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Protocol-Based Particle Filtering for Nonlinear
Complex Networks: Handling Non-Gaussian Noises
and Measurement Censoring

Weihao Song, Zidong Wang, Zhongkui Li, Hongli Dong, and Qimng Han

Abstract—In this paper, the particle filtering problem is inves-
tigated for a class of discrete-time nonlinear complex netarks
with stochastic perturbations under the scheduling of randm
access protocol. The stochastic perturbations stem from #hon-
off stochastic coupling, non-Gaussian noises and measuremt
censoring. The random occurrence of the on-off node couplm
is governed by a set of Bernoulli distributed white sequence

[12], [43]. Generally speaking, a typical CN is composed of a
bulk of coupled and interacted nodes, and each node possesse
its own practical characteristics and dynamical behavidtos
ascertain the collective behaviors of dynamical CNs, atgrea
deal of attention has been devoted to the analysis and sisthe
issues on various CNs in recent years, and a large number

and two kinds of measurement censoring models (i.e. dead-of results have sprung up from a Variety of perspectives

band-like model and saturation-like model) are characterzed by
the predetermined left- and right-end censoring threshold. To
alleviate data collision over the networks, the so-calledandom
access protocol is elaborately exploited to orchestrate éhprocess

such as structure identification [56], stability analysi®]|
synchronization [7], and so forth. In particular, despisegreat
significance in practical applications, the complete infation

of measurement transmission. Moreover, two expressions of about network states isnlikelyto be fully accessible because

the modified likelihood function are established to weaken he
adverse effects from the measurement censoring. Accordihg a
protocol-based filter is designed in the auxiliary particlefiltering
framework, where the new patrticles are generated from a mixtire
distribution and the associated weights are assigned basesh
the derived likelihood function. Finally, a multi-target t racking
application is taken into account to demonstrate the practability
and effectiveness of the developed filtering scheme.

Index Terms—Nonlinear/non-Gaussian complex network, par-
ticle filtering, random access protocol, on-off stochasticoupling,
measurement censoring

I. INTRODUCTION
Owing to its distinctive capability of characterizing difent

of the complicated structures and constrained resources, a
therefore the filtering (or state estimation) problem hasdgr
ually become an active research topic in the realm of CNs.

In the context of filtering or state estimation over CN-
s, most of the existing results have been concerned with
network structures/topologies, security issues and mitwo
induced phenomena, see e.g. [8], [35] on switching topglogy
[20], [46] on deception attacks, [39] on gain variationsd an
[55] on packet dropouts. It is worth mentioning that the filte
design is largely dependent on the system model and noise
types. So far, the majority of published literature has been
concentrated on linear systems or systems undergoing some
specific nonlinearities such as sector-bounded nonlityeari

kinds of real-world systems, the complex network (CN) hdd1], randomly occurring nonlinearity [33] and differeaibie
recently aroused a surge of research interests from severahlinearity [21], [34], [36]. Also, the system noises have
branches of science and engineering such as sociology,been typically assumed to be of Gaussian type [35] or norm-
conomics, computer science, and electrical engineeriihg [bounded [18], and such assumptions might be unrealistic in
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many real-world applications. As such, it makes practical

sense to investigate the filtering issues for CNs with génera

nonlinearities and non-Gaussian noises, which remain open
yet challenging, especially when the on-off stochastiqdiog

[27], [34] is taken into consideration as well.

With the ever-growing popularity of networked control
systems, more and more system components (e.g., Sensors,
actuators and controllers) have now had their communicatio
over shared communication networks [23], [42], [57]. Clgar
the inherently limited bandwidth of communication netwerk
would lead to traffic congestions and, furthermore, certain
network-induced phenomena (see [4], [6], [9], [28], [3219]
and the references therein). Such kind of phenomena, if not
properly refrained, would result in severe deterioratidn o
system performance. In this regard, the so-called communi-
cation scheduling protocols have been exploited with aim to
schedule the transmission process of massive data, and some
representative protocols include event-triggered patfiA],
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[38], Round-Robin protocol [15], [22], weighted try-oncemodified particle propagation and the compensated weight
discard protocol [47] and random access protocol [14],,[48])pdate.
[60]. Among others, the random access protocol has stoodThe remainder of this paper is arranged as follows. Sec-
out as an extensively utilized one that attracts an ongoitign Il formulates the problem under investigation and pro-
research interest in the past decade [19], [50]. For exampl&es some preliminaries about the auxiliary particle fiftg
the protocol-based resilient state estimation issue has becheme. The protocol-based particle filtering algorithm is
considered in [54] for a kind of time-delayed CNs with sectoproposed and discussed in Section Ill. In Section 1V, a multi
bounded nonlinearities. target tracking application is considered and the simutati
It should be pointed out that, in the most existing literaresults are presented to illustrate the effectiveness ef th
ture, an underlying assumption is that the sensor is abledeveloped particle filter. Some concluding remarks arergive
produce ideal measurements at all times. Unfortunatebh sun Section V.
an assumption might be restrictive in engineering practiceNotation. Throughout this paper, the notation used is fair-
because of intrinsic physical limitations (e.g. sensool@®n |y standardR" represents the-dimensional Euclidean vector
and range) and complicated external environments, andsthispacep..(-) characterizes the probability density function of a
especially true for low-cost commercial sensors. To be mosechastic variable, namely,z ~ p,(-), andp(z|y) stands for
specific, the sensor outputs are continuous functions ¢ésys the probability density function aof conditional ony. Pr{A}
states within a prescribed dynamic range but are constaenotes the occurrence probability of the discrete evert ||
outside such a range, and this phenomenon is customaréypresents the Euclidean norm. The supers@rigienotes the
referred to as the measurement censoring [2], [31], [59]. matrix operation of transpose;.; denotes the trajectory of
In the context of measurement censoring, there have bdsym time instant; to time instant;. Other notations will be
mainly two kinds of censoring models reported in the litergiven if necessary.
ature, namely, the dead-band-like censoring [30], [51] and
the Saturation'"ke CenSOI‘ing [1] |n Order to attenuate th || PROBLEM FORMULAT|ON AND PREL|M|NAR|ES
effect from censored measurements on system performance .
some elegant results have been obtained on the fiIter'ngPrOblem formulation
issues subject to measurement censoring, see [16], [25] an§onsider the following discrete-time CN consisting &t
the references therein. For example, the multi-sensopfiusicoupled nodes

problem has been addressed in [51] for a class of linear sys- N
tems WIFh dead-band-like measurements and event—tnggere zhq = fi(xh) +al Zcijg;cj (@) + wi 1)
mechanism. Nevertheless, when it comes to general nonlinea =

CNs, the relevant results have been very few on the censorin% ) ; o )

measurement-based filtering problem despite its conspgud/nere. for =1,2,..., N, zj, € R" is the IOS?' state of théh

engineering significance. node at time instari; f,g(-) :R™ = R™andg,/(-) : R™ — R"
Motivated by the above discussions, the main purpose Y Poth known nonlinear functions;, € R™ represents the

this paper is to deal with the protocol-based particle fitgr P'OC€SS noise satlsfylryg%(-); 20 deno_te; the coupling

problem for a general class of nonlinear CNs with simultgirength between nodeand nodej; and «; is introduced

neous consideration of non-Gaussian noises, on-off sach® characterize the on-off random coupling property of the

tic coupling and measurement censoring. In doing so, thré@nsidered CN, which is modeled as a Bernoulli distributed

foreseeable challenges emerge as follows: 1) how to estabfiandom variable with the following probability distribati

a suitable model that concurrently characterizes the non- Pr{al =1} = &

Gaussian noise, measurement censoring and the scheduling { Pr{al =0} =1—a' @)

of random access protocol? 2) how to propagate the new _

particles in the presence of on-off stochastic coupling@ aWherea’ € [0, 1] stands for the random coupling rate.

3) how to mitigate the impacts from censored and scheduled=or each nodé, the measurements are taken$gensors,

measurements on the filtering performance by updating tABd the measurement output of thih sensor is established

importance weights? It is, therefore, our interest in ogaring  aS _ o _

the above identified challenges by developing an apprapriat Uy = hy (x) +v)° (3)

particle filtering algorithm. where, fors = 1,2.....5, gff

The main contributions of this paper can be highlighted as € R dgnote_s th? measure
) o . . ment output of thesth sensor for nodeé at time instantk,
follows: 1) the addressed filtering problem is fairly compre-; " :
#() : R™ — R represents the known nonlinear measure-

hensive that not only focuses on a general class of nonIin’ﬂentf nction. and/** « R denotes the measurement noise
ear CN but also covers the on-off stochastic coupling, nol: unction, S u !

Gaussian noises, measurement censoring and random acco&ghesm sensor, which has the probability density function

protocol; 2) two explicit expressions of likelihood furctiare pv;"r"(')' . .

constructed by taking into account the effect of random sas:ceh 0 better formulate th? proble:cnltlo be investigated, we make
protocol and dead-band-like/saturation-like measurenoem- three common a.ssump_nons as Tolows. L ;
soring; and 3) an easy-to-implement protocol-based aamili Assumptl_on 1The prior knowl_e.dge of t_he mmql statey
particle filtering algorithm is developed by resorting toeth is included in the known probability density funcnmg(-).
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Assumption 2The process noise;, the measurement noisephysical constraints of the sensors themselves with exasnpl
v;* and the random variabte], are mutually independent, andincluding insufficient range of sensor instrumentation émel
they are also independent of the initial state saturation of amplifier in circuits [53]. In real-world ingl

Assumption 3:The probability density functiong,; (-) mentations, the right- and left-end censoring thresholis c
andpyi,s(-) of the process noise and measurement noise & obtained from the manufacturers in advance or determined
known. by experimental measurements.

Due to physical/hardware limitations of deployed sensorslt is clear that simultaneous transmission of massive senso
and the complicated working environment, the sensors mighteasurements would inevitably lead to the phenomenon of da-
be prone to the phenomenon of measurement censoring. In thisollision. For the purpose of alleviating such a phenaomnen
paper, to cater for the practical engineering in a comprgiien and reducing the network resource consumption, the seetall
way, we consider the following two kinds of censoring modeandom access protocol is employed in this paper to schedule
[1], [51]: the order of the measurement transmission. Without loss of
generality, let us evenly classify the sensors for nodeto

—1,8 —1,8 i,

i ylgs’ y’gs 2 %z i M sensor groups (i.e§ = bM, whereb is a positive integer)

Yo =\ Yeonsto YT <Yy < U (4) according to the spatial distribution or specific task ailian.
Y U =Y Then, only one sensor group can be granted the access

and opportunity to the corresponding communication network at

yos, gff > ybs, each time instant. For each noddet pi € {1,2,..., M} be

9, = g;;s, y;,s < g}ij < ybs, (5) the chosen sensor group that has thg access to.transmit the
y;,s’ gff < yl” current measurements to the remote filter at time instant

. , To characterize the random nature of the scheduling pro-
wherey;* andy,”” denote, respectively, the right- and left-endocol, { i}, is modeled as an independent and identically
censoring thresholds of théh sensor for node, andy. . distributed stochastic process with probability disttibn giv-
stands for the constant output (usually given(by*+y,"*)/2)  en as follows:
when the sensor is trapped in the dead zone. A schematic dia-
gram comparing the considered censoring models (4) (purple Pr{pi =m}=p', m=12,....M (6)
solid line) and (5) (blue dotted line) is illustrated in Fi.

wherepi, (0 < pi, < 1), which satisfiess."_ pi = 1,
denotes the occurrence probability for thegh sensor group
A g;‘s to gain the privilege to communicate with the remote filter
corresponding to nodée
Denote by

m [Ai,ml 1, M2 Ai,mb]T

— ?j; yk 7y]g 7"'7yk

/ —is the measurements collected by theh sensor group for
y;" nodei. Then, under the random access protocol, the available
Y, measurements for the remote filter associated with riazda
be described by

M
vk =Y 3ol —m)g" 7

m=1

where 6(-) represents the Kronecker delta function, which
equals one ifp} = m and equals zero otherwise.
Fig. 1: A schematic diagram for the considered two
censoring models.
B. Preliminary knowledge

Remark 1:As a matter of fact, the model (4), which is , e
usually referred to as the dead-band-like censoring motel | For the sequential Bayesian filtering problem, the core task

the literature, describes common engineering practice. Iéé to derive the posterior probability density function ¢t

o ) . ) . of interest. For example, consider the target plant andasens
example, it is often the case in practical implementations

that a ring laser gyro sensor suffers from the dead-barml-liwIth the following dynamics:
censoring due primarily to the inherent lock-in charastesi

and mechanical stiction [17]. A similar phenomenon called {
voltage dead band also exists in the application of power

transmitters [40]. On the other hand, the model (5), namedere u; is the known input vector, and the definitions of
as the saturation-like censoring model, stems mainly frioen tother variables are similar to those in Section II-A except f

L1 = fr(@p, u, wi) ®)
yr = hi(xk, vg)
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the superscripts. Then, the posterior probability derfsitc- the scheduling of random access protocol. As with the stainda
tion p(2x+1|y1:k+1, uo:k+1) can be obtained in the following particle filtering framework, the foremost procedures ie th
recursive form [26]: filter design include the two stages of particle propagatiod
importance weight update, which will be discussed in detail

P(@rta[yrie, tour) in the subsequent analysis.
= /p(xk+1|ark, ug)p(Tr| Y1k, vo.k )dTg, Recalling the dynamics of target plant described in (15 it i
9) clear that the state propagation of the nads dependent on
P(Tht1|Y1:k41, Yokt 1) the state of nodg due to the complex coupling characteristics
_ pyrrlzre)p(@ra [y, vo:r) between nodes, which renders additional difficulties to the
Pkt [Tk )P (@ k1 [y, Yok ) ATk design of particle filter. To deal with such an issue, simitar

For clarity, in the subsequent analysis of this paper, we dtg-e description of (8), the stateg, are collectively regarded

as the inputui of the dynamics of node at the current
NOte (k41 [Y1:k 41, Uoik+1) BSP(it1 Y1kt 1, to:k) DY con stage. However, it is still difficult to directly draw sample
sidering that the state at time instaht+ 1 (i.e., xx4+1) IS ) ifdy . .
independent ofiy . ; from p(xj,|z,;*", uj) due to the fact that the inputj,
Note that the multidimensional integrals involved in (9factually the states; of other nodes) is unknown and the
render it difficult to derive the analytical expression ofN IS S.UbJeCtAEO the on-off coupling. To this end, we utilize
P21 |y10s1,10) in MoOSt cases. As an alternative, wdhe estimatest; (which are available at time instai) to

resort to the Monte Carlo numerical approximation and tf#PProximate the unknowa;. Furthermore, based on the law
importance sampling technique. Then, the minimum meaﬂf—mtal probability as well as the probability distributigiven

square error estimate can be acquired as [3] in (2), one has

, Cray
D P(x;c+1|$2{ }v“}c)
Tpy1 = /Ik+1p($k+1|y1;k+1,uo;k)dIk+1 ~ Zwii}lxﬁ}l i i i,{d} i
= = p(@hyrs g = a7 up)
(19 (i af, = 0lry ' )
where D denotes the total number of sampled particles and , , , i{dr
{d} i = Pr{aj, = p(zjafag = 1,207, up)
r,, represents theith particle sampled from a proposal + k
ST . . . j j j i {d} i
distribution with associated weight!?’ . + Pr{aj, = 0}p(zjpilaf = 0,231 uf) - (12)
o ' T i ; i{d}
_ In most pr?%lcal |mplementat|ons, the state transition Qe = ap(al ol = sz{ },%)
sity p(zx41|z, ', ux) is chosen as the proposal distribution » i i addy
due to its easy operation and simplicity. Nevertheless, the t(l-a )p(xk+1|% - O’_Ik ) W)
neglection of current measurement information during the ~ a'p(zh o, = 1,x§;{d},fc§€)
particle update might decrease the efficiency of importance (- @i)P(fCZJrﬂOfZ _ O’xz{d}).

sampling and give rise to unbearable performance decrament
To this end, the auxiliary particle filtering scheme [45] eges Remark 21t should be emphasized that, due to the complex
as an effective way of getting round the problem, which aimmn-off coupling characteristics between nodes, the nevigbar

to improve the compatibility between new measurements amgﬁ} (or the intermediate om@i’ﬂ}) is drawn from a mixture
updated particles. In this case, a set of intermediategiesti distribution characterized by (12) and the state estimafes
{nii}l}dzl,Q,...,D is first drawn fromp(zsi1]zi, ux), and  of other nodes are utilized. Meanwhile, the mixing prokiabil
the corresponding indices; are generated based on thés dependent on the random coupling rate.

probabilities proportional t@id}p(yk+1|77;£i}1)-Then,the new In what follows, for each node, we aim to derive an

particles can be updated as update rule for the importance Weighlé’ﬂ} by establ_is{ging
x}gi}l ~ p(Thin |I]£5d}7 w), an explicit expre_‘ssmn.of the likelihood functipty;. , , |z, }7")
under the consideration of censored and scheduled measure-
and the update rule of the associated weights is ments.
(d} To facilitate the subsequent analysis, let us define an indi-
@ - p(yk+1|“’k+l). (11) cator function as
plyeelntsy) 1=(2) { 1, ifzeg, (13)
The aim of this paper is to propose a protocol-based aux- == 0, otherwise.

liary p_article filter_ing algorithm for a kind Of_ nonlinearén- Proposition 1:For each nodée, consider the measurement
G‘.”“!SS'a” CNs with on-off stochastu_: coupling such that ﬂ?ﬁo el (3), dead-band-like censoring model (4) as well as the
minimum mean-square error estimation can be ensured baP om access protocol described by (6) and (7). At time
on the censored and scheduled measurements. instantk + 1, the full likelihood function associated with node
1 and thedth particle can be expressed as
I1l. DESIGN OFTHE PARTICLE FILTER u ,
In this section, we set about designing the auxiliary pkertic P@/@HWZL}) _ Z i Hp(yzflj ! { }) (14)

filtering algorithm based on the censored measurements and o1 el b
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where
UNEIEN
= 151 (yk+1)p im; (3/k+1 h;cflj (QCLE}))
1,0 }<yk'+1> e omy (0™ = BT (1)
— cdf oy (4™ hZTf <x§;i‘i}>>],
B = <—oo, Y™ U ™ 00),

andcdf o () denotes the cumulative distribution function o#

zmj

the stochastlc noise,

Similar to the expression in [2], we can rewrite (18) and
(19) as follows:

AT, d
p(yk+1 |$k{ })
T, qd
= 1(_Oo,yli’mj]u[y:'mj OO) (yk+1)p i,my (yk+1 hk+lj( kil}))
] 7, i,mj ¢ i,{d
1y W) [edf oy (™ = WY ()
i,m; i,1M Ad
= cdf o (™~ @)
(20)
Together with (16), (17) and (20), we can readily arrive at
14), which completes the proof. |

Next, we are going to present the results with respect to
the saturation-like censoring model and the random access

Proposition 2:For each nodé, consider the measurement
model (3), saturation-like censoring model (5) as well a&s th
random access protocol described by (6) and (7). At time
instantk + 1, the full likelihood function associated with node
1 and thedth particle can be expressed as

7 i,{ ~i,mg o 4,{d
p(yk+1|xk+1 Z pm Hp ka kL}) (21)
where
AT, qd
P LT
i,m 7,{d
=1_im; (yk-i-l)p ihm; (yk-i-l - hk+1]($kﬁ{r1}))
i,m i,my o i,{d
+ 1{y:’mj}(yk+1)|: Cdf im; (yr = hk+1 (‘rkil}))}

7,7 i,m; imj o i,{d
+ l{y;,mj}(ykil)cdf im; ( ! hk+1j (ka}))]v

i,m;  1,m;
s Yr .

and=;" = (y,

k+1 -
Proof: According to the law of total probability, it is clear Protocol.
that
Ad
Pyl D)
M
7 7 i,{d
= Z p(yk+1a Pk+1 = m|$ki1})
m=1
M ) . J
= p(y,@+1|p}€+1 m $ki1})Pr{pk+l = ml‘rk{ }}
m=1
(15)
Then, substituting (6) and (7) into (15) yields
i i,{d
p(yk+1|$k4{r1})
i,{d}
=> (> 8p; sy
Z Z k41— k+1| k1 =m7Y) (16)
Ad
= Z pmp yk-i—l kJ{rl})-

On the other hand, it follows from Assumption 3 that

b
~i,m | _i,{d NNy Ad
(yk+1|xki1}) = H (G141 |Ik—{kl})' a7)
j=1

Recall the censoring model (4) and note that, = y,iff
when i, = m. It follows that, if y;7, > g™ or Yty <

1m]

y, ’, one has

A1, 4,{d i,mg g i,{d
p(9 Yrt1 |$kJ{r1}) = p(yk+1 |$kJ{r1}) (18)
i,m i,{d
= p iym; (yk+1 - hk+1 (z k;{rl}))'
In addition, if 7, = y.r?,, we have
AT, m; iymy.tid
(i1 |$k+1}) = p(yz < yk+1 <y, |$k<{r1})
T, 1,m; d
= Cdf im ( N (ka{rl})) (19)

i,m; i,m Ad
)]

—cdfwm(

Proof: The proof can be carried out by following the
similar line of Proposition 1, and is therefore omitted hiene
conciseness. |

Now, based on the established expressions of the full
likelihood function in Propositions 1 and 2, the importance
weight in regard to nodéand thedth particle can be updated
as

(yk+1|xk+1})

witd —
k+1 o i{€ia} (22)
(yk-i-l |77k+1 )
Wheren; {Ef } denotes the corresponding intermediate particle

before particle update.

For ease of illustration, the overall structure of the pisgzb
protocol-based particle filtering algorithm is summarizad
Algorithm 1.

Remark 3:1t is worth noting that, compared with the
existing results concerning the state estimation problém o
nonlinear CN (e.g. [34], [36]), the main advantages of the
proposed filtering algorithm lie in that it does not imposécst
requirement (e.g. differentiability and continuity) orettype
of nonlinear function and, more importantly, is not res&ée
to the case of Gaussian noises. On the other hand, when the
random coupling rate becomeés= 0, the considered target
plant (1) will degrade to the standard nonlinear systemh{wit
out node coupling behaviors), and the mixture distribugibi2)
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Algorithm 1 Protocol-based auxiliary particle filtering a"importantly, it has been revealed in [11] that the convecgen
gorithm for CN with nonlinear coupling and measuremenyf the mean square error toward zero can be guaranteed with
censoring (executed on target noge the convergence rate proportional 1¢D provided that the
1: Initialization : For target node, draw D particles with importance weights are upper bounded and the standard+esam
equal weights from the prior density, i_e;g{d} ~ P (), pling scheme is utilized. Based on these facts, the conaeyge
d =1,2,...,D, and set the maximum recursive step aghalysis of a modified particle filter has been briefly conedct

K. in [58] by assuming that the involved probability densifiesy.

2. for k=0,2,..., K —1do the established likelihood function) are bounded. In adljt

3 Step 1: Measurement collection the auxiliary particle filter has been reinterpreted as adsted

4: Under the scheduling of random access protocol (6particle filter in [29] and the corresponding convergenseilts
and (7), receive the censored measuremgnts with have been adapted from those of the standard one. As such, the
the censoring model (4) or (5). simple convergence of the proposed algorithm can be ardilyze

5: Step 2: Intermediate particle generation by following the similar line. Nevertheless, it is really@agh

6: Sample intermediate Paftide{sl;ﬁ}}d:l,z,...,D from task to conduct a rigorous analysis on the convergence of the

according to (12), and generate th@roposed algorithm with mild assumptions due to the invdblve

P} o™ )
prlck Ok system complexities, which deserves further investigatio

particle indices{ez_-,d}d:m,___,D based on probabilities

proportional tOw“{d}p(yi |77“{d}) where the term %' future research. .
: i Ad) k k+1lik+1 1 Remark 5:Up to now, the protocol-based filtering problem
P(Yk41lmiy') is calculated by (14) or (21). has been addressed for a class of nonlinearly coupled CN
7. Step 3: Particle propagation in the simultaneous presence of on-off coupling behaviors,
8  Basedon 'r.‘dilce$6iad}d:172a---af’ and (12), draw the - ,on_Gaussian noises and measurement censoring. To be more
DartideS{IZ’-{H}}d:1,27....,D as specific, the random coupling rate has been employed in the
i{d} i ideiad i procedure of selecting and propagating particles through a
Tppr ~ P@hpa oy ). mixture distribution. The effects of the two-side meastzam
9: Step 4: Weight update censoring models (i.e., dead-band-like model and saturati
10: Update the unnormalized importance Weig‘zlzitﬂ} like model) and the random access protocol have been fully
according to (22). taken into consideration during the establishment of tkelili
11: Step 5: Weight normalization hood functions. The addressed filtering problem in this pape
12: Normalize the weights according to new and comprehensive, which can well reflect the engingerin
i) reality. Meanwhile, the proposed filtering algorithm witbw
wild Wi+1 ly established sampling distribution and likelihood fuoos
k+1 s wblir allows to attenuate the impacts of the complex factors iraal
I in this paper.
13: Step 6: State estimation
14:  Update the state estimate as IV. SIMULATION EXPERIMENTS
N D id) ifd) In this section, a practical application regarding thekinag
Th+1 = Zwk’ﬂ Ty of multiple interacting targets is provided to illustratestef-
d=1 fectiveness and practical applicability of the proposedigla
15: end for filtering algorithm.

Consider a scenario where three targets are tracked in a two-
dimensional plane and the motions of each target are mytuall
i,{d}) interacted in an on-off fashion due primarily to the behawio

will bo.'l. dovx_/n to the common prior denS|ty(xk+1.|xk .of collision avoidance or other specified mission requiretse
In addition, it can be seen from the dead-band-like cengorin

L ) . Denote by[p’ i ¢ 1|7 the state vector of target
model (4) as well as the likelihood function (14) that, if the '~ (i — 1y[§wé§+;t’§%’éﬁ;’$§;éhl where(p' p ?
right- and left-end censoring thresholgs® andy,* are equal, T ' Pa k12 Py ket

then the modified particle filtering algorithm developed ir(1JIenOteS the target position ang,,, stands for the target

. : grientation. Then, the motion model of target nadadopted
this paper will reduce to the case where only the rando .
. . - rom [34], [37], can be described as
access protocol is considered. Similar results can also bé

obtained for the case of saturation-like censoring (5) &1J ( P gt P g [ v}, cos ¢,
if we sety’* = 400 andy;”® = —oo. As such, the system Pyksr | = | Pyw | T | vising
under consideration is fairly general and the proposedagbart o % |
filtering algorithm exhibits great application potentials . r sin p? (23)
. k
Remark 4:1t should be pointed out that for the standard + ol Zcz‘j sinpg L ol
particle filter, there have been some theoretical analgsislis = sin ¢5
L k

available in the literature [10], [11]. In fact, the parécl
approximation will approach the true probability densitpé- wherev! andf2: denote, respectively, the velocity and angular
tion, as the number of particles tends to infinity [3]. Moreelocity of target node.
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In order to track the considered three targets, the pass
received-signal strength sensors are deployed/distdbir o
the surveillance region of interest. For each target npde
sensors are utilized and the measurement model ofstine
received-signal strength sensor can be established gq443]

X-coordinate

—1,8

Y1 = @y — 10nlog,, ((”[p;,k-l—lapgi;,k-ﬁ-l]T

, (24) 0 ‘ :
i,s ,4,81T )8 0 50 100 150
- [‘T Y ] ”)/TO) + Vit Time, k
. ====True value for target 1
where ¢, stands for the received strength at the referen 35 Esﬂmatedva.uefi”argetl
distancer,, n denotes the path loss exponefi’®,y"*) 30f 2 1

1,8

represents the position of th¢h sensor for node, andv,/,
denotes the measurement noise, which is a two-compon
Gaussian mixture with the following probability densitynfts 15
tion

Y-coordinate
N
o
T

| o . | |
PO = (0= B ONGL S ) e ° e .

+ RN 5 (03)?) | | o
Fig. 2: True and estimated trajectories of target nbde
where the notatioV (v; u, 0?) represents the Gaussian prob-
ability density function with meap and variancer, andx**
denotes the glint probability associated with ttle sensor for
nodeji.

Taking into account the scheduling of random access pt
tocol, the S sensors for target nodeare evenly divided into
M groups, and at each time instant, only one group is grant
the access to transmit the censored measurements (see («

X-coordinate

(5)) to the remote particle filter. 0 50 100 150
To evaluate the tracking performance of the proposed f Time, k
. . . =—===True value for target 2
tering algorithm, a celebrated metric named root meanfsqu. 40 Estimated value for target 2

error (RMSE) is defined with respect to the position estimat 351
over () independent Monte Carlo runs, i.e.,

Y-coordinate

Q
1 . » . y
IM%M=QZW%WWH%%%W & | |
q=1 % 50 100 150
. . (26) Time, k
where (p}%.,p,%) stands for a specific realization of the

position of target nodeéat time instant: during thegth Monte ~ Fig. 3: True and estimated trajectories of target n2de
Carlo run, andp;*., p,%,) denotes the corresponding estimate.

In the simulation, the number of sensors for each target
node is set to b& = 6 and each sensor group is composed diltering scheme is capable of tracking the trajectorieshef t
three sensors (i.elM = 2 andb = 3). The true initial states interacted three targets with satisfactory performanag.
for three targets are, respectively, setags= [16,14,0.2]7, displays the behaviors of the scheduling protocol as well as
22 = [14,20,0.3] andx3 = [20,26,0.4]”. The process nois- the censored and scheduled measurement information for the
es are Gaussian white noises with mean zero and covariafitsf measurement component related to target riode
matrix diag{[0.032,0.032,0.012]}. The initial 1000 particles  In what follows, we are going to further show the effec-
are sampled from the Gaussian distribution with megand tiveness and performance superiority of the proposedifitier
covariance matridiag{[32, 3,0.2%]}. In addition, the random algorithm in the case of dead-band-like measurement censor
coupling rate isa’ = 0.2 for i = 1,2,3, and the coupling ing. To this end, the newly modified auxiliary particle filter
strengthc™ is selected to b@.01 if i # j. For the received- (abbreviated as MAPF-DBLMC) is compared with other three
signal strength sensors, the parameters are chosenasl0, filtering algorithms, namely, the modified auxiliary paltic
n=2r=1u" =’ =007 =1,05" = 6 and filter without considering the coupled target dynamics wigri
k% = 0.2. The thresholds in the dead-band-like censoringarticle generation (abbreviated as MAPF-DBLMC-NC), the
model (4) are selected g&° = 10 andy,”® = —10. Moreover, auxiliary particle filter without considering the competisa
we havep! = 0.2 andpi, = 0.8 for i = 1,2, 3. of measurement censoring (abbreviated as MAPF-DBLMC-

For one Monte Carlo run, based on Proposition 1 arldMC), and the similarly modified particle filter in the stan-
Algorithm 1, the simulation results with respect to the deadard sequential importance resampling framework (abhatevi
band-like censoring model (4) are depicted in Figs. 2-5. ¢éid as MPF-DBLMC). The corresponding simulation results, in
can be observed from Figs. 2-4 that the proposed partitégms of position RMSE ove300 independent Monte Carlo
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451
° MAPF-DBLMC
< e RLITIILH MAPF-DBLMC-NC
= MAPF-DBLMC-NMC
S — === MPF-DBLM
g 35 c
x

5 I I

0 50 100 150
Time, k
45 ====True value for target 3
Ve Estimated value for target 3
40 1
Q
©
£35F T
B2
o
$ 30 1
>
251 1
20 ‘ :
0 50 100 150 0 L L !
Time, k 0 50 100 150
Time, k

Fig. 4: True and estimated trajectories of target ndde Fig. 6: RMSESs of different algorithms for target notie

O Raw measurements from the 1st group
20 O  Raw measurements from the 2nd group
® % Censored and scheduled measurements

2 451
c
2 MAPF-DBLMC
g e ik MAPF-DBLMC-NC
a- MAPF-DBLMC-NMC
o = === MPF-DBLMC
= 351

Zif 0 0 00M WROBO ©O00 O G
3
o ‘ ‘ |
0 50 100 150
Time, k
Fig. 5: The first measurement component associated witt Time, k
target nodel. Fig. 7: RMSEs of different algorithms for target nogle

runs, are plotted in Figs. 6-8, and the average RMSEs &+~

listed in TABLE I. As expected, the proposed filtering schemr .
performs satisfactorily due to the devoted effort during tk MAPF-DBLMC
design process of particle generation and weight update. asp b A
= === MPF-DBLMC
TABLE I: Average RMSEs of different algorithms with 3T

respect to dead-band-like censoring.

Targetl Target2 Target3 Average

MAPF-DBLMC 1.3662 1.5237 1.5254 1.4718
MAPF-DBLMC-NC 1.8053 1.6523 1.6285 1.6954
MAPF-DBLMC-NMC 2.4031 2.1876 2.5077 2.3661
MPF-DBLMC 1.4181 1.5274 1.5490 1.4982

RMSE&k

Similarly, choose the right- and left-end thresholds &
yo* = 12 and y;° = —12 and keep other parameters 0 50 100 150
unchanged. Based on Proposition 2 and Algorithm 1, tl Time, k

simulation results in relation to the saturation-like amirsy Fig. 8: RMSEs of different algorithms for target nogle
model (5) are summarized in Figs. 9-15 and TABLE Il, which
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X-coordinate
X-coordinate

0 I L I I

0 50 100 150 % = 00 150
Time, k Time, k
S T e vlue for gt 1 s =Tl vale for target s
\ Estimated value for target 3
30 .
) 40
g 251 N %
£ S35+
g 20F 4 g
$ g 3o,
15 1 >
i 50 100 150 20, . 100 150
Time, k Time, k
Fig. 9: True and estimated trajectories of target node Fig. 11: True and estimated trajectories of target ndde

O Raw measurements from the 1st group
201 O Raw measurements from the 2nd group
*  Censored and scheduled measurements ®

X-coordinate

Measurements

) I I
0 50 100 150

Time, k
=—===True value for target 2
Estimated value for target 2

o S
£ 8
g 2
3 2

” %10 COUD OB DA D OB ORI O O
<
@

) 0 I I |

Time, k 0 50 100 150

Time, k

Fig. 10: True and estimated trajectories of target ndde ) ) ) )
Fig. 12: The first measurement component associated with

target nodel.

demonstrate the effectiveness and usefulness of the prdpos
auxiliary particle filtering algorithm in the case of random
access protocol and saturation-like measurement cegsot 0

(denoted as SLMC). MAPF-SLMC
N A R MAPF-SLMC-NC
. . . MAPF-SLMC-NMC
TABLE II: Average RMSEs of different algorithms with 8t —=-—=-MPF-SLMC
respect to saturation-like censoring. AL
Targetl Target2 Target3 Average = 61
MAPF-SLMC 1.0308 11739  1.0746  1.0931 § 5¢
MAPF-SLMC-NC ~ 1.1889  1.3841 15005  1.3578 z
MAPF-SLMC-NMC ~ 7.7112 55404 59013  6.3843 Ar
MPF-SLMC 11966  1.1611  1.0942  1.1506

V. CONCLUSIONS

In this paper, the particle filtering problem has been di Time, k
cussed for a class of nonlinear/non-Gaussian CNs with ong;

i . _ g. 13: RMSEs of different algorithms for target notle
off stochastic coupling and measurement censoring under
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theoretical framework for performance analysis.

10
MAPF-SLMC
Or e MAPF-SLMC-NC
MAPF-SLMC-NMC
8r —===MPF-SLMC 11
AL
ol
W [2]
0w 5
=
o
A [3]
sl
[4]

Time, k [5]

Fig. 14: RMSEs of different algorithms for target nogle ]

(7]

127
MAPF-SLMC
-------- MAPF-SLMC-NC
10F MAPF-SLMC-NMC (8]
— === MPF-SLMC
gl
)
=
w
o 6
=
« [10]
al
[11]
[12]

Time, k

Fig. 15: RMSEs of different algorithms for target nogle |13

14
the scheduling of random access protocol. A Bernoulli dié-
tributed random variable has been introduced to charaeteri
the stochastic behaviors of on-off coupling, and the knowis)
statistical property has been utilized in the process difigar
propagations. To model the scheduling rule of the random
access protocol, an independent and identically distbutj;e
stochastic process has been adopted with known probability
distribution. In addition, both the dead-band-like measugnt
censoring and saturation-like measurement censoring have
been taken into consideration to flexibly reflect the diffef17]
ent circumstances in practical engineering. Accordintyly
modified expressions of the likelihood function have beér118]
established to compensate the effects of protocol schegluli
and measurement censoring in weight update. Finally, ai-mu t19]
target tracking scenario with three interacted targetshiessn
considered and the corresponding simulation results heee b
presented to elucidate the practical applicability anduisess
of the developed filtering scheme. An interesting yet cinafie
ing direction for future work would be establishing a rigoso

[20]
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