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Abstract

Quantile regression, which estimates various conditional quantiles of a response
variable, including the median (0.5th quantile), is particularly useful when the
conditional distribution is asymmetric or heterogeneous or fat-tailed or trun-
cated. Bayesian methods for the inference of quantile regression have been re-
ceiving increasing attention from both theoretical and empirical viewpoints but
facing the challenge of scaling up when the data are too large to be processed by
a single machine under many big data environments nowadays. In this paper,
we develop a structure link between Bayesian scale mixtures of normals linear
regression and Bayesian quantile regression (BQR) via normal-inverse-gamma
(NIG) distribution type of likelihood function, prior distribution and posterior
distribution. We further explore the detailed methods of BQR for big data,
variable selection and posterior prediction. The performance of the proposed
techniques is evaluated via simulation studies and a real data analysis.

Keywords: Scale Mixtures of Normals, Quantile Regression (QR), Bayesian
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1. Introduction

Quantile regression (QR) estimates various conditional quantiles of a re-
sponse or dependent random variable, including the median (0.5th quantile).
Putting different quantile regressions together provides a more complete de-
scription of the underlying conditional distribution of the response than a simple5

mean regression. This is particularly useful when the conditional distribution is
asymmetric or heterogeneous or fat-tailed or truncated. Quantile regression has
been widely used in statistics and numerous application areas (Cole and Green
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[1]; Koenker and Hallock [2]; Yu et al. [3]; Briollais and Durrieu [4], among
others). In the “big data” era for statistical science, the richness of data sources10

with many complicated data structures and the increase of extreme values and
heterogeneity may see quantile regression methods more relevant than mean
regression to dig deep into the data and grab information from it. In partic-
ular, with advanced power of computer, complicated quantile regression-based
models could be developed under a Bayesian framework, and Bayesian quantile15

regression (BQR) has received increasing attention from both theoretical and
empirical viewpoints with wide applications (see Bernardi et al. [5]; Wang et al.
[6]; Rodrigues and Fan [7]; Petrella and Raponi [8], among others). So far, sev-
eral methods have been developed to quantile regression for big data analysis
(Wu and Yin [9]; Yu et al. [10]; Gu et al. [11]; Chen et al. [12], among others),20

but little attention has been paid to such methodology under Bayesian inference
paradigm.

In this paper, we propose a new approach of BQR for big data. This ap-
proach has its posterior distribution on the whole data as a joint posterior from25

M sub-datasets split from the whole data. Section 2 and Section 3 give details
of the normal-inverse-gamma (NIG) expressions of the prior and posterior dis-
tributions for Bayesian scale mixtures of normals linear regression and BQR
respectively. Section 4 presents the posterior predictive distributions. Section 5
develops big data based algorithms for Bayesian scale mixtures of normals model30

and BQR via the introduction of NIG summation operator. Section 6 provides
big data based algorithms for Bayesian LASSO scale mixtures of normals re-
gression and Bayesian LASSO quantile regression. Section 7 demonstrates the
proposed algorithms via simulations and a real data analysis.

2. Bayesian scale mixtures of normals linear regression for big data35

2.1. Model and likelihood

Consider the scale mixtures of normals linear model

yi = xT
i β + σϵi, i = 1, . . . , n,

where xi is a k× 1 vector of predictors for observation yi, β is a k× 1 unknown
vector of regression coefficients, ϵ1, . . . , ϵn are i.i.d. random variables distributed

as scale mixtures of normals. That is, ϵi
d
=

√
ζizi where zi follows a standard

normal distribution and ζi is an independent random variable with some known
probability distribution fζi on (0,∞). σ is an unknown scaling factor. We aim
to model the conditional mean E[yi|xi, ζi] under Bayesian estimation paradigm.
Our primary interest is in inference of the unknown parameters β and σ. More
compactly, the scale mixtures of normals linear regression in matrix format is
specified as

Y = Xβ + σϵ, (1)
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where Y = (y1, . . . , yn)
T is an n × 1 response vector, X = (x1, . . . ,xn)

T is
an n × k predictor matrix and ϵ = (ϵ1, . . . , ϵn)

T is an n × 1 scale mixtures of
normals disturbances with a mean vector of zeros and n × n positive definite
covariance matrix Σ = diag(ζ1, . . . , ζn). Then the conditional likelihood of Y
is given by

f(Y |X,β, σ2,Σ) ∝ (σ2)−
n
2 exp{− 1

2σ2
(Y −Xβ)TΣ−1(Y −Xβ)}. (2)

Consider the formulation

(Y −Xβ)TΣ−1(Y −Xβ) = (Y −Xβ̂)TΣ−1(Y −Xβ̂) + (β − β̂)T (XTΣ−1X)(β − β̂),

where β̂ = (XTΣ−1X)−1XTΣ−1Y , we can thus rewrite likelihood (2) as

f(Y |X,β, σ2,Σ) ∝ (σ2)−
n−k

2 exp{− 1

2σ2
(Y −Xβ̂)TΣ−1(Y −Xβ̂)}

(σ2)−
k
2 exp{− 1

2σ2
(β − β̂)T (XTΣ−1X)(β − β̂)} (3)

= (σ2)−(a+ k
2+1) exp{− 1

σ2
[b+

1

2
(β − µ)TΛ(β − µ)]}

∝ IG(a, b)Nk(µ, σ
2Λ−1), (4)

where IG(a, b) denotes the inverse-gamma distribution with shape parame-
ter a and scale parameter b. Nk(µ, σ

2Λ−1) denotes the multivariate normal
distribution with mean vector µ and covariance matrix σ2Λ−1. The repre-
sented likelihood (4) is a typical structure of a k-dimensional normal-inverse-40

gamma distribution NIGk(µ,Λ, a, b) in terms of parameters (β, σ2). Here

µ = β̂,Λ = XTΣ−1X, a = n−k−2
2 , b = 1

2 (Y −Xβ̂)TΣ−1(Y −Xβ̂).

2.2. NIG expressions of posterior distribution

2.2.1. Posterior distribution under non-informative prior

The conjugate non-informative prior f(β, σ2) ∝ σ−2 suggests a specific case
of the NIG distribution which is denoted as NIGk(0k,0k×k,−k

2 , 0). Under this
prior, the posterior distribution f(β, σ2|Y ,X,Σ) is given by

f(β, σ2|Y ,X,Σ) = f(σ2|Y ,X,Σ)f(β|σ2,Y ,X,Σ)

= IG(ã, b̃)Nk(µ̃, σ
2Λ̃

−1
)

∝ (σ2)−(ã+ k
2+1) exp{− 1

σ2
[̃b+

1

2
(β − µ̃)T Λ̃(β − µ̃)]}.

Then we denote the joint posterior distribution of (β, σ2) as f(β, σ2|Y ,X,Σ)45

= NIGk(µ̃, Λ̃, ã, b̃). Here µ̃ = (XTΣ−1X)−1XTΣ−1Y , Λ̃ = XTΣ−1X, ã =
n−k
2 , b̃ = 1

2Y
TΣ−1Y − 1

2 µ̃
T Λ̃µ̃.
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2.2.2. Posterior distribution under informative prior

Consider a form of conjugate informative prior for (β, σ2):

f(β, σ2) = f(σ2)f(β|σ2)

∝ (σ2)−(a0+1) exp{− b0
σ2

}(σ2)−
k
2 exp{− 1

2σ2
(β − µ0)

TΛ0(β − µ0)}

= (σ2)−(a0+
k
2+1) exp{− 1

σ2
[b0 +

1

2
(β − µ0)

TΛ0(β − µ0)]},

where f(σ2) is IG(a0, b0) with prior values a0, b0 and f(β|σ2) is Nk(µ0, σ
2Λ−1

0 )
with prior values µ0,Λ0. We can thus calibrate the joint prior as an NIG
distribution f(β, σ2) = NIGk(µ0,Λ0, a0, b0). Under this prior, the posterior
distribution is given by

f(β, σ2|Y ,X,Σ) = f(σ2|Y ,X,Σ)f(β|σ2,Y ,X,Σ)

= IG(ā, b̄)Nk(µ̄, σ
2Λ̄

−1
)

∝ (σ2)−(ā+ k
2+1) exp{− 1

σ2
[b̄+

1

2
(β − µ̄)T Λ̄(β − µ̄)]},

which can be denoted as f(β, σ2|Y ,X,Σ) = NIGk(µ̄, Λ̄, ā, b̄). Here µ̄ =
(Λ0 +XTΣ−1X)−1(Λ0µ0 +XTΣ−1Y ), Λ̄ = Λ0 +XTΣ−1X, ā = a0 +

n
2 , b̄ =50

b0 +
1
2Y

TΣ−1Y + 1
2µ

T
0 Λ0µ0 − 1

2 µ̄
T Λ̄µ̄.

3. Bayesian quantile regression for big data

3.1. Model and likelihood

Let yi be a continuous response variable and xi a k × 1 vector of predictors
for the ith observation, i = 1, . . . , n. Denote Qp(yi|xi) as the pth (0 < p < 1)
quantile regression function of yi given xi. Suppose that all conditional quantiles
Qp(yi|xi) can be modelled as Qp(yi|xi) = xT

i βp, where βp is a k × 1 vector of
unknown parameters that depends on quantile p. Then the linear Quantile
Regression (QR) model for the pth quantile can be denoted as

yi = xT
i βp + ϵi, i = 1, . . . , n,

where ϵi is the error term whose distribution is assumed to have zero pth quan-
tile. Following Koenker and Bassett [13], the estimation for βp proceeds by
minimizing

n∑
i=1

ρp(yi − xT
i βp), (5)
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where ρp(u) = u{p − I(u < 0)} is the check function and I(·) denotes the
indicator function. Equivalently, we can express ρp(u) as

ρp(u) =
|u|+ (2p− 1)u

2
. (6)

According to Yu and Moyeed [14] and Yu and Stander [15], minimizing (5) is
equivalent to maximizing a likelihood function that is based on the asymmetric
Laplace distribution (ALD) at specific value of p. Assuming an ALD-based
working model such that ϵi ∼ ALD(κ, σ, p) with location parameter κ = 0, scale
parameter σ ∈ (0,∞) and skewness parameter p ∈ (0, 1), then the probability
density function of ϵi is given by

f(ϵi;κ = 0, σ, p) =
p(1− p)

σ
exp{−ρp(ϵi)

σ
}, i = 1, . . . , n,

where ρp(u) is defined in (6). Following Reed and Yu [16] and Kozumi and
Kobayashi [17], we can represent ϵi as a scale mixture of normals with an expo-
nential mixing density as follows:

ϵi|vi, σ ∼ N((1− 2p)vi, 2σvi), vi|σ ∼ Exp(σ−1p(1− p)),

where Exp(θ) denotes an exponential distribution with rate parameter θ. Conse-
quently, the conditional distribution of yi is normal with mean xT

i βp+(1−2p)vi
and variance 2σvi:

yi|βp, σ, vi,xi ∼ N(xT
i βp + (1− 2p)vi, 2σvi), i = 1, . . . , n. (7)

The matrix form of (7) is as follows:

Y |βp, σ,v,X,V ∼ Nn(Xβp + (1− 2p)v, 2σV ),

where Y = (y1, . . . , yn)
T is an n × 1 response vector, X is an n × k predic-

tor matrix with ith row xT
i , v = (v1, . . . , vn)

T and V = diag(v). Thus, the
conditional likelihood of Y is given by

f(Y |βp, σ,v,X,V )∝σ−n/2 exp{− 1

2σ
[Y −Xβp−(1−2p)v]T

V −1

2
[Y −Xβp−(1−2p)v]}.

Let Y ∗
p = 1√

2
(Y − (1− 2p)v) and X∗ = 1√

2
X, then Y ∗

p follows a normal-type

of conditional likelihood as

f(Y ∗
p|βp, σ,X

∗,V ) ∝ σ−n/2 exp{− 1

2σ
[Y ∗

p −X∗βp]
TV −1[Y ∗

p −X∗βp]}. (8)
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Denote further β̂p = (X∗TV −1X∗)−1X∗TV −1Y ∗
p, we can rewrite (8) as

f(Y ∗
p|βp, σ,X

∗,V ) ∝ σ−n−k
2 exp{− 1

2σ
[Y ∗

p −X∗β̂p]
TV −1[Y ∗

p −X∗β̂p]}

σ− k
2 exp{− 1

2σ
(βp − β̂p)

T (X∗TV −1X∗)(βp − β̂p)}

= (σ)−(a+ k
2+1) exp{− 1

σ
[bp +

1

2
(βp − µp)

TΛ(βp − µp)]}

∝ IG(a, bp)Nk(µp, σΛ
−1), (9)

where µp = β̂p,Λ = X∗TV −1X∗, a = n−k−2
2 , bp = 1

2 [Y
∗
p −X∗β̂p]

TV −1[Y ∗
p −

X∗β̂p]. The reformulated likelihood (9) is a structure of a k-dimensional distri-55

bution NIGk(µp,Λ, a, bp) in terms of parameters (βp, σ).

3.2. NIG expressions of posterior distribution

3.2.1. Posterior distribution under non-informative prior
The conjugate non-informative prior f(βp, σ) ∝ σ−1 suggests a form of

NIGk(0k,0k×k,−k
2 , 0). Given this prior, the joint conditional posterior distri-

bution f(βp, σ,v|Y
∗
p,X

∗) can be written as

f(βp, σ,v|Y
∗
p,X

∗) ∝ f(Y ∗
p|βp, σ,v)f(βp|σ,v)f(v|σ)f(σ)

∝ σ−( 3n+2
2

)(

n∏
i=1

v
−1/2
i )

× exp{− 1

2σ
[(Y ∗

p −X∗βp)
TV −1(Y ∗

p −X∗βp) + 2p(1− p)

n∑
i=1

vi]}.

The posterior distribution f(βp, σ|v,Y
∗
p,X

∗) is thus given by

f(βp, σ|v,Y
∗
p,X

∗) ∝ σ−( 3n+2
2

) exp{− 1

2σ
[(Y ∗

p −X∗βp)
TV −1(Y ∗

p −X∗βp) + 2p(1− p)

n∑
i=1

vi]}

= σ−( 3n−k
2

+ k
2
+1) exp{− 1

σ
[̃bp +

1

2
(βp − µ̃p)

T Λ̃(βp − µ̃p)]},

which can be denoted as a k-dimensional distribution NIGk(µ̃p, Λ̃, ã, b̃p), where

µ̃p = (X∗TV −1X∗)−1X∗TV −1Y ∗
p, Λ̃ = X∗TV −1X∗, ã = 3n−k

2 , b̃p = 1
2Y

∗
p
TV −1

Y ∗
p − 1

2Y
∗
p
TV −1X∗µ̃p + p(1 − p)

∑n
i=1 vi. Furthermore, the full posterior dis-

tribution of each vi conditional on βp, σ and raw data yi,xi, i = 1, 2, . . . , n is
obtained by

f(vi|βp, σ, yi,xi) ∝ v
−1/2
i exp{− 1

4σ
[v−1

i (yi − (1− 2p)vi − xT
i βp)

2]− p(1− p)

σ
vi}

= v
−1/2
i exp{− 1

4σ
[v−1

i (yi − xT
i βp)

2 + vi]}

= v
−1/2
i exp{−1

2
(v−1

i ξ̃i
2
+ viζ̃i

2
)},
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where ξ̃i
2
= (yi−xT

i βp)
2/2σ and ζ̃i

2
= 1/2σ. This conditional posterior can be

recognized as a form of generalized inverse Gaussian distribution GIG( 12 , ξ̃i, ζ̃i).
Recall that if z ∼ GIG(φ, η1, η2), then the probability density function of z is
given by

f(z|φ, η1, η2) =
(η2/η1)

φ

2Kφ(η1η2)
zφ−1 exp{−1

2
(z−1 η2

1 + z η2
2)}, z > 0, −∞ < φ < ∞, η1, η2 ≥ 0,

where Kφ(·) is a modified Bessel function of the third kind (Barndorff-Nielsen
and Shephard [18]).60

3.2.2. Posterior distribution under informative g-prior

For the informative prior setting, following Alhamzawi and Yu [19], a conju-
gate prior for (βp, σ) with a modification of Zellner’s informative g-prior (Zellner
[20]) in QR could be provided as

βp|σ,X
∗,V ∼ Nk(0k, gσ(X

∗TV −1X∗)−1), f(σ) ∝ σ−1,

where g > 0 is a known scaling factor prescribed by the user. Smith and Kohn
[21] proposed a Bayesian variable selection algorithm utilizing regression splines.
They found that the choice of g = 100 works well and suggested to choose g
between 10 and 1000. Following Smith and Kohn [21], the fixed setting of
g = 100 has been considered by some other authors (see Lee et al. [22]; Gupta
et al. [23], among others). Then we obtain the joint prior distribution of (βp, σ)
as

f(βp, σ|X
∗,V ) ∝ σ−( k

2+1) exp{− 1

σ
[
1

2
βT
p

X∗TV −1X∗

g
βp]}, (10)

which is a special case ofNIGk(µ0,Λg0, a0, b0) with µ0 = 0k,Λg0 = X∗TV −1X∗

g ,
a0 = 0, b0 = 0.

The joint conditional posterior distribution f(βp, σ,v|Y
∗
p,X

∗) under prior (10)65

is given by

f(βp, σ,v|Y
∗
p,X

∗) ∝ f(Y ∗
p|βp, σ,v)f(βp|σ,v)f(v|σ)f(σ)

∝ σ−( 3n+k+2
2

)(

n∏
i=1

v
−1/2
i )|X∗TV −1X∗|1/2

× exp{− 1

2σ
[(Y ∗

p −X∗βp)
TV −1(Y ∗

p −X∗βp) + βT
p

X∗TV −1X∗

g
βp + 2p(1− p)

n∑
i=1

vi]}.
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The corresponding posterior f(βp, σ|v,Y
∗
p,X

∗) is given as follows:

f(βp, σ|v,Y
∗
p,X

∗) ∝ σ−( 3n+k+2
2 ) exp{− 1

2σ
[(Y ∗

p −X∗βp)
TV −1(Y ∗

p −X∗βp)

+ βT
p

X∗TV −1X∗

g
βp + 2p(1− p)

n∑
i=1

vi]}

= σ−( 3n
2 + k

2+1) exp{− 1

σ
[b̄p +

1

2
(βp − µ̄p)

T Λ̄(βp − µ̄p)]},

which has an expression ofNIGk(µ̄p, Λ̄, ā, b̄p), where µ̄p = [(1+ 1
g )X

∗TV −1X∗]−1

X∗TV −1Y ∗
p, Λ̄ = (1+ 1

g )X
∗TV −1X∗, ā = 3n

2 , b̄p = 1
2Y

∗
p
TV −1Y ∗

p− 1
2 µ̄

T
p Λ̄µ̄p+

p(1−p)
∑n

i=1 vi. Moreover, the full conditional marginal distributions of βp and70

σ can be obtained respectively by

f(βp|σ,v,Y
∗
p,X

∗) ∝ exp{− 1

2σ
[(Y ∗

p −X∗βp)
TV −1(Y ∗

p −X∗βp) + βT
p

X∗TV −1X∗

g
βp]},

which can be expressed as an Nk(µ̄p, σΛ̄
−1

), and

f(σ|βp,v,Y
∗
p,X

∗) ∝ σ−( 3n+k
2 +1) exp{− 1

2σ
[(Y ∗

p −X∗βp)
TV −1(Y ∗

p −X∗βp)

+ βT
p

X∗TV −1X∗

g
βp + 2p(1− p)

n∑
i=1

vi]},

which is an IG distribution with shape 3n+k
2 and scale 1

2 [(Y
∗
p−X∗βp)

TV −1(Y ∗
p

−X∗βp)+βT
p

X∗TV −1X∗

g βp+2p(1−p)
∑n

i=1 vi]. The full posterior distribution

of each vi, i = 1, 2, . . . , n is also tractable:

f(vi|βp, σ, yi,xi) ∝ v−1
i exp{− 1

4σ
[v−1

i ((yi − (1− 2p)vi − xT
i βp)

2 +
βT

p xix
T
i βp

g
)]− p(1− p)

σ
vi}

= v−1
i exp{− 1

4σ
[v−1

i ((yi − xT
i βp)

2 +
βT

p xix
T
i βp

g
) + vi]}

= v−1
i exp{−1

2
(v−1

i ξ̄i
2
+ viζ̄i

2
)},

where ξ̄i
2
= [(yi − xT

i βp)
2 + βT

p xix
T
i βp/g]/2σ and ζ̄i

2
= 1/2σ, which can be

recognized as a GIG(0, ξ̄i, ζ̄i).

4. Posterior predictive distributions75

4.1. Posterior predictive distribution for Bayesian scale mixtures of normals
regression

Given a new n × k predictor matrix Xnew, one may be interested in the
Bayesian prediction of a new response outcome Y new under the current poste-
rior calibration of (β, σ2) with the observations X,Y . To obtain the analytic
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expression of f(Y new|Y ), we first derive the following computation result of in-
tegrating out σ2 from the joint posterior f(β, σ2|Y ) = NIGk(µ̄, Λ̄, ā, b̄), where
the expressions for µ̄, Λ̄, ā and b̄ are given in Section 2.2.2.∫ ∞

0

NIGk(µ̄, Λ̄, ā, b̄) dσ2 =
b̄ā

(2π)
k
2 |Λ̄−1| 12Γ(ā)∫ ∞

0

(σ2)−(ā+ k
2+1) exp{− 1

σ2
[b̄+

1

2
(β − µ̄)T Λ̄(β − µ̄)]} dσ2

=
b̄āΓ(ā+ k

2 )

(2π)
k
2 |Λ̄−1| 12Γ(ā)

[b̄+
1

2
(β − µ̄)T Λ̄(β − µ̄)]−(ā+ k

2 )

=
Γ( 2ā+k

2 )

Γ( 2ā2 )(2ā)
k
2 π

k
2 | b̄āΛ̄

−1| 12
[1+

1

2ā
(β−µ̄)T (

b̄

ā
Λ̄
−1

)−1(β−µ̄)]−(2ā+k
2 )

=
Γ( vt+k

2 )

Γ(vt

2 )v
k
2
t π

k
2 |Σt|

1
2

[1 +
1

vt
(β − µt)

TΣ−1
t (β − µt)]

− vt+k
2

= tvt(µt,Σt).
(11)

That is, the marginal posterior f(β|Y ) is a k-dimensional multivariate t-distribution

tvt(µt,Σt) with location vector µt = µ̄, shape matrix Σt =
b̄
āΛ̄

−1
and degrees

of freedom vt = 2ā. Then the computation of the posterior predictive distribu-
tion of Y new can be proceeded as follows:

f(Y new|Y ) =

∫ ∞

0

∫ ∞

−∞
f(Y new|β, σ2)f(β, σ2|Y ) dβ dσ2

=

∫ ∞

0

∫ ∞

−∞
Nn(X

newβ, σ2Σ)NIGk(µ̄, Λ̄, ā, b̄) dβ dσ2

=

∫ ∞

0

NIGk(X
newµ̄, (Σ +XnewΛ̄

−1
XnewT )−1, ā, b̄) dσ2. (12)

Applying the integral result (11) to (12), the computation of the density f(Ynew|Y)
is given by

f(Y new|Y ) = t2ā(X
newµ̄,

b̄

ā
(Σ +XnewΛ̄

−1
XnewT )),

which is an n-dimensional multivariate t-distribution with location Xnewµ̄,

shape matrix b̄
ā (Σ + XnewΛ̄

−1
XnewT ) and degrees of freedom 2ā. Further-

more, by the law of total conditional variance (Bowsher and Swain [24]), we can
obtain the variance of the future observation Y new conditional on σ2

var(Y new|σ2) = E[var(Y new|β, σ2)|σ2] + var[E(Y new|β, σ2)|σ2]

= E[σ2Σ|σ2] + var[Xnewβ|σ2]

= (Σ +XnewΛ̄
−1

XnewT )σ2.
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Therefore, given σ2, the posterior predictive distribution has two constituents
of uncertainty: (1) the model variability induced by the term σ2 in Y and (2)
the posterior uncertainty within the current calibration of (β, σ2) due to the80

finite sample size of Y .

4.2. Posterior predictive distribution for Bayesian quantile regression
In the context of the Bayesian quantile regression model, we carry out the

prediction of a new measurement Y new given a new predictor matrix Xnew

along with the current estimated parameters (βp, σ) as follows. Consider the
linear QR model for the pth quantile and observations X and Y , and follow
the notations for X∗,Y ∗

p,v and V presented in Section 3.1. Under the joint

posterior f(βp, σ|v,Y∗
p,X

∗) = NIGk(µ̄p, Λ̄, ā, b̄p), where µ̄p, Λ̄, ā and b̄p are
given in Section 3.2.2, we can proceed with the prediction of Y new in two steps:
(1) let Xnew∗ = 1√

2
Xnew and compute the corresponding conditional density

f(Y new∗
p |Y ∗

p) (with conditioning onXnew∗ implicit), where Y new∗
p = 1√

2
(Y new−

(1 − 2p)v) is a linear transformation of variable Y new; (2) derive the target
density f(Y new|Y ∗

p). The conditional distribution of Y new∗
p is given by

f(Y new∗
p |Y ∗

p) =

∫ ∞

0

∫ ∞

−∞
f(Y new∗

p |βp, σ)f(βp, σ|Y
∗
p) dβp dσ

=

∫ ∞

0

∫ ∞

−∞
Nn(X

new∗βp, σV )NIGk(µ̄p, Λ̄, ā, b̄p) dβp dσ

=

∫ ∞

0

NIGk(X
new∗µ̄p, (V +Xnew∗Λ̄

−1
Xnew∗T )−1, ā, b̄p) dσ

= t2ā(X
new∗µ̄p,

b̄p
ā
(V +Xnew∗Λ̄

−1
Xnew∗T )). (13)

The conditional of Y new =
√
2Y new∗

p + (1− 2p)v is a linear combination of the
deduced distribution (13). Following the affine transformation property of the
multivariate t-distribution (see Roth [25] for more details), the new response
outcome Y new is distributed as

f(Y new|Y ∗
p) = t2ā(

√
2Xnew∗µ̄p + (1− 2p)v,

2b̄p
ā

(V +Xnew∗Λ̄
−1

Xnew∗T )), (14)

which is an n-dimensional multivariate t-distribution with location
√
2Xnew∗µ̄p+

(1 − 2p)v, shape matrix
2b̄p
ā (V + Xnew∗Λ̄

−1
Xnew∗T ) and degrees of freedom

2ā. Accordingly, the posterior predictive distribution sampling for BQR can be85

achieved as below. For each l = 1, . . . , L, we draw samples σ(l) ∼ IG(ā, b̄p) and

β(l)
p ∼ Nk(µ̄p, σ

(l)Λ̄
−1

). The obtained samples {β(l)
p , σ(l)}Ll=1 give L replicates

from the joint posterior distribution f(βp, σ|v,Y
∗
p,X

∗) = NIGk(µ̄p, Λ̄, ā, b̄p).

For each sample {β(l)
p , σ(l)}, we generate Y new∗(l)

p ∼ Nn(X
new∗β(l)

p , σ(l)V ).

The resulting {Y new∗(l)
p }Ll=1 provide draws for the conditional distribution (13).90

Then the corresponding samples {Y new(l)}Ll=1 = {
√
2Y new∗(l)

p + (1 − 2p)v}Ll=1

give L replicates from the target posterior predictive density (14).

10



5. Big data based algorithms for Bayesian scale mixtures of normals
regression and BQR

In this section, we propose two divide-and-conquer algorithms to facilitate95

the calculation of full data posterior distribution in big data settings for Bayesian
scale mixtures of normals regression and BQR respectively. We first introduce
the concept of NIG multiplication operator as follows.

5.1. NIG multiplication operator of posterior distribution

Given the linear regression model (1) with n×1 response vector Y , observed
n×k design matrixX and n×n positive definite covariance matrixΣ, where the
sample size n is so large that the data cannot be stored on a single computer.
If we partition the big data into M subsets, such that Y = (Y 1, . . . ,Y M )T ,
X = (X1, . . . ,XM )T and Σ = diag(Σ1, . . . ,ΣM ), where Y m is an nm × 1
vector, Xm is an nm × k matrix, Σm is an nm × nm diagonal matrix and∑M

m=1 nm = n, then following (3) and given the sub-datasets, the conditional
likelihood function (2) can be written as

f(Y |X,β, σ2,Σ) ∝(σ2)−(
∑M

m=1 nm−k)/2 exp{− 1

2σ2

M∑
m=1

(Y m−Xmβ̂)TΣ−1
m (Y m−Xmβ̂)}

×(σ2)−
k
2 exp{− 1

2σ2

M∑
m=1

(β − β̂)T (XT
mΣ−1

m Xm)(β − β̂)}, (15)

where β̂ = (
∑M

m=1 X
T
mΣ−1

m Xm)−1
∑M

m=1 X
T
mΣ−1

m Y m. The reformulated ex-
pression (15) with regard to parameters of interest (β, σ2) further indicates a
multiplication of M NIG distributions

f(Y |X,β, σ2,Σ) ∝
M∏

m=1

(σ2)−(am+ k
2+1) exp{− 1

σ2
[bm +

1

2
(β − µm)TΛm(β − µm)]}

=

M∏
m=1

NIG(µm,Λm, am, bm),

where µm = β̂,Λm = XT
mΣ−1

m Xm, am = nm−k−2
2 , bm = 1

2 (Y m −Xmβ̂)TΣ−1
m100

(Y m −Xmβ̂). Therefore, we have the following Proposition 5.1.

Proposition 5.1. Given regression model (1) and the described data partition
rule, the whole data based likelihood and all sub-datasets based likelihood func-
tions follow NIG distributions and satisfy

NIGk(µ,Λ, a, b) =

M∏
m=1

NIG(µm,Λm, am, bm), (16)

where µ = (
∑M

m=1 Λm)−1
∑M

m=1 Λmµm,Λ =
∑M

m=1 Λm, a =
∑M

m=1 am +
(M−1)(k+2)

2 , b =
∑M

m=1 bm + 1
2

∑M
m=1(µm − µ)TΛm(µm − µ).

11



Posterior distributions induced by the entire data set can be obtained by
combining formulation (16) with specific priors imposed on β and σ2. The fol-105

lowing Theorem 5.1 elaborates the acquisition of the posterior density through
the use of the NIG multiplication operator.

Theorem 5.1. Suppose the posterior distribution, under the prior NIGk(µ,Λ, a,
b) and big data observations X,Y , be NIGk(µ̄, Λ̄, ā, b̄). Partition the entire
data into M subsets, then we have the full data posterior distribution

f(β, σ2|Y ,X,Σ) = NIGk(µ,Λ, a, b)

M∏
m=1

NIGk(µm,Λm, am, bm)

= NIGk(µ̄, Λ̄, ā, b̄),

where µ̄ = (Λ +
∑M

m=1 X
T
mΣ−1

m Xm)−1(Λµ +
∑M

m=1 X
T
mΣ−1

m Y m), Λ̄ = Λ +∑M
m=1 X

T
mΣ−1

m Xm, ā = a+ n
2 , b̄ = b+ 1

2 [
∑M

m=1 Y
T
mΣ−1

m Y m+µTΛµ− µ̄T Λ̄µ̄].

Corollary 5.1.1. The full data posterior distribution under the non-informative110

prior NIGk(0k,0k×k,−k
2 , 0) can be obtained as NIGk(µ̃, Λ̃, ã, b̃), where µ̃ =

(
∑M

m=1 X
T
mΣ−1

m Xm)−1
∑M

m=1 X
T
mΣ−1

m Y m, Λ̃ =
∑M

m=1 X
T
mΣ−1

m Xm, ã = n−k
2 ,

b̃ = 1
2 [
∑M

m=1 Y
T
mΣ−1

m Y m − µ̃T Λ̃µ̃].

5.2. Algorithm for Bayesian scale mixtures of normals regression

The following efficient divide-and-conquer algorithm is provided to facilitate115

the study of scale mixtures of normals linear regression in big data scenario.

Algorithm 5.1. Consider the Bayesian scale mixtures of normals linear regres-
sion under informative prior NIGk(µ0,Λ0, a0, b0) for (β, σ

2) and with observed
n×k design matrix X, n×1 response vector Y and positive definite n×n diag-
onal covariance matrix Σ, where the data set is too large to be fit into a single120

computer. By partitioning the entire data set into M subsets and utilizing the
aforementioned NIG multiplication operator, we can obtain the full data poste-
rior distribution by the following divide-and-conquer algorithm.

Step 1 let X =

[
X1

...
XM

]
, Y =

[
Y 1

...
Y M

]
, Σ =

[
Σ1 ··· 0

...
...

...
0 ··· ΣM

]
, where Xm is an125

nm × k predictor matrix, Y m is an nm × 1 response vector, Σm is an nm × nm

diagonal covariance matrix, m = 1, . . . ,M and
∑M

m=1 nm = n.

Step 2 for each subset, the corresponding likelihood has a representation of
NIGk(µm,Λm, am, bm) distribution for (β, σ2). Calculate the multiplicative

distribution NIGk(µ,Λ, a, b) =
∏M

m=1 NIG(µm,Λm, am, bm), then the full data
posterior can be acquired by merging the prior NIGk(µ0,Λ0, a0, b0) with the dis-
tribution NIGk(µ,Λ, a, b):

NIGk(µ̄, Λ̄, ā, b̄) = NIGk(µ0,Λ0, a0, b0)NIGk(µ,Λ, a, b),

12



where µ̄ = (Λ0+
∑M

m=1 X
T
mΣ−1

m Xm)−1(Λ0µ0+
∑M

m=1 X
T
mΣ−1

m Y m), Λ̄ = Λ0+∑M
m=1 X

T
mΣ−1

m Xm, ā = a0 + n
2 , b̄ = b0 + 1

2 [
∑M

m=1 Y
T
mΣ−1

m Y m + µT
0 Λ0µ0 −130

µ̄T Λ̄µ̄].

Remark. In the high-dimensional setting (k ≫ n), the induced multicollinearity
of X implies the singularity of XTΣ−1X. However, one can always choose
proper prior matrix Λ0 such that Λ0 +

∑M
m=1 X

T
mΣ−1

m Xm is non-singular and
therefore µ̄ is well-defined.135

5.3. Algorithm for Bayesian quantile regression

Consider the linear QR model for the pth (0 < p < 1) quantile

Y = Xβp + ϵ, (17)

where Y is an n × 1 response vector, X is an n × k predictor matrix and ϵ
is an n × 1 vector of ALD(0, σ, p) disturbances. Following the reformulated
conditional likelihood (8), model (17) is equivalent to

Y ∗
p = X∗βp +

√
σϵ∗, (18)

where Y ∗
p = 1√

2
(Y − (1 − 2p)v), X∗ = 1√

2
X and ϵ∗ ∼ Nn(0n,V ) with n × n

diagonal positive definite covariance matrix V . We proceed with Bayesian infer-
ence for big data quantile regression through the proposed NIG multiplication
operator. We consider model (17) under the g-prior (10) and partition the entire140

data into M subsets (Xm,Y m) with individual sample size nm,m = 1, . . . ,M .
Then the posterior distribution for the whole data can be obtained by merging
the given prior with the multiplication of M subset NIG distributions induced
from the massive observations. Based on this, an efficient divide-and-conquer
algorithm for big data BQR is provided as below.145

Algorithm 5.2. Consider a pth (0 < p < 1) Bayesian quantile regression under
g-prior (10) with the observed n× k design matrix X and n× 1 response vector
Y , where the large data cannot be fit into a single computer due to the mem-
ory constraint. We obtain the full data posterior distribution by the following
divide-and-conquer algorithm.150

Step 1 partition the entire data into M subsets Xm,Y m,m = 1, 2, . . . ,M ,
where Xm is an nm × k matrix, Y m is an nm × 1 vector and

∑M
m=1 nm = n.

Step 2 for each Xm,Y m, a Gibbs sampler for sampling βp, σ and the nm × 1155

latent vector vm follows the below sub-steps:

2.1 denote j as the iteration count. Then set j = 0 and establish (β(j=0)
p ,

σ(j=0),v
(j=0)
m ) to some starting values.

160

2.2 let X∗
m = 1√

2
Xm, Y ∗

pm = 1√
2
(Y m−(1−2p)vm) and V m = diag (vm).
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2.3 follow the full conditional posterior distributions of βp, σ and vm given
in Section 3.2.2,

165

(i) sample v
(j+1)
m from its GIG posterior f(vm|β(j)

p , σ(j)).

(ii) sample σ(j+1) from its IG posterior f(σ|β(j)
p ,v

(j+1)
m ).

(iii) sample β(j+1)
p from its multivariate normal posterior f(βp|σ(j+1),v

(j+1)
m ).

2.4 set j = j + 1 and return to Step 2.3 until j = L, where L is the
number of iteration times.170

Step 3 calculate the empirical estimates of the means β̄p and σ̄ separately
based on the (L − B) realizations of the Gibbs sequence (discarding the first
B iterations as a burn-in). Then generate an nm i.i.d. sample on v̄i, where

v̄i ∼ GIG(0, ξ̄i, ζ̄i) with ξ̄i
2
= [(yi − xT

i β̄p)
2 + β̄

T
p xix

T
i β̄p/g]/2σ̄ and ζ̄i

2
=175

1/2σ̄, i = 1, 2, . . . , nm. Let v†
m = (v̄1, . . . , v̄nm

)T ,Y †
pm = 1√

2
(Y m − (1− 2p)v†

m)

and V †
m = diag (v†

m),m = 1, 2, . . . ,M .

Step 4 for each subset, the corresponding likelihood can be represented as a form
of NIGk(µpm,Λm, am, bpm) distribution for (βp, σ). Obtain the multiplicative

distribution NIGk(µp,Λ, a, bp) =
∏M

m=1 NIG(µpm,Λm, am, bpm), then the full
data posterior is given by merging the g-prior NIGk(µ0,Λg0, a0, b0) and the
distribution NIGk(µp,Λ, a, bp):

NIGk(µ̄p, Λ̄, ā, b̄p) = NIGk(µ0,Λg0, a0, b0)NIGk(µp,Λ, a, bp),

where µ̄p = [(1 + 1
g )

∑M
m=1 X

∗T
m V †−1

m X∗
m)]−1

∑M
m=1 X

∗T
m V †−1

m Y †
pm, Λ̄ = (1 +

1
g )

∑M
m=1 X

∗T
m V †−1

m X∗
m, ā = 3n

2 , b̄p = 1
2 [
∑M

m=1 Y
†∗T
pm V †−1

m Y †∗
pm − µ̄T

p Λ̄µ̄p] +180

p(1− p)
∑M

m=1∥v†
m∥1 and ∥·∥1 denotes the ℓ1 norm of a vector.

6. Big data based algorithms for variable selection

6.1. Algorithm for Bayesian LASSO scale mixtures of normals regression

The LASSO of Tibshirani [26] was proposed to estimate linear regression
coefficients using L1-penalized least squares. Consider the linear regression
model (1), the LASSO shrinkage regression can be formulated as

min
β

(Y −Xβ)T (Y −Xβ) + λ

k∑
j=1

|βj |,

where λ is a non-negative penalization parameter. According to Tibshirani
[26], the LASSO estimates can be interpreted as the posterior mode with in-
dependent and identical Laplace priors imposed on the regression coefficients.
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Following Park and Casella [27], a conditional Laplace prior is given by

f(β|σ2) =

k∏
j=1

λj

2
√
σ2

exp{−λj |
βj√
σ2

|},

where λ1, . . . , λk are non-negative regularization parameters imposed on differ-
ent regression coefficients. As suggested in Park and Casella [27], any inverse-
Gamma prior for σ2 would maintain conjugacy. Here we consider the marginal
prior f(σ2) = IG(a0, b0), then the joint prior for f(β, σ2) is given by

f(β, σ2) ∝ (σ2)−(a0+
k
2+1) exp{−b0σ

−2 −
k∑

j=1

λj |
βj

σ
|}.

Given model (1), we have the posterior distribution

f(β, σ2|Y ,X,Σ)∝(σ2)−(a0+
n+k

2
+1) exp{−b0σ−2− 1

2
σ−2(Y−Xβ)TΣ−1(Y−Xβ)−

k∑
j=1

λj |
βj

σ
|}.

Following the equality given by Andrews and Mallows [28]

h

2
exp{−h|z|} =

∫ ∞

0

1√
2πs

exp{−z2/(2s)}h
2

2
exp{−h2s/2}ds, h > 0,

and introducing the latent variables γ = (γ1, . . . , γk)
T with prior f(γ) =

∏k
j=1

λ2
j

2 exp(−λ2
jγj

2 ), we have the following Bayesian hierarchical model:185

Y |β,X,Σ ∼ Nn(Xβ, σ2Σ),

β|σ2, γ1, . . . , γk ∼ Nk(0k, σ
2Dγ),

Dγ = diag (γ1, . . . , γk),

σ2, γ1, . . . , γk ∼ f(σ2) dσ2
k∏

j=1

λ2
j

2
exp(−

λ2
jγj

2
) dγj ,

σ2, γ1, . . . , γk > 0.

Then we obtain the conditional prior distribution

f(β, σ2|γ) ∼ NIGk(0k,D
−1
γ , a0, b0), (19)

where D−1
γ = diag (γ−1

1 , . . . , γ−1
k ). For the conditional posterior of γ, we have

γ−1
j |β, σ2,Y following an inverse-Gaussian distribution with parameters

√
λ2
jσ

2

β2
j

and λ2
j (see Park and Casella [27]). A corresponding Gibbs sampler algorithm

can be provided as below.

Algorithm 6.1. Consider the Bayesian LASSO scale mixtures of normals re-190
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gression model with prior specification (19). Given the big data X and Y , we
obtain the following Gibbs sampler algorithm.

Step 1 the same as presented in Algorithm 5.1.
195

Step 2 for each subset, the corresponding likelihood has a representation of
NIGk(µm,Λm, am, bm) distribution for (β, σ2). Calculate the multiplicative

distribution NIGk(µ,Λ, a, b) =
∏M

m=1 NIG(µm,Λm, am, bm), then iterate the
following sub-steps until draws (β, σ2,γ) achieve convergence.

200

2.1 given the current draw of γ, compute D−1
γ = diag (γ−1

1 , . . . , γ−1
k ); ob-

tain posterior NIGk(µ̄, Λ̄, ā, b̄) = NIGk(0k,D
−1
γ , a0, b0)NIGk(µ,Λ, a, b), where

µ̄ = (D−1
γ +

∑M
m=1 X

T
mΣ−1

m Xm)−1
∑M

m=1 X
T
mΣ−1

m Y m, Λ̄ = D−1
γ +

∑M
m=1 X

T
m

Σ−1
m Xm, ā = a0 +

n
2 , b̄ = b0 +

1
2 [
∑M

m=1 Y
T
mΣ−1

m Y m − µ̄T Λ̄µ̄]; then generate a
draw of (β, σ2) from NIGk(µ̄, Λ̄, ā, b̄).205

2.2 given the current draw of (β, σ2), generate a draw for each γ−1
j from

the inverse-Gaussian distribution with parameters

√
λ2
jσ

2

β2
j

and λ2
j , j = 1, 2, . . . , k.

Remark. In the high-dimensional setting (k ≫ n), one can always choose

proper prior matrix D−1
γ such that D−1

γ +
∑M

m=1 X
T
mΣ−1

m Xm is non-singular210

and therefore µ̄ is well-defined.

6.2. Algorithm for Bayesian LASSO quantile regression

Following the notations outlined in Section 3.1, the LASSO regularized
quantile regression (Li and Zhu [29]) can be formulated by

min
βp

n∑
i=1

ρp(yi − xT
i βp) + λ

k∑
j=1

|βpj |,

where βp = (βp1, . . . , βpk)
T and λ ≥ 0 is a penalization parameter. Consider a

conditional Laplace prior

f(βp|σ) =
k∏

j=1

λj

2
√
σ
exp{−λj |

βpj√
σ
|},

where λ1, . . . , λk are non-negative penalization parameters and specify the marginal
prior f(σ) = IG(a0, b0), the prior for f(βp, σ) is obtained by

f(βp, σ) ∝ σ−(a0+
k
2+1) exp{−b0σ

−1 −
k∑

j=1

λj |
βpj√
σ
|}.
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Consider further the reformulated linear QR model (18), we have the posterior
distribution

f(βp, σ|v,Y
∗
p,X

∗) ∝ σ−(a0+
3n+k

2 +1) exp{−σ−1[b0 + p (1− p)

n∑
i=1

vi]

− 1

2
σ−1(Y ∗

p −X∗βp)
TV −1(Y ∗

p −X∗βp)−
k∑

j=1

λj |
βpj√
σ
|}.

Again, by introducing the latent variables γ = (γ1, . . . , γk)
T with the prior

f(γ) =
∏k

j=1

λ2
j

2 exp(−λ2
jγj

2 ), we have the following Bayesian hierarchical model:

Y ∗
p|βp, σ,v,X

∗ ∼ Nn(X
∗βp, σV ),

βp|σ, γ1, . . . , γk ∼ Nk(0k, σDγ),

Dγ = diag (γ1, . . . , γk),

σ, γ1, . . . , γk ∼ f(σ) dσ

k∏
j=1

λ2
j

2
exp(−

λ2
jγj

2
) dγj ,

σ, γ1, . . . , γk > 0.

Then the conditional prior distribution can be denoted as

f(βp, σ|γ) ∼ NIGk(0k,D
−1
γ , a0, b0), (20)

where D−1
γ = diag (γ−1

1 , . . . , γ−1
k ). For the conditional posterior of γj , we have215

γ−1
j |βp, σ,Y

∗
p following an inverse-Gaussian with parameters (

√
λ2
jσ

β2
pj
, λ2

j ), j =

1, . . . , k. The full conditional posterior of βp is obtained by

f(βp|σ,v,γ,Y
∗
p,X

∗) ∝ exp{− 1

2σ
[(Y ∗

p −X∗βp)
TV −1(Y ∗

p −X∗βp) + βT
p D

−1
γ βp]},

(21)

which can be expressed as anNk(µ̄p, σΛ̄
−1

), where µ̄p = [D−1
γ +X∗V −1X∗]−1X∗

V −1Y ∗
p and Λ̄ = D−1

γ +X∗V −1X∗. The full conditional posterior of σ is given
by220

f(σ|βp,v,γ,Y
∗
p,X

∗) ∝ σ−(
3n+k+2a0

2 +1) exp{− 1

2σ
[(Y ∗

p −X∗βp)
TV −1(Y ∗

p −X∗βp)

+ βT
p D

−1
γ βp + 2p(1− p)

n∑
i=1

vi + 2b0]}, (22)

which is an IG distribution with shape 3n+k+2a0

2 and scale 1
2 [(Y

∗
p−X∗βp)

TV −1

(Y ∗
p −X∗βp)+βT

p D
−1
γ βp +2p(1− p)

∑n
i=1 vi +2b0]. The full posterior of each
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vi, i = 1, 2, . . . , n is also tractable:

f(vi|βp, σ, yi,xi) ∝ v
−1/2
i exp{− 1

4σ
[v−1

i (yi − (1− 2p)vi − xT
i βp)

2]− p(1− p)

σ
vi}

= v
−1/2
i exp{− 1

4σ
[v−1

i (yi − xT
i βp)

2 + vi]}

= v
−1/2
i exp{−1

2
(v−1

i ξ̄i
2
+ viζ̄i

2
)}, (23)

where ξ̄i
2
= (yi − xT

i βp)
2/2σ and ζ̄i

2
= 1/2σ, which can be recognized as a

GIG( 12 , ξ̄i, ζ̄i). A corresponding Gibbs sampling algorithm can be presented as
below.

Algorithm 6.2. Consider a pth (0 < p < 1) Bayesian LASSO regularized QR
with prior calibration (20) and the big data X and Y , we obtain the following225

Gibbs sampler algorithm.

Step 1 the same as presented in Algorithm 5.2.

Step 2 for each Xm,Y m, a Gibbs sampler for sampling βp, σ, the nm×1 latent230

vector vm and γ follows the sub-steps below:

2.1 denote r as the iteration count. Then set r = 0 and establish (β(r=0)
p ,

σ(r=0),v
(r=0)
m ,γ(r=0)) to some starting values.

235

2.2 let X∗
m = 1√

2
Xm, Y ∗

pm = 1√
2
(Y m − (1 − 2p)vm),V m = diag (vm)

and Dγ = diag (γ).

2.3 follow the inverse-Gaussian conditional posterior of γ−1
j , and the full

conditional posteriors of βp, σ,vm given in (21) - (23),240

(i) sample v
(r+1)
m from its GIG posterior f(vm|β(r)

p , σ(r)).

(ii) sample γ(r+1) = (γ
(r+1)
1 , . . . , γ

(r+1)
k )T , where 1/γ

(r+1)
j follows an inverse-

Gaussian with parameters (

√
λ2
jσ

(r)

(β
(r)
pj )2

, λ2
j ), j = 1, . . . , k.

(iii) sample σ(r+1) from its IG posterior f(σ|β(r)
p ,v

(r+1)
m ,γ(r+1)).245

(iv) sample β(r+1)
p from its multivariate normal posterior f(βp|σ(r+1),v

(r+1)
m ,

γ(r+1)).

2.4 set r = r + 1 and return to Step 2.3 until r = L, where L is the
number of iteration times.

250

Step 3 calculate the empirical estimates of the means β̄p, σ̄ and γ̄ based on
the (L − B) realizations of the Gibbs sequence (discarding the first B itera-
tions as a burn-in). Then generate an nm i.i.d. sample on v̄i, where v̄i ∼
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GIG( 12 , ξ̄i, ζ̄i) with ξ̄i
2
= [(yi − xT

i β̄p)
2]/2σ̄ and ζ̄i

2
= 1/2σ̄, i = 1, 2, . . . , nm.

Let D†
γ = diag (γ̄),v†

m = (v̄1, . . . , v̄nm
)T ,Y †

pm = 1√
2
(Y m − (1 − 2p)v†

m) and255

V †
m = diag (v†

m),m = 1, 2, . . . ,M .

Step 4 for each subset, the corresponding likelihood can be represented as a form
of NIGk(µpm,Λm, am, bpm) distribution for (βp, σ). Obtain the multiplicative

distribution NIGk(µp,Λ, a, bp) =
∏M

m=1 NIG(µpm,Λm, am, bpm), then the full

data posterior is given by merging the prior NIGk(0k,D
−1
γ , a0, b0) and the dis-

tribution NIGk(µp,Λ, a, bp):

NIGk(µ̄p, Λ̄, ā, b̄p) = NIGk(0k,D
−1
γ , a0, b0)NIGk(µp,Λ, a, bp),

where µ̄p = [D−1
γ +

∑M
m=1 X

∗T
m V †−1

m X∗
m]−1

∑M
m=1 X

∗T
m V †−1

m Y †
pm, Λ̄ = D−1

γ +∑M
m=1 X

∗T
m V †−1

m X∗
m, ā = 3n+2a0

2 , b̄p = b0+
1
2 [
∑M

m=1 Y
†∗T
pm V †−1

m Y †∗
pm−µ̄T

p Λ̄µ̄p]+

p(1− p)
∑M

m=1∥v†
m∥1 and ∥·∥1 denotes the ℓ1 norm of a vector.260

7. Numerical demonstrations and real-data analysis

In this section, we assess the performance of the proposed big data based
algorithms for posterior distribution calculation through a series of numerical
demonstrations and a real-world data analysis. All model runs and analyses
were performed using R. The code files are available upon request.265

7.1. Numerical demonstrations

7.1.1. Bayesian scale mixtures of normals regression

In the Bayesian scale mixtures of normals linear regression scenario, we
generate data from a true model of the form Y = Xβ + σϵ, where Y is a
106 × 1 response vector, X is a 106 × 104 predictor matrix with the first col-270

umn assigned as a vector of all 1’s and the remaining elements generated from
N(0, 1). β is a 104×1 vector where only the first 10 coefficients (β0, . . . , β9)

T =

(10, 9, 8, 7, 6, 5, 4, 3, 2, 1)T are set to be non-zero and σ2 is set as
√
1.25. ϵi

d
=√

ζizi, i = 1, . . . , 106 where zi follows N(0, 1) and ζi is an independent random
variable generated from the uniform distribution U(0.5,

√
5). We further specify275

an informative prior NIG104(0, I, 2, 1) for (β, σ
2) where I denotes the identity

matrix. The whole data is partitioned into 100 subsets with each containing
10,000 observations. We implement Algorithm 5.1 for the specified linear
model and Table 1 reports the posterior means, standard deviations and 95%
credible intervals for the non-zero coefficients (β0, . . . , β9)

T . The simulation re-280

sults indicate that our proposed big data based approach for the Bayesian scale
mixtures of normals regression behaves well and provides an accurate estimation
of the true regression coefficients.
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Parameter True Value Mean Std
95% CI

P2.5 P97.5
β0 10 9.9662 0.0450 9.8769 10.0540
β1 9 8.9525 0.0466 8.8622 9.0443
β2 8 8.0115 0.0460 7.9206 8.1023
β3 7 7.0212 0.0456 6.9320 7.1102
β4 6 6.0759 0.0435 5.9911 6.1608
β5 5 4.9944 0.0467 4.9030 5.0864
β6 4 3.9454 0.0441 3.8582 4.0325
β7 3 2.9999 0.0463 2.9092 3.0899
β8 2 1.9993 0.0457 1.9106 2.0897
β9 1 0.9729 0.0458 0.8829 1.0621

Table 1: Estimation results of the first 10 non-zero coefficients for the Bayesian scale mixtures
of normals regression model.

7.1.2. Bayesian quantile regression

To investigate the performance of our proposed algorithms for the pth Bayesian285

quantile regression, we generate data from a true model Y = Xβ+ ϵ, where Y
is a 106 × 1 response vector, X is a 106 × 104 design matrix with all elements
generated from N(0, 1). β = (10, 9, 8, . . . , 1, 0, . . . , 0)T is a 104 × 1 vector with
only the first 10 coefficients set to be non-zero. ϵ is the disturbance vector
where ϵi ∼ ALD(0, σ, p), i = 1, . . . , 106 and σ is assigned as 0.1. We implement290

Algorithm 5.2 for our big data BQR model at quantiles p = 0.50 and p = 0.95
respectively. In each scenario, the given full data is partitioned into 100 subsets
with equal size of 10,000 and the Gibbs samplers are run for 15,000 iterations
with a burn-in of 5000. An informative g-prior with g = 100 is specified, as sug-
gested in Smith and Kohn (1996). Table 2 and 3 present the posterior means,295

standard deviations and 95% credible intervals of the non-zero coefficients for
p = 0.50 and p = 0.95 respectively. The displayed numerical results show that
our proposed big data based algorithms for the BQR model give a desirable
estimation of the true coefficients.

7.2. Real-data analysis300

In this section, we illustrate our divide-and-conquer algorithms for big data
Bayesian quantile regression by a real-world data analysis. We use the airline
on-time performance data from the 2009 ASA Data Expo, publicly available
at http://stat-computing.org/dataexpo/2009/the-data.html. The data
set has been used for a demonstration of massive data by Wang et al. [30]
and Schifano et al. [31]. It consists of flight arrival and departure details for
all commercial flights within the United States from October 1987 to April
2008. About 12 million flights were involved with 29 variables. Due to the
computing limit, we only consider a complete sub-dataset of the year 2008 with
N = 584, 583 after removing all the missing records. We consider arrival delay
(AD) as a continuous variable by modelling log(AD−min(AD)+1) and employ
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Parameter True Value Mean Std
95% CI

P2.5 P97.5
β0 10 9.9201 0.0429 9.8355 10.0025
β1 9 8.9235 0.0396 8.8461 9.0017
β2 8 7.9363 0.0391 7.8596 8.0129
β3 7 6.9333 0.0376 6.8590 7.0063
β4 6 5.9282 0.0331 5.8638 5.9925
β5 5 4.9604 0.0386 4.8859 5.0361
β6 4 3.9523 0.0339 3.8860 4.0183
β7 3 2.9767 0.0354 2.9072 3.0461
β8 2 1.9761 0.0341 1.9092 2.0426
β9 1 0.9944 0.0322 0.9311 1.0570

Table 2: Estimation results of the first 10 non-zero coefficients for the Bayesian quantile
regression model at p = 0.50.

Parameter True Value Mean Std
95% CI

P2.5 P97.5
β0 10 9.6914 0.1711 9.3500 10.0240
β1 9 8.8140 0.1718 8.4757 9.1524
β2 8 8.0678 0.1708 7.7326 8.4005
β3 7 6.9045 0.1611 6.5836 7.2187
β4 6 5.6809 0.1565 5.3736 5.9869
β5 5 4.8938 0.1718 4.5582 5.2296
β6 4 3.7937 0.1547 3.4907 4.0929
β7 3 3.0477 0.1616 2.7333 3.3663
β8 2 2.0570 0.1624 1.7381 2.3724
β9 1 1.0894 0.1606 0.7765 1.4029

Table 3: Estimation results of the first 10 non-zero coefficients for the Bayesian quantile
regression model at p = 0.95.

a linear model that specifies the pth quantile of AD as follows:

Qp(AD) = βp0 + βp1HD + βp2DIS + βp3NF + βp4WF + ϵ,

where HD is the departure time (continuous, in hours), DIS is the distance
(continuous, in thousands of miles), NF is the day/night flight indicator (bi-
nary; 1 if departure between 8 p.m. and 5 a.m., 0 otherwise) and WF is the
weekend/weekday flight indicator (binary; 1 if departure occurred during the
weekend, 0 otherwise). This model was also investigated by Schifano et al. [31].305

We fit our big data BQR to the above specified regression model by implement-
ing Algorithm 5.2 at p = 0.50, 0.75 and 0.95 respectively. In each scenario, the
whole observations are partitioned into 100 subsets with the size of nm = 5845
for m = 1, . . . , 99 and n100 = 5928. We assign the informative g-prior by choos-310
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p = 0.50 p = 0.75 p = 0.95

Coeff Std Coeff Std Coeff Std
Intercept 1.9483 3.3380 2.6819 3.3598 4.1028 2.9804

HD 0.0790 0.2038 0.0735 0.2014 0.0403 0.1709
DIS -0.0577 1.5080 -0.0573 1.5440 -0.0150 1.4152
NF -0.4222 3.0845 -0.3932 3.0592 -0.1398 2.6500
WF -0.0545 1.9676 -0.0444 1.9923 -0.0372 1.8048

Table 4: Coefficient estimates and posterior standard deviations (×103) of big data BQR
estimator for the airline on-time data.

ing g = 100. All results are based on 15,000 draws obtained from the Gibbs
samplers with a burn-in of 5000 iterations. Table 4 presents the estimated co-
efficients and posterior standard deviations at the specified quantile levels. We
observe that the departure time bears a positive association with the arrival de-
lay, whereas the distance, night-time and weekend flights have negative effects315

on the delay across all the three quantiles considered. Nevertheless, the effects
of these covariates are mitigated with the increase of quantile. Night-time flight
is found to be a non-negligible factor to improve on-time performance of flights
facing median and long arrival delays. This empirical study shows that our pro-
posed BQR method facilitates the investigation of the effects of different factors320

on various levels of flight arrival delays in the big data scenario.

8. Conclusion

The methods of Bayesian scale mixtures of normals linear regression and
Bayesian quantile regression for big data analysis, including variable selection
and posterior predictive distributions, have been explored. This is achieved by325

using ALD-based working likelihood functions and conjugate NIG priors. The
resulting algorithms are easily implemented and the numerical demonstrations
show that the proposed approaches are promising.
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