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Abstract: The internet of things, a collection of diversified distributed nodes, implies a varying choice
of activities ranging from sleep monitoring and tracking of activities, to more complex activities
such as data analytics and management. With an increase in scale comes even greater complexities,
leading to significant challenges such as excess energy dissipation, which can lead to a decrease in IoT
devices’ lifespan. Internet of things’ (IoT) multiple variable activities and ample data management
greatly influence devices’ lifespan, making resource optimisation a necessity. Existing methods with
respect to aspects of resource management and optimisation are limited in their concern of devices
energy dissipation. This paper therefore proposes a decentralised approach, which contains an
amalgamation of efficient clustering techniques, edge computing paradigms, and a hybrid algorithm,
targeted at curbing resource optimisation problems and life span issues associated with IoT devices.
The decentralised topology aimed at the resource optimisation of IoT places equal importance on
resource allocation and resource scheduling, as opposed to existing methods, by incorporating aspects
of the static (round robin), dynamic (resource-based), and clustering (particle swarm optimisation)
algorithms, to provide a solid foundation for an optimised and secure IoT. The simulation constructs
five test-case scenarios and uses performance indicators to evaluate the effects the proposed model
has on resource optimisation in IoT. The simulation results indicate the superiority of the PSOR2B to
the ant colony, the current centralised optimisation approach, LEACH, and C-LBCA.

Keywords: particle swarm optimisation; clustering; resource scheduling; resource allocation;
resource optimisation

1. Introduction

The internet of things (IoT), the umbrella word for extending the internet beyond
smartphones and computers to a whole range of things such as appliances, smart sensors,
cars, and traffic lights [1], requires effective management for supreme efficiency. Over the
years, IoT’s increasing popularity and ubiquitous nature consisting of numerous distributed
nodes with sensing, computing, and communication capabilities [2] implies an even greater
increase in delayed- sensitive data generation that requires quick resources for execution [3].
The massive rise in data generation and consumption on account of the application’s re-
quirement for higher data-rates, larger bandwidth, increased capacity, low latency, and high
throughput [4] generates several challenges including but not limited to tremendous traffic
pressure in the network and traditional cloud computing architectures [1]. The dynamically
changing demand for resources with limited supply increases the risk of low quality of ser-
vice (QoS) [5], consequently lowering users’ quality of experience (QoE). The optimisation
of resource allocation techniques and satisfying the user QoS requirements are principal
issues in an IoT-based cloud computing environment [6].

Real-world scenarios can all be described by the resource allocation problem (RAP);
several formulations for the RAP have been proposed in accordance with different problem
scenarios [7–9]. RAPs for IoT are large-scale with numerous facets; these RAPs in the IoT
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environment, referred to as multiple objective resource allocation problems (MORAP), are
nondeterministic polynomial (NP)-complete and therefore cannot be handled by determin-
istic algorithms [7,8,10]. Over the years, NP algorithms such as evolutionary algorithms
(EA), particularly genetic algorithms (GA), have been studied to find near-optimal solutions;
however, GA algorithms have a tendency to reproduce a large number of infeasible solu-
tions during search processes [10]. The limitations of GA prompted [7] therefore to propose
a solution for the nonlinear MORAP, a particle swarm optimisation (PSO) metaheuristic
clustering approach with focus on the Pareto-optimal solutions, that is, solutions that are
not dominated by any other solutions, where no preference criterion is made better-off
without making at least one preference criterion worse off. A Pareto optimal solution
based on resource ready time is used to transform problems into multi-objective decisions
to solve scheduling problems; it has been shown that the proposed Pareto optimisation
algorithms produce optimal solutions [7,11]. Considering that IoT’s main function revolves
around environment monitoring, data collection, and processing, prolonging the network’s
lifespan by optimizing energy consumption has become a critical issue that necessitates
utmost attention [12,13]. The inefficient utilisation of resources in IoT nodes may cause
sensor and actuator nodes to be prematurely lost, due to their small battery power [13].
Consequently, edge computing (EC) paradigms, centring on edge nodes, have increasingly
become popular for solving IoT’s MORAP; this shift in approach has brought about ample
research on resource allocation (RA) as a means for managing traffic pressure and chal-
lenges associated with IoT and cloud computing architectures. It has been well established
that the edge computing paradigm comes with some problems similar to cloud computing;
such problems include scheduling service resources, ensuring quality of service (QoS), and
combining different services [1,6,7].

Edge nodes entailing varying devices also comprise sensor nodes; these sensor nodes
are more prone to sensing coverage, that is, the sensors capacity of supervising a specified
area of interest; connectivity, specifically sensors’ communication capacity; and energy-
consumption problems owing to its rechargeable battery constraints [12]. Wireless sensor
networks (WSN), a subsection of IoT, can be considered a necessity for the development of
IoT as they are incorporated in a wide range of applications such as smart-homes, smart-
transport, and smart-healthcare [14]. WSN have repeatedly proven to be the bane of IoT
problems as a malfunction in WSN’s performance will inevitably lead to some form of
IoT system failure. Sensor edge nodes are plagued with low power and limited storage
capacity; thus, when developing a model, it is necessary to consider energy dissipated due
to activities. Prevalent approaches of the current state of the art are centralised algorithms
with or without CH rotation properties that do not take into consideration the heteroge-
neous nature of IoT devices in terms of varying power, processing, and storage capacity.
These existing systems assume all nodes perform equally; however, with this expectation
comes sensitive latency issues and an inadequate load-balancing strategy alongside the
inadequate optimisation of resources in IoT systems [7,10,14,15]. Load-balancing activi-
ties, a subset of the RAP, should most importantly decrease energy consumption whilst
increasing QoS [5]. The work of [14] developed a centralised architecture-based cluster-
ing algorithm for load-balancing in IoT called C-LBCA. Using PSO for cluster formation,
the developed C-LBCA algorithm advocates an architecture where the software-defined
network (SDN) controller responsible for complex computations is implemented over the
cloud with the aim of reducing functionality in the WSNs nodes. Presented extension
simulation results in terms of network lifetime, energy dissipation, and volume of data
sent to the sink validate the proposed C-LBCA. Although their work produced results
indicating the significant extension of the battery life of IoT devices over the energy-aware
clustering algorithm (PSO-C), stable election protocol (SEP), and low-energy adaptive
clustering hierarchy (LEACH), their focus was limited to the effects of load balancing on
the lifespan of WSN, and no outputs were presented with regard to the efficacy of the
algorithm in overall system performance, especially when it is clear that the lifespan of
the edge nodes including sensor nodes inadvertently affects the system’s turnaround time.
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Moreso, considering IoT’s increasing applicability to everyday living, their centralised
network architecture approach is susceptible to multiple problems associated with nodal
failure. Centralised topologies continuously expose IoT systems to heightened potential
complexities and system failure with just a single point nodal failure.

In a bid to avoid the problem associated with potential node failure consequent of the
centralised topology, the authors of [15] incorporated standards that allow for CH rotation;
however, in this approach, the issue of inadequate maintenance persists and increases
complexities. In their work, the authors of [15] developed a balanced energy-efficient
(BEE) clustering algorithm that can elect CHs according to both energy consumption and
sensor distributions extending the network’s longevity whilst maintaining the network’s
coverage. Even though the authors of [15] generated results that indicated dominance over
LEACH, hybrid energy-efficient distributed (HEED), and a non-cluster routing solution
(direct routing), their approach did not cater for the heterogeneous IoT system as it made
assumptions that all nodes had the same level of energy storage. Although most edge
nodes have a longer lifespan than sensor nodes, they, like the sensor nodes, are also plagued
with connectivity and energy consumption problems, similarly owing to their rechargeable
battery constraints.

It is to this effect that this paper aims for further better resource optimisation for
the heterogeneous IoT by integrating concepts of EC and clustering as well as a hybrid
algorithm consisting of the static round robin (RR) and the dynamic resource-based (RB)
algorithms. Amalgamating these concepts will aid in re-configuring IoT’s central topology
into a decentralised topology, thereby mitigating the problems associated with energy
consumption and quick death of nodes. This approach, taking into consideration the
varying energy storage and computational capacity, will also lessen the workload of all
the nodes within a cluster, thus ensuring energy dissipation is managed. The CH will be
saddled with the responsibilities of providing the shortest path for resource allocation as
well as offloading excesses to the cloud, thus guaranteeing the CH’s energy consumption
is considerably lowered, consequently evading overall system performance degradation.
The major contributions of this article are

1. An improved there-tiered framework for efficient resource optimisation in IoT. The
framework, as opposed to existing frameworks, performs resource optimisation by
placing equal importance on resource scheduling and resource allocation.

2. A mathematical model incorporating the proposed framework. This model following
the proposed framework takes into consideration the heterogeneous nature of IoT
devices and harnesses their distributed nature to reduce nodal energy dissipation,
subsequently prolonging the system’s lifespan by mitigating the quick death of nodes.

3. An analysis of the simulation, depicting the effectiveness of the proposed model. The
model’s ability to perform adequate load balancing generates results that illustrate its
efficacy. Comparisons made with the current state of the art illustrates the superiority
of the proposed model.

The rest of the paper is organised as follows: Section 2 discusses related works, pro-
viding further insight into the motivation behind this paper, and Section 3 delivers the
proposed model and model algorithm. Section 4, on the other hand, presents and applies
the proposed model to resource allocation in edge nodes of the IoT system; in this section,
analysis are made validating the effectiveness of the proposed model via simulation experi-
ments and comparisons between the proposed model and other intelligent optimisation
algorithms. Finally, Section 5 concludes the paper.

2. Related Work and Motivation

This section further intricates related works and considers the lapses that need
addressing. The section also contains the resource optimisation problem and motivation
for the proposed model.
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2.1. Related Work

IoT’s increasing popularity equates to the incumbent surplus of data generation
that requires competent management schemes. Equally, with an increasing number of
IoT devices connecting to the cloud, users’ expectations and demands for high-quality
services have heightened. To efficiently meet these expectations that hinge on solutions
of the prevailing RAPs, recent work has shifted focus to issues of the EC paradigm that
may affect the effectiveness of service provision [16]. IoT’s heterogeneity and difference
in performance rates necessitate mechanisms for efficiency. Software-defined networks
(SDN) mostly offer the EC paradigm adequate solution for RAP by enabling it to run
IoT applications with minimum end-to-end delays [3]. EC’s capability to extend cloud
computing services to the edge of the network, which makes it a plausible solution for IoT
applications, and, increasingly, EC is being used to optimize resource scheduling in IoT.
Similarly, in IoT, clustering algorithms in conjunction with EC have proven to be effective
procedures for lowering the energy dissipation of nodes, alleviating the sensing coverage
problem, balancing the energy consumption among nodes, and prolonging the network
lifetime in contrast with flat routing algorithms [12,13]. Clustering, an unsupervised
machine learning technique allowing for the grouping of nodes that run in parallel to
achieve set goals, is of various types: density-based, where grouping is considered based on
concentration of nodes; distribution-based, in which nodes are considered parts of clusters
pending on the probability of belonging to that cluster; centroid-based, wherein nodes are
assigned to clusters based on their distance from a centroid; and hierarchical-based, which
builds a tree of clusters. Clustering consists of two major stages: the formation of clusters,
and the cluster operation. During the formation of clusters, all nodes are organised into
groups based on set parameters and a cluster head (CH) is designated; this designation
can be fixed, leading to a permanent CH per cluster or variable where multiple nodes
have an equal probability of becoming the appointed CH within a cluster pending on
set parameters. The incorporation of EC and clustering algorithms as solutions for RAPs
implies a paradigm shift, and with this comes the terrain of unstable CH selection and
energy consumption amongst clusters. Ref. [13] provides a summary of several tactics for
solving the unstable selection of CH problem; these strategies include clustering methods;
the genetic algorithm; combining the genetic algorithm and the probability forwarding
criterion; and combining the characteristics of genetic optimisation and routing in LEACH
(low-energy adaptive clustering hierarchy). A number of other works put forward various
approaches for CH selection; these approaches include the cluster-head selection method
based on a node’s residual energy, the Dijkstra routing strategy, the hybrid energy-efficient
distributed unequal clustering algorithm, and rotated unequal clustering algorithm for
wireless sensor networks [13,17]. Optimizing the size and composition of the cluster is
dependent on several characteristics: nodal residual energy, the position of cluster heads,
the link status, and many more. Although the advantage in finding the best solution is
obvious, disadvantages associated with CH selection, specifically in CH rotation, include
a great computational overhead and multiple complexities that further mar the current
state of the art.

Clustering, an efficient topology control method, which balances the traffic load of the
nodes consequently, improving the scalability and lifetime of system, has a lingering prob-
lem that may lead to quick death of the CHs, thereby degrading the overall performance of
the system [18]. When only one CH exists in the cluster, the nodes around the CH consume
their energy quickly, and if not controlled quick death is inevitable. The quick death of
CHs arises due to higher energy consumption necessitated by the CHs’ extra workload
of receiving, aggregating, and transmitting data to the nodes, other CHs, and resources
as the need may arise. The improper formation of clusters can also cause some CHs to be
overloaded with a high number of nodes [2,18]. In [15], comparisons were made between
seven (7) existing algorithms, namely, LEACH (low-energy adaptive clustering hierarchy);
HEED (hybrid energy-efficient distributed); DWEHC (distributed weight-based energy-
efficient hierarchical clustering protocol); PEGASIS (power-efficient gathering in sensor
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information systems); CCS (centralised clustering algorithm); balanced energy-efficient
(BEE); sensor web (S-WEB); and direct algorithm (non-cluster routing solution). Of the
seven (7) algorithms, all but the S-Web and direct algorithm were infused with CH rotation
as a measure to reduce any form of nodal failure—especially the quick death of CHs,
and all but the direct algorithm were clustering algorithms. Despite measures to reduce the
impact of node failure via CH rotation mechanisms in the LEACH and HEED algorithms,
the generated results of comparing the LEACH, HEED, and direct algorithms indicated
miniscule improvements in the number of sensor nodes still alive in the network after
several rounds, especially for larger rounds. The authors of [19], in their work, proposed
the S-web algorithm, which was compared to the direct algorithm; in their comparisons of
the two algorithms, small improvements were also seen as S-web performs slightly better
than the direct algorithm. This suffices to say and further proves that clustering algorithms
when not properly implemented can be redundant in functionality and even when included
in design processes; focusing on CH rotation alone is not enough as there are several other
factors that directly or indirectly affect the CH energy dissipation and subsequently the
network lifespan. Controlling other factors such as communication and computational
overhead; the size of the cluster; the path length between nodes and resources; and CH
activities, that is, the responsibilities the CH is saddled with, may in fact yield better results
in terms of bottle neck and lifespan of the network . The authors of [18] also investigate
several clustering algorithms and make comparisons of the effectiveness of such algorithms
against their proposed differential evolution (DE)-based clustering algorithm called DECA,
which was designed with the main objective of prolonging network life by taking care of the
energy consumption of nodes and cluster heads (gateways). Algorithms that [18] compared
to their existing algorithm include GLBCA (greedy load balancing clustering algorithm),
LBC (load balanced clustering), EELBCA (energy-efficient load-balanced clustering algo-
rithm), traditional DE (differential evolution), and GA (genetic algorithm). Comparisons
were again made on the grounds of network lifespan, comparing the balancing lifetime
of gateways, the number of dead nodes per round, the energy consumption per round,
and the convergence rate. Ref. [18]’s experimental results show that their proposed al-
gorithm converges faster than the traditional DE and GA and performs better than the
exiting algorithms, that is, the traditional DE, GA, LBC, and GLBCA in terms of network
life, energy consumption, and number of dead sensor nodes; however, it performs worse
than the other existing algorithm, namely, EELBCA, in terms of energy consumption and
the number of dead sensor nodes. In all the comparison cases made by [18], no references
or data were generated to implore the effects their modelled algorithm had on the over-
all system’s performance in terms of the system’s efficiency measured by the system’s
turnaround time.

Controlling the problem associated with the quick death of nodes, especially CHs,
will make room for the advantages associated with cluster-based systems to further im-
pact the optimisation capacity of any given system. Cluster-based systems have multiple
advantages, which make the resource optimisation of IoT systems necessary; such ad-
vantages include the discarding of redundant and uncorrelated data, thereby reducing
energy consumption by nodes within the cluster; the easy management of routing, resulting
in improved scalability; and the conservation of communication bandwidth. Clustering
algorithms are also beneficial for the improvement of energy efficacy and a reduction in
transmission delay [13]. The clustering of nodes has proven to be an effective solution for
prolonging the network lifetime, which is a primary key to measuring system’s perfor-
mance. The approaches for CH selection as mentioned in [13,17] can be grouped into two
major CH selection schemes: the homogeneous schemes in which all the nodes are initially
equipped with the same amount of energy, and the heterogeneous schemes, where all the
nodes are equipped with the different amount of energy due to their varying functional-
ity [20]. Given the heterogeneity of IoT, the heterogeneous scheme will govern the CH
selection type in the proposed model. The clustering type considered is the centroid-based
where parameters of contention are CHs distance from the servers and subsequently an
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edge node’s distance from the CHs . The distance from the centroid is considered due to its
sensitivity to given parameters, speed, and efficiency, unlike other approaches, where sev-
eral more parameters come into play. Thus, the direction of development aims to improve
the stability/robustness and convergence rate of EA [1], specifically PSO. For a better grasp
of the underlying motivation behind the proposed model, a theoretical analysis of PSO,
round robin (RR), and resource-based (RB) algorithms will steer into the right direction
for solving resource optimisation problems in IoT, placing equal importance on resource
scheduling and allocation.

Overview of the PSO, RR, and RB Algorithms

Particle swarm optimisation (PSO), a stochastic optimisation technique based on the
movement and intelligence of swarms, is an increasingly popular algorithm for solving
resource-scheduling problems owing to its simplicity in operation and speed in conver-
gence [1]. PSO, also considered an EA due to its use of mechanisms motivated by nature,
starts from a random solution and determines the optimal solution by iteration; previously
good positions attract the particles, and evolution takes place if a particle flies to a better
contour [2,10]. PSO has been found to be superior to GA considering that PSO carries global
and local search simultaneously, as opposed to GA concentration on just the global search.
Although PSO has numerous advantages and has presented outstanding performance in
solving practice optimisation problems, IoT inclusive, it still has inherent defects that make
it prone to falling into local optimum, premature convergence, and excess overhead cost [1].
When discussing the evolution of the particle swarm, the search space instead of the prob-
lem space is of concern; each particle’s position can be regarded purely as a D-dimensional
vector, and for a single point in the D-dimensional search space (D = 2T), similarly, each
particle’s velocity is a D-dimensional vector [10]. The particle-swarm algorithm can search
a large candidate solution space without gradient information. The PSO algorithm is simple
in structure and fast in convergence, which is suitable for scheduling; however, the PSO is
prone to the local optimum, with fast convergence necessitating that the global search be
performed first. When an optimal solution is determined within a specific range, the local
search ability is used to search for the optimal solution position [21]. Given the PSO’s
unassuming and easy implementation characteristics, it is used to solve the problem of
resource optimisation in IoT.

An effective way of mitigating and or completely avoiding data collision is to introduce
some communication protocols to schedule the data transmission [22]. The round robin
(RR) static algorithm, the oldest and simplest scheduling protocol or algorithm, which is
usually used for multitasking, allows for equal time slot allocation of tasks/requests to
resources/servers. Each task runs turn by turn pending on the cyclic queue bound by a
time slice also referred to as quantum time [22,23]. Round robin is a real time pre-emptive
algorithm that responds to real-time events; at each transmission instance, the round-robin
regulates a node’s access pending a predetermined circular order [23].

Resource-based (RB) algorithms, on the other hand, use a heuristic methodology by
means of a greedy approach, prioritizing the allocation of resources from the largest to the
lowest [8]. That is, it iteratively selects the most demanding request/task and allocates it
an appropriate and available resource/server for processing, thereby maximizing through-
put and reducing power [8,9]. The RB dynamic algorithm is practical for heterogeneous
requests/tasks, where records of performance of the resources over a period are accessed
for finding the best match; this implicates the overall performance improvements.

The dynamic RB algorithm’s ability to adapt gives the RR-RB hybrid algorithm the
opening of becoming a controlled adaptive algorithm for load balancing and consequently
the resource optimisation of IoT systems. The deficiency of falling into the local optimum
experienced by the PSO algorithm is tackled in the proposed model by the incorporation
of the RR-RB hybrid algorithm. This meld ensures the best path is always presented as
the best of both worlds is deployed, a cluster that is both efficient and void of quick CH
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death due to excess energy dissipation, thus allocating resources, balancing load efficiently,
and prolonging network lifespan.

2.2. Resource Optimisation Problem and Motivation

This subsection delves into the problem formulation; it additionally expounds the
motivation for developing the simulation.

2.2.1. Resource Optimisation Problem Statement

IoT’s amalgamation of diversified devices implies a varying assortment of activities
ranging from sleep monitoring to the tracking of activities. Devices people wear and use
are becoming increasingly sophisticated, being able to connect to media accounts and
track data, thereby helping enrich lives; however, with such activities comes ample data
transfer and storage problems. With a vision of an all-communicating world, the number
of connected devices and the user data-rate is to be increased by ten to a hundred times;
the extended battery life by up to ten times for massive machine communication devices;
and end-to-end latency by five times [4]. The IoT’s current topology gives rise to increased
complexities, with just an increase, in the form of an added node, of complexities such as
scalability, latency, and compatibility increase exponentially, bringing about underrated
services. The resource optimisation problem can be divided into two main categories: the
resource allocation problem and the resource scheduling problem. A plethora of works
have aimed at the optimisation of IoT; however, such works either focus on the allocation
of resources to the detriment of resource scheduling and vice versa or are domain-specific.
Domain-specific works, for instance, include the works that focus on task scheduling
and/or task management in the health sector [24–26], or on task offloading and scheduling
in transport applications [27], or even on industrial automations [3] . It therefore suffices
to say that a generalised IoT framework applicable in all IoT scenarios is yet to be fully
accepted and implemented. Resource optimisation is a huge step in alleviating complexities
associated with prevalent IoT systems, and the right approach can make IoT systems more
efficient and complacent to users’ expectations. To solve the abovesaid challenges, this
paper proposes a novel resource optimisation algorithm that will be applicable in various
IoT environments.

2.2.2. Motivation and Lapses

The value-added services and real time applications of IoT come with ample data
generation and consumption; therefore, the major problems that require great attention
are multidimensional optimisation problems, where concerns involve determining in real-
time how to select the optimal service configuration and provide efficient edge service
scheduling scheme [1]. Additionally, the resource under-utilisation problem and high
operational cost of IoT-based cloud system noticed in the dynamic resource allocation
(DRA) technique [6] are other areas of concern. Decentralising IoT’s topology comes at a
detriment to security, and this lapse is further amplified by the edge nodes’ frail capacity
in terms of storage and power. To be able to bypass these lapses, an efficient resource
optimisation scheme, placing equal importance on resource allocation and scheduling, is
needed. Additionally, the effectiveness of the algorithms to meet users’ exacting standards
(QoE and QoS) and edge nodes—especially sensor nodes life span are other vital areas of
concern that require a breakthrough.

The use of the EC paradigm increases security and quality assurance as it encourages
the processing of data closer to source of generation, thus reducing the number of data
transferred between a device and centralised node. The work of [6] shows the improve-
ments of a hybrid algorithm combining a static and dynamic algorithm have on resource
allocation; our previous work shows how the hybrid load balancing approach, a merger
of the EC paradigm and RR-RB hybrid algorithm, produces an effective load-balancing
strategy for resource optimisation in IoT. This paper takes the optimisation technique a step
further by incorporating aspects of clustering, as appropriate use of clustering techniques
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inadvertently reduces the latency by half through enabling IoT devices to fulfil complex
analysis tasks with lower latency, higher performance, and less energy consumption [9,16].
To further answer the question: what computational and algorithmic theories are suitable,
in practice, for management and resource optimisation of internet of things?, this paper
proposes an algorithm that comprises an amalgamation of aspects of the EC paradigm,
the particle swarm optimisation clustering technique, and an RR-RB hybrid algorithm to
produce an algorithm tagged PSOR2B for the purpose of solving resource allocation and
scheduling issues in IoT, thereby delivering an efficient resource optimisation technique in
the IoT environment that is comparatively secure.

3. Proposed Solution

This section presents the proposed model’s description in addition to the model’s
algorithm. The focus is on the algorithms functionality in achieving resource optimisation
for IoT.

3.1. Model Description

The architecture of the proposed model in a bottom up fashion, as portrayed in
Figure 1, is divided into there (3) layers: edge node layer, dew layer, and Cloud layer.
The edge node (first) layer comprises of different IoT device with varying computation,
processing, and storage capacity. The devices in this layer are clustered based on their
proximity to the CH found at the dew (second) layer. The clustering is governed by
the PSO algorithm, and edge nodes can acquire services from the dew and cloud layers.
The dew (second) layer made of the CHs and edge servers is saddled with the task of
resource allocation and scheduling. The CH selected based on its Euclidean distance to
the edge server and relative storage capacity as well as its computational power utilizes
the hybrid algorithm tagged RR-RB (round robin—resource-based) to efficiently schedule
and allocate resources to the appropriate Edge nodes once a request is initiated. The CHs
tackle latency and redundancy by creating and deleting paths of frequency and recency
after consideration of server rates. The formulated paths ease the allocation and scheduling
of resources once a request/task is initiated by an edge node or in some cases the CH
itself. Excess data are stored in the edge server as well as cloud servers. By creating a
record of updated paths of frequency and recency for effective scheduling and allocation
of resources, CH’s workload is reduced. This therefore manages its processing workload,
adequately controlling computational overhead. Furthermore, the EC paradigm enables
the CH to efficiently reduce data transfers required between itself and requesting nodes,
and CH’s ability to store excess data in the edge or cloud servers consequently mitigates
rising energy consumption. The cloud (third) layer consisting of cloud servers acts as
a resource as well as a repository. The CH pending on former performance is aware of
each servers’ processing capacity in relation to requests made by the edge nodes and can
adequately allocate resources to tasks/requests initiated by nodes.

3.2. Model Algorithm

The proposed model intends to optimize resource allocation by incorporating aspects
of the RR-RB hybrid algorithm, EC paradigm, and clustering (particle swarm optimisation)
technique. The trio tackle the aforementioned complexities that come with IoT by schedul-
ing and allocating resources to provide a solid foundation for an optimised and secure IoT.
The trio algorithm accomplishes this by working together to efficiently bundle the edge
nodes into clusters, designating a CH, and taking into consideration the resource/server
rates and task/request size, thus sustaining set parameters. The scheduling and allocation
processes require taking decisions, and the decision makers are comfortable in using Pareto-
optimal solutions because if the final solution is not Pareto-optimal, it can be improved in
at least one objective without deteriorating the solution quality in other objectives [7,12,13].
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Figure 1. Proposed model.

The allocation of resources is governed by the PSO as well as aspects of the RR-RB
algorithms. The PSO determines the motion direction of each node by a kinetic equation
that includes two fundamental properties: velocity vi and position xi. The clustering of the
edge nodes is affected by three types of information: individual inertial velocity, global
best position, and individual current history best position. Each node is assessed by its
fitness function f(x) containing three vectors and a global vector [1]. The fitness function
plays a crucial role in the algorithm’s performance. Equations (1) and (2) represent how the
clustering is affected by the three types of information.

vi(t + 1) = wvi(t) + cpr1(bi(t)− xi(t)) + cgr2(g(t)− xi(t)) (1)

xi(t + 1) = xi(t) + vi(t + 1) (2)

bi(t) = xi(tp) : f (xi(tp)) = min
0≤k≤t

f (xi(tk)) (3)

g(t) = bib(t) : f (bib(t)) = min
0≤i≤N

f (bi(t)) (4)

where xi(t) is the ith particle’s position in the tth iteration; vi(t) equals the ith particle’s
velocity in the tth iteration; bi(t) equates to the ith particle’s history best position, which
has visited until the tth iteration; and g(t) is the particle swarm’s global best position of
the tth iteration . Additionally, the key control performance parameters of the algorithm
are w—inertia weight constant, used to control the impact of vi(t) in the process of the
evolution of particles; the cp—cognitive coefficients, which pull particles toward bi(t); and
cg—social coefficients, which pull particles toward g(t). The RR-RB, on the other hand,
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further buttresses the allocation by routing requests/tasks to available resources/servers,
making certain that the tendency of falling into local optimum is avoided.

The scheduling of resources governed by aspects of both the RR and RB algorithm
ensures that all requests obtain an economical allocation of resources, that is, ensuring that
requests/tasks are allocated a time slice/quantum time according to their size without
prioritising requests, by this means providing the best performance in terms of average
time. The hybrid avoids starvation or convoy effect, that is, slowing down because of
several time-consuming processes. Finally, the hybrid allows for the allocation of requests
to resources based on request size and resource capacity. This allocation criterion further
improves resource optimisation for IoT. The quantum time is taken into consideration
when scheduling resources. Let: Q signify the quantum time, that is, the time the scheduler
allows for a task to run; TTS the total task size coined by the edge nodes for execution;
and TR the transfer rate. If the quantum time of the ith task in the jth resource is Q(i, j),
the task size is TS(i, j), and the transfer rate is TR(i, j), then the turnaround time (TAT) can
be expressed as:

TAT =
TS(i, j)
TR(i, j)

× Q(i, j) (5)

where Q(i, j) is defined as:

Q =
TTS(i, j)
TR(i, j)

(6)

and TTS is the total task size, that is, the summation of all tasks’ (ΣT) awaiting resources.
Typical PSO clustering algorithms form clusters by allowing the nodes to join CHs

based on locality, assuming that nodes are equally distributed. If the formation of clusters
allows nodes to join the nearest CH, then the CHs of densely deployed areas will be
overloaded with higher number of member nodes [13]. The proposed model tackles
this problem by creating clusters and consequently CH based on the criterion of locality
and the upper limit of nodes allowed within a cluster. CH are designated based on the
nodes’ proximity to the resource/server; this, therefore, implicates that the number of
CHs greater or equal to (≥) the number of resources/servers; once the CH is established,
the nodes join the CH based on their proximity to the designated CH, with the closest being
first considered till the upper boundary for number of nodes within each cluster is met,
thereby creating almost equal sised distributed clusters. The upper limit is set after taking
into consideration the number of edge nodes and CH. The CH’s proximity to the server
inadvertently reduces energy dispensation, by this means prolonging lifespan of the CH
node. Figure 2 depicts how the clusters and CHs are created: the pink dots represent edge
nodes, while the green dots represent resources/servers. In this Figure, tentatively, based
on proposed parameters, the number of clusters/CH is greater or equal to (≥) five (5) and
the upper limit for number of nodes within the cluster is twenty (20).

A plethora of recent works on the PSO algorithm focus on using PSO as a means of
finding the appropriate number of clusters according to data characteristics; the average
trajectory and velocity of nodes; the time cost of nodes; the energy consumption of CHs; the
lifetime of nodes; and the total residual energy of nodes [1,13,17,18]. Harnessing the key
advantages highlighted in these works, the proposed model clusters and initialises the edge
nodes based on Cartesian proximity to servers. This action gives rise to an end product that
resembles a more realistic system, posited to positively affect propagation, consequently
paving way for the hybrid algorithm to efficiently function. The output at the end is an
efficient and novel load balancing strategy that allows resource optimisation for all IoT
systems. Based on the criterion of proximity to the server/resource, the initialisation of
clustering regulated by the PSO classifies the nodes into two major categories: cluster heads
and edge nodes. This clustering hinges on the physical topology of nodes and consequently
IoT. It is presumed that the number of CHs and severs are known; however, in reality,
a server represents a myriad of servers. The load balancing, and consequently the resource
optimisation, is regulated by the trio algorithm, and, at the dew layer, the cluster heads
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make use of the hybrid algorithm alongside the PSO algorithm; the combination of these
algorithms allow for the efficient flow of the proposed model and subsequent optimisation
of resources in IoT.

Figure 2. Cluster creation.

Unlike flat routing algorithms, the proposed model as depicted in Figure 1 is structured
in a hierarchical, thereby improving scalability. With over fifteen (15) billion devices out
of the twenty-eight (28)-plus billion smart devices connected across the world employing
machine to machine (M2M) communication [4], there is a rising need for systems to be
implemented in ways that allow for such communication modes with ease; consequently,
in the proposed model, M2M as well as machine to people (M2P) are the conceivable modes
of communication. The first layer tagged, the edge node layer, contains all of edge nodes;
these edge nodes, all IoT devices, are grouped in clusters answerable to the CHs. At this
layer, the mode of communication is machine to machine (M2M) and machine to people
(M2P). The second layer, referred to as the dew layer, contains CHs and edge servers and at
this layer; the major mode of communication is M2M and extremely limited M2P, that is, in
the case where the CH has a task of its own triggered by end users to complete, finally at
the third layer, denoted the cloud layer, the only mode of communication is M2M.

Algorithm 1 is an algorithm showing how PSO works in the proposed model, and the
flow chart represented in Figure 3 is a pictorial representation of the steps the proposed
system takes to achieve resource optimisation in IoT. In Algorithm 1, the edge nodes
generating tasks are referred to as particles, and in the proposed model’s case scenarios,
the initial position of edge nodes (particles) is randomly generated. Once the initialisation
phase elapses, the mapping of the updated position; the obtaining of the fitness value; and
the updating of the velocity, position, and fitness function of all of the edge nodes (particles)
are conducted. After the particle’s position has been updated using (2)–(4), the new position
is compared to its incumbent updated position. The updated position is replaced with the
new position if the updated position is greater than the new position; otherwise, maintain
the updated position if vice versa. The global best is determined by comparing the local
best, that is, the optimal solution of a given particle to the global best—the optimal solution
of all particles. If a particle’s position satisfies (5) and (6) by obtaining the fitness value and
ensuring that the local best equals the global best, it is successfully allocated to a cluster;
otherwise, it is left in the pool for further allocation to an appropriate cluster. As (5) and
(6) are both linear, it is convenient to convert infeasible positions to feasible positions by
adopting a repair strategy [10].
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Figure 3. Model flowchart.

Algorithm 1 PSO Algorithm for proposed model.

1: Initialize position xi(t) and velocity vi(t):
2: Check particle’s position and velocity
3: Evaluate current fitness
4: Mapping of the updated position to the corresponding particles adjusting
minimum and maximum position if necessary
5: Obtain the fitness value of each particle
6: if bi(t) = g(t)
7: Update the velocity vi(t) of each particle
8: Update the position xi(t) of the particle
9: Update the fitness f (x) of each particle
10: Repeat Step 5 to Step 9 until it reaches maximum number of iterations is reached.
8: Particle with position closest to resource is designated cluster head
9: Cluster head broadcasts its position to adjacent nodes and completes cluster creation
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Assume the set of edge nodes are denoted by N = {n1, n2, . . . , nnum} and CHn ⊆ N,
the set of CHs denoted by CH = {ch1, ch2, . . . , chnum} has EClusterHead(chi), and the total
energy of chi and residual energy Eresidual(chi) is the remaining energy of chi in a single
round. The CHs’ total energy consumption in a round is dependent on the number of
nodes within its cluster. If chi has numi number of nodes, then its total energy consumption
is: EClusterHead(chi) = numi × ER + numi × EDA + ET(chi, S), where ER is the energy con-
sumption concomitant of receiving requests/data, EDA is the energy consumption due to
data aggregation, and ET is the energy consumption due to data transmission. Given that
each CH is battery powered and has a tendency to experience downtime, the lifetime of a
CH represented by Li can be calculated as follows: Li = Eresidual(chi)

EClusterHead(chi)
.

4. Experiment and Analysis

This section delivers the simulation setup and analysis of results acquired. The simu-
lation setup describes the approach taken to evaluate the efficiency of the proposed model,
and the analysis of results acquired from the simulation setup will give insight as to the
efficacy of proposed PSOR2B model.

4.1. Experimental Simulation Setup

The parameters and dataset remain the same in all test scenarios. The simulations were
on one to one hundred (1–100) nodes and five (5) servers, thus reflecting corporeal situations
where the edge nodes are multiple in comparison to the limited number of resources and
buttressing the requirement for the management of limited resources. The nature of the
model, which simulates a real-life situation, implies that all nodes have varying battery
energies and are randomly deployed; the message and packet sizes vary with each request;
the mode of communication is bidirectional—wireless, or not, M2M, and M2P; and the
mode of communication to cloud and edge servers is wireless—M2M. In the simulation run,
the simulation parameters as shown in Table 1, similar to aspects of [13,17,18], were used.

Table 1. Simulation parameters.

Parameter Value

Edge nodes 1–100
Servers 5
Number of simulation iterations 20
Monitoring area for each cluster 20 m × 20 m (400 m2)
Packet size ≥ 168 bits
Message size ≥ 4608 bits

Five (5) test case scenarios of the proposed model were simulated using the python
programming language and the anaconda framework. These test case scenarios were
initiated to evaluate the performance of the proposed mode are grouped into preliminary
and secondary test scenarios. The preliminary scenario, which equates the first three
test case scenarios, is concerned with establishing the relevance of the PSO algorithm.
The secondary test scenario, which includes the last two test scenarios, is concerned
with portraying PSOR2B’s efficacy over existing approaches. The scenarios enabled one
to measure the effectiveness of the model as a means for the further optimisation of
resources in IoT systems. The performance of the proposed model is assessed based on
the returned turnaround time (TAT). The proposed model leveraging on the sever rates
aims to balance resource allocation, consequently improving the server rate by allocating
appropriate resources/servers to request/edge nodes. The TAT performance indicator,
which is the amount of time it takes to complete a given process, is a worthy measure of
the effectiveness of the proposed model as in effect it is the measure of the server/resource
rate. As previously mentioned, the turnaround time (TAT) is expressed as Equation (5).
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4.2. Experimental Results and Analysis

Related works indicate that the appropriate use of clustering algorithms produces
better solutions as opposed to non-clustering algorithms; hence, at the preliminary phase,
three test scenarios were conducted. The first test scenario compares the efficiency of
two clustering algorithms—PSO contrasted with Ant colony. The existing ant colony
implementation found in [28] was chosen as its areas of focus match the areas of focus of
the proposed system, Moreso; comparing the two will bring enlightenment and inform the
decision regarding the choice of clustering algorithm applied to the proposed model, thus
championing the incorporation of the best clustering algorithm into the proposed model as
well as the best course of action for resource optimisation of IoT.

Figure 4 depicts without a doubt PSO’s great advantage over the ant colony algorithm
when it comes to the efficiency of resource allocation in IoT; the larger the task, the greater
the efficiency. This reiterates its flexibility and scalability and implies that aside form
its efficiency, PSO complies with the proposed systems’ objective, enhancing its resource
optimisation and improving its scalability.

Figure 4. Ant Colony vs. PSO clustering technique.

After the establishment of PSO’s alignment with the proposed model’s objective,
and its superiority over the ant colony clustering algorithm, the second preliminary test
conducted set out to measure the efficacy of the PSO clustering algorithm as an algorithm
for resource optimisation in IoT. Figure 5 demonstrates how clustering (PSO) stands to cause
improvements on resource optimisation techniques. The random allocation of resources,
as employed in a centralised IoT, produces a much higher TAT than the PSO clustering
algorithm. Clustering (PSO) was applied, and evident improvement over the random
allocation can be seen. This result not only illustrates the improvements clustering has
on resource optimisation in IoT, it also reaffirms the decision of incorporating PSO in the
proposed model as it justifies the necessity for the use of clustering as an additional means
of resource optimisation in IoT technologies.

The first two preliminary test cases establish the dominance of PSO over Ant Colony
and PSO’s effectiveness over random resource allocation; the aforementioned therefore
aided the proposed model’s design. Assumptions made in the model’s design regarding the
clustering of nodes and consequently the creation of CHs is that the server’s performance
is a function of proximity to request on a Cartesian plane; thus, the CH and subsequent
cluster formation was dependent on their proximity to servers, with the CH being the
closest with favourable storage and processing capacity.
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Figure 5. Random allocation vs. PSO clustering technique.

The third preliminary test scenario looks at the effects of the previous proposed hybrid
algorithm contrasted against the PSO has on resource optimisation. Having established
PSO’s ability to optimize resource allocation effectively as depicted in Figure 5, the RR-RB
hybrid algorithm was subsequently compared to the PSO as a measure of its efficiency.
The output as represented in Figure 6 shows that the hybrid has dominance over the PSO
approach. The results displayed on the graph show how the hybrid algorithm’s TAT is over
three times more efficient than that of its counterpart the PSO. This third instance proves
the advantage of using the hybrid in the proposed model, and although PSO has multiple
advantages and has better efficiency than the ant colony and random allocation algorithms,
its efficiency is limited and can be further heightened.

Figure 6. Hybrid resource allocation algorithm vs. PSO clustering technique.

The results presented in Figures 4–6 display the individual strengths of each algorithm.
For the sake of producing more optimal solutions and for comparisons with existing
algorithms employed in the current state of the art, the secondary test scenario, depicted in
Figures 7–14, further exhibits the efficacy of the algorithms, not as individual algorithms
this time but as a combined trio—PSOR2B in optimizing resource allocation in IoT.
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Figure 7. PSO vs. PSOR2B (Barchart).

Figure 8. PSO vs. PSOR2B.

Figure 9. Hybrid vs. PSOR2B (barchart).
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Figure 10. Hybrid vs PSOR2B.

Figure 11. Random resource allocation vs. hybrids resource allocation vs. PSOR2B.

Figure 12. Random Resource allocation vs. hybrids resource allocation vs. PSOR2B (Barchart).
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Figure 13. Cumulative turnaround time of LEACH vs C-LBCA vs PSOR2B.

Figure 14. Cumulative turnaround time of C-LBCA vs PSOR2B.

The fourth (4th) test case therefore compares the trio combination (PSO + hybrid
algorithm) against the PSO, as well as the trio combination against the hybrid algorithm.
In both cases, the aim is to draw attention to the effectiveness of the proposed PSOR2B
model, emphasising how it produces more optimal results in terms of the TAT. An improved
TAT suggests improved power rates/battery lifespan and performance. Figures 7 and 8
show how the proposed PSOR2B model is more efficient than the resource optimisation
by the PSO methodology. The figures further show how the proposed model’s approach
generates an efficient TAT better than the PSO’s approach, ranging between two hundred to
three thousand, eight hundred milliseconds (200–3800 ms). Although the use of PSO on its
own produces optimised results, a combination of PSO and the hybrid algorithm produces
even better results. The few sudden hikes in the hybrid and PSO trio may be incidental to
not finding the best fit at that given instance. Figures 9 and 10 depicts how incorporating the
PSO clustering algorithm to the hybrid RR-RB algorithm produces an even more optimal
solution. The use of the hybrid algorithm produces a relatively good TAT; however, when
PSO is incorporated, the TAT is seen to further reduce with the TAT closer to zero (0). This
again shows the importance of the use of appropriate clustering techniques as an add-on
and not stand-alone. It suffices to say therefore that the generated results depicted in
Figures 9 and 10 affirm the importance of the proposed PSOR2B. The PSOR2B algorithm
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harness the strengths of all three merged algorithms to produce a holistic algorithm that
further optimizes IoT.

Figures 11 and 12 give a summary of all outputs by giving comparisons of all three algo-
rithms concerned. Given the establishment from preliminary test scenario three, as depicted
in Figure 6, of the hybrid’s superiority over the PSO, the comparisons in Figures 11 and 12
compare random allocation to hybrid and PSOR2B (hybrid algorithm + PSO) algorithms,
giving at a glance the efficacy of PSOR2B. From previous test scenarios, it has been shown
that the hybrid algorithm stands to produce more efficient outputs when compared to the
current state of the art–random allocation—and the hybrid and PSO combination (PSOR2B)
form an even more efficient technique for resource optimisation in IoT. Figures 11 and 12
give a summary of this efficiency by comparing the three approaches of resource alloca-
tion: random, hybrid, and hybrid + PSO. The hybrid algorithm, which allocates resources
based on request size whilst considering the resource capacity evidently shown in the
figures, produces a more efficient TAT than the random allocation approach. Clustering by
means of the addition of PSO focuses on dividing edge nodes into clusters consequently
creating CHs; by creating clusters, the latency is hypothetically reduced by a factor of
two. The effect of PSO is also seen in the figures as a combination of the hybrid and PSO
algorithms generate an even more optimal result, with the TAT more than halved. In these
depictions, the PSOR2B’s performance is consistently better than the random allocation
and the previous improved hybrid algorithm. This affirms the importance of clustering
algorithms in resource optimisation of IoT. It can therefore be inferred that the proposed
topology further reduces the latency and enhances resource optimisation, as opposed to
the random allocation where nodes have multiple connections. The proposed model limits
the number of connections to servers via the clustering technique (PSO) to generate CHs.
The CHs are key to the functionality of the hybrid algorithm as they aid in controlling
the scheduling and allocation processes. The hybrid works on the foundation laid by the
PSO as it leverages on the CH created by the PSO clustering algorithm to conduct the load
balancing, thus further optimizing resource allocation in IoT.

Figures 13 and 14 give the cumulative TAT for processing of one hundred requests;
thus, the TAT runs into thousands of milliseconds contrary to the TAT depicted in previous
test case scenarios. By developing the PSOR2B model, which focuses on the overall
system performance, measured by TAT (turnaround time), energy dissipation is lowered.
The incorporation of the EC paradigm in the model implies less transfer of data, and with
less data transfer and the necessity for the processing of tasks, not only is energy dissipation
controlled, the speed at which tasks are processed is improved, consequently improving
QoS and bettering users’ QoE. The fifth and final test case scenario presents comparisons
between the PSOR2B, LEACH, and C-LBCA. In Figure 13, the cumulative TAT for one
hundred requests is portrayed. As can be seen, LEACH is the weakest of the three with
a cumulative TAT of above two hundred thousand milliseconds, followed by the TAT
for the C-LBCA of around fifteen thousand milliseconds. The PSOR2B, the strongest of
the three, produces a cumulative output of ten thousand milliseconds. Based on these
outputs, it can be inferred that CH rotation as incorporated in the LEACH algorithm is
not a necessary focal point as other factors can be controlled to bring about a better TAT,
and that improving the WSN lifespan, the focal point of the C-LBCA algorithm, has a gross
effect on the TAT/overall system’s performance, considering the substantial improvements
when likened to LEACH. The LEACH and C-LBCA have previously shown improvements
in terms of energy dissipation and device lifespan; thus, PSOR2B’s superiority as depicted
in Figure 13 indirectly shows its improvements on energy dissipation and device lifespan
as these factors directly influence the overall system performance. The improvements
seen in the PSOR2B over the C-LBCA can be credited to its ability to control the WSN
performance via the clustering technique in addition to the RR-RB algorithm; aside from
that, the implementation of the EC paradigm further improves systems processing prowess
and security feature. Figure 14 gives a close-up comparison of the better performing C-
LBCA in light blue with the proposed PSOR2B in dark blue. On a closer look, it can be
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drawn that the C-LBCA, which is a centralised approach, works more efficiently for smaller
request sizes. PSOR2B, on the other hand, has a consistently low output for all request sizes
and provides more efficient results for larger request sizes with fewer erratic tendencies.
With the increasing popularity of IoT, the number of nodes and the request size are bound
to increase exponentially; therefore, the centralised C-LBCA model, when compared to the
decentralised PSOR2B, loses its relevance in terms of overall system performance. Since
energy consumption amongst other factors directly affect a system’s performance, it suffices
to say that that the larger the number of requests and varying request sizes, the less the
effectiveness of the C-LBCA in comparison to the PSOR2B.

4.3. Limitations and Future Work

The PSOR2B, a merger of the EC paradigm, clustering techniques and the RR-RB
hybrid algorithm work together for efficient, flexible, and scalable resource optimisation
in IoT. PSOR2B’s employment of the incorporated concepts ensures its adaptability and
consequent efficiency in varying network conditions. The PSOR2B’s capacity as illustrated
in the generated results, taking into consideration the devices’ varying storage, processing,
and computation capacity, explicitly portrays its efficiency as a solution for the MORAP
IoT problem. Despite these positives, security provided by the incorporated EC paradigm
can be further improved. Future work can also explore the implementation of the PSOR2B
model in real-life scenario. Although the results generated suggest PSOR2B’s scalability,
especially in the number of requests it can handle, a further implementation with a focus
on PSOR2B’s performance in large-scale IoT can be further explored.

5. Conclusions

In this paper, an efficient resource optimisation algorithm for IoT labelled PSOR2B
was developed. The algorithm utilizes aspects of the EC paradigm, the PSO clustering
technique, round robin, and resource-based algorithms. Incorporating the advantages
of the trio, the PSOR2B solves the resource optimisation problem in IoT, ensuring that
equal importance is placed on resource allocation and resource scheduling. Given that IoT
tends to grow in complexity with an increase in size, the designed and developed PSOR2B
model abates the complexity problem by tackling the allocation and scheduling problems,
consequently providing solutions for scalability and latency issues that directly influence
QoS and users’ QoE.

The experimental results show the proposed PSOR2B’s efficient solutions for the
resource optimisation problem in comparison to the existing ant colony and the LEACH
and C-LBCA algorithms . Once the right task is assigned to the right resource, an optimised
turnaround time (TAT) is inevitable. An efficient execution time implies an excellent
TAT, and an improved TAT indicates less energy dissipation at nodal levels. Less energy
dissipation promotes a longer lifetime for all edge nodes and subsequently the entire system.
The results indicating the efficiency of the PSOR2B imply that QoS and consequently users’
QoE is assured. The promising results inevitably show the effectiveness of using clustering
algorithms on existing algorithms to further resource optimisation in IoT. It suffices to say
that although certain parameters are controlled, the random nature of data transfer and
communication between nodes are not controlled, therefore reflecting real-life situations.
The proposed model can therefore be replicated easily into real life situations with little
or no adjustments. The results generated have been able to shift the focus to factors
worth more consideration, such as taking into account and placing equal importance on
resource scheduling and resource allocation; the request size and server/resource size; how
efficiently these resources are used; and how situations such as bottleneck can be avoided.

Future work can further improve this model by making it secure, thus tackling the
problems associated with IoT’s privacy and security, consequential of decentralising the
IoT’s topology. The PSOR2B model can further be deployed into real life scenarios.
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