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Abstract: The node embedding method enables network structure feature learning and representation
for social network community detection. However, the traditional node embedding method only
focuses on a node’s individual feature representation and ignores the global topological feature
representation of the network. Traditional community detection methods cannot use the static
node vector from the traditional node embedding method to calculate the dynamic features of the
topological structure. In this study, an incremental dynamic community detection model based
on a graph neural network node embedding representation is proposed, comprising the following
aspects. A node embedding model based on influence random walk improves the information
enrichment of the node feature vector representation, which improves the performance of the initial
static community detection, whose results are used as the original structure of dynamic community
detection. By combining a cohesion coefficient and ordinary modularity, a new modularity calculation
method is proposed that uses an incremental training method to obtain node vector representation
to detect a dynamic community from the perspectives of coarse- and fine-grained adjustments. A
performance analysis based on two dynamic network datasets shows that the proposed method
performs better than benchmark algorithms based on time complexity, community detection accuracy,
and other indicators.

Keywords: graph neural network; node embedding; dynamic community detection; incremental; modularity

MSC: 91D30

1. Introduction

In social networks, there are some closely related groups of people. The interactions
and connections between these people are close and frequent. Such groups of people are
often clustered for analysis. In the field of social network research, the composition of
these groups is generally used. Groups are called communities. It is very meaningful to
discover communities in social networks, and much hidden information can be mined
from them. However, with the increase in the complexity of interpersonal relationships, the
complexity and scale of social network structures are also changing, and the research on
the community structure of complex networks has become particularly important. Group
relations in social networks present high dynamic characteristics, and much work focuses
on the detection of dynamic communities and their structures. The core difficulty lies
in computational cost and performance because of the complexity and dynamics of the
group relation structure [1,2]. With the development of deep learning and graph neural net-
works [3,4], Zhang et al. proposed a framework based on network embedding methods to
identify influential nodes and capture comprehensive information to distinguish nodes [5];
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Munikoti Sai et al. proposed a framework based on extensible universal graph neural
networks (GNN) for identifying critical nodes/links in large complex networks [6]; Wu
et al. proposed a session-based graphical neural network recommendation (SR-GNN) aims
to predict user behavior based on anonymous conversations [7]; Sun Jianyong et al. pro-
posed a graph neural network coding method for a multi-objective evolutionary algorithm
(MOEA) to deal with community detection in complex attribute networks [8]. Researchers
have gradually focused on expressing network nodes with low-latitude, high-density
spatial vectors, thereby maintaining the structure and feature information of the original
network. Learned feature vectors are represented such as by graph-based classification,
clustering, and link prediction [9–11]. As a research direction of graph neural networks,
graph embedding has also attracted attention [12]. Research on network representation
learning technology based on graph embedding and community detection through vector
feature methods has attracted much interest. However, the static feature vector obtained
by the classical graph embedding algorithm still cannot meet the discrete and real-time
characteristics of social network community structure detection. These problems are the
focus of this study.

The community detection algorithm based on network node representation has three
core deficiencies. (1) Factors considered in random walk-based graph embedding methods
are relatively simple. The attribute information of the nodes themselves is less considered,
resulting in a low-quality corpus generated by walk sequences. (2) Most community detec-
tion algorithms use modularity, topology, or density-based division methods, which only
consider the relationships between nodes and ignore potential many-to-many relationships
between nodes and communities. (3) Traditional dynamic community detection algorithms
tend to analyze node attributes or increments to achieve detection results. The accumula-
tion of single detection errors will lead to a great difference between community structures
and actual situations.

To solve the above problems, this study proposes a dynamic community detection
method in social networks based on random walk node embedding. In node representation
learning, in addition to the topological structure between nodes, attributes of the node
itself can be considered, which can enrich the features of node representation. We calculate
the probability that each node belongs to each community and integrate it into the node
representation vector to detect overlapping communities and discover many-to-many
relationships between nodes and communities. The node representation strategy proposed
in this paper has been described in more detail and experimental results in the previous
work. This work is a follow-up study based on the previous research results [13]. In
the dynamic community detection phase, we divide the community in a coarse-grained
manner according to the degree of modularity, and incrementally train the node vectors
in the changed part of the network to perform fine-grained detection so as to reduce the
cumulative error and improve the accuracy of community division.

The highlights of the paper are as follows.

(1) We propose a node representation algorithm that integrates the local topology of the
network and influences the attribute information of the node itself; improves the feature
representation ability of the node embedding feature vector, so that the resulting nodes
contain richer network information, and the semantic quality is also improved; combines
local node embedding and global community embedding; and realizes the mining of
the many-to-many relationships between the node and community.

(2) We propose a dynamic community discovery algorithm based on the node represen-
tation algorithm. A modularity increment is defined, a preliminary judgment is made
on the impact of the addition and withdrawal of nodes on the community based on the
topology, and an incremental training node method is adopted for different judgment
results to reduce the error of community division. Experimental results demonstrate
that the proposed community detection algorithm performs well in terms of time
complexity and community division accuracy, and the time complexity of the training
algorithm is reduced.
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The remainder of this study is organized as follows. Section 2 introduces related
work. Section 3 describes the proposed algorithms, and Section 4 explains their operation.
Experimental results are presented in Section 5. Section 6 summarizes our work and
provides guidance for further research.

2. Literature Review
2.1. Node Representation Learning

Graph embedding is the training of neural networks to represent an information
network as a set of potential node-embedding vectors. Nowadays, most of the multi-
graph embedding work focuses on learning the node representation of homogeneous
networks [14]. Social networks are considered to be homogeneous networks when only user-
to-user relationships are considered. Therefore, we focus on node representation learning
in this section. Node representation learning is applied to many common tasks, such as
node classification, community detection, link prediction and so on. Node representation
learning is the process of learning node representation in a digital vector format, which can
capture the characteristics of network nodes [15].

Traditional machine learning classification methods usually map the attributes of
samples to classification labels. Nevertheless, the traditional machine learning algorithm
is not suitable for social networks because of the lack of node attribute information in the
actual network. The Word2vec model proposed by Tomas Mikolov et al. [16] has become
a tool in the field of natural language processing. It is characterized by vectorization of
all words so that relationships between them can be measured quantitatively, inspiring
its application to discrete social network graphs. In 2014, Perozzi et al. [17] proposed the
DeepWalk algorithm, which applied Word2vec technology in deep learning to the node
vector representation of discrete network graphs. It uses the random walk sequence of
nodes constructed in the network to simulate the text generation process, and then generates
the random walk sequence of nodes. It uses the Skip-gram model and a hierarchical softmax
function to model each node in the random walk sequence to maximize its likelihood, and
the random gradient descent function to learn the parameters. Upon convergence, the loss
function learns the vector representation of the nodes.

The traversal strategy of the DeepWalk algorithm uses a complete random walk, which
cannot fully integrate the topology information of network nodes. In 2016, Grover et al. [18]
proposed node2vec and a biased random walk strategy to control the direction of a random
walk by defining an offset function. It combines the advantages of the depth- and breadth-
first search, and considers the local and global topology information of nodes. However,
node2vec only covers the data information of the topology based in the network, and
not the attribute information of the node itself, which improves the quality of the corpus
formed by the wandering sequence and affects the accuracy of community detection.

In summary, the graph neural network method based on a random walk can obtain a
corpus based on a graph structure according to the walk strategy and carry out subsequent
research on community detection based on vector representation learning. The shortcoming
lies in that the existing walk strategy only covers the data information of the network based
on edge topology structure but does not fully consider the attribute information of the node
itself. As a result, the quality of the corpus formed by the wandering sequence needs to be
improved, thus affecting the accuracy of community detection. To improve the quality of
the random walk corpus, this study proposes an improved node representation strategy
based on the node2vec algorithm, which combines the network topology and influence
attribute information of the node itself to represent and learn the node vector and improve
the accuracy of community detection.

2.2. Dynamic Community Detection

There are many types of dynamic community detection algorithms. We discuss the
method based on the maximization of modularity, and specifically, the method based on
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incremental training nodes. This method regards community detection as an optimization
problem. Therefore, we choose modularity as an index of community structure.

A dynamic community detection algorithm based on modularity measures changes
in the community structure according to changes in modularity. Li et al. [19] proposed
an improved label propagation algorithm named LPA-MNI in this study by combining
the modularity function and node importance with the original LPA to solve the problem
of community detection. Gerrero et al. [20] proposed a new Pareto-based multi-objective
evolutionary algorithm; they analyzed two multi-objective variants involving not only
modularity but also the conductance metric and imbalance in the number of nodes of the
communities. Lu et al. [21] proposed a regression model for weighting the edges in the
network, which maximizes the detection community based on modularity. Kun et al. [22]
proposed a local community detection algorithm based on local modularity density. It is
used for a specific and personalized community detection tasks; the algorithm consists of
two separate stages: the core area detection stage and the local community extension stage.
Cheng et al. [23] proposed a community detection method based on a density sequence tree.
The core nodes were selected by the density peak model, and the community belonging to
other nodes was assigned according to the access order tree.

The main idea of the incremental dynamic community detection algorithm is as follows.
Most of the network topology of a complex social network is stable during dynamic
evolution, and only a small part of the structure changes. The community detection
result corresponding to a snapshot of the network is used as a reference, and only the
changed part is recalculated or trained, which can greatly reduce repeated calculation and
training, thereby reducing the time complexity. Zhao et al. [24] found that most incremental
dynamic community detection algorithms are only suitable for adding a node or edge,
so they proposed four types of incremental elements and defined corresponding update
strategies. Rossetti et al. [25] proposed a dynamic community detection algorithm that can
detect overlapping communities and follow their evolution in a linear iteration process.
They dynamically recalculate the identities of node community members upon a new
interaction, ensuring a short execution time. For incremental community detection on large
dynamic networks, Shang et al. [26] used machine learning classifiers to predict community
allocation, aiming to improve efficiency by filtering unchanged nodes to avoid unnecessary
processing. Xu et al. [27] proposed a two-stage method. Once the error accumulation
degree of incremental clustering exceeds a predefined threshold, the dynamic network
snapshot is completely re-divided instead of partially updating the community structure.
Wu et al. [28] proposed an incremental and scalable community detection method including
both tags and potential interactions between users, which can improve detection accuracy.

In summary, to eliminate the error results caused by community detection based
solely on the network topology structure, we adopt the method of comprehensive use
of incremental training nodes and community representation vectors to calculate the
community affiliation of nodes and adjust the community affiliation of the positioning
results in the previous step. Therefore, based on the existing dynamic community detection
algorithms, this study proposes an incremental dynamic community detection model based
on graph neural network node embedding representation. The modularity is improved for
easier realization of the rationality of community division. Incremental training reduces
the time complexity and improves the accuracy of community division.

3. Preliminaries

We formally define node embedding and dynamic community detection.

Definition 1 (Social network graph model). The structure model of a social network graph is
ise as an undirected and unweighted graph G(V, E), where V = {v1, v2 · · · vn} is the set of nodes
v in the network, n represents the number of nodes, and E = {e1, e2 · · · em} is the set of connected
edges e between nodes, m is the number of edges. Based on this, research on node representation and
community detection of networks is conducted.
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Definition 2 (Community structure). Nodes with high similarity in social networks are classified
as the same community. A complex network G(V, E) can be divided into several communities
C = {c1, c2, . . . , ck}. There is a many-to-many relationship between nodes and communities, which
can be characterized as vi ∈ ci, vj ∈ ci, i 6= j. That is, the same node can belong to different
communities, and a community can contain different nodes.

Definition 3 (Dynamic network structure). In the dynamic network G =
(
G1, G2, . . . , Gt),

Gt = (Vt, Et) is a snapshot of the network structure at time t(t = 1, 2, . . . , T), and Vt and Et are
the sets of all nodes and edges, respectively, in the network snapshot at time t.

According to the above definition, the proposed dynamic network community detec-
tion model can be used to model the following problems.

According to the adjacency matrix, the initial social network graph structure model is
formally expressed as

Gt1 =
[
Y
(

vt1
1

)
, Y
(

vt1
2

)
, . . . , Y

(
vt1

n1

)]
(1)

where n1 is the number of nodes in the network at the initial time t1, and the column vector
Y
(

vt1
i

)
lists all the nodes connected with node vi. Then, the node representation strategy

can be expressed as

G′t1 =
[
Y
(

vt1
f c1

)
, Y(vt1

f c2
), . . . , Y(vt1

f cn1
)
]′

(2)

where vt1
f ci

is the vectorized presentation of node vi. The subscripts f and c indicate that the
vector contains the attributes of the node and community belonging information.

The network structure evolves with time, and the output of the structure model of the
final network snapshot is

G′ =
[

G′t1 , G′t2 , . . . , G′tT
]
=


Y
(

vt1
f c1

)
, Y

(
vt2

f c1

)
, . . . , Y(vtT

f c1
)

Y(vt1
f c2

), Y(vt2
f c2

), . . . , Y(vtT
f c2

)
...

... . . .
...

Y(vt1
f cn1

), Y(vt2
f cn2

), . . . , Y(vtT
f cnm

)

, (3)

where T is the number of network snapshots, nx is the total number of nodes in the network
corresponding to snapshot tx and Y(vt

f ci
) is the vectorized representation of the ith node in

the network snapshot at time t. Our goal is to learn a mapping function, f : Gt1 −→ G′ .
We propose a node representation strategy and define a total objective function that

can be divided into two sub-objective functions for the vectorization representation of
the attribute information and community belonging information of the training node.
After the training of the model, both the topology information and community belonging
information of a node can be obtained. Additionally, we build a dynamic community
detection method to incrementally train nodes and community vectors in each snapshot
according to the situation, so as to obtain the community belonging of each node in the
snapshot of the dynamic network.

4. Proposed Model

We describe the proposed dynamic community detection model. We detail the node
representation method that incorporates influence. We discuss how to locate the changed
community structure based on the change of modularity in dynamic community detection,
and how to use the corresponding training method for node vectors according to different
positioning results, so as to make a fine-grained community division. Figure 1 shows the
framework of the algorithm. The information contained in the node vector is enriched
in the node representation learning stage where the influence information is integrated.
In the static community detection stage, the many-to-many relationship between nodes
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and communities is integrated to improve the accuracy of community detection. The
right represents the dynamic community detection model, and the community belonging
situation of the node obtained by the left algorithm is regarded as the initial community
structure of the dynamic community detection model. The concepts of cohesion coefficient
and common modularity are combined to improve the calculation method of modularity
according to the stage of community structure with incremental modularity. The coarse-
grained positioning divides the community structure with changes. According to the
coarse-grained division, the dynamic community detection of new nodes and dynamic
community detection of removing old nodes are performed, respectively. The incremental
vector training method is used for the unchanged network structure. Through the method
of vector training according to the situation, the community structure divided in the
previous step can be fine-grained adjusted, error of the detection result is reduced, accuracy
of the community structure detection is improved, and real network community structure
is restored as much as possible.
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Figure 1. Model frame of proposed algorithm.

4.1. Node Embedding with Influence Information

Referring to node2vec, we define the new walking strategy construction graph corpus
and use this to represent and learn all nodes in a network. We calculate the community
belonging probabilities of nodes and allocate community belonging so as to obtain the
community structure under the initial state of the dynamic network.

We quantify the node influence from the two indicators of degree centrality and
agglomeration coefficient.

Degree centrality represents the influence of a node. The greater the degree, the higher
the degree centrality of the node, and the greater its influence in the network. For an
undirected graph with n nodes, the degree centrality of node vi is

Cdeg = ∑n
j=1xvi ,vj

(
vi 6= vj

)
. (4)

Cdeg represents the number of nodes directly connected to node vi. xvi ,vj indicates the
existence of the connection between vi and vj. If there is an edge between vi and vj, then
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xvi ,vj = 1; if there is no edge between vi and vj, it is not a pair of neighbor nodes, then
xvi ,vj = 0. To eliminate the influence of complex network scale on degree centrality, it is
normalized as

C′deg =
Cdeg

n− 1
, (5)

after which the degree centrality is between 0.0 and 1.0.
The clustering coefficient is expressed as the probability of edge connection between

any two neighbor nodes. According to the ternary closure principle in social networks, a
common neighbor node of two unconnected nodes will increase the probability of a future
edge connection between them. The aggregation coefficient expresses the node connection
probability as

CCvi =
Ti

C2
k
=

2Ti
k(k− 1)

, (6)

Among them, k represents the number of all neighbor nodes, Ti represents the actual
number of edges between all neighbor nodes of vi, C2

k represents the number of edges
connected between all neighbor nodes of vi when any two nodes in all neighbor nodes of
vi are assumed to have edges.

According to the above two indicators, the node influence value is calculated as

fvi = βC′deg + γCCvi , (7)

where β and γ are constants, and β + γ = 1. Thus, the closer fvi is to 1.0, the greater the
influence of node vi.

The nodes in the network graph should be traversed first when generating the database.
Based on the node2vec model, this study improves the swimming control strategy. On the
basis of preserving the network topology information and integrating the influence attribute
fvi of the node itself, we characterize the walking-direction-control function α as follows:

αp,q(t, vi) =


fvi
p , i f dt, vi = 0

fvi , i f dt, vi = 1
fvi
q , i f dt, vi = 2

. (8)

Using this formula, given a central node, the next node is determined according to
the relationship between the previous step and the next step. Suppose t is the previous
node, u is the current node, vi is the next step to traverse the node, and dt, vi is the step size
between t and vi. Then, starting from t, the current node is u, and the selection of node vi
to traverse in the next step is shown in Figure 2a.
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(1) When d = 0, t is selected with probability fvi /p.
(2) When d = 1, the node directly connected with it is selected with probability fvi , which

is the influence value of vi.
(3) When d = 2, nodes not directly connected to it are selected with probability fvi /q.
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Because the influence values of nodes are different, so is the probability of selecting
the next node, so as to improve the representation quality of nodes.

Given a central node u, according to the above strategy, a walk sequence with length l
can be obtained, and the probability of its neighbor nodes can be calculated as

P
(
vj|vi

)
=

{
α(vi ,vj)

Z , i f
(
vi, vj

)
∈ E

0, otherwise
, (9)

where vj ∈ N(vi), α
(
vi, vj

)
is the non-normalized conversion probability between i and j,

Z is the normalized constant, and P
(
vj|vi

)
can be defined by the softmax function as

P
(
vj|vi

)
=

exp
(

v′j·vi

)
∑v∈V exp(v·vi)

. (10)

The objective function of node attribute representation is

L f (s) =
1
|s|∑

|s|
i=1logP

(
vj|vi

)
. (11)

We extract the network topology and node attribute information, which should be
retained by maximizing the objective function. When the objective function converges, the
required node embedding representation vector v f can be obtained.

The initial state of the dynamic network G =
(
G1, G2, . . . , Gt) is regarded as that of a

static network G = (V, E). The goal is to divide the nodes in V into k sub-community sets,
C = {c1, c2, . . . , ck}. To fully consider the community attribute information of a node, we
make two assumptions.

Assumption 1. Each node in the network graph has a different probability of belonging to
multiple communities.

Assumption 2. The central node vi is known to belong to multiple communities. It is stipulated
that vi belongs to only one community ci in a particular walk sequence si.

Under these two assumptions, it is unknown whether the neighbor node j of I belongs
to community C. Therefore, the key objective function P can be obtained to represent the
probability that the neighbor node j belongs to C if the central node belongs to C.

Similar to Equation (10), we use the softmax function to calculate

P
(
vj|ci

)
=

exp
(
vj·ci

)
∑v∈V exp(v·ci)

. (12)

For any node, after calculating the probability of its belonging to all communities, the
community corresponding to the maximum probability is selected as the community to
which the node belongs:

y = Argmax
(

P
(
vj|ci

))
= Argmax

(
exp

(
vj·ci

)
∑v∈V exp(v·ci)

)
. (13)

Based on the above analysis, we define the community attribution objective function as

Lc(s) =
1
|s|

|s|

∑
i=1

∑i+t
j=i−tlogP

(
vj|ci

)
. (14)

When (14) converges, we can obtain the vectorized representation c of the information of
the community to which the node belongs, as shown in Figure 2b. The vectorized representa-
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tions v f and vc of the node’s influence attribute information are combined to obtain the final
node vector. Each node vector is a 128-dimensional vector, expressed as follows:

v f c = v f
⊕

vc. (15)

4.2. Dynamic Feature Positioning of Coarse-Grained Community Structure

We analyze the dynamic change characteristics of the community structure according
to the increment of modularity and perform coarse-grained division and positioning for
the changing nodes and communities. The following definitions are given.

Definition 4 (Cohesion coefficient). This is the relative independence of the community.
The larger the value, the more independent the community. The cohesion coefficient formula of
community ci at time ti is defined as

Cohti ,ci =

{ |E(ci)|
|E(ci)|+∑i 6=j I(ci ,cj)

, |E(ci)| > 1

0, |E(ci)| = 0
, (16)

where |E(ci)| is the number of internal edges in community ci, and I
(
ci, cj

)
is the number

of connected edges between communities ci and cj.

Definition 5 (Community modularity). The larger the modularity the better the effect of commu-
nity detection. The modularity formula of community ci at time ti is defined as

Qti ,ci = ∑
Ci

[
∑ in
2m

−
(

∑ out
2m

)2
]
= ∑

Ci

[
eci − a2

ci

]
, (17)

where ∑ in is the sum of the weights of internal edges of community ci, ∑ out is the sum of
the weights of external edges connected to community ci, and m is the sum of the weights
of all edges in all communities. The weights of all edges can be regarded as 1.

If the results obtained in Section 4.1 are recorded as the community structure at initial
time t0, then the modularity value of community ci at time t is QCt0,ci

. Considering the two
characteristics of the community, the modularity is improved as

QCt0,ci = QCt0, ci
× Cohti ,ci . (18)

According to the concept of community modularity and the cohesion coefficient, the
improved modularity reflects both the closeness of the internal connection of community ci
and the relative independence between it and other communities in the network. The
following example illustrates the effect of modularity improvement, as shown in Figure 3a.
Community C1 is a complete graph composed of 100 nodes, and community C2 has
three nodes. There is an edge connection between the two communities, which is a more
reasonable community division method. According to the definition of original modularity,
the modularity of division method 1 is 0.00161, and that of division method 2 is slightly
greater at 0.00177. However, method 1 is actually more reasonable, which indicates that
the original modularity is not suitable for the situation of a large difference in community
scale. According to the improved modularity QC, the QC value of method 1 is 0.49980, and
that of method 2 is 0.47964, which indicates that the improved modularity can reflect the
rationality of community division.
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At time ti − 1(i > 1), the modularity of community ci was recorded as QCti − 1, ci
. At

time ti, for any change node, assume that vi is a new node belonging to community ci.
The modularity QCti ,ci (vi) of community ci is calculated, and the modular increment
4QCti ,ci (vi) caused by the change node vi to community ci is calculated as

4QCti ,ci (vi) = QCti ,ci (vi) − QCti − 1,ci
, (19)

where vi ∈ Vt_add, and Vt_add is the set of newly added nodes at time t. At this stage, the
condition for node vi to belong to community ci is

4QCti ,ci (ti) > 0. (20)

However, in this way, only coarse-grained division and positioning of changed sub-
systems and communities can be made, and it cannot be regarded as the final community
attribution result. It is also necessary to consider the semantic information of nodes to
reduce the error of community division. Therefore, incremental node training is performed
to extract the community structure in a fine-grained manner.

4.3. Fine-Grained Extraction of Community Structure

According to the preliminary positioning results of the dynamic community structure
change, there are two situations. The number of communities |C| changes or does not
change, and appropriate algorithms are adopted for fine-grained feature extraction dynamic
community detection.

When a complex network is dynamically evolving, there are few new nodes, which can
all belong to existing communities, or the deletion of nodes does not affect the structure of
other parts of the network. These circumstances do not change the number of communities.
We refer to this as the case of a constant number of communities.

New node, as shown in Figure 4a, compared with time t − 1; nodes 16, node 17 and 18
are deleted in network t. The three newly added nodes do not affect the network structure
of other parts of the network. In this case, we propose training only the newly added
nodes: In t moment, the newly added node v ∈ V, V for sampling, the node representation
detection based on influence information is carried out in the random walk corpus S with
newly added nodes. After the training, the vector representation of the original node is
unchanged, and the vector representation of the new node and probability of the new node
belonging to the community are obtained. This algorithm is described as Algorithm 1.
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Algorithm 1 Dynamic community detection when new nodes are added and the number of
communities remains unchanged

Input: Current time network diagram Gt = (Vt, Et); newly added node set Vt_add; last time node
vector Vt−1; last time community vector Ct−1;
Output: Current time node vector Vt; current community vector Ct; current community
ownership Cvi ,t.
1. Initialize new node vector vi, vi ∈ Vt_add
2. Freezing the original node vector vj and community vector ck, vj ∈ Vt_add, ck ∈ Ct−1

3. S = InfluenceSamplePath
(
Gt, vi

)
4. FOR each iter = 1: L do
5. FOR each vi ε s do (s ∈ S)
6. L(s) = 1

|s| ∑ log P(vi|ck)

7. vi = vi − α ∗ ∂L
∂vi

,vi ∈ Vt_add
8. END FOR
9. END FOR
10. Cvi , t = DetecCommunity( Vt_add + Vt−1, Ct−1)
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Figure 4. Schematic diagram of dynamic network evolution when |C| does not change. (a) |C|
increases after adding nodes; (b) |C| decreases after adding nodes.

Among them, the third line is to find the random walk corpus St_add of the newly
added nodes of the community at time t by the method proposed in Section 4.1; the
time complexity is the number n of nodes in the network; then, the time complexity is
O(n · l), where l represents the length of the random walk sequence. Lines 5–8 use the
node embedding method proposed in Section 4.1 to find the node representation of the
new node. The time complexity is O(log | Vt|). Therefore, the time complexity of node
embedding according to the new node is O(n · l + log| Vt|).

Node deletion: As shown in Figure 4b, compared with time t − 1, nodes 2 and 8 are
deleted in network t, and edges connected with these two nodes are also deleted, with no effect
on other structures in the network. For this case, we propose an incremental training method of
node vectors, sampling the changed network structure, using a new random walk corpus St to
replace part of the changed corpus, and performing node representation detection based on
influence information on St. After training, the vector representation of all nodes in the affected
node set Vt_in f at time t is obtained. This algorithm is described as Algorithm 2.

Among them, line 4 is to find the random walk corpus St_add of the community at
time t by the method proposed in Section 4.1; the time complexity is O(n · l). Lines 6–9 use
the incremental training node vector through the node embedding method proposed in
Section 4.1, and the time complexity is O(n log | Vt|). Therefore, the time complexity of
the incremental training node vector is used when nodes are deleted and the number of
communities unchanged is O(n · l + n log | Vt|).

In the dynamic evolution of complex networks, the number of changing nodes is
large, which has an impact on the topology of the network and causes its community
structure change. It can be divided into four categories: new nodes increase the number
of communities (Figure 5a), new nodes reduce the number of communities (Figure 5b),
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deleted nodes reduce the number of communities (Figure 5c), and deleted nodes increase
the number of communities (Figure 5d).

Algorithm 2 Dynamic community detection when nodes are deleted and the number of
communities remains unchanged

Input: Current time network diagram Gt = (Vt, Et); deleted node set Vt_del ; set of nodes affected
by deleted nodes Vt_in f ; last time community vector Ct−1;
Output: Current time node vector Vt; current community vector Ct; current community
ownership Cvi , t.
1. Initialize new node vector vi, vi εVt_in f
2. Freezing the original node vector vj and community vector ck, vj ∈ Vt_in f , ck ∈ Ct−1

3. S = In f luenceSamplePath
(
Gt, vi

)
4. FOR each iter = 1: L do
5. FOR each vi ∈ s do (s ∈ S)
6. L(s) = 1

|s| ∑ log P(vi|ck)

7. vi = vi − α ∗ ∂L
∂vi

,vi ∈ Vt_in f
8. END FOR
9. END FOR
10. Cvi , t = DetecCommunity

(
Vt_in f , Ct−1

)
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Figure 5. Schematic diagram of dynamic network evolution when |C| changes. (a) |C| increases after
adding nodes; (b) |C| decreases after adding nodes; (c) |C| increases after deleting nodes; (d) |C|
decreases after deleting nodes.

In view of this situation, it is necessary to recalculate the community belonging
probabilities of all nodes in the network. We propose incremental training nodes and
community vector representation. Not only the changing node set Vt_add is sampled, but
the whole network at time t. The random walk corpus s is generated again, and the node
representation check based on influence information is performed on the new corpus s.
After training, the vector representation of all nodes in the whole network at time t is
obtained, including the vector representation of changing nodes and communities, and
the probability of all nodes belonging to the community. Based on this, the community
belonging of all nodes at time t is adjusted. Taking the case of increasing the number of
communities by adding new nodes as an example, Algorithm 3 shows the details.
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Algorithm 3 Dynamic community detection when new nodes are added and |C| changes

Input: Current time network diagram Gt = (Vt, Et); newly added node set Vt_add; set of nodes
affected by newly added nodes Vt_in f ; last moment node vector Vt−1; last moment community
vector Ct−1;
Output: Current time node vector Vt; current community vector Ct; current community
ownership Cvi , t.
1. Initialize new node vector vi, vi εVt_in f
2. Freezing the original node vector vj and community vector ck, vj ∈ Vt_in f , ck ∈ Ct−1
3. Initialize Ct with the original community vector and Ct−1. If a community is newly added,
randomly initialize the new community vector.
4. S = In f luenceSamplePath

(
Gt, vi

)
, vi εVt_add, Vt_in f

5. FOR each iter = 1: L do
6. FOR each vi ∈ s do (s ∈ S)
7. L(s) = 1

|s| ∑ log P(vi|ck)

8. vi = vi − α ∗ ∂L
∂vi

,vi ∈ Vt_in f

9. ck = ck − α ∗ ∂L
∂ck

, ck ∈ Ct
10. END FOR
11. END FOR
12. Cvi , t = DetecCommunity

(
Vt_in f , Ct−1

)
Among them, line 4 is to find the random walk corpus St_add of the community

at time t by the method proposed in Section 4.1, then the time complexity is O(n · l).
Lines 7–9 use the method proposed in Section 4.1 to indicate that the node vector and
community vector are incrementally trained when the node is deleted and the number of
communities changes; the time complexity is O(n log | Vt|). Therefore, the time complexity
of the dynamic community detection algorithm for removing nodes is O(n · l + n log | Vt|).

4.4. Algorithm Summary

We summarize the proposed two-step algorithm for dynamic community detection:
(1) Locate the changing community structure according to the increment of modularity.
(2) According to the change in the number of communities, corresponding training methods
are adopted to divide the fine-grained dynamic communities. The procedures are shown in
Algorithms 4 and 5.

In Algorithm 4, lines 1–3 are to find the modularity QCt−1,ci of the community in the
last moment. If the time complexity is the number of communities in the network K, then
the time complexity is O(k). Lines 5–13 are to find the community change at the current
time. For each node, we judge whether Qt,ci will increase when it is divided into ci, and the
time complexity is O(nk). Therefore, the time complexity of the coarse-grained positioning
community change algorithm is O(nk).

In Algorithm 5, line 1 computes the change in two adjacent moments. Lines 3 and 4 indicate
that there are new nodes in the network, but the number of communities remains unchanged.
Line 5 is the resampling of newly added nodes. The time complexity is O(n·l), where l is the length
of the random walk sequence. Lines 6 and 7 are the training of new nodes and communities,
with time complexity O(log |V|). Line 8 indicates that there are new nodes in the network, but the
number of communities changes. Line 9 represents the resampling of all nodes at the current time,
with time complexity O(n·l). Lines 10 and 11 represent the training of all nodes and communities at
the current time, with time complexity O(log |V|). Lines 13–17 indicate that an incremental training
node vector is used when nodes are deleted and the number of communities is unchanged, with
time complexity O(n log |V|). Lines 18–22 indicate that an incremental training node vector and
community vector are used when nodes are deleted and the number of communities is changed,
with time complexity O(n log |V|). Therefore, the time complexity of the dynamic community
detection algorithm is O(n log |V|+ nl).
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Algorithm 4 Locate the changing community structure

Input: The last moment network graph Gt−1 = (Vt−1, Et−1); current network graph
Gt = (Vt, Et);
Output: Current community modularity QCt0,ci ; current increment of modularity ∆QCt0,ci ;
changes in community structure ∆nc.
1. FOR each community ci ε Ct−1:
2. compute modularity QCt−1,ci based on Equations (17)–(19)
3. END FOR
4. FOR each mode vi ε Vt_new:
5. FOR each community ci ε Ct:
6. compute modularity QCt−1,ci based on Equations (17)–(19)
7. ∆QCvi ,ci (ti) = QCti ,ci (vi)−QCti−1,ci

8. IF ∆QCt0,ci (ti) > 0
9. v ε ci
10. ELSE
11. v ε /∈ ci
12. END IF
13. END FOR
14. END FOR

Algorithm 5 Fine-grained division of dynamic community

Input: The last moment network graph Gt−1 = (Vt−1, Et−1); current time network diagram
Gt = (Vt, Et); last time node vector Vt−1; last time community vector Ct−1;
Output: Current time node vector Vt; current community vector Ct; current community
ownership Cvi , t.
1. ∆V = V −V0
2. ∆n = |V| − |V0|
3. IF ∆n > 0:
4. IF ∆nc = 0:
5. walk = randomWalk(vi), vi ε Vt_add
6. ∆V = TrainNodeVec(∆V, V0, C0)
7. C1 = DetactCommunity(∆V + V0, C0)
8. ELSE IF ∆nc 6= 0:
9. walk = randomWalk(vi), vi ε Vt
10. V3, C3 = FinetuneNodeCommunity(V, V0, C0)
11. C3 = DetectCommunity(V3, C3)
12. END IF
13. ELSE IF ∆n < 0:
14. IF ∆nc = 0:
15. walk = randomWalk(vi), vi ε Vt_del
16. V2 = FinetuneNodeVec(V, V0, C0)
17. C2 = DetectCommunity(V2, C0)
18. ELSE IF ∆nc 6= 0:
19. walk = randomWalk(vi), vi ε Vt
20. V3, C3 = FinetuneNodeCommunity(V, V0, C0)
21. C3 = DetectCommunity(V3, C3)
22. END IF
23. END IF

5. Experimental Evaluation

The platform environment of the experiment in this paper is briefly introduced as
follows: Hardware Configuration: CPU Processor: Intel(R) Core(TM) i5-8300H CPU @
2.30 GHz 2.30 GHz, internal storage: 8.00 GB, hard disk: 512 GB. Software Configuration:
Operating System: Windows 10, 64-bit operating system. Development Tools: Jet Brains
Py Charm Community Edition 2019.2, Visual Studio Code Python; Version: Python 3.7.3
Anaconda; Version: Anaconda Command line client (version 1.7.2).
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5.1. Datasets

(1) Cora: The Cora dataset consists of machine learning papers. The network contains
2708 nodes and 5429 edges, forming 7 categories.

(2) Wiki: A wiki is a collaborative encyclopedia written by its users and is widely used in
social network analysis. The network includes 2405 nodes and 15,985 edges, forming 19
categories. Obviously, the social network relationship in this dataset is relatively dense.

(3) BlogCatalog: The dataset of BlogCatalog is extracted from a directory of blogs and
bloggers managed by BlogCatalog, which forms a social network between bloggers.
The network includes 10,312 nodes and 333,983 sides. Topics published by bloggers
are tag values, forming 39 categories.

5.2. Baseline and Evaluation Metrics

This study selects three dynamic community detection algorithms, GraphScope,
FaceNet, and QCA, as contrast algorithms [29–31].

(1) The GraphScope [29] algorithm merges network snapshots of different time segments
into new network snapshots, executes community detection algorithms on new net-
work snapshots, and judges whether a new time segment has signifificant changes
in network structure, i.e., it is a change point. If so, we start a new time segment
and independently execute the community detection algorithm; if not, we merge
the current time snapshot into the current time segment, and the merged network
snapshot contains the change information in the network evolution process of the
current time segment.

(2) FaceNet [30] adopts the classic two-step strategy, i.e., community detection is carried
out in a single time segment, and the current community detection result is adjusted
according to the community detection results of the previous time. The algorithm
uses the extremum optimization method to adjust the current community detection
results, which transforms the community detection problem into one of minimizing
the loss function, and the algorithm can detect overlapping communities.

(3) QCA [31] is a classical adaptive incremental detection method of network dynamic changes.
It determines the changes in community structure in the current network according to the
changes between the network structure at the previous and current times.

In the experiment, NMI and QC modularity values are used as evaluation indexes.
To verify the effectiveness of the incremental training node method based on mod-

ularity to detect communities, the normalized mutual information NMI is used as the
evaluation standard for the accuracy of community division:

NMI(x, y) = 1− 1
2
[H(x|y)norm + H(y|x)norm], (21)

where x and y, respectively, represent the real community detection result and that obtained
according to the algorithm, the real community detection results are provided by the
dataset, and the value range of NMI is [0, 1]. The closer NMI is to 1, the higher the accuracy
of the community detection model.

In addition to comparative experiments, we conducted experiments on the influence
of different modularity thresholds on the NMI value to verify the accuracy of the proposed
modularity-based incremental dynamic community detection model.

5.3. Parameter Setting

For the node representation method, we test the effect of different parameter choices
on different algorithms, The parameters in the network presentation learning algorithm
are described in Table 1. In order to evaluate the impact of parameters on the result
of embedding, we will adopt the Macro-F1 fraction as the measurement function of the
parameters in this section.
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Table 1. Description of parameters in the network presentation learning algorithm.

Parameter Paraphrase

m The number of random walks per node
l The length of a random walk sequence
d Dimension of feature
k Community size
p Control parameters
q Control parameters
β Weight parameter
γ Weight parameter

Assume that for more than a classification problem, a total of three categories, respec-
tively for 1, 2, 3,

TP(True positive): Points of the same category are divided into the same community;
TN(True negative): Different types of nodes are divided into different communities;
FP(False positive): Nodes of different categories are divided into the same community;
FN(False negative): Nodes of the same category are divided into different communities;
TPi: TP of category i
TNi: TN of category i
FPi: FP of category i
FNi: FN of category i

Macro-precision is the average value of all classification accuracy:

precisionmacro =
1
3
(precision1 + precision2 + precision3) (22)

Macro-recall is the average of all categories of recall:

recallmacro =
1
3
(recall1 + recall2 + recall3) (23)

Finally, the calculation formula of Macro-F1:

F1macro = 2× recallmacro × precisionmacro

recallmacro + precisionmacro
(24)

It can be found that the larger the value of Macro-F1, the better the performance of
the algorithm.

In the experiment of how the parameters affect the performance of the algorithm, the
following conclusions are drawn through the analysis of the experimental results.

When the characteristic dimension of the representation vector reaches around 100,
the performance of the model tends to saturate, which means that increasing the value of
dimension d will not affect the algorithm at all.

The number of random walks of each node m and the length of random walk
sequence l also affect the performance of the algorithm. When the number of random
walks of each node m < 16, with the increase of m, the performance of the algorithm can
be improved. When m ≥ 16, the algorithm tends toward saturation.

The number of random walks of each node m and the length of random walk
sequence l also affect the performance of the algorithm. When the number of random
walks of each node m < 16, with the increase of m, the performance of the algorithm can
be improved. When m ≥ 16, the algorithm tends toward saturation.

The performance of the proposed algorithm will improve as the control parameters p
and q decrease, Where parameters p and q are balance parameters that determine whether
depth-first DFS or breadth-first DFS is adopted, the parameter p is the hyperparameter of
the control returned to the original node, and the parameter q is the hyperparameter of the
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control node traversed outward. As shown in Figure 6, the algorithm performs well when
the parameters are set as p = 0.25 and q = 0.25.
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As the parameters β and γ increase, the performance of the proposed algorithm will
improve; the parameter β is used to control the weight of node degree of influence factor
centricity super parameters, and the parameter γ influence factor is used to control the
node of the cluster coefficient of the weight parameters. Moreover, β + γ = 1, and the
node influence considered in this paper are only affected by two factors: degree centrality
and agglomeration coefficient. According to Figure 6, we found that when the parameter
setting of β = 0.2, γ = 0.8, the performance of the algorithm performance is better, and tends
to be stable.

This experiment sets the node embedding dimension of all algorithms to 128. To
ensure a fair comparison, the parameters of the benchmark algorithm were adjusted to
the best. For the DeepWalk and Node2vec algorithms, we set the window size w to 10
and random walk length to 80. For the LINE algorithm, we set the negative ratio to 5. For
GraphScope, FaceNet, and QCA, all parameters were set to the best 27–29 to ensure the
best performance.

5.4. Experimental Results and Analysis

In the experiment of dynamic community detection, the two datasets of Cora and Wiki
were preprocessed. Each dataset was set to 10 moments. The first five moments of the Cora
dataset contained two communities, and the sixth to tenth added one community each time.
The first five moments of the Wiki dataset contained 15 communities, and the sixth to tenth
added one community each time. To simulate the dynamic evolution characteristics of real
networks, in the first five moments, 100 nodes were randomly selected from the previous
snapshot to join other communities. In this experiment, the model performance was verified
on the artificial dynamic network dataset composed of such network snapshots.

As shown in Figure 7a, the overall running times of the algorithms were shorter
because the Cora dataset contains fewer community clusters. After the fifth moment, the
running times of the four algorithms increased rapidly; from 1 to 5 moments; the four mo-
ments of the algorithm were relatively stable, because the number of communities did not
change during this period. Additionally, the running time of FaceNet was higher than that
of other algorithms, because its two-step calculation method has strong interdependence
between adjacent moments. The overall running time of the algorithm in this paper was
lower than that of the other algorithms, which shows the effectiveness of its incremental
training method.
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As shown in Figure 7b, from 0 to 5, the network size and number of communities did
not change; the running times of the four algorithms showed little difference, and they
were relatively stable. On the whole, the running time of FaceNet was longer than that
of the other algorithms. This is because FaceNet uses a two-step calculation method, i.e.,
community detection at a single moment is required, and it constantly adjusts. Starting
from the fifth moment, a new community was added at each moment. The algorithm
in this study must perform coarse-grained positioning changes based on the modularity
increment in the first step of the community structure, resulting in an increase in running
time, but in the second step, the incremental training vector method greatly reduces the
time complexity, which can explain why the algorithm is superior to the others in terms of
running time.

(1) QC module degree value and NMI value

As shown in Figure 8a,b, on the Cora dataset, the overall QC modularity value of the
proposed algorithm was better than that of the other algorithms. At the ninth moment,
the QC modularity value of GraphScope increased significantly, while the QC modularity
value of FaceNet and QCA showed a downward trend from the fifth to tenth moment,
which indicates that the performance of the two algorithms was not ideal. The NMI values
of the four algorithms showed a downward trend over time because of the increase in the
modularity value caused by the dynamic network division community, which led to the
decrease of NMI. Moreover, the NMI value of the proposed algorithm was better than the
benchmark, which shows the effectiveness of using the improved modularity.

The results of the proposed algorithm, as seen in Figure 8c,d, are better than those
of the other algorithms. The NMI values of the proposed model and FaceNet algorithm
decreased over time. This is because some complex evolution events appear in the dynamic
complex network at a certain time, which makes the community structure in the network
not obvious. From the experimental results, we can see that the QC value of the GraphScope
algorithm was relatively stable. This is because it is based on the improvement of a static
community detection algorithm, and it is executed in each time segment, so there is no
cumulative error.

(2) Parameter sensitivity

In the first stage, i.e., when the community structure is located according to the modu-
lar increment, the new node vi belongs to community ci. The condition of this change is that
4QCti ,ci (ti) > 0. In the experiment, to improve the accuracy of the partition, a modular
increment threshold ε was set. When4QCvi ,ci (ti) > ε, V belonged to community C.

As shown in Table 2, NMI decreased with the increase in the threshold ε. When ε = 0.1,
the performance of the algorithm was optimal. According to the same threshold value, the
NMI values at different times showed a downward trend, and in some moments, there
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was a sudden drop. This is because the algorithm had to be executed under the premise
of a fixed number of communities from 1 to 5; a new community was added each time
from 6 to 10, resulting in the frequent execution of the incremental dynamic community
detection algorithm, and NMI showed a downward trend.
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Table 2. Influence of Different ε Influence on NMI value of our algorithm.

t ε = 0.1 ε = 0.3 ε = 0.5

1 0.975 0.950 0.824
2 0.974 0.910 0.732
3 0.980 0.936 0.698
4 0.967 0.911 0.735
5 0.919 0.873 0.703
6 0.986 0.857 0.688
7 0.329 0.296 0.238
8 0.289 0.246 0.187
9 0.204 0.176 0.129
10 0.159 0.166 0.085

AVG 0.6782 0.6321 0.5019

As shown in Figure 9, the NMI values at time points 1–5 under different values
of ε showed little difference, and the performance was stable, because the number of
communities in the network remained unchanged during this period. After the fifth time,
NMI showed a downward trend due to the addition of new communities. However,
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owing to the coarse-grained positioning division and fine-grained incremental training
adjustment, the final community detection results were still relatively true, and avoided the
error accumulation of community detection results at each time slot as much as possible,
so the fluctuation range of the NMI value with the change in ε is small, which proves the
superiority of our model.
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6. Discussion

We proposed an incremental dynamic community detection algorithm based on node
embedding and modularity. In terms of node embedding, the node’s own influence
attribute is added to the consideration of the random walk direction, and a new objective
function is defined, so that the node vector obtained from the model training retains the
network topology and node attribute information at the same time, which improves the
quality of the node vector representation. By combining the cohesion coefficient and
ordinary modularity, the modularity is redefined, and based on the preliminary positioning
results of the community structure change. In this case, the corresponding node training
algorithm was proposed to calculate the probability that the node belongs to the community,
and realize the detection of the dynamic community at the current moment. Experiments
showed that compared with the benchmark algorithms, the time complexity and accuracy
of this algorithm were improved. The model proposed in this paper can reduce the errors of
each detection and improve the accuracy of the final community detection results. However,
when analyzing the dynamic evolution state of complex networks, there may be insufficient
consideration of the problem, which requires further improvement.

7. Conclusions

As the complexity of human relationships increases, the complexity and scale of social
network structures are also changing, and the research on the community structure of
complex networks has become particularly important; and because of the development
of deep learning technology, more and more attention has been paid to the community
detection method based on graph neural networks. However, it is also imminent that the
quality of the corpus is insufficient and the semantic information on the node vector learned
is not rich, thus leading to inaccurate results of community detection. In the process of
dynamic community detection, the elimination of each result error, improvement of the
accuracy of the final detection results, and restoration of the community structure in the
real network are other challenges faced by the existing research work.

Recently, some important node applications in various fields have been developed
such as spatialtemporal graph neural networks based on node attention, information
transmission simulation of Internet of things communication nodes under a collision-
free probability equation, and spatialtemporal graph neural networks based on node
attention. In order to solve the above two challenges, this study firstly summarizes and
analyzes the existing community detection algorithms based on graph neural networks
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and points out the shortcomings of the existing algorithms. This study improves the
existing research work and proposes a dynamic community detection model based on node
embedding representation. The improved modularity is used to extract and partition the
dynamic community structure. The improved modularity is used to extract and partition
the dynamic community structure. The model uses dynamic community detection of new
nodes and dynamic community detection of removing old nodes to fine-grained adjust
the partitioning results of the previous step. Finally, the dynamic community detection
situation at the current moment is obtained.

The following research will be conducted in the future. (1) More than one type of
attribute information of a node in the network will be studied. This study uses influence
information, and more data information can be comprehensively considered to characterize
node attributes. (2) In reality, there are many dynamic changes in the complex network
structure. For example, when nodes are not added or deleted, the community structure
changes, which is not considered in this article.
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