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StrongSORT: Make DeepSORT Great Again
Yunhao Du, Zhicheng Zhao, Yang Song, Yanyun Zhao, Fei Su, Tao Gong, Hongying Meng

Abstract—Multi-Object Tracking (MOT) has gained lots atten-
tion from researchers and achieved remarkable progress in recent
years. However, recent studies on MOT tend to use different basic
models (e.g, detector and embedding model), training data and
training/inference tricks, which makes it difficult to construct
a fair comparison between their progress. In this paper, we
revisit the classic tracker DeepSORT, and upgrades it from
aspects of detection, embedding, and association. The proposed
tracker, named StrongSORT, achieves great improvements over
DeepSORT, and can serve as a strong and fair baseline for
other methods. We also present two lightweight and plug-
and-play algorithms to solve two ”missing” problems in MOT.
Firstly, to solve the missing association problem, some works
associate short tracklets into complete trajectories with compu-
tationally expensive models. Instead, we propose the appearance-
free link model (AFLink) to perform global association without
appearance information, which achieves a better trade-off be-
tween speed and accuracy. Secondly, for the missing detection
problem, we propose Gaussian-smoothed interpolation (GSI),
which improves the linear interpolation algorithm with Gaussian
process regression. Moreover, AFLink and GSI can be plugged
into various trackers with a negligible extra computational
cost (1.7 ms and 7.1 ms per image, respectively, on MOT17).
By integrating StrongSORT with the two algorithms, the final
tracker StrongSORT++ achieves SOTA results on multiple bench-
marks, i.e., MOT17, MOT20, DanceTrack and KITTI. Codes
are available at https://github.com/dyhBUPT/StrongSORT and
https://github.com/open-mmlab/mmtracking.

Index Terms—Multi-Object Tracking, Baseline, AFLink, GSI.

I. INTRODUCTION

MULTI-OBJECT TRACKING (MOT) aims to detect and
track all specific classes of objects frame by frame,

which plays an essential role in video understanding. In the
past few years, the MOT task is dominated by the tracking-by-
detection (TBD) paradigm [90, 3, 81, 4, 49], which performs
detection per frame and formulates the MOT problem as a data
association task. The TBD methods tend to extract appearance
and/or motion embeddings first, then perform a bipartite graph
matching. Benefiting from high-performing object detection
models, TBD methods have gained favor due to their excellent
performance.

As MOT is a downstream task corresponding to object
detection and object re-identification (ReID), recent works
tend to use various detectors and ReID models to increase
MOT performances [57, 59, 8], which makes it difficult to
construct a fair comparison between them. Another problem
for a fair comparison is the usage of various external datasets
for training, e.g., ETHZ [18], CityPerson [93], CalTech [15],
CUHK-SYSU [84], PRW [97]. Moreover, some training and
inference tricks are also used to improve the tracking perfor-
mance.

To solve the above problems, this paper presents a simple
but effective MOT baseline called StrongSORT. We revisit

the classic TBD tracker DeepSORT [81], which is among the
earliest methods that apply deep learning model to the MOT
task. We choose DeepSORT because of its simplicity, expan-
sibility and effectiveness. It’s claimed that DeepSORT under-
performs compared with state-of-the-art methods because of
its outdated techniques, rather than its tracking paradigm. To
be specific, we first equip DeepSORT with strong detector
[25] following [94] and embedding model [47]. Then, we
collect some inference tricks from recent works to further
improve the performance. It’s shown that by simply equipping
DeepSORT with these advanced components, resulting in the
proposed StrongSORT, it can achieve SOTA results on popular
benchmarks MOT17 [48] and MOT20 [14].

The motivations of StrongSORT can be summarized as
follows:

• It can serve as a baseline for fair comparison between
different tracking methods, especially for tracking-by-
detection trackers.

• Compared with the poor baseline, a stronger one can
better demonstrate the effectiveness of methods.

• The elaborately collected inference tricks can be applied
on other trackers without the need to retrain the model.
This can benefit some works in academia and industry.

Furthermore, there exist two ”missing” problems in MOT
task, i.e., missing association and missing detection. Missing
association means the same object is spread in more than
one tracklets. This problem is particularly common in online
trackers, because they lack global information in association.
Missing detection, also known as false negatives, refers to
recognizing the object as background, which is usually caused
by occlusion and low resolutions.

Firstly, for the missing association problem, several methods
propose to associate short tracklets into trajectories by using
a global link model [17, 71, 74, 53, 88]. They usually first
generate accurate but incomplete tracklets, then associate them
with global information in an offline manner. Although these
methods improve tracking performance significantly, they rely
on computation-intensive models, especially appearance em-
beddings. By contrast, we propose an appearance-free link
model (AFLink), which only utilizes spatio-temporal informa-
tion to predict whether the two input tracklets belong to the
same ID. Without the appearance model, AFLink achieves a
better trade-off between speed and accuracy.

Secondly, linear interpolation is widely used to compensate
for missing detections [54, 32, 50, 55, 94, 17]. However,
it ignores motion information during interpolation, which
limits the accuracy of the interpolated positions. To solve
this problem, we propose the Gaussian-smoothed interpolation
algorithm (GSI), which fixes the interpolated bounding boxes
by using the Gaussian process regression algorithm [80]. GSI
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Fig. 1: IDF1-MOTA-HOTA comparisons of state-of-the-art trackers with our proposed StrongSORT and StrongSORT++ on
MOT17 and MOT20 test sets. The horizontal axis is MOTA, the vertival axis is IDF1, and the radius of the circle is HOTA. ”*”
represents our reproduced version. Our StrongSORT++ achieves the best IDF1 and HOTA and comparable MOTA performance.

is also a kind of detection noise filter, which can produce more
accurate and stable localizations.

AFLink and GSI are both lightweight, plug-and-play,
model-independent and appearance-free models, which are
beneficial and suitable for this study. Extensive experiments
demonstrate that they can achieve notable improvements on
StrongSORT and other state-of-the-art trackers, e.g., Center-
Track [99], TransTrack [66] and FairMOT [95], with a running
speed of 1.7 ms and 7.1 ms per image, respectively, on
MOT17. Particularly, by applying AFLink and GSI to Strong-
SORT, we obtain a stronger tracker called StrongSORT++. It
achieves SOTA results on various benchmarks, i.e., MOT17,
MOT20, DanceTrack [65] and KITTI [26]. Figure 1 presents
the IDF1-MOTA-HOTA comparisons of state-of-the-art track-
ers with our proposed StrongSORT and StrongSORT++ on
MOT17 and MOT20 test sets.

The contributions of our work are summarized as follows:
• We propose StrongSORT, which equips DeepSORT with

advanced modules (i.e., detector and embedding model)
and some inference tricks. It can serve as a strong and
fair baseline other MOT methods, which is valuable to
both academia and industry.

• We propose two novel and lightweight algorithms,
AFLink and GSI, which can be plugged into various
trackers to improve their performance with a negligible
computational cost.

• Extended experiments are designed to demonstrate the
effectiveness of the proposed methods. Furthermore,
the proposed StrongSORT and StrongSORT++ achieve
SOTA results on multiple benchmarks, including MOT17,
MOT20, DanceTrack and KITTI.

II. RELATED WORK

A. Separate and Joint Trackers
MOT methods can be classified into separate and joint track-

ers. Separate trackers [90, 3, 81, 4, 49, 9, 10, 20, 30] follow the

tracking-by-detection paradigm, which localizes targets first,
then associates them with information on appearance, motion,
etc. Benefiting from the rapid development of object detection
[59, 58, 69, 100, 68, 25], separate trackers have been widely
applied in MOT task. Recently, several joint tracking methods
[86, 45, 89, 52, 43, 75, 77] have been proposed to jointly train
detection and other components such as motion, embedding
and association models. The main advantages of these trackers
are the low computational cost and comparable performance.

Meanwhile, several recent studies [63, 64, 94, 7] have
abandoned appearance information, and relied only on high-
performance detectors and motion information, which achieve
high running speed and state-of-the-art performance on
MOTChallenge benchmarks [48, 14]. However, abandoning
appearance features would lead to poor robustness in more
complex scenes. In this paper, we adopt the DeepSORT-like
[81] paradigm and equip it with advanced techniques from
various aspects to confirm the effectiveness of this classic
framework.

B. Global Link in MOT

Missing association is an essential problem in MOT task.
To exploit rich global information, several methods refine the
tracking results with a global link model [17, 71, 74, 53, 88].
They first generate accurate but incomplete tracklets by using
spatio-temporal and/or appearance information. Then, these
tracklets are linked by exploring global information in an
offline manner. TNT [74] designs a multi-scale TrackletNet
to measure the connectivity between two tracklets. It encodes
motion and appearance information in a unified network by
using multi-scale convolution kernels. TPM [53] presents a
tracklet-plane matching process to push easily confusable
tracklets into different tracklet-planes, which helps reduce the
confusion in the tracklet matching step. ReMOT [88] is im-
proved from ReMOTS [87], which splits imperfect trajectories
into tracklets, then merges them with appearance features.
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GIAOTracker [17] proposes a complex global link algorithm 
that encodes tracklet appearance features by using an improved 
ResNet50-TP model [23] and associates tracklets together 
with spatial and temporal costs. Although these methods 
yield notable improvements, they rely on appearance features, 
which bring high computational cost. Differently, the proposed 
AFLink model only exploits motion information to predict 
the link confidence between two tracklets. By designing an 
appropriate model framework and training process, AFLink 
benefits various state-of-the-art trackers with a negligible extra 
cost.

AFLink shares similar motivations with LGMTracker [72], 
which also associate tracklets with motion information. How-
ever, they differ in three aspects. First, LGMTracker designs 
an interesting but complex reconstruct-to-embed strategy to 
perform tracklets association based on GCN and TGC module, 
which aims to solve the problem of latent space dissimi-
larity. However, AFLink shows that by carefully designing 
the framework and training strategy, a much simpler and 
more lightweight module can still work well. Particularly, 
AFlink just takes 10+ seconds for training, 10 seconds for 
testing on MOT17. Second, we show that AFLink can bring 
obvious improvements on various SOTA trackers. Moreover, 
LGMTracker is designed for vehicle tracking, but AFLink is 
applied mainly for pedestrian tracking, which contains more 
motion noise.

C. Interpolation in MOT

Linear interpolation is widely used to fill the gaps of recov-
ered trajectories for missing detections [54, 32, 50, 55, 94, 17].
Despite its simplicity and effectiveness, linear interpolation
ignores motion information, which limits the accuracy of
the restored bounding boxes. To solve this problem, several
strategies have been proposed to utilize spatio-temporal in-
formation effectively. V-IOUTracker [5] extends IOUTracker
[4] by falling back to single-object tracking [31, 37] while
missing detection occurs. MAT [29] smooths the linearly in-
terpolated trajectories nonlinearly by adopting a cyclic pseudo-
observation trajectory filling strategy. An extra camera motion
compensation (CMC) model [19] and Kalman filter [38] are
needed to predict missing positions. MAATrack [64] simplifies
it by applying only the CMC model. All these methods apply
extra models, i.e., single-object tracker, CMC, Kalman filter,
in exchange for performance gains. Instead, we propose to
model nonlinear motion on the basis of the Gaussian process
regression (GPR) algorithm [80]. Without additional time-
consuming components, our proposed GSI algorithm achieves
a good trade-off between accuracy and efficiency.

The most similar work with our GSI is [101], which uses
the GPR algorithm to smooth the uninterpolated tracklets for
accurate velocity predictions. However, it works for the event
detection task in surveillance videos. Differently, we study
on the MOT task and adopt GPR to refine the interpolated
localizations. Moreover, we present an adaptive smoothness
factor, instead of presetting a hyperparameter like [101].

III. STRONGSORT

In this section, we present various approaches to upgrade
DeepSORT [81] to StrongSORT. Specifically, we review Deep-
SORT in Section A and introduce StrongSORT in Section
B. Notably, we do not claim any algorithmic novelty in this
section. Instead, our contributions here lie in giving a clear
understanding of DeepSORT and equipping it with various
advanced techniques to present a strong MOT baseline.

A. Review of DeepSORT

We briefly summarize DeepSORT as a two-branch frame-
work, that is, appearance branch and motion branch, as shown
in the top half of Figure 2.

In the appearance branch, given detections in each frame,
the deep appearance descriptor (a simple CNN), which is
pretrained on the person re-identification dataset MARS [96],
is applied to extract their appearance features. It utilizes a
feature bank mechanism to store the features of the last 100
frames for each tracklet. As new detections come, the smallest
cosine distance between the feature bank Bi of the i-th tracklet
and the feature fj of the j-th detection is computed as

d(i, j) = min{1− fTj f
(i)
k | f (i)k ∈ Bi}. (1)

The distance is used as the matching cost during the associa-
tion procedure.

In the motion branch, the Kalman filter algorithm [38]
accounts for predicting the positions of tracklets in the current
frame. It works by a two-phase process, i.e., state estimation
and state update. In the state estimation step, it predicts the
current state as:

x̂′k = Fkx̂k−1, (2)

P ′k = FkPk−1F
T
k +Qk, (3)

where x̂k−1 and Pk−1 are the mean and covariance of the
state at time step k − 1, x̂′k and P ′k are the estimated state
at time step k, Fk is the state transition model, and Qk is
the covariance of the process noise. In the state update step,
the Kalman gain is calculated based on the covariance of the
estimated state P ′k and the observation noise Rk as:

K = P ′kH
T
k (HkP

′
kH

T
k +Rk)

−1, (4)

where HT
k is the observation model, which maps the state from

estimation space to observation space. Then, the Kalman gain
K is used to update the final state:

xk = x̂′k +K(zk −Hkx̂
′
k), (5)

Pk = (I −KHk)P
′
k, (6)

where zk is the measurement at time step k. Given the motion
state of tracklets and new-coming detections, Mahalanobis
distance is used to measure the spatio-temporal dissimilarity
between them. DeepSORT takes this motion distance as a gate
to filter out unlikely associations.

Afterwards, the matching cascade algorithm is proposed to
solve the association task as a series of subproblems instead
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Fig. 2: Framework and performance comparison between DeepSORT and StrongSORT. Performance is evaluated on the MOT17
validation set based on detections predicted by YOLOX [25].

of a global assignment problem. The core idea is to give
greater matching priority to more frequently seen objects.
Each association subproblem is solved using the Hungarian
algorithm [42].

B. Strong Baseline

Our improvements over DeepSORT include advanced mod-
ules and some inference tricks, as shown in the bottom half 
of Figure 2.
Advanced modules. DeepSORT uses the optimized Faster R-
CNN [59] presented in [90] as the detector, and train a simple 
CNN as the embedding model. Instead, we replace the detector 
with YOLOX-X [25] following [94], which holds excellent 
trade-off performance between accuracy and speed (This is not 
presented in Figure 2 for simplicity). In addition, a stronger 
appearance feature extractor, BoT [47], is applied to replace 
the original simple CNN. By taking ResNeSt50 [92] as the 
backbone and being pretrained on the DukeMTMC-reID [60] 
dataset, it can extract much more discriminative features. 
EMA. Though the feature bank mechanism in DeepSORT can 
preserve the long-term information, it is sensitive to detection 
noises [17]. To solve this problem, we replace the feature bank 
mechanism with the feature updating strategy proposed in [78],
which updates appearance state eit for the i-th tracklet at frame 
t in an exponential moving average (EMA) manner as follows:

eti = αet−1i + (1− α)f ti , (7)

where f ti is the appearance embedding of the current matched
detection and α = 0.9 is a momentum term. The EMA
updating strategy leverages the information of inter-frame
feature changes and can depress detection noises. Experiments
show that it not only enhances the matching quality, but also
reduces the time consumption.

ECC. There exist camera movements in multiple benchmarks
[48, 65, 26]. Similar to [29, 64, 39, 30], we adopt the Enhanced
Correlation Coefficient Maximization (ECC) [19] model for
camera motion compensation. It is a technique for parametric
image alignment, which can estimate the global rotation and
translation between adjacent frames. To be specific, it’s based
on the following criterion to quatify the performance of the
warping transformation

EECC(p) =

∥∥∥∥∥ ir∥∥ir∥∥ − iw(p)∥∥iw(p)
∥∥
∥∥∥∥∥
2

, (8)

where ‖ · ‖ denotes the euclidean norm, p is the warping
parameters, and ir and iw(p) are the zero-mean versions of
the reference (template) image ir and warped image iw(p).
Then, the image alignment problem is solved by minimiz-
ing EECC(p), with the proposed forward additive iterative
algorithm or iverse compositional iterative algorithm. Due
to its efficiency and effectiveness, ECC is widely used to
compensate for the motion noise caused by camera movement
in MOT tasks.
NSA Kalman. The vanilla Kalman filter is vulnerable w.r.t.
low-quality detections [64] and ignores the information on
scales of detection noise [17]. To solve this problem, we
borrow the NSA Kalman algorithm from GIAOTracker [17],
which proposes a formula to adaptively calculate the noise
covariance R̃k:

R̃k = (1− ck)Rk, (9)

where Rk is the preset constant measurement noise covariance 
and ck is the detection confidence score at state k. Intuitively, 
the detection has a higher score ck when it has less noise, 
which results in a high R̃k. According to the formula 4-6, a 
higher R̃k means the detection will have a higher weight in 
the state update step, and vice versa. Though its simplicity, it 
can help improve the accuracy of updated states.
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Fig. 3: Framework of the AFLink model. It adopts the spatio-temporal information of two tracklets as the input and then
predicts their connectivity.

Motion Cost. DeepSORT only employs the appearance feature
distance as matching cost during the first association stage, in
which the motion distance is only used as the gate. Instead,
we solve the assignment problem with both appearance and
motion information, similar to [78]. Cost matrix C is a
weighted sum of appearance cost Aa and motion cost Am
as follows:

C = λAa + (1− λ)Am, (10)

where weight factor λ is set to 0.98.
Vanilla Matching. An interesting finding is that although the
matching cascade algorithm is not trivial in DeepSORT, it
limits the performance as the tracker becomes more powerful.
The reason is that as the tracker becomes stronger, it becomes
more robust to confusing associations. Therefore, additional
prior constraints would limit the matching accuracy. We solve
this problem by simply replacing matching cascade with
vanilla global linear assignment.

IV. STRONGSORT++

We present a strong baseline in Section III. In this sec-
tion, we introduce two lightweight, plug-and-play, model-
independent, appearance-free algorithms, namely AFLink and
GSI, to further solve the problems of missing association and
missing detection. We call the final method StrongSORT++,
which integrates StrongSORT with the two algorithms.

A. AFLink

The global link for tracklets is used in several works to pur-
sue highly accurate associations. However, they generally rely
on computationally expensive components and have numerous
hyperparameters to fine-tune. For example, the link algorithm
in GIAOTracker [17] utilizes an improved ResNet50-TP [23]
to extract tracklets 3D features and performs association with
additional spatial and temporal distances. This means 6 hyper-
parameters (3 thresholds and 3 weight factors) are to be fine-
tuned, which incurs additional tuning experiments and poor
robustness. Moreover, over-reliance on appearance features
can be vulnerable to noise. Motivated by this, we design an
appearance-free model, AFLink, to predict the connectivity
between two tracklets by relying only on spatio-temporal
information.

Figure 3 shows the two-branch framework of the AFLink
model. It adopts two tracklets Ti and Tj as the input,
where T∗ = {fk, xk, yk}Nk=1 consists of the frames id fk
and positions (xk, yk) of the recent N = 30 frames. Zero
padding is used for those shorter than 30 frames. A temporal
module is applied to extract features by convolving along the
temporal dimension with 7×1 kernels. Then, a fusion module
performs 1× 3 convolutions to integrate the information from
different feature dimensions, namely f , x and y. The two
resulting feature maps are pooled and squeezed to feature
vectors respectively, and then concatenated, which includes
rich spatio-temporal information. Finally, an MLP is used
to predict a confidence score for association. Note that the
temporal module and fusion module of the two branches are
not tied.

During training, the association procedure is formulated as a
binary classification task. Then it is optimized with the binary
cross entropy loss as follows:

LBCEn = −(ynlog(
exn

exn + e1−xn
)+

(1− yn)log(1−
e1−xn

exn + e1−xn
)),

(11)

where xn ∈ [0, 1] is the predicted probability of association
for sample pair n, and yn ∈ {0, 1} is the ground truth.

During association, we filter out unreasonable tracklet pairs
with spatio-temporal constraints. Then, the global link is
solved as a linear assignment task [42] with the predicted
connectivity score.

B. GSI

Interpolation is widely used to fill the gaps in trajectories
caused by missing detections. Linear interpolation is highly
popular due to its simplicity. However, its accuracy is lim-
ited because it does not use motion information. Although
several strategies have been proposed to solve this problem,
they generally introduce additional time-consuming modules,
e.g., single-object tracker, Kalman filter, ECC. Differently,
we present a lightweight interpolation algorithm that employs
Gaussian process regression [80] to model nonlinear motion.

We formulate the GSI model for the i-th trajectory as
follows:

pt = f (i)(t) + ε, (12)
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Fig. 4: Illustration of the difference between linear interpo-
lation (LI) and the proposed Gaussian-smoothed interpolation
(GSI).

where t ∈ F is the frame id, pt ∈ P is the position
coordinate variate at frame t (i.e., x, y, w, h) and ε ∼ N(0, σ2)
is Gaussian noise. Given tracked and linearly interpolated
trajectories S(i) = {t(i), p(i)t }Lt=1 with length L, the task of
nonlinear motion modeling is solved by fitting the function
f (i). We assume that it obeys a Gaussian process:

f (i) ∈ GP (0, k(·, ·)), (13)

where k(x, x′) = exp(− ||x−x
′||2

2λ2 ) is a radial basis function
kernel. On the basis of the properties of the Gaussian process,
given new frame set F ∗, its smoothed positions P ∗ is predicted
by

P ∗ = K(F ∗, F )(K(F, F ) + σ2I)−1P, (14)

where K(·, ·) is a covariance function based on k(·, ·).
Moreover, hyperparameter λ controls the smoothness of the

trajectory, which should be related with its length. We simply
design it as a function adaptive to length l as follows:

λ = τ ∗ log(τ3/l), (15)

where τ is set to 10.
Figure 4 illustrates an example of the difference between 

GSI and linear interpolation (LI). The raw tracked results (in 
orange) generally include noisy jitter, and LI (in blue) ignores 
motion information. Our GSI (in red) solves both problems 
simultaneously by smoothing the entire trajectory with an 
adaptive smoothness factor.

V. EXPERIMENTS

A. Setting

Datasets. We conduct experiments on MOT17 [48] and 
MOT20 [14] datasets under the ”private detection” protocol. 
MOT17 is a popular dataset for MOT, which consists of 
7 sequences, 5,316 frames for training and 7 sequences, 
5919 frames for testing. MOT20 is set for highly crowded 
challenging scenes, with 4 sequences, 8,931 frames for training 
and 4 sequences, 4,479 frames for testing. For ablation studies, 
we take the first half of each sequence in the MOT17 training 
set for training and the last half for validation following

[99, 94]. We use DukeMTMC [60] to pretrain our appearance
feature extractor. We train the detector on the CrowdHuman
dataset [62] and MOT17 half training set for ablation following
[99, 94, 66, 82, 91]. We add Cityperson [93] and ETHZ [18]
for testing as in [94, 78, 95, 43].

We also test StrongSORT++ on KITTI [26] and DacneTrack
[65]. KITTI is a popular dataset related to autonomous driving
tasks. It can be used for pedestrian and car tracking, which
consists of 21 training sequences and 29 test sequences with a
relatively low frame rate of 10 FPS. DanceTrack is a recently
proposed dataset for multi-human tracking, which encorages
more MOT algorithms that rely less on visual discrimination
and depend more on motion analysis. It consists of 100 group
dancing videos, where humans have similar appearance but
diverse motion features.
Metrics. We use the metrics MOTA, IDs, IDF1, HOTA, AssA,
DetA and FPS to evaluate tracking performance [2, 60, 46].
MOTA is computed based on FP, FN and IDs, and focuses
more on detection performance. By comparison, IDF1 better
measures the consistency of ID matching [35]. HOTA is an
explicit combination of detection score DetA and association
score AssA, which balances the effects of performing accurate
detection and association into a single unified metric. More-
over, it evaluates at a number of different distinct detection
similarity values (0.05 to 0.95 in 0.05 intervals) between pre-
dicted and GT bounding boxes, instead of setting a single value
(i.e., 0.5) like MOTA and IDF1, and better takes localization
accuracy into account.
Implementation Details. We present the default implementa-
tion details in this section. For detection, we adopt YOLOX-
X [25] pretrained on COCO [44] as our detector for an
improved time-accuracy trade-off. The training schedule is
similar to that in [94]. In inference, a threshold of 0.8 is
set for non-maximum suppression (NMS) and a threshold of
0.6 for detection confidence. For StrongSORT, the matching
distance threshold is 0.45, the warp mode for ECC is MOTION
EUCLIDEAN, the momentum term α in EMA is 0.9 and the
weight factor for appearance cost λ is 0.98. For GSI, the
maximum gap allowed for interpolation is 20 frames, and
hyperparameter τ is 10.

For AFLink, the temporal module consists of four convo-
lution layers with 7× 1 kernels and {32, 64, 128, 256} output
channels. Each convolution is followed by a BN layer [36]
and a ReLU activation layer [27]. The fusion module includes
a 1× 3 convolution, a BN and a ReLU. It doesn’t change the
number of channels. The classifier is an MLP with two fully
connected layers and a ReLU layer inserted in between. The
training data are generated by cutting annotated trajectories
into tracklets with random spatio-temporal noise at a 1:3
ratio of positive and negative samples. We use Adam as the
optimizer [41], cross-entropy loss as the objective function
and train it for 20 epochs with a cosine annealing learning
rate schedule. The overall training process takes just over
10 seconds. In inference, a temporal distance threshold of
30 frames and a spatial distance threshold of 75 pixels are
used to filter out unreasonable association pairs. Finally, the
association is considered if its prediction score is larger than
0.95.
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TABLE I: Ablation study on the MOT17 validation set for basic strategies, i.e., stronger feature extractor (BoT), camera motion
compensation (ECC), NSA Kalman filter (NSA), EMA feature updating mechanism (EMA), matching with motion cost (MC)
and abandoning matching cascade (woC). (best in bold)

Method BoT ECC NSA EMA MC woC IDF1(↑) MOTA(↑) HOTA(↑) FPS(↑)
Baseline - - - - - - 77.3 76.7 66.3 13.8
StrongSORTv1 X 79.5 76.8 67.8 8.3
StrongSORTv2 X X 79.7 77.1 67.9 6.3
StrongSORTv3 X X X 79.7 77.1 68.3 6.2
StrongSORTv4 X X X X 80.1 77.0 68.2 7.4
StrongSORTv5 X X X X X 80.9 77.0 68.9 7.4
StrongSORTv6 X X X X X X 82.3 77.1 69.6 7.5

TABLE II: Results of applying AFLink and GSI to various MOT methods. All experiments are performed on the MOT17
validation set. (best in bold)

Method AFLink GSI IDF1(↑) MOTA(↑) HOTA(↑)
StrongSORTv1 - - 79.5 76.8 67.8

X 80.0 76.8 68.1
X X 80.4(+0.9) 78.2(+1.4) 68.9(+1.1)

StrongSORTv3 - - 79.7 77.1 68.3
X 80.5 77.1 68.6
X X 80.9(+1.2) 78.7(+1.6) 69.5(+1.2)

StrongSORTv6 - - 82.3 77.1 69.6
X 82.5 77.1 69.6
X X 83.3(+1.0) 78.7(+1.6) 70.8(+1.2)

CenterTrack [99] - - 64.6 66.8 55.3
X 68.3 66.9 57.2
X X 68.4(+3.8) 66.9(+0.1) 57.6(+2.3)

TransTrack [66] - - 68.6 67.7 58.1
X 69.1 67.7 58.3
X X 69.9(+1.3) 69.6(1.9) 59.4(+1.3)

FairMOT [95] - - 72.7 69.1 57.3
X 73.2 69.2 57.6
X X 74.2(+1.5) 71.1(+2.0) 59.0(+1.7)

All experiments are conducted on a server machine with a 
single V100.

B. Ablation Studies
Ablation study for StrongSORT. Table I summarizes the path 
from DeepSORT to StrongSORT:

1) BoT: Replacing the original feature extractor with BoT
leads to a significant improvement for IDF1 (+2.2), indicating 
that association quality benefits from more discriminative 
appearance features.

2) ECC: The CMC model results in a slight increase in
IDF1 (+0.2) and MOTA (+0.3), implying that it helps extract 
more precise motion information.

3) NSA: The NSA Kalman filter improves HOTA (+0.4)
but not MOTA and IDF1. This means it enhances positioning 
accuracy.

4) EMA: The EMA feature updating mechanism brings not
only superior association (+0.4 IDF1), but also faster speed 
(+1.2 FPS).

5) MC: Matching with both appearance and motion cost
aids association (+0.8 IDF1).

6) woC: For the stronger tracker, the matching cascade
algorithm with redundant prior information limits the tracking

accuracy. By simply employing a vanilla matching method, 
IDF1 is improved by a large margin (+1.4).
Ablation study for AFLink and GSI. We apply AFLink and 
GSI on six different trackers, i.e., three versions of Strong-
SORT and three state-of-the-art trackers (CenterTrack [99], 
TransTrack [66] and FairMOT [95]). Their results are shown 
in Table II. The first line of the results for each tracker is the 
original performance. The application of AFLink (the second 
line) brings different levels of improvement for the different 
trackers. Specifically, poorer trackers tend to benefit more from 
AFLink due to more missing associations. Particularly, the 
IDF1 of CenterTrack is improved by 3.7. The third line of 
the results for each tracker proves the effectiveness of GSI for 
both detection and association. Different from AFLink, GSI 
works better on stronger trackers. It would be confused by the 
large amount of false association in poor trackers. Ablation 
study for Vanilla Matching. We present the com-parison 
between the matching cascade algorithm and vanilla 
matching on different baselines in Table III. It is shown that the 
matching cascade algorithm benefits DeepSORT greatly. How-
ever, with the gradual enhancement of the baseline tracker, it 
has smaller and smaller advantages, and be even harmful to 
tracking accuracy. Specifically, for StrongSORTv5, it can bring
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Fig. 5: Comparison of normalized velocity between the trajectories after applying linear interpolation (LI, in red) and Gaussian-
smoothed interpolation (GSI, in blue). The x-coordinate represents the frame id, and the y-coordinate is the normalized velocity.

a gain of 1.4 on IDF1 by replacing matching cascade with
vanilla matching. This leads us to the following interesting
conclusion: Though the priori assumption in matching cas-
cade can reduce confusing associations in poor trackers, this
additional constraint will limit the performance of stronger
trackers instead.
Additional analysis of GSI. Speed estimation is essential for
some downstream tasks, e.g., action analysis [16] and benefits
constructing Intelligent Transportation System (ITS) [21]. To
measure the performance of different interpolation algorithms
on the speed estimation task, we compare the normalized
velocity between trajectories after applying linear interpolation
(LI) and Gaussian-smoothed interpolation (GSI) in Figure
5. Specifically, six trajectories from DeepSORT on MOT17
validation set are sampled. The x-coordinate and y-coordinate
represent frame id and normalized velocity respectively. It is
shown that the velocity of trajectories with LI jitters wildly (in
red), mainly caused by detection noise. Instead, trajectories
with GSI have more stable velocity (in blue). This gives
us another perspective to understand GSI: GSI is a kind of
detection noise filter, which can produce more accurate and
stable localizations. This feature makes it beneficial to speed
estimation and other related tasks.

C. Main Results

We compare StrongSORT, StrongSORT+ (StrongSORT +
AFLink) and StrongSORT++ (StrongSORT + AFLink + GSI) 
with state-of-the-art trackers on the test sets of MOT17, 
MOT20, DanceTrack and KITTI, as shown in Tables IV, V, VI 
and VII, respectively. Notably, comparing FPS with absolute 
fairness is difficult, because the speed claimed by each method 
depends on the devices where they are implemented, and the

TABLE III: Ablation study on the MOT17 validation set for
the matching cascade algorithm and vanilla matching.

Method Matching IDF1(↑) MOTA(↑)
DeepSORT Cascade 77.3 76.7

Vanilla 76.2 (-1.1) 76.7 (-0.0)
StrongSORTv1 Cascade 79.5 76.8

Vanilla 79.6 (+0.1) 76.7 (-0.1)
StrongSORTv2 Cascade 79.7 77.1

Vanilla 79.7 (+0.0) 77.1 (+0.0)
StrongSORTv3 Cascade 79.7 77.1

Vanilla 79.9 (+0.2) 77.1 (+0.0)
StrongSORTv4 Cascade 80.1 77.0

Vanilla 81.9 (+1.8) 76.9 (-0.1)
StrongSORTv5 Cascade 80.9 77.0

Vanilla 82.3 (+1.4) 77.1 (+0.1)

time spent on detections is generally excluded for tracking-
by-detection trackers.
MOT17. StrongSORT++ ranks first on MOT17 for metrics
HOTA, IDF1, AssA, DetA, and ranks second for MOTA, IDs.
In particular, it yields an accurate association and outperforms
the second-performance tracker by a large margin (i.e., +2.2
IDF1 and +2.4 AssA). We use the same hyperparameters as
in the ablation study and do not carefully tune them for each
sequence like in [94]. The steady improvements on the test set
prove the robustness of our methods. It is worth noting that,
our reproduced version of DeepSORT (with a stronger detector
YOLOX and several tuned hyperparameters) also performs
well on the benchmark, which demonstrates the effectiveness
of the DeepSORT-like tracking paradigm.
MOT20. MOT20 is from more crowded scenarios. High
occlusion means a high risk of missing detections and associa-
tions. StrongSORT++ still ranks first for metrics HOTA, IDF1
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TABLE IV: Comparison with state-of-the-art MOT methods on the MOT17 test set. ”*” represents our reproduced version.
The two best results for each metric are bolded and highlighted in red and blue.

Method Ref. HOTA(↑) IDF1(↑) MOTA(↑) AssA(↑) DetA(↑) IDs(↓) FPS(↑)
SORT [3] ICIP2016 34.0 39.8 43.1 31.8 37.0 4,852 143.3
MTDF [22] TMM2019 37.7 45.2 49.6 34.5 42.0 5,567 1.2
DAN [67] TPAMI2019 39.3 49.5 52.4 36.3 43.1 8,431 6.3
TPM [53] PR2020 41.5 52.6 54.2 40.9 42.5 1,824 0.8
DeepMOT [86] CVPR2020 42.4 53.8 53.7 42.7 42.5 1,947 4.9
ISEHDADH [12] TMM2019 - - 54.5 - - 3,010 3.6
Tracktor++ [1] ICCV2019 44.8 55.1 56.3 45.1 44.9 1,987 1.5
TubeTK [50] CVPR2020 48.0 58.6 63.0 45.1 51.4 4,137 3.0
ArTIST [61] CVPR2021 48.9 59.7 62.3 48.3 50.0 2,062 4.5
CRF-MOT [24] TMM2022 - 60.4 58.9 - - 2,544 -
MPNTrack [6] CVPR2020 49.0 61.7 58.8 51.1 47.3 1,185 6.5
TBooster [73] TMM2022 50.5 63.3 61.5 52.0 49.2 2,478 6.9
CenterTrack [99] ECCV2020 52.2 64.7 67.8 51.0 53.8 3,039 3.8
TransTrack [66] arxiv2021 54.1 63.5 75.2 47.9 61.6 3,603 59.2
TransCenter [85] arxiv2021 54.5 62.2 73.2 49.7 60.1 4,614 1.0
GSDT [77] ICRA2021 55.5 68.7 66.2 54.8 56.4 3,318 4.9
PermaTrack [70] ICCV2021 55.5 68.9 73.8 53.1 58.5 3,699 11.9
MAT [29] NC2022 56.0 69.2 67.1 57.2 55.1 1,279 11.5
CSTrack [43] TIP2022 59.3 72.6 74.9 57.9 61.1 3,567 15.8
FairMOT [95] IJCV2021 59.3 72.3 73.7 58.0 60.9 3,303 25.9
ReMOT [88] IVC2021 59.7 72.0 77.0 57.1 62.8 2,853 1.8
CrowdTrack [63] AVSS2021 60.3 73.6 75.6 59.3 61.5 2,544 140.8
CorrTracker [75] CVPR2021 60.7 73.6 76.5 58.9 62.9 3,369 15.6
RelationTrack [89] TMM2022 61.0 74.7 73.8 61.5 60.6 1,374 8.5
TransMOT [11] arxiv2021 61.7 75.1 76.7 59.9 63.7 2,346 1.1
GRTU [76] ICCV2021 62.0 75.0 74.9 62.1 62.1 1,812 3.6
MAATrack [64] WACVw2022 62.0 75.9 79.4 60.2 64.2 1,452 189.1
ByteTrack [94] ECCV2022 63.1 77.3 80.3 62.0 64.5 2,196 29.6
DeepSORT* [81] ICIP2017 61.2 74.5 78.0 59.7 63.1 1,821 13.8
StrongSORT ours 63.5 78.5 78.3 63.7 63.6 1,446 7.5
StrongSORT+ ours 63.7 79.0 78.3 64.1 63.6 1,401 7.4
StrongSORT++ ours 64.4 79.5 79.6 64.4 64.6 1,194 7.1

TABLE V: Comparison with state-of-the-art MOT methods on the MOT20 test set. ”*” represents our reproduced version. The
two best results for each metric are bolded and highlighted in red and blue.

Method Ref. HOTA(↑) IDF1(↑) MOTA(↑) AssA(↑) DetA(↑) IDs(↓) FPS(↑)
SORT [3] ICIP2016 36.1 45.1 42.7 35.9 36.7 4,470 57.3
ArTIST [61] CVPR2021 41.6 51.0 53.6 40.2 43.3 1,531 1.0
Tracktor++ [1] ICCV2019 42.1 52.7 52.6 42.0 42.3 1,648 1.2
TBooster [73] TMM2022 42.5 53.4 54.6 41.4 43.8 1,674 0.1
TransCenter [85] arxiv2021 43.6 49.9 59.1 37.0 51.8 4,597 1.0
ApLift [33] ICCV2021 46.6 56.5 58.9 45.2 48.2 2,241 0.4
MPNTrack [6] CVPR2020 46.8 59.1 57.6 47.3 46.6 1,210 6.5
LPC [13] CVPR2021 49.0 62.5 56.3 52.4 45.8 1,562 0.7
GSDT [77] ICRA2021 53.6 67.5 67.1 52.7 54.7 3,131 0.9
CSTrack [43] TIP2022 54.0 68.6 66.6 54.0 54.2 3,196 4.5
FairMOT [95] IJCV2021 54.6 67.3 61.8 54.7 54.7 5,243 13.2
CrowdTrack [63] AVSS2021 55.0 68.2 70.7 52.6 57.7 3,198 9.5
RelationTrack [89] TMM2022 56.5 70.5 67.2 56.4 56.8 4,243 4.3
MAATrack [64] WACVw2022 57.3 71.2 73.9 55.1 59.7 1,331 14.7
SOTMOT [98] CVPR2021 57.4 71.4 68.6 57.3 57.7 4,209 224.0
ReMOT [88] IVC2021 61.2 73.1 77.4 58.7 63.9 1,789 0.4
ByteTrack [94] ECCV2022 61.3 75.2 77.8 59.6 63.4 1,223 17.5
DeepSORT* [81] ICIP2017 57.1 69.6 71.8 55.5 59.0 1,418 3.2
StrongSORT ours 61.5 75.9 72.2 63.2 59.9 1,066 1.5
StrongSORT+ ours 61.6 76.3 72.2 63.6 59.9 1,045 1.5
StrongSORT++ ours 62.6 77.0 73.8 64.0 61.3 770 1.4
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Fig. 6: Sample tracking results visualization of StrongSORT++ on the test sets of MOT17, MOT20, DanceTrack and KITTI.
The same box color represents the same ID.
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TABLE VI: Comparison with state-of-the-art MOT methods on the DanceTrack test set. The two best results for each metric
are bolded and highlighted in red and blue.

Method Ref. HOTA(↑) IDF1(↑) MOTA(↑) AssA(↑) DetA(↑)
CenterTrack [99] ECCV2020 41.8 35.7 86.8 22.6 78.1
FairMOT [95] IJCV2021 39.7 40.8 82.2 23.8 66.7
QDTrack [51] CVPR2021 45.7 44.8 83.0 29.2 72.1
TransTrack [66] arxiv2021 45.5 45.2 88.4 27.5 75.9
TraDes [82] CVPR2021 43.3 41.2 86.2 25.4 74.5
MOTR [91] arxiv2021 48.4 46.1 79.2 32.7 71.8
ByteTrack [94] ECCV2022 47.7 53.9 89.6 32.1 71.0
StrongSORT++ ours 55.6 55.2 91.1 38.6 80.7

TABLE VII: Comparison with state-of-the-art MOT methods on the KITTI test set. The two best results for each metric are
bolded and highlighted in red and blue.

Car Pedestrian
Method Ref. HOTA(↑) MOTA(↑) AssA(↑) IDs(↓) HOTA(↑) MOTA(↑) AssA(↑) IDs(↓)
IMMDP [83] ICCV2015 68.66 82.75 69.76 211 - - - -
AB3D [79] IROS2020 69.99 83.61 69.33 113 37.81 38.13 44.33 181
SMAT [28] ICIAR2020 71.88 83.64 72.13 198 - - - -
TrackMPNN [56] arxiv2021 72.30 87.33 70.63 481 39.40 52.10 35.45 626
MPNTrack [6] CVPR2020 - - - - 45.26 46.23 47.28 397
CenterTrack [99] ECCV2020 73.02 88.83 71.20 254 40.35 53.84 36.93 425
QD-3DT [34] TPAMI2022 72.77 85.94 72.19 206 41.08 51.77 38.82 717
QDTrack [51] CVPR2021 68.45 84.93 65.49 313 41.12 55.55 38.10 487
LGMTracker [72] ICCV2021 73.14 87.60 72.31 448 - - - -
Eager [40] ICRA2021 74.39 87.82 74.16 239 39.38 49.82 38.72 496
PermaTrack [70] ICCV2021 77.42 90.85 77.66 275 47.43 65.05 43.66 483
StrongSORT++ ours 77.75 90.35 78.20 440 54.48 67.38 57.31 178

and AssA. It achieves significantly less IDs than the other
trackers. Note that we use exactly the same hyperparameters
as in MOT17, which implies the generalization capability of
our method. Its detection performance (MOTA and DetA) is
slightly poor compared with that of several trackers. We think
this is beacuse we use the same detection score threshold
as in MOT17, which results in many missing detections.
Specifically, the metric FN (number of false negatives) of our
StrongSORT++ is 117,920, whereas that of ByteTrack [94] is
only 87,594.
DanceTrack. Our StrongSORT++ also achieves the best re-
sults on DanceTrack benchmark for all metrics. Because this
dataset encorages less attention on appearance features, we
abandon the appearance-related optimizations here, i.e., BoT
and EMA. The NMS threshold is set as 0.7, the matching
distance is 0.3, the AFLink prediction threshold is 0.9, and the
GSI interpolation threshold is 5 frames. For fair comparison,
we use the same detections with ByteTrack [94] and achieve
much better results, which demonstrates the superiority of our
method.
KITTI. On the KITTI dataset, we use the same detection
reuslts as PermaTrack [70] for fair comparison. Results show
that StrongSORT++ achieves comparable results for car and
superior performance for pedestrian compared with Perma-
Track. For simplicity, we only apply two tricks (i.e., ECC and
NSA Kalman) and two proposed algorithms (i.e., AFLink and
GSI) here.
Qualitative Results. Figure 6 visualizes several tracking re-
sults of StrongSORT++ on the test sets of MOT17, MOT20,

DanceTrack and KITTI. The results of MOT17-01 show the
effectiveness of our method in normal scenarios. From the
results of MOT17-08, we can see correct associations after
occlusion. The results of MOT17-14 show that our method can
work well while the camera is moving. Moreover, the results of
MOT20-04 show the excellent performance of StrongSORT++
in scenarios with severe occlusion. The results of DanceTrack
and KITTI demonstrate the effectiveness of StrongSORT++
while facing the problems of complex motion patterns and
low frame rates.

D. Limitations

StrongSORT and StrongSORT++ still have several limita-
tions. One concern is their relatively low running speed com-
pared with joint trackers and several appearance-free seperate
trackers. This problem is mainly caused by the DeepSORT-
like paradigm, and the proposed AFLink and GSI are both
lightweight algorithms. Moreover, although our method ranks
first in metrics IDF1 and HOTA, it has a slightly lower MOTA
on MOT17 and MOT20, which is mainly caused by many
missing detections due to the high threshold of detection
score. We believe an elaborate threshold strategy or association
algorithm would help. As for AFLink, although it performs
well in restoring missing associations, it is helpless against
false association problems. Specifically, AFLink cannot split
ID mixed-up trajectories into accurate tracklets. Future work
is needed to develop stronger and more flexible global link
strategies.
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VI. CONCLUSION

In this paper, we revisit the classic tracker DeepSORT and 
upgrade it with new modules and several inference tricks. The 
resulting new tracker, StrongSORT, can serve as a new strong 
baseline for MOT task and benefit both academia and industry.

We also propose two lightweight and appearance-free algo-
rithms, AFLink and GSI, to solve the missing association and 
missing detection problems. Experiments show that they can 
be applied to and benefit various state-of-the-art trackers with 
a negligible extra computational cost.

By integrating StrongSORT with AFLink and GSI, the re-
sulting tracker StrongSORT++ achieves state-of-the-art results 
on multiple benchmarks, i.e., MOT17, MOT20, DanceTrack 
and KITTI.
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object tracking via sensor fusion. In: 2021 IEEE Interna-
tional Conference on Robotics and Automation (ICRA).
pp. 11315–11321. IEEE (2021)

[41] Kingma, D.P., Ba, J.: Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980 (2014)

[42] Kuhn, H.W.: The hungarian method for the assignment
problem. Naval research logistics quarterly 2(1-2), 83–
97 (1955)

[43] Liang, C., Zhang, Z., Zhou, X., Li, B., Zhu, S., Hu, W.:
Rethinking the competition between detection and reid
in multiobject tracking. IEEE Transactions on Image
Processing 31, 3182–3196 (2022)

[44] Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P.,
Ramanan, D., Dollár, P., Zitnick, C.L.: Microsoft coco:
Common objects in context. In: European conference
on computer vision. pp. 740–755. Springer (2014)

[45] Lu, Z., Rathod, V., Votel, R., Huang, J.: Retinatrack:
Online single stage joint detection and tracking. In:
Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition. pp. 14668–14678 (2020)

[46] Luiten, J., Osep, A., Dendorfer, P., Torr, P., Geiger,
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arXiv preprint arXiv:1904.07850 (2019)

[101] Zhu, Y., Zhou, K., Wang, M., Zhao, Y., Zhao, Z.: A
comprehensive solution for detecting events in complex
surveillance videos. Multimedia Tools and Applications
78(1), 817–838 (2019)

 This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final 
publication. Citation information: DOI10.1109/TMM.2023.3240881 Transactions on Multimedia 


	Introduction
	Related Work
	Separate and Joint Trackers
	Global Link in MOT
	Interpolation in MOT

	StrongSORT
	Review of DeepSORT
	Strong Baseline

	StrongSORT++
	AFLink
	GSI

	Experiments
	Setting
	Ablation Studies
	Main Results
	Limitations

	Conclusion



