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Acute myeloid leukaemia (AML), typically a disease of elderly adults, affects 8 children per
million each year, with the highest paediatric incidence in infants aged 0–2 of 18 per mil-
lion. Recurrent cytogenetic abnormalities contribute to leukaemia pathogenesis and are an
important determinant of leukaemia classification. The t(7;12)(q36;p13) translocation is a
high-risk AML subtype exclusively associated with infants and represents the second most
common abnormality in this age group. Mechanisms of t(7;12) leukaemogenesis remain
poorly understood. The translocation relocates the entire MNX1 gene within the ETV6 lo-
cus, but a fusion transcript is present in only half of the patients and its significance is
unclear. Instead, research has focused on ectopic MNX1 expression, a defining feature of
t(7;12) leukaemia, which has nevertheless failed to produce transformation in conventional
disease models. Recently, advances in genome editing technologies have made it possi-
ble to recreate the t(7;12) rearrangement at the chromosomal level. Together with recent
studies of MNX1 involvement using murine in vivo, in vitro, and organoid-based leukaemia
models, specific investigation on the biology of t(7;12) can provide new insights into this
AML subtype. In this review, we provide a comprehensive up-to-date analysis of the bi-
ological features of t(7;12), and discuss recent advances in mechanistic understanding of
the disease which may deliver much-needed therapeutic opportunities to a leukaemia of
notoriously poor prognosis.

Epidemiology
Acute myeloid leukaemia (AML) is a genetically heterogeneous clonal malignancy characterised by un-
controlled proliferation and impaired differentiation of haematopoietic cells of the myeloid lineage. De-
spite being predominantly a disease of late adulthood, AML also manifests in infants (defined as 0–2
years old) and children (Figure 1A) [1,2]. While overall survival rates have risen over the years, clinical
outcomes for paediatric AML patients have remained considerably poorer than in acute lymphoblastic
leukaemia (ALL) [2–4]. With approximately 100 cases a year in the U.K., childhood AML is a rare disease,
in which relapse, therapy-related toxicity and mortality are major clinical challenges [5]. The age distri-
bution of incidence peaks between 1 and 4 years of age for ALL and between 0 and 2 for AML (Figure
1B), with a rate of 18 per million compared to 8 per million in older children [5,6]. Infant, childhood, and
adult AML present age-specific molecular and transcriptional features that have led to their recognition
as biologically distinct entities [7–9].

Non-random, recurrent cytogenetic abnormalities, which contribute to the pathogenesis of leukaemia,
are an important aspect in the identification of leukaemia subtypes. Cytogenetic features correlate with
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Figure 1. Epidemiology of paediatric leukaemia

(A) Total cases of leukaemia in the UK by diagnosis (AML, ALL, CML and CLL) and age group (adult or children). (B) Incidence of

paediatric leukaemia in the U.K. as rate per million by age. The highest incidence of ALL in paediatric patients is between the age of

2 and 4, while AML in paediatric patients manifests mostly between 0 and 2. Data obtained from SEER (Surveillance, Epidemiology,

and End Results) Cancer Statistics Review 1975–2017 of the National Cancer Institute (US) and Cancer Research U.K. 2017–2019.

(C) Frequency of cytogenetic abnormalities in AML cases in infants below the age of 2 (left, 0–2 years) and children above 2 years

(right, 2+ years). Specific chromosomal abnormalities [e.g. abn12p, t(7;12), t(1;22), inv(16) CBFA2T3-GLIS2] are solely found within

a specific age group (<2 years). Modified from Masetti et al. and Bolouri et al. [8,10].

clinical outcomes and are a major determinant in the risk stratification of patients [11–14]. Certain cytogenetic
abnormalities within paediatric AML are restricted to specific age groups (Figure 1C). In infants, the most com-
mon abnormalities are 11q23 rearrangements involving the KMT2A (MLL) gene, and t(7;12)(q36;p13) [10,15],
which is exclusive to this age group. Abnormalities of 12p, generally conferring poor prognosis, are also more fre-
quently observed in infants than in older children [16], as well as t(1;22)(p13;q13) which is also exclusive to in-
fants [17]. Normal karyotypes are less prevalent in infants compared to children and adolescents. Similarly infre-
quent in infants are core-binding factor (CBF) abnormalities, which include inv(16) and t(8;21)(q22;q22) (encod-
ing the RUNX1-RUNX1T1 fusion), and are usually associated with good prognosis [18]. There are two distinct
inv(16) rearrangements, which are differentially prevalent in infants and older children / adolescents. CBF abnor-
mality inv(16)(p13q22) (CBFB-MYH11) is characteristic of older children. Infants present with inv(16)(p13q24)
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Figure 2. Timeline of key events of research findings on t(7;12) leukaemia

Summary of published and preprints on t(7;12)-related literature by year, by inclusion of literature containing keywords ‘t(7;12)’,

‘MNX1/ETV6’, or ‘MNX1’.

(CBFA2T3-GLIS2), which is clinically and biologically distinct [19]. In this review, we provide a comprehensive
summary of literature on the t(7;12) translocation, which accounts for approximately one third of infant AML cases
(Figure 1C), with a historical perspective from the early discoveries to the most recent advances and research strategies
(Figure 2).

Cytogenetic features
While early reports of the t(7;12)(q36;p13) translocation can be traced to the 1980s by conventional karyotyping of
paediatric AML samples [20–23], it was not until the early 2000s that its cytogenetic features were uncovered in detail
[24–27]. As depicted in Figure 3A, t(7;12) is a balanced translocation that produces two derivative (der) chromo-
somes: der(7) and der(12). The breakpoints map at 7q36.3 proximal to the motor neuron and pancreas homeobox
protein 1 (MNX1, also known as HLXB9) gene on chromosome 7 (Figure 3B), and at 12p13.2 within the ETS Variant
Transcription Factor 6 (ETV6) gene on chromosome 12 (Figure 3C). While the breakpoint on chromosome 12 is con-
sistently located between exons 1 to 3 of ETV6, the breakpoint in 7q36 has been shown to be heterogeneous among
patients [28]. Alternative breakpoints have been described in 7q31, 7q32 and 7q35, and some patients also harbour a
concomitant deletion of 7q [26,27,29–31]. More complex variants in the form of three-way translocations involving
chromosomes 1, 5 and 16 have been reported [32,33]. Table 1 summarises published reports on patients harbouring a
classical t(7;12) translocation with breakpoints on 7q36 and 12p13. Table 2 reports examples of karyotypes where (i)
chromosomes 7 and 12 are indicated as rearranged and may be involved in deletions, but further analysis is needed
to confirm an alternative t(7;12), (ii) the t(7;12) breakpoint on chromosome 7 is indicated as different from q36, (iii)
the t(7;12) is part of complex three way rearrangements. Altogether we have included these cases under the umbrella
of ‘non-canonical’ t(7;12) rearrangements.

Following the cytogenetic characterisation of t(7;12), a major objective of research was to uncover any fusion gene
products arising from t(7;12), in line with the pathogenesis of common AML subtypes [34,35]. In 2001, Beverloo et al.
[36] published the first report of MNX1/ETV6 mRNA detected by RT-PCR (Figure 3D). Later reports, however, did
not consistently detect fusion transcripts in t(7;12) patients [37–39]. To date, the production of the fusion transcript
is estimated to be restricted to half of t(7;12) patients [39,40] (Figure 4A). In t(7;12)(q36;p13), the entire MNX1 gene
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Table 1 Reported patients with canonical t(7;12)(q36;p13), defined as balanced translocations with breakpoints
on 7q36 and 12p13

Sex
Age
(months) FAB KARYOTYPE

MNX1/
ETV6 Immunophenotype Reference

M 12 AML 46,XY,t(7;12)(q36;p13)/47,idem,+8 N/A N/A [20]

M 14 M4 47,XY,t(7;12)(q36;p13),+8 N/A N/A [21]

N/A 7 MDS 46,XX,der(7)t(7;12)(q22;p13)del(7)(q22q36),der(12)t(7;12)(q36;p13) N/A N/A [25]

N/A 20 M5 47,XY,del(7)(q32q35-36),t(7;12)(q36;p13),+19 N/A N/A

N/A N/A M2 47,XX,t(7;12)(q36;p13),+19/49,idem,+X,+8 N/A N/A [47]

N/A N/A M2 47,XX,t(7;12)(q36;p13.1),+19 N/A N/A

F 5 T ALL 48,XX,t(7;12)(q36;p13),+8,+19 N/A N/A [46]

F 5 M1 47,XX,t(7;12)(q36;p13),+19 N/A N/A [26]

M 3 M0 47,XY,t(7;12)(q36;p13),+der(19) Yes N/A

M 5 M4 48,XY,t(7;12)(q36;p13),+8,+19 Yes N/A

M 5 ALL L2 47,XY,t(7;12)(q36;p13),+19 N/A N/A

F 20 AML 47,XX,t(7;12)(q36;p13),+8/48,idem,+19/ No N/A

50,idem,+X,+19,+19/51,idem,+X,+8,+19,+19 N/A N/A

F 3 M7 47,XX,t(7;12)(q36;p13),+19 N/A N/A [30]

M 4 M1 47,XY,der(7)t(7;12)(q36;p13)del(12)(p13p13),der(12)t(7;12)
(q36;p13),+19

N/A N/A

F 5 M5 47,XX,t(7;12)(q36;p13),+19/48,idem,+19 N/A N/A

F 6 M1 46,XX,t(7;12)(q36;p13) N/A N/A

M 12 RAEB T 46,XY,t(7;12)(q36;p13) N/A N/A

M 18 M3v 47,XY,t(7;12)(q36;p13),+19 N/A N/A

M 15 AML 47,XY,t(7;12)(q36;p13),+19 No N/A [37]

M 7 AML 48,XY,ins(12;7)(p13;q36;q11.1),+13,+19 No N/A

M 19 M0 47,XY,t(7;12)(q36;p13),+19 No N/A [28]

M 9 AML 48,XY,t(7;12)(q36;p13),+8,+19 No N/A

F 2 M2 47,XX,t(7;12)(q36;p13),+19 Yes N/A [29]

M 4 M1 47,XY,del(12)(p13).ish t(7;12)(q3;p13),+19 Yes N/A

F 5 M5 47,XX,t(7;12)(q36;p13),+19 No N/A

M 18 M3 47,XY,del(12)(p12p13).ish t(7;12)(q3;p13),+19 Yes N/A

F 8 M2 47,XX,t(7;12)(q36;p13),+19 Yes CD34, CD33, CD13,
CD38, CD117, CD7,
CD56

[41]

F 3 M0 47,XX,t(7;12)(q36;p13),+19 Yes N/A [38]

F 48 AML 48,XX,t(7;12)(q36;p13),+8,+19 Yes N/A

M 3 ABL 48,XY,t(7;12)(q36;p13),+19,+22 N/A CD34, CD13, CD33,
CD64, CD117, CD7, CD5,
CD4

[33]

F 2 M0 47,XX,t(7;12)(q36;p13),+19 N/A CD34, CD117, CD4, CD7 [42]

F 6 M2 47,XX,t(7;12)(q36;p13),+19 N/A CD7, CD56

M 7 AML 48,XY,t(7;12)(q36;p13),+8,+19 Yes CD34, CD117, CD4, CD7

F 10 M4 48,XX,+19+22,t(7;12)(q36;p13),inv(16)(p13q22) N/A N/A [32]

N/A 7
(median)

M0 N/A but t(7;12)(q36;p13) confirmed by FISH, +19 in 5/6 patients, N/A CD34, CD117CD7 in 5/6
patients

[44]

M1 N/A

M1 N/A

M5a N/A

M5a N/A

ABL N/A

Continued over

4 © 2023 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
License 4.0 (CC BY).

D
ow

nloaded from
 http://portlandpress.com

/bioscirep/article-pdf/43/1/BSR
20220489/942410/bsr-2022-0489c.pdf by Brunel U

niversity user on 10 M
arch 2023



Bioscience Reports (2023) 43 BSR20220489
https://doi.org/10.1042/BSR20220489

Table 1 Reported patients with canonical t(7;12)(q36;p13), defined as balanced translocations with breakpoints
on 7q36 and 12p13 (Continued)

Sex
Age
(months) FAB KARYOTYPE

MNX1/
ETV6 Immunophenotype Reference

M 3 M0 49,XY,14,t(7;12)(q36;p13),+19,+22 No N/A [39]

F 3 M2 47,XX,t(7;12)(q3?;p13),+19/48,idem,+13 No N/A

F 5 M1 47,XX,t(7;12)(q36;p13),+19 No N/A

F 6 M1 47,XX,t(7;12)(q36;p13),del(12)(p11),+19 No N/A

F 6 M1 47,XX,t(7;12)(q36;p13),+19 No N/A

F 7 M7 47,XX,t(7;12)(q36;p13),+19 No N/A

F 8 N/A 50,XX,t(7;12)(q36;p13),+8,+9,+10,+19 No N/A

N/A 23 N/A 47,XX,der(7)add(7)(p13)t(7;12)(q36;p13),der(12)t(7;12)(q36;p13),
del(17)(q23),+19[20]/46,XX[2]

N/A N/A [48]

N/A 2 N/A 47,XX,t(7;12)(q36;p13),+19[15]/47,idem,?inv(17)(p11.2p13)[6]/46,
XX[1]

N/A N/A

M 10 M7 47,XY,t(7;12)(q36;p13),+19[12]/48,idem,+8[8] N/A N/A

F 77 M1 48,XX,+der(6)t(1;6)(q21;q27),t(7;12)(q36;p13),+19[18] [t(7;12) nuc
ish ETV6 sep]

N/A N/A

N/A 24 M4 47,XY,t(7;12)(q36;p13),+19[20] N/A N/A

Abbreviation: ABL, acute biphenotypic leukemia.

Table 2 Reported patients with non-canonical rearrangements of 7q and 12p, defined as chromosomes 7 and 12
rearrangements other than translocations, t(7;12) breakpoints on chromosome 7 as different from q36, or the t(7;12)
as a complex rearrangement

Sex
Age
(months) FAB KARYOTYPE

Non-canonical
feature

MNX1/
ETV6 Immunopheno-type Reference

F 8 M0 47,XX,del(7)(q11.2-21),del(12)(p13), +? Deletion Yes CD34, CD117, CD4,
CD7

[24]

M 8 M6 46,XY,der(7)t(7;12)(q32;p13)del(12)(p13) Deletion; 7q32 breakpoint N/A N/A [27]

47,idem,+19/47,idem,+8

F 5 M2 48,XX,t(7;12)(q32;p13),+13,+19 7q32 breakpoint N/A N/A

F 5 T-ALL 50,XX,+6,del(12)(p13),+18,+19,+22 Deletion N/A N/A [26]

F 4 M0 46,XX,t(7;12)(q32;p13)/47,idem,+19 7q32 breakpoint N/A N/A [30]

F 3 M0 46,XX,t(7;12)(q32;p13)/47,idem,+19 7q32 breakpoint No N/A [29]

F 3 M0 47,XX,+19 +19 only Yes N/A

M 18 M3 47,XY,del(12)(p12p13).ish t(7;12)(q3;p13),+19 Deletion; undefined 7q
breakpoint

Yes N/A

F 23 M7 46,XX,add(7)(q22),del(12)(p12p13) Deletion Yes CD41, CD36,CD13,
CD33, CD15, CD7

[31]

M 7 M5a 49,XY,t(5;7;12)(q31;q36;p13),+8,+19,+del(22)(q13) 3-way translocation N/A N/A [33]

M 12 M0 48,XY,t(1;7;12)(q25;q36;p13),+8,+19 3-way translocation N/A N/A

F 4 M2
47,XX,der(16)t(7;12;16)(q36;p13;q12)inv(16)(p11.2q12),
+19

3-way translocation N/A CD34, CD117, CD4,
CD7

[42]

M 4 M2 47,XY,del(12)(q12),+19 Deletion N/A CD34, CD117, CD4,
CD7

F 6 M7
47,XX,der(16)t(7;12;16)(q36;p13;q12)inv(16)(p11.2q12),
+19

3-way translocation N/A N/A [32]

F 5 MPAL 46,XX, der(7)t(7;12)(q11;p13)del(7)(q11q36) 7q11 breakpoint N/A N/A

N/A 9 M0 47,XX,del(7)(q11.2∼21),del(12)(p13),+?19 7q11 breakpoint Yes N/A [49]
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Figure 3. Cytogenetic and molecular features of t(7;12)

(A) Schematic representation of t(7;12)(q36;p13), showing the non-translocated chromosomes 7 and 12 on the left highlighting the

breakpoints at 7q36.3 and 12p13.2 and the structures of the genes involved (MNX1 and ETV6). On the right, the two derivative (der)

chromosomes der(7) and der(12), with the resulting fused genomic loci. (B and C) Protein structures of MNX1 (B) and ETV6 (C),

indicating the exons (e) coding for different motifs and their function. (D) Schematic representation of the MNX1/ETV6 fusion which

fuses exon (e) 1 of MNX1 to exon 3 of ETV6 by a splicing mechanism as shown by black lines. Below, the hypothetical MNX1/ETV6

fusion protein, as described by Beverloo et al. [36], with resulting structural domains.

is translocated to chromosome 12, upstream of the remainder of the disrupted ETV6 gene. On the der(7), the 5’
portion of ETV6 recombines with the genomic portion of 7q36.3. With this arrangement, a functional fusion gene
at the mRNA level could only arise from the der(12). Accordingly, a reciprocal fusion has never been shown. The
detected MNX1/ETV6 transcript consists of exon 1 of MNX1 fused to exon 3 of ETV6 in-frame. Exons 2 and 3 of
MNX1 are presumably excised via splicing [29,36] (Figure 3D). Out-of-frame isoforms of MNX1/ETV6 have also
been described [41,42], and a translated protein has never been demonstrated. Functionally, the hypothetical resulting
fusion would retain the regulatory domains of MNX1 and the HLX/PNT, central and STS domains of ETV6 (Figure
3D). The only common characteristic between t(7;12) patients was later found to be ectopic overexpression of the
MNX1 gene [29,38], which has been used as a surrogate of the disease, as discussed below.

Clinical features
With a median age at diagnosis of 6 months [39] (Figure 4B), the prevalence of t(7;12) is reported to be between
18-30% of infants with AML. This is possibly an underestimation, as the translocation can go unnoticed using con-
ventional cytogenetic methods. In the late 1990s/early 2000s, advances in molecular cytogenetics, particularly fluo-
rescence in situ hybridisation (FISH), allowed a comprehensive visualisation and refinement of the t(7;12) rearrange-
ment [24–26,28]. To date, the most reliable diagnostic approach to detect the translocation is FISH [32,43–45]. Re-
markable co-occurring cytogenetic abnormalities are trisomy 8 and/or 19 (Figure 4C), which are deemed to arise as a
secondary event conferring proliferative advantage, following the observations of an increased frequency of these ane-
uploidies at relapse [21,26]. Earlier reports revealed poor prognostic outcomes in infants with t(7;12), with extremely
poor survival rates and ineffective treatment by hematopoietic stem cell transplantation [29,31,41]. Event-free sur-
vival (EFS) rates were estimated to be 0–14% and overall survival 0–28% by Tosi et al. [40]; however, more recent
survival analyses by Espersen et al. [39] described improved prognostic outlooks with 3 year EFS of 43% and 3 year
OS of 100% but high rates of relapse.

The clinical phenotype of t(7;12) is predominantly AML, with only rare cases diagnosed as ALL [26,29,46] or as
biphenotypic leukaemia [33]. Although t(7;12) is not associated with a specific FAB subtype, the phenotype of blasts
often appears poorly differentiated and is therefore often categorised as M0, M1 or M2 (Figure 4D), while some reports
also described blasts with a M7 morphology [30,31,39]. Immunophenotypically, blasts express immature markers

6 © 2023 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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Figure 4. Cytogenetic and clinical characteristics of t(7;12) patients

(A) Percentage of t(7;12) patient cases where a MNX1/ETV6 transcript was detected. (B) Distribution of age at diagnosis of t(7;12)

patients. (C) Proportion of additional numerical cytogenetic abnormalities in conjunction with t(7;12). (D) Percentage of French

American British (FAB) categories of t(7;12) at diagnosis. NOS = not otherwise specified. (E) Contingency table of co-occurrence

of clinical features of t(7;12) patients showing the odds ratio and statistical significance as P-value (threshold < 0.05) obtained by

Fisher’s exact test. (F) Proportion of t(7;12) patients divided by age (older than 8 months vs younger than 8 months) and the FAB

subtype at diagnosis (undifferentiated M0-M2 vs differentiated M3-M7). Statistical significance was calculated by Fisher’s exact

test.

© 2023 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
License 4.0 (CC BY).

7

D
ow

nloaded from
 http://portlandpress.com

/bioscirep/article-pdf/43/1/BSR
20220489/942410/bsr-2022-0489c.pdf by Brunel U

niversity user on 10 M
arch 2023



Bioscience Reports (2023) 43 BSR20220489
https://doi.org/10.1042/BSR20220489

CD34 and CD117 (c-Kit), CD4 and CD7 T-cell markers, and myeloid markers [33,42]. While extensive analyses of
co-occurring clinical features are not available, we explored the correlation between age, FAB subtype, MNX1/ETV6
fusion, and the two most common numerical abnormalities, trisomies 19 and 8 (Figure 4E). We found a statistically
significant association between age and FAB subtype, with younger infants (below the age of 8 months) having a poorly
differentiated FAB morphology (M0, M1 or M2) compared to their older counterparts (Figure 4F). Nevertheless,
fulfilling the need for detailed clinical studies will help in understanding the biological association between these
clinical features.

Transcriptional landscape
Infant, childhood, and adult AML present age-specific molecular and transcriptional features that have led to their
recognition as biologically distinct entities [7–9]. The availability of high-throughput genomic tools and public
databases enables a comprehensive analysis of the transcriptional landscape of t(7;12). Biological differences between
AML subtypes have long been recognised, and microarray gene expression profiling conducted by Wildenhain et
al. [42] and Balgobind et al. [50] already revealed a distinct expression pattern for t(7;12) leukaemia. We recapit-
ulate this observation by separate clustering of t(7;12) samples combining publicly-available microarray data and
RNA-sequencing (RNA-seq) profiling (Figure 5A).

From these observations, it was apparent that t(7;12)-driven leukaemogenesis differs from other cytogenetic sub-
types affecting the same age group. The Wildenhain et al. [42] study clearly highlighted the t(7;12) patient cohort as
transcriptionally distinct from patients with MLL rearrangements, which are the most common cytogenetic abnor-
malities in the 0–2 age group [10,15]. Commonly overexpressed genes in the MLL-rearranged cohorts, such as the
oncogenic HOXA gene signature, cofactor MEIS1, and c-MYB were not up-regulated in t(7;12) patients [42]. In fact,
clinical features of MLL and t(7;12) infant AML are also distinct, with MLL-rearranged AML presenting as M4/M5
morphologies and t(7;12) often exhibiting less differentiated blasts [10,15,33,42]. Wildenhain et al. [42] described
upregulation of a number of genes associated with cell adhesion and cell-to-cell interactions in patients with t(7;12)
(listed in Figure 5B). Among these, ANGPT1 and KDR/VEGFR2 were highlighted as elements of ligand–receptor
signalling pairs, respectively with TIE2 and VEGF, involved in regulation of haematopoietic stem cell (HSC) quies-
cence and the respective niche microenvironment [51]. The distinctive transcriptional profile of t(7;12) leukaemia
is also captured by Balgobind et al. [50], who performed a more comprehensive comparison with 11q23 rearrange-
ments, t(8;21), inv(16) and t(15;17), identifying 13 discriminative genes (Figure 5B). By analysing the Balgobind et al.
[50] and TARGET AML datasets, Ragusa et al. [72] derived two gene signatures for t(7;12) patients compared with
other paediatric AML subtypes and normal bone marrow. Both gene sets showed enrichment in genes involved in cell
adhesion, cellular transport of small molecules, and lipid metabolism, consistent with the findings from Wildenhain
et al. [42].

Biological mechanisms
The biology of t(7;12)-associated leukaemia remains largely unknown, owing to the limited number of patients and
the historical lack of research models recapitulating the rearrangement. To date, two main molecular features have
been investigated – the MNX1/ETV6 fusion gene and ectopic overexpression of MNX1. While the MNX1/ETV6
mRNA fusion was only detectable in 50% of cases, ectopic reactivation of the MNX1 gene is a common molecular
feature of t(7;12) patients [29,38]. The unique association of t(7;12) with infants has been proposed to reflect in utero
origin of the disease [42,52,53], but a candidate cell of origin remains to be identified. The immunophenotype profile
of t(7;12) patients exhibiting myeloid and T-cell markers suggested a putative involvement of early T-cell precursors
via improper recombination events. However, this hypothesis was disproved by Wildenhain et al. [42], who could
not find evidence of V(D)J recombination. A pivotal question in the understanding of (cyto)genetic aberrations in
the establishment of the disease is the contribution of the aberration alone or the requirement for additional events.
The development of AML follows the cooperative class I and class II mutation model, whereby the full extent of
the disease typically requires cooperating events [50]. Nevertheless, as with other types of paediatric/infant AML,
additional mutation events are rare. Mutations in RAD21, KIT, RAS, PTPN11, and more recently EZH2, have been
identified in few t(7;12) patients [15,49,54], however comprehensive whole genome sequencing studies are lacking.
The co-occurrence of numerical cytogenetic anomalies, most notably trisomy 19 (Figure 4C), may cooperate to the
leukaemogenesis of t(7;12) as additional ‘hits’. Nevertheless, the contribution of associated mutations has not been
explored.

8 © 2023 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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Figure 5. Transcriptional features of t(7;12) patients

(A) t-SNE plot representing clustering of paediatric AML patients by transcriptional profiles in microarray experiments by Balgobind

et al. [50] (left) and in the TARGET RNA sequencing database [48] (right). Patients harbouring t(7;12), circled in black, form distinct

clusters from other subtypes, denoting a distinct gene expression signature. (B) Distinctive genes in t(7;12) patients derived by

microarray analyses by Wildenhain et al. [42] and Balgobind et al. [50]. (C) MNX1 expression levels in the AML cohorts of TARGET

(paediatric cancers) and TCGA (adult cancers), and whole blood from GTEx (healthy tissues), determined by RNA sequencing.

Expression levels are defined as log2(norm count+1). The karyotypes for the highest MNX1 expressors are highlighted. NK =
normal karyotype.

MNX1/ETV6 fusion transcript
Commonly, leukaemia-associated chromosomal translocations (and inversions) result in the generation of fusion on-
coproteins or in the activation of proto-oncogenes through the activity of new regulatory elements, which contribute
directly to leukaemogenesis [34,35]. The identification of the MNX1/ETV6 transcript in t(7;12) [36] suggested a
conventional fusion-driven leukaemogenic effect, but failure to detect the chimaeric transcript in 50% of cases, and
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lack of detection of a translated protein brings into question its contributory role to the leukaemogenic process. The
transformation potential of an MNX1/ETV6 fusion transcript was compared with that of the potent fusion onco-
gene MLL/ENL, by viral delivery to adult murine bone marrow HSC, with or without concomitant overexpression
of MNX1 [42]. While the MLL/ENL fusion was able to transform HSCs in serial re-plating colony-forming cell
(CFC) assays, MNX1/ETV6 with or without overexpression of MNX1 did not confer self-renewal capacity. A recent
pre-print has also failed to detect leukaemogenic potential of MNX1/ETV6 fusion-transduced foetal liver (FL) cells
in mouse transplantation experiments [55]. However, the authors described an in vitro myeloid differentiation bias
of cells transduced with the fusion transcript. Significantly, no effects of MNX1/ETV6 were detected in adult bone
marrow (BM) cells [55], hinting at the proposed in utero origins of t(7;12) leukaemia. Overall, with a MNX1/ETV6
protein still not identified, the role of the fusion transcript has remained questionable.

MNX1 overexpression
The sole unifying molecular characteristic among all t(7;12) patients is the overexpression of MNX1 [29,38], which
has become a defining feature and focal research point of t(7;12) leukaemia. In AML cohorts, ectopic MNX1 overex-
pression is almost pathognomonic of t(7;12) and some deletion 7q leukaemias that involve breakpoints proximal to
MNX1 [56] (Figure 5C).

Motor neuron and pancreas homeobox protein 1 (MNX1, formerly known as HLXB9), is a small homeobox gene of
3 exons coding for the transcription factor HB9, which functions during embryonic development in the formation and
differentiation of the pancreas and motor neurons by transcriptional modulation of cell identity programmes [57–61].
Early studies by Deguchi and Kehrl [62] described MNX1 as highly expressed in human BM CD34+ haematopoietic
cells and absent in differentiated blood cells, associating MNX1 with HSC and progenitors. Later studies, however,
produced contrasting results [29,31,63–65]; hence, the physiological expression of MNX1 in normal blood cells con-
tinues to be a topic of debate.

Functionally, Wildenhain et al. [42] demonstrated the inability of MNX1 overexpression to transform adult BM
cells. More recently, Ingenhag et al. [52] investigated the consequences of MNX1 ectopic overexpression in mouse BM
HSCs in vivo upon transplantation of irradiated recipients, and observed a block in cell differentiation and the onset
of senescence. Engrafted haematopoietic cells lacked mature myeloid cells and B and T lymphocytes, indicating an
early block in differentiation. In contrast, the authors detected a significant accumulation of megakaryocyte-erythroid
progenitors (MEP), which was further supported by genome-wide expression profiling of engrafted cells which re-
vealed upregulation of genes affiliated with the erythroid lineage. However, overexpression of MNX1 did not pro-
duce malignant transformation in mice. In human CD34+ HSC and progenitors, MNX1 overexpression resulted in
p53/p21-dependent cell cycle arrest and a change in morphology attributable to the induction of senescence, which
the authors compared to observations with other known oncogenes, e.g., Myc and RAS in lymphomas or PTEN in
prostate tumours. Altogether, the data supported a role for ectopic overexpression of MNX1 in dysregulation of pro-
liferation and differentiation of normal HSC and progenitors, but could not demonstrate malignant transformation
potential in adult mouse and human cells [52].

A recent work in preprint specifically explored the age specificity of MNX1 activity [55]. Haematopoietic progeni-
tor cells from FL and adult BM were transduced to overexpress MNX1 and transplanted into immunocompetent and
immunocompromised mice. While MNX1 overexpression had no effect in immunocompetent mice, FL, but not adult
BM-transduced cells reportedly initiated a poorly-differentiated myeloid leukaemia in the immunocompromised re-
cipients. Similarly, in vitro, the most prominent effects of MNX1 were observed in FL, specifically skewed myeloid
differentiation, and increased CFC capacity and proliferation [55]. This work provides support for a stage-specific
role of MNX1 in leukaemia transformation of foetal cells, and further suggests a facilitating effect of the immature
immune system of newborns in propagating the disease.

Transcriptomic analysis of the MNX1 overexpressing FL captured enrichment of biological functions related to
DNA damage, cell cycle, chromatin modelling, and epigenetic modulation [55]. Coherent with Ingenhag et al. [52],
Waraky et al. [55] showed induction of DNA damage by MNX1 overexpression in both FL and adult BM cells. Interest-
ingly, however, the adult but not foetal cells exhibited apoptotic markers, which could explain the age-vulnerability
to MNX1 effects. The authors propose that MNX1 can affect global chromatin accessibility through interference
with MAT2A-mediated availability of methyl groups and imbalance of histone methyl-modifications (H3K4me3 and
H3K27me3), but it is unclear how global chromatin regulation links to age-susceptibility to transformation [55]. Fer-
guson, Gautrey and Strathdee [66] had previously attributed MNX1 activity in haematopoietic cells to epigenetic dys-
regulation, and suggested that MNX1 could act as both tumour-suppressor and oncogene depending on methylation
status. The authors found unique hypermethylation of the MNX1 locus in childhood and adult ALL, and suggested
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that its demethylated state in AML (as well as in chronic leukaemias) could contribute to transformation [66]. It is pos-
sible that the methylation status of the MNX1 locus and its regulation vary throughout the haematopoietic ontogeny
and result in differential susceptibility to methyl group availability and putative self-regulation, with consequences to
leukaemogenesis.

Ballabio et al. [38] described an altered nuclear localisation of the loci involved in t(7;12) patient samples. Using
FISH, the authors demonstrated that the translocation causes a shift in the nuclear positioning of the translocated
MNX1 locus from the nuclear periphery to the interior. In the nuclei of healthy lymphocytes, MNX1 is localised
at the periphery, and ETV6 is normally localised in the nuclear interior, therefore the repositioning of MNX1 into
a transcriptionally active (internal) region due to the t(7;12) has been suggested to trigger its expression. Nuclear
genome re-organisation due to the chromosomal abnormalities has been shown to affect gene regulation [67,68];
however, it remains unclear whether MNX1 ectopic expression is a cause or an effect of the nuclear reorganisation.
Interestingly, previous nuclear localisation analysis also showed that MNX1 becomes transcriptionally active during
neuronal differentiation of the neuroblastoma SK-N-BE cell line, and this activity is correlated with its relocation
towards the nuclear interior [61]. During embryonic development, MNX1 uses upstream regulatory elements in a
tissue-specific manner [69–71], and it is possible that in the context of leukaemia some of these distant regulatory
elements are misused. Therefore, the altered genomic context resulting from the t(7;12) rearrangement could play a
role in its pathogenesis, presumably through improper contact with tissue-restricted regulatory elements.

Research models
Detailed mechanistic understanding of t(7;12)-driven leukaemogenesis, and elucidation of the stage-specific conse-
quences of the translocation throughout the ontogeny, require modelling of the translocation itself. To date, t(7;12)
leukaemia has been primarily investigated by proxy of MNX1 overexpression. This has allowed transplantation stud-
ies by transgene delivery [52,55]; however, no transgenic mice exist carrying a t(7;12) translocation or haematopoietic
overexpression of MNX1. Recently, however, we [72] and others [73] successfully recreated the t(7;12) cytogenetic
entity in in vitro cellular systems by the use of CRISPR/Cas9 genome editing.

Nilsson et al. [73] generated the translocation in human induced pluripotent stem cells (iPSC) using CRISPR/Cas9
delivery via nucleofection, by targeting patient-specific breakpoints on chromosomes 7 and 12. The engineered iPSC
line was able to differentiate into all three germ layers with similar efficiency to the parental cells, but upon differ-
entiation into haematopoietic progenitors, t(7;12) iPSC showed a block in erythroid and megakaryocytic differen-
tiation and a myeloid bias. The t(7;12)-carrying iPSC had a proliferative advantage in liquid culture and a higher
CFC frequency, but colony output was not sustained through serial replating, with no strong evidence of in vitro
transformation [73].

We, on the other hand, used the erythro-leukaemia K562 cell line to introduce the translocation by delivery of
CRISPR/Cas9 ribonucleoprotein complexes through electroporation [72]. The chosen targets also reflected previ-
ously published patient breakpoints [28,37], but were distinct from Nilsson et al. [73]. Phenotypically, the K562-t(7;12)
model produced more immature myeloid colonies, which contrasted with the dominant erythroid-like colonies pro-
duced by control K562 cells. As the K562 line is already transformed, we were not able to determine transforma-
tive potential. Nevertheless, the colony phenotype was retained through serial replating, suggesting self-renewal of a
candidate myeloid-biased cell, programmed or selected upon t(7;12) engineering. The t(7;12)-harbouring K562 cells
were capable of initiating molecular erythroid differentiation under erythroid culture conditions, but showed a higher
magnitude of induction of erythroid marker genes. This observation supported the notion that t(7;12) promotes an
earlier erythroid or erythro-myeloid differentiation state, or gives selective advantage to myeloid cells in the absence
of differentiation cues [72]. From a mechanistic standpoint, we observed that engineering of t(7;12) could recapit-
ulate the nuclear repositioning of the translocated MNX1 locus described by Ballabio et al. [38] in t(7;12) patients.
By using nuclear localisation analysis on FISH images, we were able to quantify the localisation of translocated and
non-translocated chromosomes 7 and 12 within the nucleus, and found that the translocated MNX1 gene on the
der(12) was repositioned towards the nuclear interior.

Both engineered models recapitulate key transcriptional features of t(7;12), importantly the overexpression of
MNX1 and congruent transcriptional profiles of t(7;12) patients [72,73]. An interesting difference between the two
models is the generation of the fusion transcript MNX1/ETV6, which was not observed in the K562 model [72],
but was detectable in the iPSC line at a low expression level [73], potentially capturing differences in generation of a
MNX1/ETV6 fusion in patients that could be sporadic or dependent on the specific underlying translocation break-
point.
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Interestingly, the engineering of t(7;12) posed cell-type-dependent challenges for both groups. Nilsson et al. [73]
initially attempted to generate iPSC lines from the BM of a patient harbouring t(7;12), but the translocation was not
retained through cloning and reprogramming of leukaemic blasts. Similarly, we [72] introduced the rearrangement
in healthy adult CD34+ haematopoietic progenitors and observed a gradual decrease in the frequency of cells har-
bouring t(7;12) in culture, which were eventually undetectable. The engineered iPSC t(7;12) line by Nilsson et al. [73]
was also not transformed by the introduction of the translocation, as determined by the lack of sustained replating
capacity. These observations further strengthen the hypothesis that t(7;12) (and MNX1 overexpression) require a
defined cellular background to exert its leukaemic effects [42,52,53,55].

The neonatal presentation of t(7;12)-AML hints at a developmental stage-specific cell of origin. Advances in stem
cell biology have harnessed the pluripotency of mouse embryonic stem cells to differentiate into various cell types
and organise in embryo-like structures, including gastruloids [74–76]. The latter are 3D cell culture systems initi-
ated from embryonic stem (ES) cells, which self-organise into symmetry breaking polarised structures that mimic
in vivo gastrulation and can support embryonic tissue and organ formation with temporal and topographical con-
sistency [75,77–79]. In a recent preprint by Ragusa et al. [80], the gastruloid protocol was amended to recapitulate
developmental haematopoiesis and served as a model to dissect the cellular basis of t(7;12) infant leukaemia. By over-
expressing MNX1 in this system by lentiviral vector transduction of ES cells, the effects of MNX1 could be pinpointed
at a specific temporal window corresponding to the emergence of early CD41+ haematopoietic progenitors. Specifi-
cally, MNX1 overexpressing gastruloids expanded the haemogenic endothelium from which CD41+ haematopoietic
progenitors are specified, without affecting CD45+ pre-HSC at later stages of the protocol. Importantly, gastruloids
with MNX1 overexpression gained transformative capacity as observed from serial replating in colony forming as-
says, further strengthening the developmental specificity of MNX1 leukaemic effects. Analysis of RNA-seq profiles of
t(7;12) patients and other AML subtypes against the gastruloids transcriptomics also revealed the specificity of t(7;12)
to the early progenitor stage [80]. As a homeobox gene, MNX1 functions in precise spatio-temporal windows dur-
ing embryonic development, including axial specification and patterning [59,81]. The gastruloid system is therefore
particularly attractive for the study of effects of MNX1 in a physiologically-relevant context.

Clinically relevant targets
Despite improvements in therapeutic options and increased understanding of the disease, paediatric AML long-term
survival rates are approximately 70% and lag behind the 90% cure rate of ALL patients [2,5,15,18]. In particular, there
remains considerable prognostic difference between AML subtypes, with (7;12) infant leukaemia a high-risk group
associated with poor clinical outcomes [6,40], despite some improvement in more recent years [39]. The t(7;12) is
recognised as an adverse risk cytogenetic abnormality in clinical practice, but it is yet to be included as a distinct entity
in the WHO classification of myeloid neoplasms [13,82–84]. Nonetheless, diagnostic tests by FISH are encouraged
for screening for t(7;12) in infants [43–45].

Although the unique biological characteristics of infant AML are well acknowledged, therapeutic options of choice
are the same as paediatric and adolescent patients [6,85]. Tailored therapy towards biological targets has been
successfully employed for well-established leukaemias, classically exemplified by tyrosine kinase inhibitors against
BCR-ABL1, or all-trans retinoic acid for PML-RARA [86,87], and more recently extended to FLT3 or IDH inhibitors
[88,89]. The repertoire of targeted therapies is expanding for paediatric forms as well, including immunotherapy- or
small molecule-based options [90]. As the mechanisms of t(7;12)-mediated leukaemogenesis have remained elusive,
the advent of new research tools and models will shed light onto druggable targets specific to t(7;12), for example, by
drug screening with the use of cell lines harbouring the rearrangement at the cytogenetic level [72].

Several reports have identified relapse as a major clinical burden of t(7;12) [29,31,41]. Relapse has often been associ-
ated with the persistence of leukaemia initiating cells, which are able to evade treatment through modulation of quies-
cence [91,92]. Specific niche requirements supporting the successful leukaemic effects of t(7;12) have been speculated
[42,52,53,65] from the observations of enriched gene expression related to cell adhesion [93–96]. These interactions
are crucial during embryonic haematopoiesis to orchestrate mobilisation, migration, and homing of haematopoietic
progenitors through the various sites of haematopoiesis [97]. Recent transcriptomics analyses of relapsed AML pa-
tients has uncovered new biological pathways associated with the recurrence of disease, and particularly metabolic
processes [98]. Interestingly, RNA-seq analyses of the engineered t(7;12) model [72,73] and MNX1-overexpressing
gastruloids [80] revealed differentially expressed genes related to cellular transport of small molecules, glucose and
lipid metabolism, which could be harnessed to identify new druggable targets.
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Newer treatment strategies, such as chimeric antigen receptor T cell (CAR-T) therapy are showing considerable suc-
cess in treating haematological malignancies, particularly lymphoblastic [99]. CAR-T therapy involves the use of au-
tologous T cells that are engineered to selectively attack defined tumour-associated antigens [100]. Newer generations
of CAR-T are expanding the targetable CD molecules that are exclusive to malignant cells, which could be adapted
to several subtypes, including t(7;12). Target selection for AML has been challenging due to the co-expression of a
large number of markers in malignant and healthy haematopoietic cells [101], however high-throughput sequencing
of age-specific patients is now allowing the identification of promising candidates [102]. The putative developmental
affiliation of t(7;12) leukaemia has the potential to reveal specific antigens which are absent from normal haematopoi-
etic cells at the time of diagnosis, and thus present a credible target of immunotherapy. Extensive immunophenotypic
analysis of t(7;12) patients will be needed to confirm the relevance of this approach.

While the role of MNX1 overexpression is still under investigation, its specificity to the t(7;12) subtype makes
it a desirable target. However, the link between MNX1’s embryonic activity and haematopoietic malignancies, as
well as its expression in healthy haematopoietic cells, remains unclear. Direct transcriptional targets of MNX1 are
largely undefined. Using the AML cell line HL-60 transfected to stably overexpress MNX1, Wildenhain et al. [65]
showed that MNX1 binds and represses PGTER2, the ligand for PGE2, a known regulator of the haematopoietic
niche [103]. Down-regulation of PGTER2 is consistently found in transcriptional profiling of MNX1 overexpres-
sion in haematopoietic cells [52,65], suggesting activation of prostaglandin signalling as a candidate therapeutic or
disease-modulatory strategy. More targeted therapeutic options could be extrapolated from the preprint by Waraky
et al. [55], whereby the epigenetic mechanisms of MNX1 could be diminished by Sinefungin treatment to target the
methionine cycle and reset histone methylation. Systematic analysis of direct targets of t(7;12) genome reorganisation
and MNX1 binding, and of their requirement for transformation will reveal new targets for therapeutic intervention.

Conclusions
AML harbouring t(7;12) is a clinically challenging disease subtype specifically affecting the infant population. Two
major molecular features have been investigated to date, namely production of a MNX1/ETV6 fusion transcript and
overexpression of the embryonic gene MNX1. Thanks to recent advances in genome engineering technologies, novel
murine and human in vitro models have been developed. Mechanisms of leukaemogenesis are therefore beginning
to be uncovered, including the exact developmental window affected and the role of MNX1. Understanding the
cytogenetic, molecular, and clinical features of t(7;12) will pave the way towards targeted therapeutic interventions.
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46 Andreasson, P., Höglund, M., Békássy, A.N., Garwicz, S., Heldrup, J., Mitelman, F. et al. (2000) Cytogenetic and FISH studies of a single center
consecutive series of 152 childhood acute lymphoblastic leukemias. Eur. J. Haematol. 65, 40–51, https://doi.org/10.1034/j.1600-0609.2000.90190.x

47 Raimondi, S.C., Chang, M.N., Ravindranath, Y., Behm, F.G., Gresik, M.V., Steuber, C.P. et al. (1999) Chromosomal abnormalities in 478 children with
acute myeloid leukemia: clinical characteristics and treatment outcome in a cooperative pediatric oncology group study-POG 8821. Blood, J. Am. Soc.
Hematol. 94, 3707–3716

48 Therapeutically Applicable Research to Generate Effective Treatments (TARGET). Available at: https://ocg.cancer.gov/programs/target
49 Fornerod, M., Ma, J., Noort, S., Liu, Y., Walsh, M.P., Shi, L. et al. (2021) Integrative Genomic Analysis of Pediatric Myeloid-Related Acute Leukemias

Identifies Novel Subtypes and Prognostic Indicators. Blood Cancer Discov. 2, 586–599, https://doi.org/10.1158/2643-3230.BCD-21-0049
50 Balgobind, B.V., Hollink, I.H., Arentsen-Peters, S.T., Zimmermann, M., Harbott, J., Beverloo, H.B. et al. (2011) Integrative analysis of type-I and type-II

aberrations underscores the genetic heterogeneity of pediatric acute myeloid leukemia. Haematologica 96, 1478–1487,
https://doi.org/10.3324/haematol.2010.038976

51 Kim, A.D., Stachura, D.L. and Traver, D. (2014) Cell signaling pathways involved in hematopoietic stem cell specification. Exp. Cell. Res. 329,
227–233, https://doi.org/10.1016/j.yexcr.2014.10.011

52 Ingenhag, D., Reister, S., Auer, F., Bhatia, S., Wildenhain, S., Picard, D. et al. (2019) The homeobox transcription factor HB9 induces senescence and
blocks differentiation in hematopoietic stem and progenitor cells. Haematologica 104, 35–46, https://doi.org/10.3324/haematol.2018.189407

53 Schwaller, J. (2019) Novel insights into the role of aberrantly expressed MNX1 (HLXB9) in infant acute myeloid leukemia. Haematologica 104, 1–3,
https://doi.org/10.3324/haematol.2018.205971

© 2023 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons
Attribution License 4.0 (CC BY).

15

D
ow

nloaded from
 http://portlandpress.com

/bioscirep/article-pdf/43/1/BSR
20220489/942410/bsr-2022-0489c.pdf by Brunel U

niversity user on 10 M
arch 2023

https://doi.org/10.1038/sj.leu.2401439
https://doi.org/10.1002/gcc.10258
https://doi.org/10.1002/gcc.20335
https://doi.org/10.1038/sj.leu.2402121
https://doi.org/10.1016/j.cancergencyto.2008.06.009
https://doi.org/10.3390/cancers5010281
https://doi.org/10.1016/j.cancergencyto.2009.02.007
https://doi.org/10.1016/j.tig.2005.10.002
https://doi.org/10.1038/nrc2091
https://doi.org/10.1038/sj.leu.2402773
https://doi.org/10.1038/leu.2009.15
https://doi.org/10.1002/gcc.22538
https://doi.org/10.1186/s40364-015-0041-4
https://doi.org/10.1002/pbc.21376
https://doi.org/10.1038/leu.2010.146
https://doi.org/10.7243/2052-434X-3-4
https://doi.org/10.1038/s41375-019-0378-z
https://doi.org/10.1034/j.1600-0609.2000.90190.x
https://ocg.cancer.gov/programs/target
https://doi.org/10.1158/2643-3230.BCD-21-0049
https://doi.org/10.3324/haematol.2010.038976
https://doi.org/10.1016/j.yexcr.2014.10.011
https://doi.org/10.3324/haematol.2018.189407
https://doi.org/10.3324/haematol.2018.205971


Bioscience Reports (2023) 43 BSR20220489
https://doi.org/10.1042/BSR20220489

54 Balgobind, B.V., Van den Heuvel-Eibrink, M.M., De Menezes, R.X., Reinhardt, D., Hollink, I.H., Arentsen-Peters, S.T. et al. (2011) Evaluation of gene
expression signatures predictive of cytogenetic and molecular subtypes of pediatric acute myeloid leukemia. Haematologica 96, 221–230,
https://doi.org/10.3324/haematol.2010.029660
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