
Citation: Scholtz, D.; Wang, C.;

English, M.; Mynors, D. Overcoming

the Dependence of the Yield

Condition on the Absence of

Macroscopic Structures. Processes

2023, 11, 4. https://doi.org/

10.3390/pr11010004

Academic Editor: Antonino Recca

Received: 8 November 2022

Revised: 13 December 2022

Accepted: 15 December 2022

Published: 20 December 2022

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

processes

Article

Overcoming the Dependence of the Yield Condition on the
Absence of Macroscopic Structures
David Scholtz 1, Chang Wang 1,*, Martin English 2 and Diane Mynors 3,*

1 Department of Engineering and Design, University of Sussex, Brighton BN1 9RH, UK
2 Hadley Industries PLC, P.O. Box 92, Downing Street, Smethwick B66 2PA, UK
3 Department of Mechanical and Aerospace Engineering, Brunel University London, Uxbridge UB8 3PH, UK
* Correspondence: cjw33@sussex.ac.uk (C.W.); diane.mynors@brunel.ac.uk (D.M.)

Abstract: A growing demand for cheap, strong, and lightweight structures has resulted in an
increasing need for materials incorporating macroscopic structures such as surface textures in the
form of dimples or internal non-uniformities such as porosity. This has highlighted the potential
for misleading results when applying the current standards for the determination of yield strength
to materials incorporating such non-uniformities. In the present study, discontinuous, continuous,
and severely continuous (departure from linearity significantly prior to macroscopic yield) yield
behaviours during tensile loading have been explored with respect to the determination of yield
strength. This has clearly shown the limitations of standard measures as well as the incompatibility of
different measures, making the comparison of yield strengths deceptive. Therefore, a novel derivative
yield method has been proposed. Based on the second derivative of stress with respect to strain, this
method is independent of both yield type and the presence or lack of macroscopic structures, and it
correctly identifies the upper yield for discontinuous yield as well as the first significant departure
from linearity for continuous yield. Furthermore, the derivative yield method is shown to more
accurately characterise the behaviour of dimpled steel, non-arbitrarily quantifying the yield strength
for severely continuous yielding. This wide applicability, in many cases, eliminates the need for
the comparison of results produced by mutually incompatible yield criteria, e.g., when quantifying
strengthening due to dimpling.

Keywords: yield criterion; yield strength; derivative yield; macroscopic structure; dimpled steel

1. Introduction

Many organisations exist for the purpose of standardising methods of measurement.
Organisations such as these (e.g., the International Organization for Standardization, ISO [1];
the European Committee for Standardization, CEN [2]; the British Standards Institution,
BSI [3]; the American Society for Testing and Materials, ASTM [4]; and Standards Australia,
AS [5]) set forth standards which are used to ensure the consistent measurement of various
material characteristics, thereby enabling the easy sharing of data. Yield strength in metallic
materials, for example, is standardised in much the same way by all the organisations
considered here. However, this does not mean that the methods defined as standard are
necessarily straightforward. In fact, the growing prevalence of materials incorporating
macroscopic structures such as surface textures complicate this further, often resulting in
the use of alternative, non-standard methods to quantify yield.

In the present work, plain and dimpled steels are tested in tension for use as example
cases representing both discontinuous yield and severely continuous yield. ‘Severely’ is
used here to denote a substantial departure from linearity prior to macroscopic yield in the
stress–strain curve. Additionally, typical data regarding the tensile load response of both
porous and lattice materials from the literature are incorporated as further examples for
this investigation, exhibiting conventional continuous yield.
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First, the standard methods for the quantification of yield strength are defined with
consideration for the applicability of each and any limitations imposed by their formulation.
This reveals that the standard methods are not representative of the yield behaviour of
all the example cases. Therefore, existing non-standard methods are explored to address
the limitations identified in the standard measures. Subsequently, a novel method for the
quantification of yield strength is proposed. Applied successfully to each of the example
cases, this novel method is shown to be widely applicable irrespective of the category
of yield behaviour, thereby eliminating the need, in some cases, to compare mutually
incompatible measures. It is also shown to be more representative of the load response
where macroscopic structures such as dimples result in severely continuous yielding.

1.1. Standard Methods for the Quantification of Yield

The macroscopic yield for metallic materials in tension is generally defined as the stress
at which appreciable plastic flow begins [6–8]. Enabling the application of this to identify
a ‘yield point’, standard methods stipulate that the type of yield behaviour exhibited by
a test sample must first be categorised as either continuous or discontinuous [7,9]. Even
this categorisation can be unclear in some cases; however, the appropriate method for
the quantification of yield strength can be selected only once this has been completed.
With some variation in the name assigned to each, there are currently four such standard
measures recognised by these organisations:

1. Proof Strength, Non-Proportional Extension, alternatively known as the ‘Offset Yield’
(σY);

2. Proof Strength, Total Extension, alternatively known as the ‘Extension Under Load’
(σEUL);

3. Upper Yield Strength (σUY);
4. Lower Yield Strength (σLY).

Even though these measures are distinct from one another and applicable to different
circumstances, they are not all-encompassing. Due to certain assumptions made in the
formulations of these measures, each has limitations to its applicability. Currently, these
limitations render all four methods inapplicable in some cases, leaving the Offset Yield as
the default measure [10], even when the resulting readings may be misleading. Further-
more, the standardised acceptance of multiple measures results in a substantial potential
for confusion and miscommunication in situations where differences in yield strengths
are important, as this may result in the necessary comparison of incompatible measures.
This is particularly evident in cases where the samples compared exhibit different yield be-
haviours, continuous and discontinuous, since the standard methods for the measurement
of yield strength in each case are based on somewhat different principles.

1.2. Upper and Lower Yield—Discontinuous Yielding

When the material being tested exhibits a discontinuous yield behaviour, characterised
by Yield Point Extension (YPE), as illustrated in Figure 1, the standard measures for yield
are the Upper Yield Strength (UYS or σUY) and Lower Yield Strength (LYS or σLY).

The σUY stems from the observation that this type of yield behaviour exhibits a definite
point of departure from elastic strain, the as-defined beginning of plastic flow, and is simply
the maximum stress achieved by the initial peak, marking the initiation of YPE. While this
is of theoretical use, it has been determined that the height of the peak is dependent on the
test environment and rig setup [9,11]. Therefore, the σLY is sometimes used in industry.

The σLY, rather than focusing on the peak, is defined as the minimum stress measured
during YPE. In this way, a minimum tensile yield capacity is defined for the material in
question, effectively incorporating a safety margin into the measurement.

The limitation, common to both methods, is that they are reliant on the presence
of YPE, such that the yield behaviour is discontinuous. As illustrated in Figure 2, the
plain steel samples tested here clearly undergo discontinuous yielding. Therefore, the
quantification of yield for these is simply based upon the initial peak prior to YPE, the
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σUY. Where the available data do not extend to 0 MPa, that which was available has been
provided without modification in all figures.

Figure 1. Stress–strain diagram showing Yield Point Elongation (YPE) and Upper (UYS) and Lower
(LYS) Yield Strengths [10].

Figure 2. Typical stress–strain curve for plain steel subjected to tensile loading.

1.3. Proof Strengths—Continuous Yielding

Materials that do not undergo YPE during loading are categorised as exhibiting con-
tinuous yield behaviour (see Figure 3). In these cases, the standard methods for measuring
yield strength are the Proof Strength, Non-Proportional Extension (or Offset Yield, σY) and
the Proof Strength, Total Extension (or Extension Under Load, σEUL).

Based on a somewhat arbitrary offset (most commonly 0.2% strain [10,12]) of the
line OA in Figure 3, representing the Elastic Modulus, along the strain axis, the σY is
measured as the stress where this offset line, mn, intersects the stress–strain curve. This is
also considered the default method for the determination of yield strength as is detailed in
Note 33 of the ASTM specification [10]. This method, being based on the offset of a line
representing the Elastic Modulus, implicitly assumes that this can be reliably used as an
analogue to plastic strain. The upshot of this is three limitations to applicability: the stress–
strain curve must exhibit a substantial linear elastic region enabling a reliable measurement
of the elastic modulus; the elastic behaviour must not change appreciably over the offset
range employed; and the microscopic and macroscopic yields must be similar so that the
offset line crosses the stress–strain curve where the behaviour is predominantly plastic. It
is evident in Figure 4 that stainless steel lattice and porous Ti6Al4V (porosity 7.6%) both
exhibit this type of behaviour. Therefore, the yields of these can be accurately characterised
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by the standard σY. Conversely, Figure 5 illustrates the pre-macroscopic yield departure
from linearity that is typical of the tensile load response of dimpled steel and makes the σY
inapplicable. Illustrated in Figure 3 as line qp, σEUL is, simply, the stress at a given strain.
Applicable primarily in applications requiring allowable strain as opposed to yield stress,
this is explored below.

Figure 3. Stress–strain diagram illustrating the determination of both the Proof Strength, Non-
Proportional Extension (also known as Offset Yield) and the Proof Strength, Total Extension (also
known as Extension Under Load, EUL) [10].

Figure 4. Experimentally measured stress–strain curves for a stainless-steel lattice and porous
Ti6AL4V (porosity 7.6%) subjected to tensile loading [13,14] (reconstructed data).

1.4. Alternative Methods for the Quantification of Yield

There has been much debate around the applicability of individual yield criteria to
various cases. Often citing some of the most common analytical yield criteria such as the
Von Mises yield criterion [15], the resulting investigations have given rise to numerous
alternative yield criteria for use in cases where the standards do not strictly apply.

The Von Mises yield criterion is based on the assertion that yield occurs at some critical
value of the distortion energy [16–18], the portion of the total specific strain energy that
contributes to isochoric shape change. Thus, an assumption of plastic incompressibility
is made. In effect, this criterion suggests that rather than being dependent on any single
component of normal or shear stress, yield is dependent on a function of the principal
shear stresses. The Tresca yield criterion is, effectively, a less complicated version of the
Von Mises criterion, considering only the maximum and minimum principal shear stresses.
Use of this criterion is less common than the Von Mises criterion since it requires prior
knowledge of the maximum and minimum principal shear stresses.
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Figure 5. Low-strain region of a typical stress–strain curve for dimpled steel exhibiting ‘severely
continuous yielding’.

The 1989 study conducted by Donovan [19] determined that the Mohr-Coulomb
criterion is more representative of the behaviour of Pd40Ni40P20 metallic glass than the
more common Von Mises criterion.

In 1993, Karafillis and Boyce [20] adopted a more general approach rather than tailor-
ing their solution to a single case. They developed an expression for the yield surface of
polycrystalline materials to be used as a general form yield criterion. Karafillis and Boyce
also noted that the proposed expression, where appropriate, could be reduced to produce
the Tresca or Von Mises criteria.

In 2003, Banabic et al. [21] explored the criterion first proposed by Barlat and Lian [22]
in 1989. In this study, Banabic et al. determined that the introduction of three additional
coefficients results in a more accurate characterisation of the behaviour of sheet metals. The
modified criterion reportedly exhibits greater flexibility than its predecessor as a result of
the additional coefficients and has been shown to perform well when applied to the data
collected by Kuwabara et al. [23,24] in the late 1990s.

Cazacu and Barlat [25] took a similar approach in 2004 to that of Karafillis and
Boyce [20] but focussed on ‘pressure insensitive metals’ rather than the more general
‘polycrystalline materials’. In this case, the proposed criterion was reported to exhibit good
agreement with both experimental and theoretical yield loci. It was also noted that, like
the criterion proposed by Karafillis and Boyce, when compressive and tensile stresses are
equal, this criterion reduces to produce the Von Mises yield criterion. Plunkett, Cazacu,
and Barlat [26,27] continued this work in 2006 and 2008. This resulted in the production of
multiple yield functions describing the anisotropic behaviour of textured metals. These
functions are based on the yield surfaces of aluminium and steel and have been reported to
exhibit a high level of accuracy for different crystal structures.

1.5. Porous Materials

The 1975 and 1976 investigations by Gurson [28,29] appear to be among the first
to explore both the microscopic and macroscopic behaviour of porous materials. This
gave rise to a series of investigations producing what is now commonly referred to as
‘Gurson type’ yield criteria [30–33]. Gurson developed two different types of upper-bound
yield functions based on a yield locus approach that includes consideration for rigid
particle inclusions and void nucleation mechanisms. The (now common [34–39]) distinction
between microscopic and macroscopic behaviour, where ‘macroscopic’ refers to the average
quantities representing the aggregate behaviour of the material, is particularly pertinent in
the present study due to the consideration of macroscopic structures.

In 1997, Liao et al. [34] considered the case of sheet metal with through-thickness holes
as an analogue to porous materials. In this way, they produced a Gurson-type closed-form
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upper-bound macroscopic yield criterion specific to the case of in-plane uniaxial loading.
This was validated in 2004 by Wang et al. [31], using a finite element analysis of a unit cell
cube containing a spherical void.

Sevostianov and Kachanov [14] observed in 2001 that previous Gurson-type studies
were limited by, among others, the assumption of spherical pores. They noted that this
precludes any consideration for mixtures of shapes and crack-like pores often present in
this type of material. Addressing this limitation, a plastic yield condition was constructed
that explicitly accounts for non-randomly oriented non-spherical pores. Sevostianov and
Kachanov also reported that the total strain at the onset of macroscopic plasticity, the
macroscopic yield point, is independent of porosity and that the only effect porosity has on
the tensile load response of the material is a decrease in the yield stress.

Also focussing on porous materials, McElwain et al. [30] sought to extend the 1984 Gurson–
Tvergaard–Needleman (GTN) yield criterion [40]. In 2006, McElwain et al. used the finite
element method to explore how different arrangements of spherical voids affect the yield
behaviour of porous materials. This resulted in the development of different expressions for
each case and reportedly achieved greater accuracy in the representation of general stress states
without introducing additional parameters.

Keralavarma and Benzerga [32] applied a similar approach in 2008 to the work by
Gurson. They presented the derivation of analytical yield loci for anisotropic porous
materials. This led to the proposal of a new yield criterion that includes consideration of
spheroidal voids and Hill-type orthotropy.

In the second of a two-part publication in 2012, Madou and Leblond [33] developed
the Gurson yield criterion further, including consideration for porous ductile materials with
arbitrary ellipsoidal porosity. It is noted that this updated Gurson-type criterion reduces
approximately according to the original Gurson criterion when applied to spherical voids.

1.6. Lattice Materials

Early studies regarding the behaviour of metallic lattices have produced somewhat
mixed results regarding the applicability of previously formulated yield criteria. This is
likely largely due to variations in the types of lattice considered since each of these studies
considers specific lattice structures.

Deshpande et al. [41] explored the octet-truss lattice in 2001. This study incorporated
both analytical and FE methods and reported good agreement between the FE predictions
of strength and experimental results. It is reported here that an extension to the anisotropic
Hill yield criterion does not accurately characterise the form of the collapse surfaces.
Conversely, the 2014 study by Khaderi et al. [37], investigating the strength of gyroid
lattices, reports that the anisotropic Hill criterion provides an accurate representation of the
yield surface of the imperfect lattice.

In 2006, Hualin and Wei [42] formulated a yield model for stretching-dominated lattice
structures based on an equivalent continuum method. The calculated yield surfaces were
reported to be in good agreement with experimental data.

Zhang et al. [43] investigated the metal foam, metal hexagonal honeycomb, metal
lattic, and lattice composite in 2008. In this study, analytical elastic relations and failure
criteria for planar lattice composites were established and validated by accompanying FE
simulations. These relations were based on a unit cell assessment of the static equilibrium
and deformation relations. Zhang et al. reported that during loading, the out-of-plane
constraint of these lattice materials significantly influences their in-plane strength and that
the proposed analytical approach can identify this effect.

Noting in 2012 previous assumptions that lattice materials are stretching-dominated,
Chen et al. [44] investigated the bending resistance of the struts that compose lattice
truss sandwich panels. Comparing this with experimental results, they reported that
stretching-dominated models overestimate the strength of lattices while underestimating
their stiffness. The model presented in this study is reported to produce predictions that
are more consistent with the experimental results.
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Considering the above, it is evident that neither the standard yield criteria nor the
alternatives in the literature successfully achieve broad applicability while maintaining
the level of simplicity required for regular application in both academic and industrial
contexts. Additionally, as noted, the standardised acceptance of yield criteria based on
different principles sometimes results in the necessary comparison of incompatible yield
criteria. Furthermore, the use of the σY,0.2 as the default measure has been shown to
be inapplicable in the case where the material in question exhibits severely continuous
yielding. Consequently, a novel method for the quantification of yield that is independent
of the type of yield behaviour is required. This method must also feature a simplicity in
application not easily achieved by analytical means.

The distinction between microscopic and macroscopic yield has been noted previously.
Considering the case of severely continuous yield, Liang et al. [45] have shown that for
dimpled steel, this is a result of geometric non-uniformity which Nguyen et al. [46] and
Wang et al. [47] have determined plays a significant role in determining the stress–strain
behaviour of the material. Specifically, stress concentrations due, in part, to geometry result
in local microscopic yield that manifests as a pre-macroscopic yield departure from linearity.
This is observed in this paper and is similar to the deviation from the ideal elastic response
below macroscopic yield in the 2018 study by Máthis et al. [39]. Considering this in relation
to the stress–strain curve for dimpled steel in this paper, it is evident that the microscopic
yield results only in relatively small deviations from the ideal linear response, while the
macroscopic yield manifests as a clear localised change in the tangent to the stress–strain
curve, the tangent modulus. This pronounced change in the tangent modulus marks the
transfer from predominantly global to predominantly local strain that accompanies the
plastic yield of a sample. We note that a similar localised change in the tangent modulus is
also observed at the yield point for discontinuous and continuous yield (Figures 2 and 4).
Thus, it is proposed here that a graphical approach to the quantification of yield strength
based upon this localised change in the tangent modulus may provide a means to non-
arbitrarily measure the yield strength of a material independently of the type of yield
behaviour exhibited.

2. Materials and Methods

Since a localised change in the tangent modulus is effectively a peak in the rate-of-
change thereof, it is expected that the second derivative of stress with respect to strain
exhibits a pronounced turning point at the strain level of the yield point. Referred to here as
the ‘derivative yield’, σ∆Y, this novel method asserts that d3σ

dε3 = 0 when ε = εyield. In this
way, the yield strain is identified, enabling the determination of the yield strength based on
the measured stress–strain relationship. This method is applied alongside the appropriate
standards for each test case considered in the following sections.

As a basis for the illustrative application of various methods for the quantification
of yield strength, a series of quasi-static tensile tests were conducted. First, samples were
taken from galvanised steel coils of specification DX51D+Z/ZF [48]. The material from
these same coils was then processed using type 70 UltraSTEEL®3, Hadley Industries, UK
rolls according to industry standards, allowing the collection of dimpled samples from the
resulting dimpled sheet. Thirty plain steel and thirty dimpled steel samples were taken
from ten different steel coils (three + three for each coil). The specification for these samples
is illustrated in Figure 6.

Illustrated in Figure 7, the tests were conducted according to British Standards [12]. Each
sample was fixed in aligned grips for tensile testing on a rig with a maximum load capacity
of 50 kN (H50KS Tinius Olsen Ltd., Surry, UK). An extensometer of 50 mm gauge length
(Epsilon 50 mm extension) was then attached to the specimen to measure uniaxial strain in
the loading direction. The plain and dimpled samples were of 0.54 ± 0.03 mm gauge and
1.22 ± 0.02 mm effective gauge, respectively, and were tested to failure at a strain rate of
2.50 mm/min. Effective gauge here refers to the overall thickness of the dimpled samples.
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Figure 6. Tensile dog bone sample specification; the only sample type utilised in this study.

Figure 7. Tensile test setup.

3. Results

Presented in the form mean
(
median ± range

2
)
, the results of the experimental tensile

testing showed an average yield stress, σUY, of 332 MPa (332 ± 11 MPa) and an average
ultimate tensile stress of 387 MPa (384 ± 15 MPa) for the plain steel samples. The dim-
pled samples exhibited increases to both, with an average yield stress, σY,0.2, of 354 MPa
(350 ± 37 MPa) and an average ultimate tensile stress of 419 MPa (419 ± 20 MPa) for the
dimpled steel. We note the necessary comparison between the σUY and σY,0.2 due to the
different yield behaviours exhibited.

Regarding the discontinuous yield exhibited by plain steel in tension, illustrated in
Figure 2, the standard σUY and σLY are clearly applicable. Both more commonly used and
more closely matching the as-defined macroscopic yield, σUY has been used here. Figure 8
illustrates the application of the novel derivative yield, σ∆Y, to the discontinuous yield of
the plain steel and shows that the result is in good agreement with the standard σUY.

The continuous yields exhibited by the lattice and porous examples are illustrated
in Figure 4. Figures 9 and 10 make evident the clear turning point present in the second
derivative of stress with respect to strain. These turning points are used, as indicated by
the red dashed lines in these figures, to determine the strain at yield which can then be
used with respect to the original stress–strain curve to determine the yield strength of the
relevant sample. We note the use of the turning point relating to the most pronounced
peak as opposed to the first peak. This is to ensure the identification of the point of most
pronounced yielding independent from microscopic yielding and small experimental errors.
The results of this are illustrated in comparison with the σY,0.2 in Figures 11 and 12.
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Figure 8. Derivative yield as applied to an experimentally measured stress–strain curve for plain
steel subjected to tensile loading.

Figure 9. Derivative yield as applied to the experimentally measured stress–strain curve for a steel
lattice subjected to tensile loading. The Strain axis to 0.5 enables the best illustration.

Figure 10. Derivative yield as applied to the experimentally measured stress–strain curve for porous
Ti6AL4V (porosity 7.6%) subjected to tensile loading. The Strain axis to 0.5 enables the best illustration.
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Figure 11. Comparison of the results from the offset yield and the derivative yield as applied to the
experimentally measured stress–strain curve for a steel lattice subjected to tensile loading. The Strain
axis to 0.5 enables the best illustration.

Figure 12. Comparison of the results from the offset yield and the derivative yield as applied to the
experimentally measured stress–strain curve for porous Ti6AL4V (porosity 7.6%) subjected to tensile
loading. The Strain axis to 0.5 enables the best illustration.

Due to the geometry of both the dimpled samples and the clamps on the testing rig,
a small amount of additional displacement is seen in early loading for some samples as
the clamps bite into the sample. In some cases, this necessitates ignoring the low-stress
data when determining the Elastic Modulus to produce an accurate representation of the
material behaviour. The 0.2% offset is a direct offset from the initial fit and so does not start
at 0 MPa because the line representing the Elastic Modulus does not.

Figure 11 is external data, and the trend shows a clear intersection with 0.0. Therefore,
the trend line was extended to 0.0 for illustrative purposes.

The severely continuous yielding exhibited by the dimpled steel is illustrated in
Figure 5. This time using a polynomial fit and differentiation methodology to identify the
turning point, the application of the σ∆Y is illustrated in Figure 13. The result is further
illustrated in comparison with the standard σY,0.2 in Figure 14 where, unlike with the cases
of continuous yielding, it is evident that σ∆Y > σY,0.2.
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Figure 13. Derivative yield as applied to an experimentally measured stress–strain curve for dimpled
steel subjected to tensile loading.

Figure 14. Comparison of the results from the offset yield and the derivative yield as applied to an
experimentally measured stress–strain curve for dimpled steel subjected to tensile loading.

4. Discussion

In the case of discontinuous yield (Figure 8) it is clear that the novel derivative yield is
in good agreement with both the as-defined yield point and the standard upper yield.

However, for continuous yield (Figures 9–12), this is not the case. Based on the turning
points in the second derivative of stress with respect to strain (Figures 9 and 11), the σ∆Y
method clearly and non-arbitrarily identifies the first substantial departure from linearity.
More closely matching the as-defined yield, this derivative yield point is evidently more
representative of the behaviour of the tested material than the standard offset approximation.

We must consider, then, the severely continuous yielding exhibited by the dimpled
steel. As has been discussed, the formulations of the standard methods for the identification
of yield strength are not strictly applicable due to the lack of a substantial region of
linearity in the stress–strain curve as well as the difference between the microscopic and
macroscopic yield behaviours inherent to this type of structure. Firstly, the offset method
is inapplicable due to the pre-macroscopic yield departure from linearity in yielding of
this nature. However, since this is defined as the default method for the determination of
yield strength, it is used here as an indicator of the potential applicability of the alternative
standard, σEUL. The average strain at yield as determined by the 0.2% offset method for
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the present dimpled steel data is 0.4% with a variation of 0.13%. Such a large variation in
this measure indicates that the σEUL may also be inappropriate for the quantification of
the yield strength in materials exhibiting severely continuous yield, except in applications
where the allowable strain under a given load is more pertinent than the yield strength.
Applying the σ∆Y as shown in Figure 13 clearly and non-arbitrarily identifies the point
of most pronounced yielding in the dimpled steel. Illustrated in comparison with the
σY,0.2 in Figure 14, it is clear that the σ∆Y method again produces a more representative
characterisation of the behaviour of dimpled steel than the standard offset method.

It should be noted that the compliance of the elastic moduli of the materials used in
the tests were not checked against their standard values since the material grade used,
DX51D+Z/ZF, is a particularly variable grade of mild steel. The specifications provide only
a minimum yield strength and, anecdotally, this is usually exceeded by a large margin.

5. Conclusions

Limitations due to the formulation of the standard methods for the identification of
yield strength make these methods inapplicable to cases exhibiting severely continuous
yield. Additionally, the standardised acceptance of multiple, often conflicting, methods
results in the necessary comparison of mutually incompatible yield strengths, such as
is the case in the production of dimpled steel. In cases such as these, the plain steel
exhibits discontinuous yield while the dimpled steel does not. This results in the sometimes
misleading comparison between upper yield and offset yield.

Addressing the resulting need for an industrially relevant method for the quantifi-
cation of yield strength that is independent of the yield behaviour exhibited, the novel
derivative yield has been proposed. Based on the second derivative of stress with respect to
strain, this method has been explored alongside the standards for cases exhibiting discon-
tinuous, continuous, and severely continuous yield. Examples include plain steel, dimpled
steel, steel lattice, and porous Ti6Al4V.

It has been shown that due to the departure from linearity prior to macroscopic
yield in the case of dimpled steel (severely continuous yield), the standard offset method
does not produce results representative of the material behaviour: the yield strength is
underestimated. By taking the second derivative of stress with respect to strain, identifying
the strain at the most pronounced turning point, and using this to determine the associated
stress, the yield strength of the dimpled steel has been quantified in a non-arbitrary way.
This has been shown to be more representative of the material behaviour.

In the case of discontinuous yield (plain steel), the derivative yield has been shown
to be in good agreement with the standard upper yield. Similarly, for continuous yield
(lattice and porous examples), it has been illustrated that the derivative yield identifies the
first significant departure from linearity in the stress–strain curve, characterising the yield
behaviour of these materials more accurately than the standard offset approximation. In
this way, the novel derivative yield method has been shown to be applicable irrespective
of the type of yield and, indeed, of the presence or lack of macroscopic structures such as
dimples, in many cases eliminating the need to compare incompatible yield strengths.

Author Contributions: Conceptualization, C.W., M.E. and D.M.; methodology, D.S. and C.W.; val-
idation, D.S.; formal analysis, D.S.; investigation, D.S.; writing—original draft preparation, D.S.;
writing—review and editing, C.W.; visualization, D.S.; supervision, C.W. and D.S.; and funding
acquisition, C.W. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the EPSRC, EP/R513362/1, and the Hadley Industries plc.

Data Availability Statement: The data that support the findings of this study are available on request
from the corresponding author, C.W.

Conflicts of Interest: The authors declare no conflict of interest.



Processes 2023, 11, 4 13 of 14

References
1. International Organization for Standardization. ISO n.d. Available online: http://www.iso.org/cms/render/live/en/sites/

isoorg/home.html (accessed on 8 October 2019).
2. European Committee for Standardization. n.d. Available online: https://www.cen.eu/Pages/default.aspx (accessed on 8 October 2019).
3. British Standards Institution. BSI Group n.d. Available online: https://www.bsigroup.com/en-GB/ (accessed on 8 October 2019).
4. ASTM International—Standards Worldwide. n.d. Available online: https://www.astm.org/ (accessed on 8 October 2019).
5. Standards Australia—Standard Organisation in Australia. Stand Aust n.d. Available online: http://www.standards.org.au/

(accessed on 8 October 2019).
6. Dieter, G.E. Introduction. In Mechanical Metallurgy, SI Metric ed.; McGraw-Hill: New York, NY, USA, 1988; pp. 3–16.
7. Johnson, W. Plasticity theory and some quasi-static analyses. Impact Strength Mater. 1972, 121–211.
8. Mac Donald, B.J. Practical Stress Analysis with Finite Elements, 2nd ed.; Glasnevin Publishing: Dublic, Ireland, 2011; pp. 17–46.
9. Dieter, G.E. Strengthening Mechanisms. In Mechanical Metallurgy, SI Metric ed.; McGraw-Hill: New York, NY, USA, 1988; pp.

184–240.
10. E8/E8M-16a; Standard Test Methods for Tension Testing of Metallic Materials. ASTM: West Conshohocken, PA, USA, 2016.

[CrossRef]
11. Rosenberg, H.M. Dislocations in crystals. In Solid State, 3rd ed.; Oxford University Press: New York, NY, USA, 1988; pp. 53–77.
12. BS EN 10002-1:2001; Metallic Materials—Tensile Testing—Part 1. British Standards Institution (BSI): London, UK, 2001.
13. Clausen, B.; Lorentzen, T.; Bourke, M.A.M.; Daymond, M.R. Lattice strain evolution during uniaxial tensile loading of stainless

steel. Mater. Sci. Eng. A 1999, 259, 17–24. [CrossRef]
14. Sevostianov, I.; Kachanov, M. On the yield condition for anisotropic porous materials. Mater. Sci. Eng. A 2001, 313, 1–15.

[CrossRef]
15. Dieter, G.E. Elements of the Theory of Plasticity. In Mechanical Metallurgy, SI Metric ed.; McGraw-Hill: New York, NY, USA, 1988;

pp. 69–99.
16. Dieter, G.E. Mechanical Metallurgy, SI Metric ed.; McGraw-Hill: New York, NY, USA, 1988.
17. Pagano, N.J. Distortional Energy of Composite Materials. J. Compos. Mater. 1975, 9, 67–72. [CrossRef]
18. Gopu, V.K.A. Validity of Distortion-Energy-Based Strength Criterion for Timber Members. J. Struct. Eng. 1987, 113, 2475–2487.

[CrossRef]
19. Donovan, P.E. A yield criterion for Pd40Ni40P20 metallic glass. Acta Metall. 1989, 37, 445–456. [CrossRef]
20. Karafillis, A.P.; Boyce, M.C. A general anisotropic yield criterion using bounds and a transformation weighting tensor. J. Mech

Phys. Solids 1993, 41, 1859–1886. [CrossRef]
21. Banabic, D.; Kuwabara, T.; Balan, T.; Comsa, D.S.; Julean, D. Non-quadratic yield criterion for orthotropic sheet metals under

plane-stress conditions. Int. J. Mech. Sci. 2003, 45, 797–811. [CrossRef]
22. Barlat, F.; Lian, K. Plastic behavior and stretchability of sheet metals. Part I: A yield function for orthotropic sheets under plane

stress conditions. Int. J. Plast. 1989, 5, 51–66. [CrossRef]
23. Kuwabara, T.; Ikeda, S. Kuroda, K. Measurement and analysis of differential work hardening in cold-rolled steel sheet under

biaxial tension. J. Mater. Process. Technol. 1998, 80–81, 517–523. [CrossRef]
24. Kuwabara, T.; Van Bael, A. Measurement and Analysis of Yield Locus of Sheet Aluminium Alloy 6xxx. In Proceedings of the

4th International Conference and Workshop on Numerical Simulation of 3D Sheet Forming Processes, Besançon, France, 13–17
September 1999; pp. 85–90.

25. Cazacu, O.; Barlat, F. A criterion for description of anisotropy and yield differential effects in pressure-insensitive metals. Int. J.
Plast. 2004, 20, 2027–2045. [CrossRef]

26. Cazacu, O.; Plunkett, B.; Barlat, F. Orthotropic yield criterion for hexagonal closed packed metals. Int. J. Plast. 2006, 22, 1171–1194.
[CrossRef]

27. Plunkett, B.; Cazacu, O.; Barlat, F. Orthotropic yield criteria for description of the anisotropy in tension and compression of sheet
metals. Int. J. Plast. 2008, 24, 847–866. [CrossRef]

28. Gurson, A.L. Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I—Yield Criteria and Flow Rules for Porous
Ductile Media; US Energy Research and Development Administration: Washington, DC, USA, 1975.

29. Gurson, A.L. Porous Rigid-Plastic Materials Containing Rigid Inclusions—Yield Function, Plastic Potential, and Void Nucleation; US
Energy Research and Development Administration: Washington, DC, USA, 1976.

30. McElwain, D.L.S.; Roberts, A.P.; Wilkins, A.H. Yield criterion of porous materials subjected to complex stress states. Acta Mater.
2006, 54, 1995–2002. [CrossRef]

31. Wang, D.-A.; Pan, J.; Liu, S.-D. An Anisotropic Gurson Yield Criterion for Porous Ductile Sheet Metals with Planar Anisotropy.
Int. J. Damage Mech. 2004, 13, 7–33. [CrossRef]

32. Keralavarma, S.M.; Benzerga, A.A. An approximate yield criterion for anisotropic porous media. C. R. Méc. 2008, 336, 685–692.
[CrossRef]

33. Madou, K.; Leblond, J.-B. A Gurson-type criterion for porous ductile solids containing arbitrary ellipsoidal voids—II: Determina-
tion of yield criterion parameters. J. Mech. Phys. Solids 2012, 60, 1037–1058. [CrossRef]

34. Liao, K.-C.; Pan, J.; Tang, S.C. Approximate yield criteria for anisotropic porous ductile sheet metals. Mech Mater. 1997, 26,
213–226. [CrossRef]

http://www.iso.org/cms/render/live/en/sites/isoorg/home.html
http://www.iso.org/cms/render/live/en/sites/isoorg/home.html
https://www.cen.eu/Pages/default.aspx
https://www.bsigroup.com/en-GB/
https://www.astm.org/
http://www.standards.org.au/
http://doi.org/10.1520/E0008M-16A
http://doi.org/10.1016/S0921-5093(98)00878-8
http://doi.org/10.1016/S0921-5093(01)01215-1
http://doi.org/10.1177/002199837500900107
http://doi.org/10.1061/(ASCE)0733-9445(1987)113:12(2475)
http://doi.org/10.1016/0001-6160(89)90228-9
http://doi.org/10.1016/0022-5096(93)90073-O
http://doi.org/10.1016/S0020-7403(03)00139-5
http://doi.org/10.1016/0749-6419(89)90019-3
http://doi.org/10.1016/S0924-0136(98)00155-1
http://doi.org/10.1016/j.ijplas.2003.11.021
http://doi.org/10.1016/j.ijplas.2005.06.001
http://doi.org/10.1016/j.ijplas.2007.07.013
http://doi.org/10.1016/j.actamat.2005.12.028
http://doi.org/10.1177/1056789504039010
http://doi.org/10.1016/j.crme.2008.07.008
http://doi.org/10.1016/j.jmps.2012.01.010
http://doi.org/10.1016/S0167-6636(97)00033-1


Processes 2023, 11, 4 14 of 14

35. Ide, T.; Tane, M.; Ikeda, T.; Hyun, S.K. Nakajima, H. Compressive properties of lotus-type porous stainless steel. J. Mater. Res.
2006, 21, 185–193. [CrossRef]

36. Vigliotti, A.; Pasini, D. Stiffness and strength of tridimensional periodic lattices. Comput. Methods Appl. Mech. Eng. 2012, 229–232,
27–43. [CrossRef]

37. Khaderi, S.N.; Deshpande, V.S.; Fleck, N.A. The stiffness and strength of the gyroid lattice. Int. J. Solids Struct. 2014, 51, 3866–3877.
[CrossRef]

38. Toribio, J. Relationship between microstructure and strength in eutectoid steels. Mater. Sci. Eng. A. 2004, 387–389, 227–230.
[CrossRef]

39. Máthis, K.; Horváth, K.; Farkas, G.; Choe, H.; Shin, K.; Vinogradov, A. Investigation of the Microstructure Evolution and
Deformation Mechanisms of a Mg-Zn-Zr-RE Twin-Roll-Cast Magnesium Sheet by In-Situ Experimental Techniques. Materials
2018, 11, 200. [CrossRef] [PubMed]

40. Tvergaard, V.; Needleman, A. Analysis of the cup-cone fracture in a round tensile bar. Acta Metall. 1984, 32, 157–169. [CrossRef]
41. Deshpande, V.S.; Fleck, N.A.; Ashby, M.F. Effective properties of the octet-truss lattice material. J. Mech. Phys. Solids 2001, 23.

[CrossRef]
42. Hualin, F.; Wei, Y. An equivalent continuum method of lattice structures. Acta Mech. Solida Sin. 2006, 19, 103–113. [CrossRef]
43. Zhang, Y.; Fan, H.; Fang, D. Constitutive relations and failure criterion of planar lattice composites. Compos. Sci. Technol. 2008, 68,

3299–3304. [CrossRef]
44. Chen, H.; Zheng, Q.; Zhao, L.; Zhang, Y.; Fan, H. Mechanical property of lattice truss material in sandwich panel including strut

flexural deformation. Compos. Struct. 2012, 94, 3448–3456. [CrossRef]
45. Liang, C. Impact Response Analysis of Structures Incorporating Novel Design Features; University of Sussex: Brighton, UK, 2017.
46. Nguyen, V.B.; English, M. Effects of cold roll dimpling process on mechanical properties of dimpled steel. Procedia Eng. 2017, 207,

1290–1295. [CrossRef]
47. Wang, Y.; Guan, B.; Mu, L.; Zang, Y. Equivalent Tensile Properties Analysis of the Dimpled Sheet. J. Fail. Anal. Prev. 2018, 18,

791–798. [CrossRef]
48. BS EN 10346:2015; Continuously Hot-Dip Coated Steel Flat Products for Cold Forming. British Standards Institution (BSI):

London, UK, 2015.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1557/jmr.2006.0016
http://doi.org/10.1016/j.cma.2012.03.018
http://doi.org/10.1016/j.ijsolstr.2014.06.024
http://doi.org/10.1016/j.msea.2004.01.084
http://doi.org/10.3390/ma11020200
http://www.ncbi.nlm.nih.gov/pubmed/29382054
http://doi.org/10.1016/0001-6160(84)90213-X
http://doi.org/10.1016/S0022-5096(01)00010-2
http://doi.org/10.1007/s10338-006-0612-x
http://doi.org/10.1016/j.compscitech.2008.08.017
http://doi.org/10.1016/j.compstruct.2012.06.004
http://doi.org/10.1016/j.proeng.2017.10.885
http://doi.org/10.1007/s11668-018-0455-z

	Introduction 
	Standard Methods for the Quantification of Yield 
	Upper and Lower Yield—Discontinuous Yielding 
	Proof Strengths—Continuous Yielding 
	Alternative Methods for the Quantification of Yield 
	Porous Materials 
	Lattice Materials 

	Materials and Methods 
	Results 
	Discussion 
	Conclusions 
	References

