingly, the surface 

ension force which keep the bubble attached to the surface dom- 

nates for a longer period and thus the bubble takes time for the 

uoyancy force to overcome the attaching forces (surface tension 

nd inertia). 

As mentioned above, to generalize the Van Stralen [25] model, 

odels for departure radius and time are required. Accordingly, 

t is important to evaluate existing bubble departure models in 

he present section using the experimental data. Mohanty and Das 

44] and Mahmoud and Karayiannis [10] conducted a review study 

hich included a section on bubble dynamics and summarized the 

ubble departure models. Due to space limitation, the interested 

eader is referred to these references for more details about the 

quations. In this section, 19 models were selected for comparison 

ith the experimental bubble departure radius and the results of 

omparison are summarized in Table 6 . It demonstrated that five 

odels [ 46 , 49 , 51 , 53 , 56 ] predicted the departure radius very well

t atmospheric pressure while none of the models could predict 

he departure radius at 0.5 and 0.15 bar. 

In literature, there is no correlations/models to predict the bub- 

le departure time directly. Instead, the departure time was corre- 

ated with the departure diameter in the form f D 

n 
d 
. It is expected 

hat the predicted departure time will not be accurate as well, 

ince the comparison in Table 6 indicated that there is no general 

odel for the prediction of bubble departure diameter. It may be 

oncluded from this discussion that there is no general model for 

he prediction of bubble departure diameter and departure time. It 

s well known that bubble departure depends on the instantaneous 

ocal forces acting on the bubble during its growth, which are dif- 

cult to determine precisely. These forces depend significantly on 

he operating conditions and it is difficult to have a phenomeno- 

ogical model that capture the departure phenomenon at all pres- 

ures. Accordingly, the bubble departure data in this study were 

orrelated for the sake of recommending a closed form model to 

redict the bubble growth rate, departure diameter and departure 

ime (frequency). The best fit equation for the prediction of bubble 
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Fig. 19. Effect of pressure and superheat on (a) departure radius and (b) departure time. 

Table 6 

Evaluation of bubble departure models. 

Model P = 1 bar P = 0.5 bar P = 0.15 bar 

MAE % 

@@Average 

MAE % MAE % MAE % 

5.6K 9.4K 10K 15K 12.7K 17.1K 19.5K 15.1K 16.3K 18.4K 

Saini et al. [46] 15.6 28 2 5.4 188.5 159.2 98.2 321 213.9 163.9 119.57 

Fritz [47] 21.8 19.6 39.8 62.8 26.3 50.8 67 69.3 78.8 84.1 52.03 

Ruckenstein [48] 98.6 98.2 98.5 98.5 94.8 94.9 95.9 89.7 92.1 93.1 95.43 

Cole [49] 11.6 2.1 22 27.7 129.1 105.9 57.5 256.4 165.7 123.4 90.14 

Cole and Rohenow [50] 27.9 15.6 36.8 60.9 60.9 7.4 28 152.7 74.5 30 49.47 

Kipper [51] 12.6 15 6.4 0.7 254.3 251.5 180.9 701.8 513.3 436.8 237.33 

Van Stralen [52] 86.1 87.3 90.1 92 79.4 83.3 87.8 81 86.2 88.8 86.2 

Stephan [53] 4.6 12.1 10.9 18.1 172.2 144.2 86.8 376.1 255 198.5 127.85 

Kutateladze and Gogonin [54] 59.5 70.2 77.4 84.4 62.6 721.3 80.3 69.9 78.5 83.1 138.72 

Jensen and Memel [55] 109.3 52.3 15.7 20.3 92.8 45.7 3.7 75.2 26.5 1.2 44.27 

Zeng et al. [56] 9.4 19.2 3.1 2.9 266.9 264 190.9 730.6 535.4 456.2 247.86 

Lee et al. [29] 41.3 8.9 7.6 28.5 481.1 603 513.2 2684.3 2141.1 2026.5 853.55 

Kim and Kim [57] 55.9 47.7 15.5 5.1 160.9 114.5 57.6 173.4 99.3 61.5 79.14 

Phan et al. [58] 48.7 66.1 74.6 84.3 68.9 79.3 86.1 87.1 91.1 93.3 77.95 

Phan et al. [59] 52.2 68.5 76.4 85.4 74.1 82.72 88.4 91.1 93.9 95.4 80.812 

Nam et al. [60] 295.9 161.1 95.6 20.9 139.4 59.7 7.1 0.2 31.1 48.6 85.96 

Cho and Wang [35] 76.6 37 4.6 26.6 38 1.1 29.4 39.2 57 66.7 37.62 

Cole and Shulman [61] 73.5 14.5 14.3 47 109.8 40 6.1 201.7 108.4 55.1 67.04 

Golorin et al. [62] 59.6 62.3 70.6 76.2 37.9 49.5 63 41.6 57.5 65.7 58.39 

Error in Departure time 

Saddy and Jameson [45] 14 7 9.8 19.8 54 6.5 2.1 88.9 50 32 32.2 
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eparture radius was found to be: 

 d = C 1 Ja 
C 2 

[√ 

σ

g�ρ

]C 3 

, [ in mm ] (86) 

 1 = −143 , 527 P 2 r + 750 . 63 P r + 0 . 286 

 2 = −1 . 21 ln P r − 5 . 352 

 3 = −1 . 287 ln P r − 6 . 420 

The empirical constants C 1 , C 2 , C 3 were found to correlate well 

ith the reduced pressure P r = P/P C , i.e. the effect of pressure on

eparture size is captured through the reduced pressure. The same 

as conducted to correlate the bubble departure time with the 

verage wall superheat and the empirical constants as a function 

f the reduced pressure, as given by Eq. (87) . The new empirical 

odels Eqs. (86) and ( (87) ) predicted the experimental departure 
28 
adius of all data with MAE 8.2% and departure time with MAE 

.75%. 

 d = C 4 �T C 5 w 

, [ in s ec ] (87) 

 4 = 24 × 10 

−6 exp ( 906 . 48 P r ) 

 5 = 2 . 82 exp ( −233 . 5 P r ) 

Because only three pressures and three superheats were tested 

n the current study, it is important to examine whether the new 

uggested empirical model predicts the correct trend or not. Saddy 

nd Jameson [45] applied the potential flow theory to a growing 

ubble on a nucleation site including the radial expansion and 

ranslational motion of the centre of mass of the bubble. Their 

odel resulted in a balance between liquid inertia, buoyancy, sur- 

ace tension and vapour inertia forces. The bubble growth was di- 

ided into two stages, expansion (growth) and transition (neck for- 

ation), and the Scriven [11] bubble growth model was used to 



M.M. Mahmoud and T.G. Karayiannis International Journal of Heat and Mass Transfer 208 (2023) 124065 

Fig. 20. Effect of superheat on the measured departure time compared with the theoretical model by Saddy and Jemeson [45] and the empirical model in Eq. (87) : (a) 

P = 1 bar, (b) P = 0.5 bar and (c) P = 0.15 bar. 

Table 7 

Comparison of Eqs. (86) and (87) with experimental data from literature. 

Author 

Conditions Measured Predicted % Error 

P, [bar] �T w , [K] R d , [mm] t d , [ms] R d , [mm] t d , [ms] E d @@% E t @@% 

Yabuki and Nakapebbu [63] 1 9 1.57 16.48 1.56 12.54 0.2 23.9 

Van Stralen et al. [64] 0.13 19.7 13.62 77.32 14.68 62.14 7.8 19.6 

Jung and Kim [65] 1 9 1.935 14.14 1.567 12.54 19 11.3 
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stimate the velocity and acceleration. Based on that they gave the 

ollowing theoretical expression for the time at which the bubble 

orms the neck and enters the departure stage: 

 

3 / 2 
crit 

= 

273 βsc 
√ 

αL 

256 g 

(
1 + 

16 R c σ

91 ρL β4 
Sc 
α2 

L 

)
(88) 

The above theoretical model was evaluated using our experi- 

ental data and the result of comparison is summarized in the 

ast row in Table 6 . It is obvious that Eq. (88) exhibited good pre-

iction at P = 1 and 0.5 bar except the lowest superheat at 0.5 bar

ut could not predict the data at 0.15 bar. This theoretical model 

as used to test the trend predicted by our new empirical model 

iven by Eq. (87) and the comparison is depicted in Fig. 20 for 

he three tested pressures. It is obvious that the new empirical 

odel agrees with the theoretical model at all pressures in pre- 

icting the correct trend, i.e. departure time increases as super- 
29 
eat increases. Additionally, the theoretical model and empirical 

odel gave nearly similar performance at atmospheric pressure. 

t sub-atmospheric pressure, the theoretical model exhibited large 

eviations at the lowest superheat for the 0.5 bar and significant 

verprediction as the pressure decreased to 0.15 bar. To verify the 

ew empirical model for bubble departure radius Eq. (86) ), com- 

arison was conducted with the experimental data of Yabuki and 

akapeppu [63] , Van Stralen et al. [64] , and Jung and Kim [65] and

he performance of Eqs. (86) and ( (87) is summarized in Table 7 .

he new empirical models predicted the data of these researchers 

ery well with error 0.2 – 19% for departure radius and 11.3 –

3.4% for departure time. Due to the fact that the new empirical 

odels Eqs. (86) and ( (87) ) predict the correct trend and values 

ery well, it may be recommended to be used with the Van Stralen 

25] bubble growth model. To test the performance of the new rec- 

mmendation, Eqs. (86) and (87) were used with the Van Stralen 
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Fig. 21. Comparison of the new recommended model with the experimental data: (a) P = 1 bar, (b) P = 0.5 bar and (c) P = 0.15 bar. 
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25] model and the results of comparison are shown in Fig. 21 for 

he three pressures. It is obvious that the model predicted all data 

n terms of trend and low MAE very well. 

. Conclusions 

Bubble growth was measured in saturated boiling of deionized 

ater on a smooth copper surface at three pressures (1, 0.5 and 

.15 bar) and different superheat. The experimental data were used 

o evaluate 11 models for bubble growth in homogeneous boiling 

nd 20 models for bubble growth in heterogeneous boiling. The 

ollowing points can be concluded: 

1. There is nearly general agreement amongst researchers on bub- 

ble growth in homogeneous boiling, which appears from the 

work by [ 11 , 14 , 15 , 17 , 19 ] who nearly reached the same solu-

tion with small differences. On the contrary, several models 

were suggested for heterogeneous boiling with significant dif- 

ferences. The differences arise from the assumed bubble growth 

mechanism and the complex temperature distribution around 

the bubble, which is difficult to verify experimentally. 

2. The evaluation of homogeneous growth models demonstrated 

that some models [ 11 , 14 , 15 , 19–21 , 33 ] predict part of the growth

curve at atmospheric pressure in the early rapid growth stage 

(up to 4 – 6 ms) followed by significant overprediction in the 
30 
slow growth stage (large deviation at departure). Also, there 

is no significant difference between the complex models that 

combine inertia and asymptotic stages [19–21] compared to the 

simple asymptotic models. At 0.5 bar, the models by Prisnyakov 

[18] and Abdollahi et al. [32] gave reasonable predictions while 

other models [ 11 , 14 , 15 , 19–21 , 33 ] exhibited poor prediction. At

0.15 bar, none of the models could predict the experimental 

data. Thus, the homogeneous growth models should be used in 

heterogeneous boiling with precautions. 

3. In heterogeneous boiling, the evaluation of the empirical mod- 

els indicated that the Du et al. [30] model gave the best per- 

formance at atmospheric pressure with MAE 8.6 – 18% while 

the Benjamin and Balakrishnan [31] model gave the best per- 

formance at sub-atmospheric pressures. It predicted the data 

with MAE 14.6 – 29.4%. The better performance of this model 

at sub-atmospheric pressure may be due to the inclusion of 

Archimedes number that considers the effect of gravity, which 

was ignored by all other empirical models. All examined empir- 

ical models could not predict the exact experimental trend. 

4. The evaluation of boundary layer-based bubble growth mod- 

els indicated that at atmospheric pressure, six models [ 20 , 23–

25 , 33 , 34 ] exhibited excellent agreement with the experimental 

data. The Cho and Wang [35] exhibited the poor performance at 

atmospheric pressure. On the contrary, this model [35] and the 

Van Stralen [25] model exhibited excellent prediction at sub- 
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atmospheric pressure. In terms of trend and MAE, the best per- 

forming boundary layer-based model at the three tested pres- 

sures is the Van Stralen [25] model. 

5. The models that were based on microlayer evaporation only 

could not explain the bubble growth at the three examined 

pressures. There is only some partial agreement at some exper- 

imental conditions. This, combined with the above point, may 

lead to the conclusion that bubble growth in saturated boil- 

ing of water occurs mostly due to evaporation from the super- 

heated boundary layer around the bubble. The microlayer could 

be only a contributing mechanism. 

6. All examined models failed to predict the correct experimen- 

tal trend (rapid and slow growth stages) except the model by 

Van Stralen [25] , which assumed that bubble growth is a “re- 

laxation phenomenon”, i.e. the superheat decreases exponen- 

tially during the whole growth period (from the beginning to 

departure). The relaxation time was considered equals the bub- 

ble departure time and the fraction of the bubble surface ( b ∗) 

which is surrounded by the relaxation layer was a function of 

the bubble departure radius as defined in Eq. (37) . The com- 

parison with this model indicated that at atmospheric pressure, 

this fraction is always larger than 1 (the bubble is fully sur- 

rounded with the relaxation layer) while it was smaller than 1 

at sub-atmospheric pressure (part of the bubble is surrounded 

by the relaxation layer). This agrees with the fact that bubble 

size at sub-atmospheric pressure is much larger than the wall 

thermal boundary layer. This model was not widely used in lit- 

erature because it requires the knowledge of departure time 

and radius in advance. 

7. To generalize the Van Stralen [25] relaxation model, 19 mod- 

els for bubble departure radius were evaluated in the present 

study. It demonstrated that five models [ 46 , 49 , 51 , 53 , 56 ] pre-

dicted the departure radius very well at atmospheric pressure 

while none of the models could predict the departure radius at 

0.5 and 0.15 bar. Thus, there is no general model for departure 

radius can be recommended to be used with the Van Stralen 

[25] at all pressures. This encouraged the present authors to 

suggest empirical models for departure radius ( Eq. (86) ) and 

time ( Eq. (87) ) as a function of superheat and reduced pres- 

sure. The two empirical models were compared with some data 
Table A1 

Bubble growth models in homogeneous boiling. 

Author Model 

Fritz and Ende [16] R = ( 2 / 
√ 

π) Ja 
√ 

αL t 

Plesset and Zwick [15] R = 

√ 

12 /π Ja 
√ 

αL t 

Forster and Zuber [14] R = 

√ 

π Ja 
√ 

αL t 

Scriven [11] R = 

√ 

12 /π [ h f g / { h f g − ( c pL − c pv )�T } ] Ja
Forster [33] R = 0 . 5[ 1 + 

√ 

1 + 2 π/Ja ] 
√ 

π Ja 
√ 

αL t 

Prisnyakov [18] R = ( 4 / 3 
√ 

π) Ja 
√ 

αL t 

Avdeev and Zudin [19] R = { √ 

3 /π J aψ + 

√ 

( 3 /π ) ( J aψ ) 
2 + 2 J a }

ψ = [ 1 + 

√ 

π/ 2 { 1 / √ 

1 − N − 1 } ] , N = c p
Abdollahi et al. [32] R = 

√ 

αL /π Ja 
√ 

t er f ( β
√ 

t ) + R 0 

β = 

π√ 
6 

√ 

c pL 

αL T sat 

1 
Ja 3 / 2 

( T ∞ − T sat ) R 0 = 

2 σ T sa

ρv h f g �

Mikic et al. [20] R + = 

2 
3 

[ ( t + + 1 ) 
3 / 2 − ( t + ) 

3 
2 − 1 ] 

R + = 

AR 
B 2 

, t + = 

A 2 t 
B 2 

, A = [ 2 
3 

ρv h f g �T 

ρL T sat 
] 

1 / 2 
, B =

Theofanous and Patel [19] R + = 

2 
3 β

[ ( β2 t + + 1 ) 
3 / 2 − ( β2 t + ) 

3 
2 − 1 ] , 

A = [ 2 
3 

ρv h f g �T 

ρL T sat 
] 

1 / 2 
, B 2 = ( 12 αL 

π ) { ρL c pL ( T ∞ −T s
h f g ρv ( P ∞ )

Avdeev and Zudin [19] r = 

r 1 

( 1+ F 3 ) 1 / 3 , r = 

R 
l 

, l ch = 

αJa 2 

U 
, U = 

√ 

2�
3 ρ

r 1 = 

4 
3 

[ ( 1 + 

√ 

τ ) 
3 / 2 − 3 ( 1 + 

√ 

τ ) 
1 
2 + 2 ] , 

31 
from literature and exhibited excellent performance. Addition- 

ally, the empirical model for departure time agreed with the 

trend predicted by the theoretical model given by Saddy and 

Jameson [45] , which verify that the functional form of our em- 

pirical model is correct. 

8. The new suggested empirical models are recommended to be 

used with the Van Stralen [25] model for the prediction of 

bubble growth rate. This recommendation is valid for saturated 

boiling of water on metallic surfaces and may need further val- 

idation using other fluids and substrate materials. 
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ppendix A 

Tables A1 and A2 
 

√ 

αL t 

 

√ 

αL t 

L �T /h f g = εJa = ρv /ρL Ja 

t 

T 

 2 
√ 

3 
π αL Ja 

R + = 

R 
B 2 /A 

, t + = 

t 
B 2 /A 2 

, 

at ) 

 

} 2 , β = 

√ 

h f g ρv ( P ∞ )( T ∞ −T sat ) 

T sat ( P v ( T ∞ ) −P ∞ ) 

P 0 
L 

, F = 

2 
3 

τ 1 / 4 

ψ 
, τ = 

t 
t 0 

, t 0 = 

αL Ja 
2 

U 2 

ψ = [ 1 + 

√ 

π
2 
{ 1 √ 

1 −N 
− 1 } ] , N = 

c pL �T 

h f g 
= 

ρv 
ρL 

Ja 
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Table A2 

Bubble growth models in heterogeneous boiling. 

Author Model 

Zuber [23] R = b( 2 √ 
π

)[ 1 − q w 
√ 

παL t 
2 k L �T 

] Ja 
√ 

αL t 

b: curvature correction factor (between 1 and 
√ 

3 ) with recommended value of π/ 2 

Forster [33] R = 

π
2 

[ 2 √ 
π

Ja 
√ 

αL t − 1 
π

Ja 2 αt 
δth 

+ 

7 

9 π
3 
2 

( Ja 2 αL t ) 
3 
2 

δ2 
th 

− . . . . ] 

First three terms of a series solution 

Han and Griffith [24] R = R c + 

ϕ s ϕ c 
ϕ v 

ρL c pl αL 

ρv h f g 
{ 2 ϑ w √ 

πt 
t 

1 
2 − ϑ w −ϑ ∞ 

δ
δ2 

4 αL 
[ 4 αL t 

δ2 erf δ√ 

4 αL t 
+ 

2 √ 
π

√ 

4 αL t 

δ
exp ( − δ2 

4 αL t 
) − 2 erf δ√ 

4 αL t 
] } + 

ϕ b h v ϑ w 
ϕ v ρv h f g 

t

ϕ c : curvature factor 1 < ϕ c < 

√ 

3 , ϕ s :surface factor ( 1 + cos θ ) / 2 , ϕ b is base factor sin 
2 θ/ 4 , ϕ v : volume factor 

( 2 + cos ( 2 + sin 
2 θ ) ) / 4 h v : vapour heat transfer coefficient. ϑ w : degree of superheat, R c is cavity mouth radius, 

δ = 

√ 

παL t wt 

Cole and Shulman [28] R = 2 . 5 Ja 0 . 75 
√ 

αL t 

Cooper [26] R = 2 . 5 Ja 
Pr 1 / 2 

√ 

αL t (Microlayer only) 

R = [ 0 . 8 
√ 

3 /πPr 1 / 2 ][ 2 
0 . 8 

ϑ bulk 

ψ 

√ 

ν] 
√ 

t + [ 2 
0 . 8 

ϑ w 
ψ 

√ 

ν] 
√ 

t (microlayer and curved part) 

ψ = 

ρv h f g Pr 

ρL c pl 
, ϑ bulk = T bulk − T sat , ϑ w = T w − T sat 

Prisnyakov [18] R = R 0 + 

2 
3 

f θ Ja [ 2 / 
√ 

π
√ 

αL t + f q N 3 t ] 

N 3 = 

q 
ρL c pL �T 

, f θ = 

1 
2 ( 1+ cos θ ) 

1 
2 ( 1+ 1 2 cos θ ( 1+ sin 2 θ ) ) 

, R 0 = 

2 σ T sat 

ρv h f g �T 
f q = 

1 
2 
( 1 − cos θ ) 

Mikic et al. [20] R + = ( t + ) 
1 
2 [ 1 − ϑ{ ( 1 + t + w /t + ) 

1 
2 − ( t + w /t + ) 

1 
2 } ] (dimensionless form) 

R + = AR/B 2 , t + = A 2 t /B 2 , t + w = A 2 t w /B 2 , 

A = [ π
7 

ρv h f g �T 

ρL T sat 
] 

1 / 2 
, B = 

√ 

12 
π αL Ja, ϑ = 

T w −T ∞ 
T w −T sat 

R = [ 1 − ϑ( 
√ 

1 + t w /t − √ 

t w /t ) ]2 
√ 

3 /π Ja 
√ 

αL t (dimensional form) 

Van Ouwerkerk [37] R = { 0 . 9 √ 

2 νl 
ρL 

ρv 
[ 1 + 

2 πh 2 
f g 

( νL /αL ) ( 0 . 9 ) 
2 

4 ( c pL �T ) 
2 ] 

−1 / 2 

+ 

√ 
6 √ 
π

√ 

αL 

νL 
Ja } √ 

t 

Labuntsov-Yagov [38] R = [ 0 . 3 Ja + 

√ 

( 0 . 3 Ja ) 
2 + 12 Ja ] 

√ 

αL t 

Van Stralen et al. [27] R = 

R 1 R 2 
R 1 + R 2 

R 1 = 0 . 8165 t 

√ 

ρv h f g �T exp −( t/t g ) 
1 / 2 

ρL T sat 
, [Inertia term] 

R 2 = 1 . 9544[ { b ∗ exp −( t/t g ) 
1 / 2 } + 

�T Liq 

�T 
] J a 

√ 

αL t + 0 . 373 Pr −1 / 6 exp −( t/t g ) 
1 / 2 

J a 
√ 

αL t 

b ∗ = 1 . 3908 R 2 ( t d ) 
Ja 

√ 
αL t 

− 0 . 1908 Pr −
1 
6 , R 2 : [microlayer + relaxation layer] 

Mei et al. [40] R = 

√ 

c/ϕ f (c) Ja 1 / 2 
√ 

αL t 

ϕ = 

f (c) C 2 1 Pr 

c 3 Ja 
, f (c) = 1 − 3 

4 
[ 1 − √ 

1 − c 2 ] 
2 + 

1 
4 

[ 1 − √ 

1 − c 2 ] 
3 

c = [ ( 0 . 4134 Ja 0 . 1655 ) 
−6 + ( 1 − 0 . 1 e −0 . 0 0 05 Ja ) 

−6 
] 
−1 / 6 

c 1 = 0 . 00525 Ja 0 . 752 Pr −0 . 5 (k L /k s ) 
−0 . 113 

(αL /αs ) 
−0 . 117 

Buyevich and Webbon [41] Hemispherical growth: R = CJa [ 1 + N m ] 
√ 

αL t 

Spherical growth: R = CJa 
√ 

αL t when N m ≤ 1 

C is the constant in R = CJa 
√ 

αL t , N m = 

1 

1 . 294 C 
√ 

Pr 

t 3 / 2 
1 

+ 

6 

( 1 −ρv /ρL ) [ CJa ( 1+ N m ) ] 2 
σ/ρl 

gαL 
t 1 / 2 

1 
= 

3 
4 

( 1+ ρv / 5 ρL ) CJa ( 1+ N m ) √ αL 

( 1 −ρv /ρL ) g 

t 1 : the end of the hemispherical growth, C was left to be empirical 

Benjamin and 

Balakrishnan [31] 

R = 0 . 5 BAr 0 . 135 Ja 1 / 2 
√ 

αL t 

Ar = ( g/ν2 
L ) · ( σ/ρL g ) 

3 / 2 
, B = 1 . 55 [water, CCl 4 , n-hexane] 

B = 1 / 1 . 55 [n-pentane, acetone] 

Lee et al. [29] R + = 11 . 2 t +1 / 5 tanh 0 . 345 t +4 / 5 + R + 
0 

R + = R/R c , t 
+ = t/t c , R 

+ 
0 

= 0 . 072 , t c = 

9 
2 

JaαL 
ρL R d 
σ , R c = 

√ 

27 
2 

JaαL 

√ 

ρL R d 
σ

Lesage et al. [34] [ R + 

√ 

R 2 + R 2 c − R c ] = ( 4 / 
√ 

π/ 3 ) Ja 
√ 

αL ( 
√ 

t −
√ 

t + δ2 
0 
/ ( παL / 3 ) + 

√ 

δ2 
0 
/ ( παL / 3 ) ) 

δ0 = 

√ 

παL t wt , R c : cavity mouth radius 

Abdullahi et al. [32] R = 6 . 9577 
√ 

3 Ja 
√ 

αt er f ( 3 . 8323 
√ 

t /t c ) + 0 . 028425 R c , Ja > 24 

R = 2 . 5 
√ 

3 Ja 
√ 

αt er f ( 0 . 19660 . 1966 /t c ) + 0 . 7 R c , Ja < 15 

R = 

√ 

αL /π Ja 
√ 

t er f ( 
√ 

βt ) + R 0 , 15 < Ja < 24 

t c = 

9 
4 
αL Ja 

ρL R d 
σ , R c = 

√ 
27 
3 

αL Ja 

√ 

ρL R d 
σ , β = 

π√ 
6 

√ 

c pL 

αL T sat 

1 
Ja 3 / 2 

( T ∞ − T sat ) , R 0 = 

2 σ T sat 

ρv h f g �T 

Du et al. [30] R = f ( Ja ) α1 / 2 
L 

t n 

n = 1 . 0012 e −P/ 0 . 3257 − 0 . 9624 e −P/ 0 . 6161 + 0 . 5 , P: in MPa f ( Ja ) = 2 . 1077 Ja 0 . 7902 

Cho and Wang [35] R = { 
2 δth /c[ 1 − exp ( −c b bc 2 �T 

√ 

t /δth ) ] 0 ≤ t < t δ√ 

2 

√ 

c b bδth �T 
√ 

t − δ2 
th 

( ln 4 − 1 ) / 2 c 2 t > t δ

c = 2 cos θ
2 

, t δ = ( δth ln 2 
c b bc 2 �T 

) 
2 
, b = 

k L [ ( π−2 . 4 ) cos θ+2 . 4 sec θ2 ] 

2 πρv h f g 

√ 
αL 

, θ : static contact angle. 

c b = 0 . 534 (based on data for water at 1 atm), δth = 35 . 7 ( ναL /gβl �T ) 
1 / 3 

32
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