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Abstract

Smart contracts (SC) are software programs that reside and run over a blockchain. The
code can be written in different languages with the common purpose of implementing
various kinds of transactions onto the hosting blockchain. They are ruled by the
blockchain infrastructure with the intent to automatically implement the typical
conditions of traditional contracts. Programs must satisfy context-dependent
constraints which are quite different from traditional software code. In particular, since
the bytecode is uploaded in the hosting blockchain, the size, computational resources,
interaction between different parts of the program are all limited. This is true even if
the specific programming languages implement more or less the same constructs as that
of traditional languages: there is not the same freedom as in normal software
development. The working hypothesis used in this article is that Smart Contract
specific constraints should be captured by specific software metrics (that may differ
from traditional software metrics). We tested this hypothesis on 85K Smart Contracts
written in Solidity and uploaded on the Ethereum blockchain. We analyzed Smart
Contracts from two repositories “Etherscan” and “Smart Corpus” and we computed the
statistics of a set of software metrics related to Smart Contracts and compared them to
the metrics extracted from more traditional software projects. Our results show that
generally, Smart Contract metrics have more restricted ranges than the corresponding
metrics in traditional software systems. Some of the stylized facts, like power law in the
tail of the distribution of some metrics, are only approximate but the lines of code
follow a log-normal distribution which reminds us of the same behaviour already found
in traditional software systems.

1 Introduction 1

Smart Contracts have gained tremendous popularity in the past few years, to the point 2

that billions of US Dollars are currently exchanged every day using such a technology. 3

However, since the release of the Ethereum platform in 2015, there have been many 4

cases in which the execution of Smart Contracts managing Ether coins led to problems 5

or conflicts. Smart Contracts rely on a non-standard software life-cycle, according to 6

which, for instance, delivered applications can hardly be updated or bugs resolved by 7

releasing a new version of the software. Furthermore, their code must satisfy constraints 8

typical of the domain such as the following: 9
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• they must be light. Smart Contact definitions are limited in size because of 10

structural constraints imposed by the Blockchain infrastructure and the mining 11

cost; 12

• Smart Contract execution has a per operation cost so their execution must be 13

limited; 14

• once published Smart Contracts are immutable: indeed a blockchain is based on 15

the append-only mechanism - then code under the form of bytecode is inserted 16

into a blockchain block once and forever [1]; 17

• floating point values cannot be used due to the consensus among all the nodes on 18

the blockchain status which contrasts with the possibility of different rounded 19

values of floating point numbers on machines with different precision; 20

• random number generators cannot be used for the same reason and in their place 21

hashing functions are commonly used. 22

The idea of Smart Contracts was originally described by cryptographer Nick Szabo 23

in 1997, as a kind of digital vending machine [2]. 24

Smart contracts are self-applying agreements, or contracts, implemented through a 25

computer program whose execution enforces the terms of the contract. The idea is to 26

remove a central supervisory authority, entity or organization that both parties must 27

trust and delegate that role to the correct execution of a computer program. Such a 28

scheme can therefore count on a decentralized system managed automatically by 29

computers, and Blockchain technology is the tool to deliver the trust model envisaged 30

by smart contracts. 31

Since smart contracts are stored on a blockchain, they are public and transparent, 32

immutable and decentralised, and since blockchain resources are costly, their code size 33

cannot exceed domain-specific constraints. Immutability means that when a smart 34

contract is created, it cannot be changed again. 35

Smart contracts can be applied to many different scenarios: banks could use them to 36

issue loans or to offer automatic payments; insurance companies could use them to 37

automatically process claims according to agreed terms; postal companies could use 38

them for payments on delivery. In the following, we mainly refer to the Ethereum 39

technology without losing generality. 40

A Smart Contract (SC) is a full-fledged program stored in a blockchain by a 41

contract-creation transaction. A SC is identified by a contract address generated upon a 42

success creation transaction. A blockchain state is therefore a mapping from addresses 43

to accounts. Each SC account holds an amount of virtual coins (Ether in our case), and 44

has its own private state and storage. 45

Figure 1 illustrates how smart contracts work by comparing smart contracts to 46

traditional contracts. “Smart contracts” differ from traditional contracts in that they 47

are computer programs that automate certain aspects of an agreement between two 48

parties through the use of blockchain technology. Indeed, blockchains provide security, 49

permanence, and immutability through the replication of the smart contract code across 50

multiple nodes. 51

The most used SC programming language is Solidity which runs on the Ethereum 52

Virtual Machine (EVM) on the Ethereum blockchain. Since this is currently the most 53

popular paradigm, we focus our attention on Solidity. An Ethereum SC account hence 54

typically holds its executable code and a state consisting of: 55

• a private storage 56

• the amount of virtual coins (Ether) it holds, i.e. the contract balance. 57
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Fig 1. Smart Contract vs. Traditional Contract

Users can transfer Ether coins using transactions, like in Bitcoin, and additionally 58

can invoke contracts using contract-invoking transactions. Conceptually, Ethereum can 59

be viewed as a huge transaction-based state machine, where its state is updated after 60

every transaction and stored in the blockchain. 61

Smart Contracts source code manipulate variables in the same way as traditional 62

imperative programs. At the lowest level the code of an Ethereum SC is a stack-based 63

bytecode language run by an Ethereum virtual machine (EVM) in each node. SC 64

developers define contracts using high-level programming languages. One such language 65

for Ethereum is Solidity [3] (a JavaScript-like language), which is compiled into EVM 66

bytecode. Once a SC is created at an address X, it is possible to invoke it by sending a 67

contract-invoking transaction to the address X. A contract-invoking transaction 68

typically includes: 69

• payment (to the contract) for the execution (in Ether). 70

• input data for the invocation. 71

1.0.1 Working Example 72

Figure 2 shows a simple example of SC reported in [4], which rewards anyone who solves 73

a problem and submit the solution to the SC. This contract has been selected as an 74

example of an old style solidity smart contracts, in fact many of the constructs it uses 75

are now deprecated, but it is instructive since it also represents how the solidity 76

language and the metrics used in it changed along time. 77

A contract-creation transaction containing the EVM bytecode for the contract in 78

Figure 2 is sent to miners. Eventually, the transaction will be accepted in a block, and 79

all miners will update their local copy of the blockchain: first a unique address for the 80

contract is generated in the block, then each miner executes locally the constructor of 81
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1 contract Puzzle {

2
3 address public owner ;

4 bool public locked ;

5 uint public reward ;

6 bytes32 public diff ;

7 bytes public solution ;

8 mapping(address => uint) public rewards;

9
10 function Puzzle () {// constructor

11 owner = msg.sender ;

12 reward = msg.value ;

13 locked = false ;

14 diff = bytes32 (11111); // pre -defined difficulty

15 }

16
17 function (){ // main code , runs at every invocation

18 if ( msg.sender == owner ){ // update reward

19 if ( locked )

20 throw ;

21 owner.send(reward );

22 reward = msg.value ;

23 } else if ( msg.data.length > 0){

24 // submit a solution

25 if ( locked ) throw ;

26 if ( sha256 ( msg.data ) < diff ){

27 msg.sender.send(reward ); // send reward

28 solution = msg.data ;

29 locked = true ;

30 }

31 }

32 }

33 }

Fig 2. Smart Contracts example.
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the Puzzle contract, and a local storage is allocated in the blockchain. Finally the EVM 82

bytecode of the anonymous function of Puzzle (Lines 16+) is added to the storage. 83

When a contract-invoking transaction is sent to the address of Puzzle, the function 84

defined at Line 16 is executed by default. All information about the sender, the amount 85

of Ether sent to the contract, and the input data of the invoking transaction are stored 86

in a default input variable called msg. In this example, the owner (namely the user that 87

created the contract) can update the reward (Line 21) by sending Ether coins stored in 88

msg.value (if statement at Line 17), after sending back the current reward to the 89

owner (Line 20). 90

In the same way, any other user can submit a solution to Puzzle by a 91

contract-invoking transaction with a payload (i.e., msg.data) to claim the reward (Lines 92

22-29). When a correct solution is submitted, the contract sends the reward to the 93

sender (Line 26). 94

1.0.2 Gas system 95

It is worth remarking that a Smart Contract is run on the blockchain by each miner 96

deterministically replicating the execution of the Smart Contract’s bytecode on the local 97

copy of the blockchain. This, for instance, implies that to guarantee coherence across 98

the copies of the blockchain, code must be executed in a strictly deterministic way (and 99

therefore, for instance, the generation of random numbers may be problematic). 100

Solidity, and in general high-level Smart Contract’s languages, are Turing complete 101

in Ethereum. Note that in a decentralised blockchain architecture Turing completeness 102

may be problematic, e.g., the replicated execution of infinite loops may potentially 103

freeze the whole network. 104

To ensure fair compensation for expended computation efforts and limit the use of 105

resources, Ethereum pays miners some fees, proportionally to the required computation. 106

Specifically, each instruction in the Ethereum bytecode requires a pre-specified amount 107

of gas (paid in Ether coins). When users send a contract-invoking transaction, they 108

must specify the amount of gas provided for the execution, called gasLimit, as well as 109

the price for each gas unit called gasPrice. A miner who includes the transaction in his 110

proposed block receives the transaction fee corresponding to the amount of gas that the 111

execution has actually burned, multiplied by gasPrice. If some execution requires more 112

gas than gasLimit, the execution terminates with an exception, and the state is rolled 113

back to the initial state of the execution. In this case the user pays all the gasLimit to 114

the miner as a counter-measure against resource-exhausting attacks [5]. 115

The code in Fig. 2 displays typical features of the Solidity Smart Contract’s code: 116

the Contract declaration, addresses declarations and mapping, owner data managing 117

and the functions with the specific code for implementing the contract and transactions 118

between blockchain addresses. Most of the control structures from JavaScript are 119

available in Solidity except for switch and goto. So there is: if, else, while, do, for, 120

break, continue, return [6], with the usual semantics known from C or JavaScript. 121

Functions of the current contract can be called directly (Internal Function Calls), 122

also recursively. These function calls are translated into simple jumps inside the EVM. 123

This has the effect that the current memory is not cleared, i.e., passing memory 124

references to internally-called functions is very efficient. Only functions of the same 125

contract can be called internally. The expressions this.g(); and c.g(); (where c is a 126

contract instance) are also valid function calls, but this time, the function will be called 127

as External Function Call, via a message call and not directly via jumps. Functions of 128

other contracts have to be called externally. For an external call, all function arguments 129

have to be copied to memory. When calling functions of other contracts, the amount of 130

cryptocurrency (Wei) sent with the call and the gas can be specified with special options 131

.value() and .gas() respectively. Inheritance between contracts is also supported. 132
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Since Smart Contracts are closely related to classes of object-oriented programming 133

languages, it is straightforward to define and compute some of the software metrics 134

typically encountered in object-oriented software systems, like number of lines of code, 135

comments, number of methods or functions, cyclomatic complexity and so on, while it is 136

somehow more difficult to recognize software metrics related to communication between 137

smart contracts, since these can be ruled by blockchain transactions among contracts, 138

which can act somehow as code libraries. 139

On the other hand smart contracts are deployed and work on the blockchain 140

infrastructure and it is thus likely that typical value of the same metrics can differ from 141

the typical values of the same metrics in traditional software systems. 142

It became thus interesting, even from a software engineering point of view, to 143

perform a statistical analysis of Smart Contract software metrics and to compare the 144

data with those displayed by traditional software systems. It would also be of primary 145

interest to examine the connection between software metrics and software quality, a 146

field of research well established in traditional software, in the specific domain of smart 147

contracts given that it is well known that Smart Contract code vulnerability have been 148

exploited to stole value in cryptocurrencies from smart contracts [3, 5, 7, 8]. 149

In this paper, we perform the analysis on a data set of 85K smart contracts 150

downloaded from 1) etherscan.io, a platform allowing enhanced browsing of Ethereum 151

blockchain and smart contracts and 2) smart corpus [9], an organized smart contract 152

repository. 153

Motivations for this study arise from the need to measure software artifacts in the 154

specific case of Smart Contracts code. In fact there are no studies involving a full 155

statistical analysis of the metrics properties for such software artifacts in the new 156

paradigm of blockchain systems. Knowledge of software metrics statistical properties is 157

fundamental for controlling software production process, software quality as well as to 158

perform fault prediction and to identify code smells. 159

We collected the blockchain addresses, the Solidity source code, the ABI and the 160

bytecode of each contract and extracted a set of standard and SC-specific software 161

metrics such as number of lines of smart contract code (LOCs), line of comments, blank 162

lines, number of functions, cyclomatic complexity, number of events calls, number of 163

mappings to addresses, number of payable, number of modifiable and so on. We 164

analyzed the statistical distributions underlying such metrics to discover if they exhibit 165

the same statistical properties typical of standard software systems [10–12] or if the SM 166

constraints act so that a sensible variation in these distributions can be detected. 167

Furthermore, we devise a path to the analysis of which and to what extent the SC 168

metrics influence Smart Contract’s performance, usage in the blockchain, vulnerabilities, 169

and possible other factors related to the specific contracts which can be reflected on the 170

domain of application for which the smart contract has been deployed, like, for example, 171

to implement and rule an initial coin offer (ICO), to control a chain of certification like 172

in medical applications and so on. 173

2 Related Work 174

Blockchain technology and Smart Contracts rose an exponentially increasing interest in 175

the last years in different fields of research. Organizations such as banking and financial 176

institutions, and public and regulatory bodies, started to explicitly talk of the 177

importance of these new technologies. Software Engineering specific for blockchain 178

applications and Smart Contract is still in its infancy [13] and in particular the 179

investigation of the relationships among Smart Contracts Software Metrics (SCSM) and 180

code quality, SC performances, vulnerability, maintainability and other software features 181

is completely lacking. Smart Contracts and blockchain have been discussed in many 182
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textbooks [14] and documents over the internet, where white papers usually cover the 183

specific topic of interest [15–19]. 184

Ethereum defines a smart contract as a transaction protocol that executes the terms 185

of a contract or group of contracts on a cryptographic blockchain [20]. Smart Contracts 186

operate autonomously with no entity controlling the majority of its tokens, and its data 187

and records of operation must be cryptographically stored in a public, decentralized 188

blockchain [14]. 189

Smart Contract vulnerabilities have been analyzed in [21], [22], [23]. A taxonomy of 190

Smart Contract is performed in [22], where Smart Contracts are classified according to 191

their purpose. These are divided into wallets, financial, notary, game, and library. 192

Authors in [4] investigate the security of running smart contracts based on Ethereum 193

in an open distributed network like those of cryptocurrencies and introduce several new 194

security problems in which an adversary can manipulate smart contract execution to 195

gain profit. 196

Obviously Smart Contract scientific literature is limited due to their recent creation. 197

On the other hand there is a plethora of results and information to rely on produced in 198

the last decades for what concerns the relationship among software metrics and software 199

quality, maintainability, reliability, performance defectiveness and so on. 200

Measuring software to get information about its properties and quality is one of the 201

main issues in modern software engineering. 202

Limiting ourselves to object-oriented (OO) software, one of the first works dealing 203

with this problem is the one by Chidamber and Kemerer (CK), who introduced the 204

popular CK metrics suite for OO software systems [24]. In fact, different empirical 205

studies showed significant correlations between some of CK metrics and 206

bug-proneness [24–28]. Metrics have been defined also on software graphs and were 207

found most correlated to software quality [29–32]. Tosun et al. applied Social Networks 208

Analysis to OO software metrics source code to assess defect prediction performance of 209

these metrics [33] 210

The CK [34] suite is historically the most adopted and validated to analyze 211

bug-proneness of software systems [24,27]. 212

CK suite was adopted by practitioners [24] and is also incorporated into several 213

industrial software development tools. Based on the study of eight medium-sized 214

systems developed by students, Basili et al. [25] were among the first to find that 215

Object-Oriented metrics are correlated to defect density. Considering industry data 216

from software developed in C++ and Java, Subramanyam and Krishnan [26] showed 217

that CK metrics are significantly associated with defects. Among others, Gimothy et 218

al. [26], studying a Open Source system, validated the usefulness of these metrics for 219

fault-proneness prediction. 220

CK metrics are intended to measure the degree of coupling and cohesion of classes in 221

object-oriented software contexts. Statistical analysis has also been used in literature to 222

detect typical features of complex software and to relate the statistical properties to 223

software quality. 224

Recently, some researchers have started to study the field of software to find and 225

study associated power-law distributions. In fact, many software systems have reached 226

such a huge dimension that it looks sensible to treat them using the stochastic random 227

graph approach [35]. 228

Examples of these properties are the lines of code of a class, a function or a method; 229

the number of times a function or a method is called in the system; the number of time 230

a given name is given to a method or a variable, and so on. 231

Some authors already found significant power-laws in software systems. Cai and 232

Yin [11] found that the degree distribution of software execution processes may follow a 233

power-law or display small-world effects. Potanin et al. [36] showed that the graphs 234
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formed by run-time objects, and by the references between them in object-oriented 235

applications, are characterized by a power-law tail in the distribution of node degrees. 236

Valverde et al. [37,38] found similar properties studying the graph formed by the classes 237

and their relationships in large object-oriented projects. They found that software 238

systems are highly heterogeneous small world networks with scale-free distributions of 239

the connection degree. Wheeldon and Counsell [12] identified twelve power laws in 240

object-oriented class relationships of Java programs. In particular, they analyzed the 241

distribution of class references, methods, constructors, field and interfaces in classes, 242

and the distribution of method parameters and return types. Myers [39] found similar 243

results on large C and C++ open source systems, considering the collaborative 244

diagrams of the modules within procedural projects and of the classes within the 245

Object-oriented projects. He also computed the correlation between some metrics 246

concerning software size and graph topological measures, revealing that nodes with large 247

output degree tend to evolve more rapidly than nodes with large input degree. Other 248

authors found power-laws studying C/C++ source code files, where graph edges are the 249

files, while the ”include” relationships between them are the links [40,41]. Tamai and 250

Nakatani [42], proposed a statistical model to analyze and explain the distributions 251

found for the number of methods per class, and for the lines of code per method, in a 252

large object-oriented system. 253

While most of these studies are based on static languages, such like C++ and Java, 254

Marchesi et al. [43] provide evidence that a similar behavior is displayed also by 255

dynamic languages such as Smalltalk. Concas et al. found power-law and log-normal 256

distributions in some properties of Smalltalk and Java software systems – the number of 257

times a name is given to a variable or a method, the number of calls to methods with 258

the same name, the number of immediate subclasses of a given class in five large 259

object-oriented software system [10,44]. The Pareto principle is used to describe how 260

faults in large software systems are distributed over modules [45–49]. Baxter et al. [50] 261

found power-law and Log-normal distributions in the class relationship in Java programs. 262

They proposed a simple generative model that reproduces the features observed in real 263

software graph degree distributions. Ichii et al. [51] investigated software component 264

graphs composed of Java classes finding that in-degree distribution follows the power 265

law distribution and the out-degree distribution does not follow the power-law. Louridas 266

et al. [52], in a recent work, show that incoming and outgoing links distributions have in 267

common long, fat tails at different levels of abstraction, in diverse systems and 268

languages (C, Java, Perl and Ruby). They report the impact of their findings on several 269

aspects of software engineering: reuse, quality assurance and optimization. 270

Given the vast literature investingating power law distributions in software systems, 271

we choose to investigate these properties, also in SC software not only to look for 272

power-law behaviour, but also because some features are related to design and coding 273

guidelines, to software quality and also to Chidamber and Kemerer (CK) NOC 274

metrics [24]. 275

Wheeldon and Counsell [12], as well as other researchers, found power-laws in the 276

distributions of many software properties, such as the number of fields, methods and 277

constructors of classes, the number of interfaces implemented by classes, the number of 278

subclasses of each class, as well as the number of classes referenced as field variables and 279

the number of classes which contain references to classes as field variables. Thus, there 280

is much evidence that power-laws are a general feature of software systems. Concas et 281

al. [44] explained the underlying mechanism through a model based on a single Yule 282

process in place during the software creation and evolution. 283

More recently affect metrics have been investigated revealing how during software 284

development productivity and software quality can be highly influenced by developers 285

moods [53–58]. 286

January 30, 2023 8/32



In [59] authors review papers relating to smart contracts metrics and other five 287

specific topics: smart contract testing, smart contract code analysis, smart contract 288

security, Dapp performance, and blockchain applications. 289

A few studies investigated SC metrics and collected a curated repository of 290

SC [9,59–62]. 291

In [63] authors examined SCs extracted from various Ethereum blockchain-oriented 292

software projects hosted on GitHub.com, extracting also a suite of object-oriented 293

metrics, to evaluate their structural characteristics. 294

More recently, deep learning neural networks have been used [64,65] where to 295

develop a deep learning framework for detecting fraudulent smart contracts on 296

blockchain systems and hybrid deep learning models combining different word 297

embedding methods, for smart contract vulnerability detection. 298

3 Experimental Set-Up 299

Etherscan [66] is a web based platform which allows for Ethereum blockchain 300

exploration of all blockchain addresses. It allows one to recover Smart Contracts 301

bytecode, ABI, and it collects also Smart Contract source codes in Solidity Part of the 302

data used in this paper (15% of the total) have been retrieved by analyzed the 303

blockchain addresses related to the available source code on Etherscan. These addresses 304

have been used to systematically download the code of the Solidity contracts, as well as 305

the bytecode and information associated with the ABI. 306

Smart contracts analyzed in this study can be found online through a tool named 307

Smart Corpus [9]. Smart Corpus is a collection of over 100K smart contracts 308

categorized by software metrics (number of lines of code, cyclomatic complexity, etc.) 309

and uses cases (banks, finance, betting, hectares, etc.). A detailed description of the 310

Smart Corpus tool and its related publication can be found here 311

(https://aphd.github.io/smart-corpus/). After collected and locally stored Solidity code, 312

bytecode, and ABI infos, we built a code parser to extract the software metrics of our 313

interest for each smart contract. We also manually explored the code to get insights into 314

the more relevant information to eventually extract from the data and to get a flavour 315

of the main features of the overall dataset. This exploratory analysis allowed us to note 316

how the same contract code is often replicated and deployed to different blockchain 317

addresses or deployed with very little changes. This pattern reveals how many contracts 318

are simply experiments or are deployed to the blockchain for testing and then modified 319

according to test’s results. They usually appear in a series of neighbour blockchain 320

blocks. The dataset has thus a little bias but the overall effect is negligible in our 321

analysis since there are very few cases of replicated Solidity code. 322

The dataset source code has been then parsed for computing total lines of code 323

associated to a specific blockchain address, the number of smart contracts inside a single 324

address code (the analogous of classes into java files, e.g., compilation units), blank 325

lines, comment lines, number of static calls to events, number of modifiers, number of 326

functions, number of payable functions, cyclomatic complexity as the simplest McCabe 327

definition [67], and number of mappings to addresses. 328

We also computed the size of the associated bytecode and of the vector of contract’s 329

ABIs. These are the Application Binary Interfaces, defining the interface definition of 330

any smart contract, known at compilation time and static. All contracts will have the 331

interface definitions of any contracts they call available at compile-time [68]. This 332

specification does not address contracts whose interface is dynamic or otherwise known 333

only at run-time. 334

The data set is structured to keep track of the specific Smart Contract address so 335

that any blockchain address related Smart Contract metrics (SCEM: smart contract 336
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external metrics) can be fully analyzed in relationship with the software metrics 337

self-contained into the Smart Contract Solidity code (SCIM: smart contract internal 338

metrics). For example, it is possible to investigate interactions with other Smart 339

Contracts, gas consumption and cryptocurrency exchanges. 340

ABI metrics in particular are the Smart Contract interface and reflect the external 341

exposure of the Smart Contract towards blockchain calls from other addresses, which 342

can be interaction with other Smart Contracts as well. 343

It is worth noting that not all the measures related to addresses stay constant but 344

many of them depend on the time of analysis and cannot be defined among the Smart 345

Contract metrics, and others can simply be contract variables, like the amount of ether 346

stored into the contract, the number of owners in a multi owned contract, the contract 347

performance, or popularity in terms of calls to the contract. In such cases, much care is 348

needed to evaluate the relationship between Smart Contract software metrics and other 349

blockchain-related measures, not only because they may be time-varying, but also 350

because other external factors can be in place. For example, the success of a contract 351

could be defined in terms of calls to that contract, but if the contract implements an 352

Initial Coin Offer, then most likely the contract in itself, measured as software code, has 353

probably little to do with it. 354

For each software metric we computed standard statistics like average, median, 355

maxima and minima values and standard deviation. Furthermore we verified what kind 356

of statistical distribution these metrics belong to. This is particularly important when 357

comparing Smart Contract’s source code with other source code metrics, e.g., Java 358

source code, for standard software projects. In fact the literature on software metrics 359

demonstrates that there exist statistical distributions which are typical of specific 360

metrics regardless the programming language used for software development [69]. 361

In particular LOC, coupling metrics, like fan-in and fan-out, and other software 362

metrics are known to display a fat tail in their statistical distribution [52] regardless the 363

programming language, the platform or the software paradigm adopted for a software 364

project. 365

Due to the domain specific constraints the Smart Contract software must satisfy to, 366

in particular limited size resources, it is not granted that such software metrics respect 367

the canonical statistical distributions found in general purpose software projects. It is 368

one of the aims of this research to verify and eventually discuss such a conjecture. 369

4 Results 370

The smart contracts’ source code was analysed with a tool named PASO. Thanks to 371

this tool the smart contract’s source code can be represented as an abstract syntax tree 372

(AST). Based on the AST, software metrics and patterns in smart contract codes have 373

been evaluated and computed. Detailed information about this tool and its publication 374

can be found online at this link (https://aphd.github.io/paso/). 375

We started analyzing centrality and dispersion measures for all the computed 376

metrics, like mean, average, median, and standard deviation, interquartile range, and 377

total variation range. These statistics provide a summary of the overall behavior for the 378

metrics values. In particular, for asymmetric distributions, centrality measure differs 379

from one another, and in the case of power laws, distributions the largest values of the 380

metrics can be order of magnitude larger than central and low values. 381

Many minima values result set to zero, since there are a few contracts with almost 382

no code. The results on central tendency measures in Table 1 show that the mean is 383

constantly larger than the median, (almost always of about two third) which is a feature 384

typical of right skewed distributions. One simple reason explaining this fact is the lower 385

bound posed to all the metrics by the fact that they are defined null or positive, while 386
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variable Mean Median Std Min Max IQR 10th 90th
total lines 586.96 317.00 937.23 1 25,920 525.00 93.00 1,373.00
blanks 91.69 54.00 160.31 0 4,045 77.00 13.00 201.00
functions 44.96 28.00 66.27 0 1,256 36.00 9.00 95.00
payable 2.00 1.00 6.40 0 205 2.00 0.00 5.00
events 5.08 3.00 6.08 0 137 4.00 1.00 11.00
mapping 4.11 3.00 4.67 0 155 2.00 0.00 8.00
modifiers 1.86 1.00 2.48 0 40 3.00 0.00 5.00
contracts 7.29 5.00 9.52 1 227 6.00 2.00 14.00
interfaces 1.28 0.00 2.55 0 52 1.00 0.00 5.00
libraries 1.22 1.00 1.87 0 36 2.00 0.00 3.00
addresses 55.27 36.00 91.31 0 2,500 40.00 9.00 108.00
cyclomatic 66.50 36.00 105.66 0 2,318 55.00 13.00 146.00
comments 72.77 38.00 198.16 0 25,536 68.00 1.00 154.00
abiLength 221.60 144.00 586.81 0 34,728 113.00 66.00 310.00
abiStringLength 4,644 3,886 3,282 2 48,274 3,030 1,671 8,375
bytecode 12,483 9,606 9,953 2 49,152 10,714 3,336 26,921
LOC 306.63 167.00 529.08 1 14,151 240.75 64.00 663.00
block 47.83 28.00 72.34 0 1,534 39.00 10.00 102.00
isFallback 0.38 0.00 0.55 0 8 1.00 0.00 1.00
isVirtual 4.70 0.00 17.98 0 462 0.00 0.00 18.00
pure 5.58 4.00 9.67 0 209 7.00 0.00 13.00
view 12.22 6.00 28.86 0 650 14.00 0.00 33.00

Table 1. Centrality and dispersion statistics computed for all the Smart Contract
software metrics.

variable Mean Median Std Min Max IQR 10th 90th
ifStatement 9.97 3.00 23.04 0 621 10.00 0.00 22.00
doWhileStatement 0.00 0.00 0.09 0 7 0.00 0.00 0.00
emitStatement 4.93 4.00 6.96 0 130 7.00 0.00 11.00
whileStatement 0.33 0.00 1.11 0 24 0.00 0.00 1.00
forStatement 0.95 0.00 2.26 0 13 1.00 0.00 3.00
inlineAssemblyStatement 0.90 0.00 2.98 0 81 1.00 0.00 2.00
returnStatement 21.80 14.00 30.05 0 712 19.00 3.00 45.00
revertStatement 0.01 0.00 0.30 0 37 0.00 0.00 0.00
throwStatement 0.53 0.00 2.96 0 75 0.00 0.00 0.00
tryStatement 0.06 0.00 0.41 0 25 0.00 0.00 0.00

Table 2. Statements statistics computed for all the Smart Contracts.
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in principle, large values are not bounded. A little exception is represented by the 387

Bytecode metric which features values for mean and median very close to each other, 388

suggesting a distribution shape which may be not really skewed. Standard deviations 389

are all comparable with the mean, meaning a large dispersion of values around the last, 390

but there are not cases where it is much large than the mean or the media. Values of 391

standard deviation much larger than the mean might be instead the case for power law 392

distributions and such behavior has already been observed in software metrics for 393

typical software systems [12,44]. 394

The maxima are all much larger than the corresponding means and medians, often 395

reach one or two order of magnitude larger and only in a few cases three orders of 396

magnitude. Finally the 90th percentiles are comparable with a displacement of some 397

standard deviation from the mean. All these results suggest that the selected Smart 398

Contracts metrics might not display fat tail or power law distributions which are 399

instead found in the literature for corresponding metrics of standard software systems. 400

Fig 3. Histogram distributions of the metrics Total lines, Blanks, Function and Payable

Nevertheless outlier values appear for all the metrics and the values in Tab 1 are not 401

exhaustive for explaining completely their statistical properties. 402

Table 2 shows the Solidity programming statements statistics computed for all the 403

85K Smart Contracts composing our dataset. Based on statements’ statistic, a typical 404

Smart Contract consists of almost 10 IF’s statements, 5 EMIT’s statements and 1.5 405

iteration statements. The same overall distribution of statement types was obtained in 406

different periods of time with varying versions of solidity. So the statistic tends to be 407

relatively stable. Notably, the number of iteration statements per line of code (0.005) is 408

two orders of magnitude smaller than other programming languages such as Java 409

(0.121), C and python. The number of conditional statements per line of code (0.033) is 410

one order of magnitude smaller than other programming languages such as Java (0.142), 411

C and python. The third most used statement in Smart Contracts after the return 412
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statement and IF statement is the EMIT’s statement. The Emit statement is used to 413

release an event in a Smart Contracts, which can be read by the client in a decentralized 414

application (dApp). 415

To perform a complete analysis, we proceed in two steps. We perform a first 416

qualitative investigation analyzing the histograms for all the metrics, then we use more 417

complex statistical models for best fitting the Empirical Complementary Cumulative 418

Distribution Function to extract quantitative information on Smart Contracts software 419

metrics. The histogram patterns are well known to depend on the bin size and number, 420

as well as on the local density of points into the various ranges. Nevertheless they can be 421

an helpful instrument to get insight into the distribution shape general features, namely 422

if there may be fat tails, bulk initial distribution values and so on. On the contrary the 423

best fittings functions with statistical models provide precise values of core parameters 424

and can be compared with those reported in literature for standard software metrics. 425

Fig 4. Histogram distributions of the metrics Events, Mapping, Modifier and Contract.

In Figs. 3, 4 and 5 we report the histograms for all the Smart Contracts software 426

metrics in the same order they are reported in Tab. 1. To make the histograms more 427

readable, the range of the last bin is highlighted with a different fill colour. The 428

orange-colored bin represents the outlier aggregation. The general shape can be 429

distinguished into two categories. From one side there are those metrics whose ranges of 430

variations are quite limited and maximum values are below 250, like Payable, Events, 431

Mapping, Modifiable. For such metrics the histograms contain too few different values 432

which does not allow to display a power law behavior. In particular Payable and 433

Modifiable appear also to have a bell shape which allows to exclude a general power law 434

distribution. For Events and Mapping the shape may suggest a power law behavior 435

which is limited by the upper bounds reached by the maximum metric values. This 436

deserves to be better investigated using statistical distribution modeling. 437
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From the other side the metrics which reach values large enough (whose maxima are 438

over 250) contain enough points to well populate the histograms. Also in this case many 439

metrics have bell shaped distributions with limited asymmetry and skewness. This 440

feature can be ascribed to the limited range of values these metrics can reach. In fact, 441

in cases where the metrics can assume virtually arbitrary large values, many orders of 442

magnitude larger that their mean values, the bell shape disappear and the shape 443

presents a strong asymmetry with a high skewness. This is the behavior observed in 444

literature for metrics in common software systems. The only cases where a full power 445

law distribution may approximately hold are those related to the lines of code, like total 446

lines of code, blank lines, comments and LOC. But also in these cases the upper bound 447

of the values of the metrics does not allow to fully acknowledge for the power law. This 448

seems to be a structural difference with respect to standard software systems where the 449

number of lines of code for a class, for example in Java systems, may easily reach tens of 450

thousands. In fact such systems rely on service classes containing many methods and 451

code lines, whilst Smart Contracts code relies basically on the self contained code. 452

It is interesting to note the bell shaped behavior of the ABI metrics and of the 453

Bytecode metric, which strongly differ from the shapes associated to lines of code or in 454

general to other metrics. In the case of ABI this means that the amount of exposure of 455

Smart Contracts to external interactions has a typical scale, provided by clear central 456

values, even if the variance may be quite large. In other words Smart Contract exposure 457

to the blockchain is very similar for most of the contracts, with no significative outliers, 458

regardless the contract size in terms of LOC or other metrics. The bytecode displays a 459

rather similar but less symmetric bell shape. In this case the behavior is clearly 460

governed by the size constraints imposed by the costs of uploading very large Smart 461

Contracts on the blockchain. 462

4.1 Analysing distributions of the metrics grouped by the 463

pragma version 464

This section analyzes the distribution of some software metrics, such as the number of 465

lines of code (LOC), the number of empty lines (Blanks), the number of functions 466

(Functions) and the number of payable functions (payable), grouped by the pragma 467

version. The pragma version is a directive which specifies how a compiler should process 468

its input. The pragma version is not part of the grammar of a solidity programming 469

language. The pragma version changes over time, as it is a way to identify the language 470

used to categorize the states of solidity program language as it is developed and 471

released. Smart Contracts should be annotated following this directive to avoid to be 472

compiled by future compiler versions that might introduce incompatible changes. 473

Despite this recommendation, not all smart contracts follow the pragma directive. The 474

data set we consider in this paper consists of 85K of Smart Contracts and 19% of them 475

did not follow the pragma directive. However, only the smart contracts following the 476

pragma directive will be analysed to show a possible change or trend in how the smart 477

contracts are developed over time. 478

For the following software metrics, functions, LOC and ABI, the peak of the 479

distribution of smart contracts having the pragma version 0.5.* directives is shifted to 480

the right compared to the smart contracts having the pragma version 0.4.* directives. 481

As to what concerns the shape of the curves, the shape of the curve is broader in smart 482

contracts having the pragma version 0.5.* directives, becoming progressively sharper 483

with the decreasing of smart contracts having the pragma version 0.4.* directives. 484
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Fig 5. Histogram distributions of the metrics Address, Cyclomatic, Comments, ABI,
Bytecode and LOCS.
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4.2 Analysis of the Number of Contracts, Libraries and 485

Interfaces 486

This section analyzes the number of Contracts, Libraries and Interfaces used in Smart 487

Contracts written in solidity language during the time frame period from the year 2016 488

to the year 2021. Smart Contracts written in Solidity Program language consist of a 489

number of contract declarations. Contracts in Solidity Program language are similar to 490

classes in object-oriented programming (OOP) languages and, as in the case of OOP 491

languages, there are four types of smart contracts: Abstract Contract, Interface 492

Contract, Concrete Contract and Library Contract. In the following sections, the 493

definition of each contract type will be provided and the use of these different contracts 494

over the last 4 years will be analyzed. 495

4.2.1 Abstract Contract 496

Contracts are marked as Abstract Contracts when at least one of their functions lacks 497

an implementation, as in the following example 1 498

Listing 1. Abstract Contract Example

35 // Abstract Contract 499

36 contract Notify 500

37 { 501

38 event Notified(address indexed _from , uint indexed _amount ); 502

39 // functions signature 503

40 function notify(address _from , uint _amount) public returns (bool); 504

41 } 505

The functions that lack the implementation are named Abstract Functions. If a 506

contract extends an Abstract Contract, it has to implement or define all the Abstract 507

Functions of the extended Abstract Class, otherwise, it will be an Abstract Contract 508

itself. Abstract contracts allow the use of patterns, such as the Template Method 509

Design Pattern, and they allow to remove code duplication. 510

4.2.2 Interfaces and Libraries 511

Interface Contract was introduced in Solidity v0.4.11 on 3rd May 2017 [7]. An Interface 512

Contract is similar to an Abstract Contract, but it cannot have any functions 513

implemented. There are further restrictions such as it cannot inherit other Contracts or 514

Interfaces. 515

Interface Contracts allow decoupling the definition of a contract from its 516

implementation, providing better extensibility. In fact, when a Contract Interface is 517

defined, the implementations of a new Contract can be provided for any existing 518

functions without modifying their declarations. Interface Contracts are denoted by the 519

interface keyword as in the following example 2 520

Listing 2. Interface Contract Example

42 // Interface Contract 521

43 interface Notify 522

44 { 523

45 event Notified(address indexed _from , uint indexed _amount ); 524

46 // functions signature 525

47 function notify(address _from , uint _amount) public returns (bool); 526

48 } 527

A Concrete Contract has the implementation of all functions that are declared in the 528

body of the contract. When a Concrete Contract implements an Interface Contract, it 529

must provide the implementation of all the functions that are defined within the 530
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Interface implemented. If a contract extends an Abstract Contract, it needs to provide 531

implementations for all functions not implemented in the extended Abstract Contract. 532

Library Contracts are similar to Concrete Contracts, but their purpose is different. 533

A library is a type of contract that does not allow to use functions, such as Payable and 534

Fallback, which provide a mechanism to collect or receive funds in Ethers. These 535

limitations are enforced at compile-time, therefore making it impossible for a library to 536

hold funds. A library is defined with the keyword library (library C {}) in the same way 537

a contract is defined (contract A {}). Library Contracts are used to extract code away 538

from the other Contracts for maintainability and reuse purposes. 539

Fig 6. The average number of interfaces and libraries in Smart Contract.

Figures 6 and 7 show a growing trend in many software metrics such as the average 540

number of LOC, Bytecode, number of interfaces, number of libraries, programming 541

statements until the solidity version 0.7. Starting from solidity version v0.8 the trend is 542

reversed. A plausible explanation for this trend can be found in the features’ changes of 543

the Solidity programming language described in section 6. 544

Figure 8 shows the frequency distribution of Lines of Code (LOC) for Smart 545

Contract written respectively with Solidity version v0.4 (from 2016 to 2018) and 546

Solidity v.0.8 (from 2020 onwards). Many Smart Contracts written before 2017 are in 547

the LOC range from 0 to 500, and most of the Smart Contracts written after the 2020 548

year are in a larger LOC range between 0-1000. Moreover, the number of smart 549

contracts having a LOC range between 4K-14K is one order of magnitude greater for 550

smart contracts written after 2020. 551
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Fig 7. The average number of LOC and Bytecodes per smart contract.

Fig 8. Smart Contracts’ LOC distribution vs. pragma version
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4.2.3 Replicated smart contracts 552

In this section we explain when and why we consider two Smart Contracts as different 553

Smart Contracts. This is important for the aims of the paper because the results 554

depend on the definition of replicated Smart Contracts. Some features of the Smart 555

Contracts motivating the section are indeed the following ones: 556

• Distinguishability. Each Smart Contract in the Ethereum Blockchain is 557

distinguishable from any other as it is identified by a unique address, i.e. a hash 558

of 160 bits, and its code is stored on the blockchain. Smart Contracts can be 559

deployed in the network by a user or by another Smart Contract or a 560

cryptocurrency wallet. Each time a Smart Contract is deployed in the network, 561

either in the main or in the test network, a unique address is associated with the 562

Smart Contract even in the case the source code of two or more Smart Contracts 563

is the same. 564

• Immutability. A user has no permission to change any Smart Contract deployed 565

in the Blockchain. For example, if the user wants to correct a bug s/he is forced 566

to redeploy the Smart Contract with a new unique address. As a result, on the 567

blockchain there might be two or more almost identical Smart Contracts with 568

different addresses. The fact that different addresses refer to the same Smart 569

Contract lead us to suppose that many Smart Contracts might simply be 570

“experiments” or contracts deployed in the blockchain to test and then modified 571

according to the test results. 572

• Inheritance. The languages used to write Smart Contracts, such as Solidity, 573

support multiple inheritance. When a Smart Contract inherits from multiple 574

Smart Contracts, only a single Smart Contract is created on the blockchain, and 575

the code from all the inherited Smart Contracts is copied into the new Smart 576

Contract. 577

Based on these features, three ways to define the uniqueness of a smart contract will 578

be outlined. 579

• Smart Contract A is different from a Smart Contract B because A and B have 580

distinguishable addresses. 581

• Smart Contract A is different from a Smart Contract B if there is at least one 582

different metric value. 583

• Smart Contract A is different from a Smart Contract B inheriting from the same 584

Smart Contract C if the shared part of C does not overcome a given threshold, for 585

example 80% of the code lines (LOC). 586

5 Statistical Modeling 587

In order to get insights on the behavior of the statistical distributions underlying Smart 588

Contracts software metrics we perform a best fitting analysis using a power law 589

statistical distribution for best fitting the tails of the empirical distributions. 590

Furthermore we performed a second analysis making use of the Log-normal statistical 591

model. In fact, even when the power law model well represent the data in the tail it 592

usually is unable to best fit the complete range of values in the statistical distributions. 593

To show the results of such analysis we don’t use histograms anymore, which are a 594

rough approximation of a Probability Density Function (PDF). 595
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Our methodology does not neglect any data and the use of cumulative 596

complementary distributions allows to fully represent the statistical properties of the 597

system analyzed (the blockchain software metrics in this specific case). This allows to 598

model the system with analytical statistical distributions which provide more detailed 599

and reliable information since all data points are included into the model. 600

The histogram representation in fact carries many drawbacks, in particular when 601

data are power-law distributed in the tail. The problems with representing the empirical 602

PDF are that it is sensitive to the binning of the histogram used to calculate the 603

frequencies of occurrence, and that bins with very few elements are very sensitive to 604

statistical noise. This causes a noisy spread of the points in the tail of the distribution, 605

where the most interesting data lie. Furthermore, because of the binning, the 606

information relative to each single data is lost. All these aspects make difficult to verify 607

the power-law behavior in the tail. To overcome these problems from now on we 608

systematically report the experimental CCDF (Complementary Cumulative Distribution 609

Function) in log-log scale, as well as the best-fitting curves in many cases. This is 610

convenient because, if the PDF (probability distribution function) has a power-law in 611

the tail, the log-log plot displays a straight line for the raw data. This is a necessary but 612

by no means a sufficient condition for power-law behavior. Thus we used log-log plots 613

only for convenience of graphical representation, but all our calculations (CDF, CCDF, 614

best fit procedures and the same analytical distribution functions we use) are always in 615

normal scale. With this representation, there is no dependence on the binning, nor 616

artificial statistical noise added to the tail of the data. If the PDF exhibits a power-law, 617

so does the CCDF, with an exponent increased by one. Fitting the tail of the CCDF, or 618

even the entire distribution, results in a major improvement in the quality of fit. An 619

exhaustive discussion of all these issues may be found in [70]. This approach has already 620

been proposed in literature to explain the power-law in the tail of various software 621

properties [44] [52]. 622

The CCDF is defined as 1− CDF , where the CDF (Cumulative Distribution 623

Function) is the integral of the PDF. Denoting by p(x) the probability distribution 624

function, by P (x) the CDF, and by G(x) the CCDF, we have: 625

G(x) = 1− P (x) (1)

P (x) = p(X ≤ x) =

∫ x

−∞
p(x′)dx′ (2)

G(x) = p(X ≥ x) =

∫ ∞

x

p(x′)dx′ (3)

The first distribution that we describe is the well-known Log-normal distribution. If 626

we model a stochastic process in which new elements are introduced into the system 627

units in amounts proportional to the actual number of the elements they contain, then 628

the resulting element distribution is log-normal. All the units should have the same 629

constant chance for being selected for the introduction of new elements [70]. This 630

general scheme has been demonstrated to suit large software systems where, during 631

software development, new classes are introduced into the system, and new 632

dependencies –links– among them are created [52], [71]. The Log-normal has also been 633

used to analyze the distribution of Lines of Code [72]. The Log-normal distribution has 634

been also proposed in literature to explain different software properties ( [73], [69], [52]). 635

Mathematically it is expressed by: 636

p(x) =
1√
2πσx

e−(
ln(x)−µ

2σ )
2

(4)
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It exhibits a quasi-power-law behavior for a range of values, and provides high 637

quality fits for data with power-law distribution with a final cut-off. Since in real data 638

largest values are always limited and cannot actually tend to infinity, the log-normal is 639

a very good candidate for fitting power-laws distributed data with a finite-size effect. 640

Furthermore, it does not diverge for small values of the variable, and thus may also fit 641

well the bulk of the distribution in the small values range. 642

The power-law is mathematically formulated as: 643

p(x) ≃ x−α (5)

where α is the power-law exponent, the only parameter which characterizes the 644

distribution, besides a normalization factor. Since for α ≥ 1 the function diverges in the 645

origin, it cannot represent real data for its entire range of values. A lower cut-off, 646

generally indicated x0, has to be introduced, and the power-law holds above x0. Thus, 647

when fitting real data, this cut-off acts as a second parameter to be adjusted for best 648

fitting purposes. Consequently, the data distribution is said to have a power-law in the 649

tail, namely above x0. 650

Fig 9. Power law and Log Normal best fitting of the metrics Total lines, Blanks,
Function and Payable

In Fig. 9 we show the best fitting plot for the power law model for the metrics Total 651

lines, Blanks, Function, and Payable. The power law in the tail is clearly failed by all 652

metrics. In Fig. 10 Mapping and Modifier seems to follow a power law, confirmed also 653
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by the low values (D ≤ 0.05) of the Kolmogorof-Smirnov significance test value, but the 654

range where the metrics behave according to a power law regime is too small. 655

Fig 10. Power law and Log Normal best fitting of the metrics Events, Mapping,
Modifier and Contract.

Fig. 11 finally shows that a good candidate for a power law in the tail is the LOC 656

metric, supported by a KS coefficient of significance of about 0.039. This suggests that 657

also for the Smart Contract code the main size metric in software, the lines of code, 658

shows properties similar to those of standard software systems. Also the Address metric 659

displays a reasonable power law regime for a range of its values, showing a behaviour 660

similar to that found for the metric “Name of Variables” in Java software [44]. Thus the 661

usage of the keyword “Address” in Smart Contracts occurs in quantities which remind 662

the usage of variable names in Java. 663

We then analyzed all the statistical distributions using a log-normal best fitting 664

model. 665

In Fig. 11 we show the Log-normal best fitting curves together with the empirical 666

cumulative distribution functions for the Smart Contracts metrics Total lines, Blanks, 667

Function and Payable. The first three metrics are nicely fitted by the Log-normal 668

statistical distribution in the bulk, for low values of the metrics, but not in the tail, even 669

if the R2 is quite close to one for each case (R2 ≥ 0.95). Such result confirms the 670

previous one obtained for the power law model. The best fitting lacks mainly in the tail 671

of the distribution, as expected. In fact the empirical distribution drops more rapidly 672

January 30, 2023 22/32



Fig 11. Power law and Log Normal best fitting of the metrics Address, Cyclomatic,
Comments, ABI, Bytecode and LOCS.
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than the best fitting curve because of the cut-off for large values of the metrics. This 673

may be explained by the hypothesis that Smart Contract size metrics, like Total Lines 674

of code, Functions and Blanks are upper bounded according to the size constraints 675

associated to the deployment of Smart Contracts into the blockchain. The Payable 676

metric results in a too poor statistic to be well fitted by a Log-normal distribution. 677

Fig. 11 show the metrics Events, Mapping, Modifier and Contract. Mapping cannot 678

be well fitted by a Log-normal, as it was very well explained by a power law in the 679

range corresponding to the bulk of the distribution rather than in the tail. Also Events 680

and Modifier do not suite a Lo-gnormal distribution and their R2 values are lower than 681

0.95. Finally Contract is quite well approximated in the bulk, but not in the tail, 682

confirming once again the power law best fitting results. 683

Finally Fig. 11 shows that the initial parts of Bytecode and ABI metrics well overlap 684

with the Log-normal but as soon as the values crosses the central ones observed in the 685

corresponding histograms the Log-normal curves tend to miss the empirical ones which 686

drops quickly and do not display power law in the tail.

Power Law Log Normal
Metric xmin α 95% CI xmin log(µ) 95% CI log(σ) 95% CI

total lines 1323 3.33 3.327;3.341 150 5.75 5.748;5.758 1.105 1.104;1.108
blanks 308 2.94 2.925;2.949 23 3.97 3.972;3.984 1.032 1.029;1.033
functions 108 3.29 3.286;3.299 25 2.81 2.811;2.837 1.14 1.138;1.145
payable 5 3.01 2.994;3.021 1 0.29 0.296;0.312 1.16 1.155;1.160
events 11 3.29 3.282;3.295 3 1.08 1.071;1.084 0.965 0.963;0.967
mapping 3 2.92 2.915;2.935 4 0.28 0.26;0.31 1.06 1.064;1.076
modifiers 5 3.42 3.412;3.434 3 0.68 0.66;0.95 0.806 0.803;0.816
contracts 10 3.61 3.601;3.623 3 0.42 0.41;0.439 1.02 1.025;1.037
addresses 108 3.08 3.072;3.088 32 2.62 2.59;2.64 1.2 1.212;1.224
cyclomatic 161 3.15 3.145;3.159 36 3.68 3.675;3.698 1.04 1.041;1.049
comments 149 2.75 2.746;2.755 50 3.33 3.31;3.347 1.28 1.274;1.284
abi 174 3.1 3.095;3.155 3370 8.59 8.478;8.623 0.53 0.493;0.567
bytecode 11052 3.46 3.409;3.499 1830 9.02 8.993;9.032 0.65 0.642;0.661
LOC 148 2.62 2.574;2.642 161 0.38 -0.31;1.68 1.9 1.684;1.992

Table 3. Fitting Parameters for the Power Law and Log-Normal Distributions. The
xmin and α estimated parameters are reported for the Power Law. For the Log-Normal
the xmin, log(µ) and log(σ) estimated parameters are reported.

687

Address, Cyclomatic ad Comments rapidly drop with respect to the Log-normal 688

model, even if the initial part presents some overlap with it. Again this may be ascribed 689

to the upper bounds which limit the range of values reachable by these metrics. In 690

particular Comments are less, on average, than in traditional software development. 691

This is maybe due to the fact that Smart Contract software code is written with specific 692

purpose and constraints, so that the same patterns are most likely found and do not 693

need comment lines. 694

Finally the LOC metric is quite well represented by the Log-normal distribution 695

both on the bulk and in the tail, and presents an R2 value larger than 0.98. This is 696

quite in agreement with the results found in literature for the LOC metric in traditional 697

software systems [44]. In some sense, this result is different from results obtained in 698

similar studies, since it seems that this metric is not influenced by the peculiarity that 699

can belong to Smart Contract software and tends to preserve the same statistical 700

features found in traditional software systems. 701
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Table 3 shows the final fitting parameters for the Power Law and Log-Normal 702

distributions. We reported the xmin and α estimated parameters for the Power Law 703

and xmin, log(µ) and log(σ) estimated parameters for the Log-Normal. 704

We validated our results using the bootstrap methodology in order to provide a 95% 705

confidence interval for the estimated parameters. By default, the bootstrap function will 706

use the Max Likelihood Estimator (MLE) to infer the parameter values and check all 707

values of xmin. The bootstrap procedure resamples the dataset with replacement for a 708

large number of iterations (1000 in our case), for each iteration, all the parameter are 709

estimated and at the end, a confidence interval is calculated. The bootstrap procedure 710

provides more robust results. 711

In Table 3 we report the results of the bootstrap procedure, a 95% confidence 712

intervals for the α parameter of the Power Law and log(µ) and log(σ) parameters of the 713

Log-Normal is provided in the column next to each parameter. 714

6 Discussion 715

This section investigates the implications of the research based on the findings of our 716

study. Some of the findings are the following: 717

• The Solidity program language has different styles of programming when 718

compared to other high-level programming languages because of computational 719

cost constraints and to be easier to understand for non-expert users. 720

• In the last two years the way of writing the smart contracts has been changing 721

due to the the introduction new programme features in the last version of the 722

compiler and because the Solidity developers started to implement more complex 723

business logic over time. 724

As to what concerns the Solidity programming style, based on our findings (see 725

table 2), the number of iteration statements and conditional statements per line of code 726

is respectively two and three orders of magnitude smaller than other high-level 727

programming languages such as Java, C and python. Some relevant studies on this 728

subject are [60] and [73]. Furthermore authors in [?] show how cyclomatic complexity 729

on Java code can reach very high values [74]. 730

We assume that Smart Contract developers might have a tendency to minimize the 731

use of branch statements (IF) and iterative statements (FOR, WHILE) because these 732

instructions have a high computational cost when compared to other program 733

statements such as the bitwise operations. Moreover, we assume that in order to 734

increase public trust, the solidity developers tend to write smart contracts easy to 735

understand. Indeed, a program easy to understand should have a low cyclomatic 736

complexity although literature shows that readability, as intended by humans, weakly 737

correlates with low cyclomatic metrics [75]. 738

As far as the change in programming style, we observed at least two different 739

distributions of software metrics data. First, many Smart Contracts written before 2017 740

are in the LOC range from 0 to 500, and most of the Smart Contracts written after 741

2020 year are in a larger LOC range between 0-1000. Moreover, the number of smart 742

contracts written after 2020 and having a LOC in the outlier values (between 4K-14K) 743

is one order of magnitude greater when compared to smart contracts written before 744

2017 and having a LOC in the same interval. The larger LOC range for Smart 745

Contracts written after 2020 can be explained by the fact that the business logic of 746

some Smart Contracts is deployed both 1) in longer source code and 2) in different 747

Smart Contract addresses via specific pattern programs to bypass the source code size 748

limit. Indeed, a Smart Contract has a code size limit equal to 24576 bytes and this limit 749
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was introduced to prevent denial-of-service (DOS) attacks. Originally, this limit was not 750

a problem because the business logic of smart contracts was very simple as highlighted 751

by our findings (LOC range from 0 to 500). However, in the last few years, the Solidity 752

developers added more and more functionalities to their smart contracts until at some 753

point they reached a code size limit. If the Solidity developers exceed this code size 754

limit equal to 24576 bytes, they will not be allowed deploying the Smart Contract on 755

the blockchain network. According to the grey literature, in the last few years, the 756

Smart Contract size limit was overcome by using the “diamond pattern”. A “diamond 757

Smart Contract” is a contract that gets its external functions from other contracts 758

(called “facets”). On the contrary in traditional software power laws are commonly 759

identified (eg. in Java programs) for general “size” metrics, defined for example in 760

terms of the number of methods, constructors and other class features, where very large 761

values of such metrics are commonly found [12]. 762

Second, we observed a growing trend in many software metrics, such as the average 763

number of LOC, Bytecode, number of interfaces, number of libraries, programming 764

statements until the solidity version 0.7. Starting from Solidity version v0.8 the trend is 765

reversed. A plausible explanation for this trend can be found in the changes of features 766

in the Solidity programming language. The change of some features of the Solidity 767

programming language is influencing the way Solidity software developers implement 768

smart contracts from version 0.8 (released on 16 Dec 2020). Indeed, until Solidity 769

version 0.7 (released on 28 July 2020), some characteristics of Solidity could lead many 770

programming developers to introduce bugs in Smart Contracts. Fortunately, it was 771

possible to mitigate the introduction of bugs by using external libraries such as 772

OpenZepelling. For example, arithmetic operations in Solidity did not throw exceptions 773

when an overflow occurred up to version 0.7 (the last release was on 16 Dec 2020). 774

Indeed, this characteristic of Solidity can easily result in bugs, because programmers 775

usually assume that a calculation that exceeds the memory space throws an error as in 776

other high-level programming languages. Actually, starting from version 0.8, the 777

Solidity compiler throws an exception when an overflow occurs in arithmetic operations. 778

This means that the Solidity developers can update a Smart Contract or write a new 779

Smart Contract via the newest compiler version without using external libraries, thus 780

resulting in a Smart Contract smaller in size. 781

7 Conclusions 782

In this paper we studied Smart Contracts software metrics extracted from a data set of 783

more than 85K Smart Contracts deployed on the Ethereum blockchain. We were 784

interested in determining if, given the peculiarity related Smart Contract software 785

development, the corresponding software metrics present differences in their statistical 786

properties with respect to metrics extracted from traditional software systems and 787

already largely studied in literature. 788

The assumptions are that resources are limited on the blockchain and such 789

limitations may influence the way Smart Contracts are written. Our analysis dealt with 790

source code metrics as well as with ABI and bytecode of Smart Contracts. Our main 791

results show that, overall, the exposure of Smart Contracts to the interaction with the 792

blockchain as qualitatively measured in terms of ABI size are quite similar to each other 793

and there are not outliers Contracts. The distribution is compatible with a bell shaped 794

statistical distribution where most of values tend to lie around a central value with some 795

dispersion around it. 796

In general Smart Contracts metrics tend to suffer from blockchain limited resources 797

constraints, since they tend to assume limited upper values. There is not the ubiquitous 798

presence of fat tail distributions where there are values very far from the mean, even 799
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order of magnitude larger, as typical in traditional software. In Smart Contract software 800

metrics large variations from the mean are substantially unknown and all the values are 801

generally into a range of few standard deviations from the mean. 802

Finally the Smart Contract lines of code is the metric which more closely follow the 803

statistical distribution of the corresponding metric in traditional software system and 804

shows a truncated power law in the tail and an overall distribution which is well 805

explained by a Log-normal distribution. 806
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