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Abstract

In this paper, the distributed fusion estimation problem is studied for a class of nonlinear networked
systems subject to unknown-but-bounded (UBB) noises. A bit rate constraint is introduced to
quantify the limited bandwidth of the communication channel, under which a bit rate allocation
protocol is further designed by solving a certain off-line optimization problem. Based on the re-
ceived data from the network, several local extended-Kalman-type estimators are constructed and
zonotopic sets confining local estimation errors are then obtained. By designing the local estima-
tor parameters, the F -radii of the obtained zonotopic sets are minimized. Subsequently, with the
calculated local estimates and zonotopic sets, a zonotopes-based distributed fusion estimator is put
forward by means of the matrix-weighted fusion method, and the global zonotope (i.e., the zonotope
encompassing the error between the system state and the fused estimate) is derived. Moreover, un-
der the proposed zonotopes-based fusion framework, the distributed fusion estimators are designed
based on, respectively, the scalar-weighted fusion method and the diagonal-matrix-weighted fusion
method. Finally, the effectiveness of the proposed distributed fusion method is illustrated through
a numerical example.

Keywords: Nonlinear networked systems, distributed fusion, bit rate constraint, set-membership
state estimation, zonotopes.
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N The set of nonnegative integers
N∗ The set of positive integers
Rn The n-dimensional Euclidean space
Rn×m The set of all n×m real matrices
0 Zero matrix of compatible dimension
I Identity matrix of compatible dimension
diag{·} The block-diagonal matrix
diagv{χ} The diagonal matrix diag{χ1, · · · , χn} with

χı being the ı-th component of the vector

χ =
[
χ1 · · · χn

]T
X1 > X2 X1 −X2 is positive definite
XT The transpose of the matrix X
∥ · ∥F The Frobenius norm of the matrix “·”
∥ · ∥∞ The infinity norm of the matrix “·”
X−1 The inverse of the matrix X
tr{·} The trace of the matrix “·”
| · | The element-to-element absolute value

operator for the matrix “·”
1 The column vector

[
1 1 · · · 1

]T
of

compatible dimension
∥ · ∥∞ The infinity norm of the vector “·”
⌊·⌋ The maximum integer less than or equal to the

real number “·”
D1 ⊕D2 The Minkowski sum of sets D1 and D2, i.e.,

{d1 + d2 : d1 ∈ D2, d2 ∈ D2}
M ⊙D The set {Md : d ∈ D} for M ∈ Rm×n and

D ⊂ Rn

1. INTRODUCTION

Multi-sensor information fusion (MSIF), whose aim is to combine local measurements (or esti-
mates) to generate an estimate with higher accuracy than that of using a single sensor, has drawn
tremendous attention owing to its wide applications in a variety of areas such as target tracking,
integrated navigation, environment observation, communications and robotics [18, 35, 44, 39, 15].
As a result, a rich body of MSIF-related literature has been published, see e.g., [30, 54, 3, 7, 14, 31,
49, 2, 13] and the references therein.

Generally speaking, MSIF can be categorized into the centralized fusion and distributed fusion
according to whether the raw measurement information is utilized directly for fusion or not [39].
It is well known that the centralized fusion can achieve the optimal estimation in certain cases
by directly using all original measurements [52, 31]. The distributed fusion, on the other hand,
is capable of separately processing the sensor measurements, thereby reducing the computational
burden and improving the reliability [51, 38].

For decades, the distributed fusion has attracted much research enthusiasm leading to the de-
velopment of a great number of efficient algorithms, see [38, 37, 9] and the references therein. For
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example, in [38], a distributed optimal linear fusion estimator with feedback has been proposed,
which has the same accuracy as the centralized fusion estimator. In [9], by using the dimension-
ality reduction strategy, a distributed fusion estimator has been designed for stochastic uncertain
systems with fading measurements under Denial-of-Service attacks and deception attacks. In [37],
the distributed fusion is investigated for linear time-varying systems over sensor networks with
probabilistic constraints and stochastic perturbations.

Recently, the distributed fusion under unknown-but-bounded (UBB) noises has received some
initial research attention and, based on the ellipsoidal set-membership state estimation (SMSE)
technique, some remarkable works have been reported in [46, 56]. Notice that the ellipsoidal SMSE
method, though effective in handling UBB noises, suffers inevitably from certain loss of accuracy in
calculating the Minkowski sum and the linear image (two widely-used operations in SMSE). Hence,
there remains much room for further improving the distributed fusion schemes in the presence of
UBB noises.

In the past few years, zonotopic SMSE problems have received considerable research interest
with applications to various systems, e.g., [28, 27, 26] for linear systems, [1, 53] for nonlinear systems,
[43, 42, 41] for singular systems, [6] for uncertain systems and [10] for switched systems. Compared
with its ellipsoidal counterpart, the zonotopic SMSE algorithm enjoys the merits of maintaining the
estimation accuracy (when performing the Minkowski sum and the linear image operations [6, 43])
and mitigating the computational burden (by using the order reduction technique of zonotopes
[22]). Hence, a seemingly natural idea is to apply the zonotopic SMSE technique to the distributed
fusion problem under UBB noises.

Networked control systems (NCSs) have become a research forefront for two decades with a
great many representative results reported in the literature, see, e.g., [55, 5, 34, 21, 16, 4, 33, 20].
In particular, the nonlinear NCSs have attracted some recent research interest due mainly to the
ubiquitous existence of nonlinear dynamics in almost all practical systems [8, 12, 11]. For instance, in
[52], the sequential fusion estimation problem has been investigated for nonlinear networked systems
by using the unscented Kalman filtering method. The distributed non-fragile SMSE problem has
been studied in [33] for nonlinear networked systems under fading channels and bias injection attacks
by means of the recursive linear matrix inequality technique.

In a typical NCS, the measurement output needs to be quantized and coded before being trans-
mitted through the communication network [47, 32, 12]. The quality of digital transmissions is
inevitably affected by the limited bandwidth of the communication network as characterized by the
bit rate. In this case, each sensor node in an NCS is allocated a fraction of the total (but limited)
bit rate, and this is referred to as the bit rate constraint [25, 36, 24, 40]. Note that the bit rate con-
straint in digital transmissions, to the best of the authors’ knowledge, has never been investigated
in the context of NCS-based distributed fusion, not to mention the simultaneous consideration of
the nonlinear dynamics, and such a gap motivates the current research.

Based upon the above discussions, the main purpose of this paper is to deal with the distributed
fusion estimation problem for nonlinear networked systems subject to the effects of UBB noises and
bit rate constraints. Such a research problem appears to be substantially difficult owing mainly to
the following three aspects:

1. how to allocate the limited bit rate to each sensor node in a reasonable way?

2. how to calculate zonotopes enclosing each local estimation error for nonlinear networked
systems subject to UBB noises and bit rate constraints?

3. how to fuse the local estimates under the zonotopes-based fusion framework?
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It is, therefore, our main objective in this paper to provide satisfactory responses to the above three
questions. Correspondingly, the contributions of this paper are summarized as follows.

1. The distributed fusion estimation problem is investigated, for the first time, for nonlinear
networked systems with UBB noises and bit rate constraints.

2. An allocation protocol is designed to address the bit rate constraints such that the F -radius
of the zonotope encompassing the decoding error is minimized, where the minimum problem
can be solved off-line in advance.

3. By using the mean value theorem and the first-order Taylor-series expansion, respectively, two
zonotopes are derived that restrain the estimation error of the nonlinear function. By taking
the intersection of these two zonotopes, a tight zonotope is obtained that helps enhance the
estimation accuracy.

4. The gain matrix of each local estimator is designed such that the F -radius of the zonotopic
set restraining the local estimation error is minimized.

5. Under a novel zonotopes-based fusion framework, three distributed fusion estimators are de-
signed that are based, respectively, on the matrix-weighted method, the scalar-weighted fusion
method and the diagonal-matrix-weighted fusion method.

The rest of this paper is organized as follows. In Section 2, the distributed fusion estimation
problem is formulated for nonlinear systems subject to the UBB noises and bit rate constraints. In
Section 3, an allocation protocol subject to the bit rate constraint is designed. Then, the zonotopes
containing the local estimation errors are derived and the local estimator parameters are designed
by minimizing the F -radii of the derived zonotopes. Moreover, three distributed fusion estimators
weighted by matrices, scalars and diagonal matrices are designed. An illustrative example is given
in Section 4, and this paper is concluded in Section 5.

2. PRELIMINARIES AND PROBLEM FORMULATION

2.1. Zonotopes

In this paper, we use zonotopes to characterize the bounds on system states and UBB noises.
The definition of zonotopes is given as follows.

Definition 1. [23] Let a center vector d ∈ Rℓ and a generator matrix D ∈ Rℓ×ȷ be given. A ȷ-order
zonotope ⟨d,D⟩ ⊂ Rℓ is defined by

⟨d,D⟩ , {d+Ds : ∥s∥∞ ≤ 1} .

2.2. System Model

Consider a nonlinear system described by the following model:

x(s+ 1) = g(x(s)) +B(s)w(s) (1)

where x(s) ∈ Rp is the system state; the nonlinear function g(·) : Rp 7→ Rp is known and twice
continuously differentiable; w(s) ∈ Rr is the UBB process noise; and B(s) is a known matrix of
appropriate dimension.

The system (1) is measured by N sensor nodes, and the measurement output of the j-th sensor
node is described as:

yj(s) = Cj(s)x(s) + vj(s) (2)
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where, for j ∈ {1, 2, · · · , N}, yj(s) ∈ Rqj represents the measurement output; Cj(s) is the measure-
ment matrix of compatible dimension; and vj(s) stands for the UBB measurement noise.

Assumption 1. The initial state x(0) belongs to the zonotope ⟨x̄(0), X̄(0)⟩ where x̄(0) ∈ Rp is a
known vector and X̄(0) ∈ Rp×p is a known diagonal positive-definite matrix.

Assumption 2. The process noise w(s) and the measurement noise vj(s) are, respectively, confined
to zonotopes ⟨0,W (s)⟩ and ⟨0, Vj(s)⟩ where W (s) ∈ Rr×r and Vj(s) ∈ Rqj×qj are known matrices.

2.3. Coding-Decoding under Bit Rate Constraint

In this paper, due to the needs of digital transmission, an encoding-decoding approach is adopt-
ed. As is shown in Fig. 1, the measurements yj(s) (j = 1, 2, · · · , N) are first coded and then sent to
the corresponding decoders through a communication network whose bit rate is limited as a result
of the resource constraints on practical signal transmissions. In the following, let us introduce the
coding-decoding procedure in detail.

a) Coding Procedure
For the j-th sensor node, let the codeword generated by coding the measurement output yj(s)

be

ỹj(s) =
[
ỹ
(1)
j (s) ỹ

(2)
j (s) · · · ỹ

(qj)
j (s)

]T
.

For l = 1, 2, · · · , qj , the component ỹ
(l)
j (s) of the codeword ỹj(s) is given by

ỹ
(l)
j (s) = Cj

(
y
(l)
j (s)

)
.

Here, y
(l)
j (s) is the l-th component of yj(s), and Cj(·) is the coding mechanism defined as follows:

Cj

(
y
(l)
j (s)

)

,



1, −bj ≤ y
(l)
j (s) < −bj +

2bj

⌊2R⃗j/qj ⌋

2, −bj +
2bj

⌊2R⃗j/qj ⌋
≤ y

(l)
j (s) < −bj +

4bj

⌊2R⃗j/qj ⌋
...

⌊2R⃗j/qj⌋, bj − 2bj

⌊2R⃗j/qj ⌋
≤ y

(l)
j (s) ≤ bj

(3)

where bj is a given positive scalar and R⃗j is the bit rate allocated to the j-th sensor node which is
to be determined later.

The codeword ỹj(s) is sent to the side of the decoder through a communication network to
generate decoded signal used to estimate the system state. To reflect the practical situation that
the network bandwidth is limited, the total bit rate of the network is assumed to be R⃗ ∈ N∗. As
such, one has the following bit rate constraint

N∑
j=1

R⃗j ≤ R⃗. (4)

b) Decoding Procedure
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Figure 1: Block diagram of the distributed fusion with bit rate constraint.

At the side of the decoder, the codeword ỹj(s) is utilized to produce the following decoded signal

y⃗j(s) =
[
y⃗
(1)
j (s) y⃗

(2)
j (s) · · · y⃗

(qj)
j (s)

]T
.

Here, the l-th component of y⃗j(s) is obtained by

y⃗
(l)
j (s) = Dj

(
ỹ
(l)
j (s)

)
with Dj(·) being the decoding mechanism given as follows:

Dj

(
ỹ
(l)
j (s)

)
, −bj +

2bj ỹ
(l)
j (s)− bj

⌊2R⃗j/qj⌋
. (5)
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Let ςj(s) , y⃗j(s) − yj(s) be the decoding error of the j-th decoder. It is easy to see from (3)
and (5) that ςj(k) satisfies ∣∣∣ς(l)j (s)

∣∣∣ ≤ bj

⌊2R⃗j/qj⌋
(6)

where ς
(l)
j (s) is the l-th component of ςj(s).

Remark 1. The coding-decoding procedures introduced in (3)-(6) are based on the uniform quanti-
zation scheme, where the saturation value of the quantization is affected by the bit rate allocated to
the j-th sensor node (i.e., R⃗j). For the reason that the uniform quantization mechanism is often
much easier to be operated than other quantization schemes, the uniform-quantization-based coding-
decoding method has found some applications in the networked systems subject to the constrained
bit rates such as [24, 25]. In this paper, the coding-decoding procedures given in (3)-(6) are applied
to the distributed fusion estimation of nonlinear systems.

2.4. Local Estimators

Based on the output of the decoder y⃗j(s), the following extended-Kalman-type local estimator
is constructed:

x̌j(s+ 1) = g (x̂j(s)) , (7)

x̂j(s+ 1) = x̌j(s+ 1) + Fj(s+ 1)
(
y⃗j(s+ 1)

− Cj(s+ 1)x̌j(s+ 1)
)

(8)

where x̂j(s+1) denotes the estimate of x(s+1) with x̂j(0) = x̄(0), x̌j(s+1) represents the one-step
prediction, and Fj(s+ 1) is the estimator gain to be designed.

For the j-th local estimator, let the one-step prediction error and the estimation error be ěj(s) ,
x(s)− x̌j(s) and êj(s) , x(s)− x̂j(s), respectively. Then, it follows from (1), (2), (7) and (8) that

ěj(s+ 1) = g̃(êj(s)) +B(s)w(s), (9)

êj(s+ 1) = Ξj(s+ 1)ěj(s+ 1)− Fj(s+ 1)ςj(s+ 1)

− Fj(s+ 1)vj(s+ 1) (10)

where

g̃(êj(s)) , g(x(s))− g(x̂j(s)),

Ξj(s+ 1) , I − Fj(s+ 1)Cj(s+ 1).

2.5. Problem Statement

Definition 2. [41] The F -radius of a given zonotope ⟨d,D⟩ is defined as

∥D∥F ,
√
tr{DDT }. (11)

The aim of this paper is fourfold as detailed below.
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1) Design a bit rate allocation protocol subject to the constraint (4) such that a zonotope contain-

ing the decoding error ς(s) ,
[
ςT1 (s) ςT2 (s) · · · ςTN (s)

]T
is guaranteed and the F -radius

of such a zonotope is minimized.

2) Look for a sequence of matrices Ẑj(s) (s ∈ N) such that the local estimation error êj(s)

satisfies êj(s) ∈
⟨
0, Ẑj(s)

⟩
for all s ∈ N.

3) Design the estimator parameter Fj(s + 1) such that the F -radius of
⟨
0, Ẑj(s+ 1)

⟩
is mini-

mized.

4) Fuse the local estimates x̂j(s) (j = 1, 2, · · · , N) under a zonotopes-based fusion criterion.

Remark 2. In the zonotopic SMSE, the F -radii of zonotopes are widely used to measure their
sizes. This is because the F -radius of a zonotope can reflect the lengths of the segments generating
the zonotope. For more details, we refer the readers to [22]. Note that the F -radius of a zonotope
is much easier to calculate in practice than other measures of the zonotope such as the volume
and the radius. Hence, in this paper, F -radii of zonotopes are employed to evaluate the estimation
performance.

3. MAIN RESULTS

In this section, a bit rate allocation protocol is designed first under the constraint (4). Then, a
zonotope containing the local estimation error êj(s + 1) is derived at each time instant s ∈ N for
each j ∈ {1, 2, · · · , N}, and the F -radius of such a zonotope is subsequently minimized by properly
designing the estimator parameter Fj(s+1). Finally, based on the obtained results on local estima-
tors, three distributed fusion estimators are designed under a zonotopes-based fusion criterion by
using the matrix-weighted method, the scalar-weighted method and the diagonal-matrix-weighted
method, respectively.

3.1. Preliminary Lemmas

To begin with, some useful lemmas are given as follows.

Lemma 1. [22] Let zonotopes ⟨d1, D1⟩, ⟨d2, D2⟩ ⊂ Rn and a matrix M ∈ Rm×n be given. Then,
the following relationships hold:

⟨d1, D1⟩ ⊕ ⟨d2, D2⟩ =
⟨
d1 + d2,

[
D1 D2

]⟩
, (12)

M ⊙ ⟨d1, D1⟩ = ⟨Md1,MD1⟩, (13)

⟨d1, D1⟩ ⊂ ⟨d1, diagv{|D1|1}⟩ . (14)

Lemma 2. Consider the term g̃(êj(s)) given in (9). Suppose that the system state x(s) satisfies

x(s) ∈
⟨
x̂j(s), Ẑj(s)

⟩
(15)

with x̂j(s) being a given local estimate and Ẑj(s) being a known matrix. Then, g̃(êj(s)) satisfies

g̃(êj(s)) ∈
⟨
0, Ĝj(s)

⟩
(16)
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where

Ĝj(s) , diag
{
Ĝ(1)
j (s), Ĝ(2)

j (s), · · · , Ĝ(p)
j (s)

}
,

Ĝ(i)
j (s) , min

{∥∥∥Ẑj(s)
∥∥∥
∞

m
(i)
j (s),∣∣∣∣∣ ∂g(i)(x(s))∂x(s)

∣∣∣∣
x(s)=x̂j(s)

Ẑj(s)

∣∣∣∣∣1
+

p

2

∥∥∥Ẑj(s)
∥∥∥2
∞

m̄
(i)
j (s)

}
, i = 1, 2, · · · , p,

g(i)(x(s)) ,
[
0 · · · 0︸ ︷︷ ︸

i−1

1 0 · · · 0︸ ︷︷ ︸
p−i

]
g(x(s)),

m
(i)
j (s) , max

χ∈⟨x̂j(s),Ẑj(s)⟩

∥∥∥∥∂g(i)(x(s))∂x(s)

∣∣∣
x(s)=χ

∥∥∥∥
∞

,

m̄
(i)
j (s) , max

χ∈⟨x̂j(s),Ẑj(s)⟩

∥∥∥∥∂2g(i)(x(s))

∂x2(s)

∣∣∣
x(s)=χ

∥∥∥∥
∞

.

Proof. See Appendix Appendix A.

Remark 3. In Lemma 2, we reveal that, if the system state x(s) or the local estimation error
êj(s) resides in a zonotope, the estimation error g̃(êj(s)) of g(x(s)) also belongs to a zonotope.
Furthermore, we give the explicit expression of the generator matrix of the zonotope containing

g̃(êj(s)). In calculating such a zonotope, we need to determine the value of m
(i)
j (s) and m̄

(i)
j (s) by

solving two optimization problems. There are many methods that can be used to solve these two
optimization problems such as the particle swarm optimization [48] and the genetic algorithm [45].
Note that, in existing references concerning the SMSE, there are mainly two methods dealing with
the twice continuously differentiable nonlinear functions, namely, the mean value theorem and the
first-order Taylor expansion. In Lemma 2, by using these two methods, respectively, two zonotopes
restraining g̃(êj(s)) are obtained at each time instant. By taking the intersection of the obtained two
zonotopes, a tighter zonotope is obtained in (16), which obviously improve the estimation accuracy.

Lemma 3. Given the bit rate R⃗j, the decoding error ςj(s) given in (10) satisfies

ςj(s) ∈

⟨
0,

bj

⌊2R⃗j/qj⌋
I

⟩
. (17)

Proof. See Appendix Appendix B.

3.2. Design of Bit Rate Allocation Protocol

In the following, a zonotope enclosing the decoding error ς(s) will be derived and a bit rate
allocation protocol will be designed by minimizing the F -radius of such a zonotope.

From Definition 1 and Lemma 3, it is obvious that

ς(s) ∈

⟨
0,diag

{
b1

⌊2R⃗1/q1⌋
Iq1 , · · · ,

bN

⌊2R⃗N/qN ⌋
IqN

}⟩
. (18)

9



Then, one can easily obtain that the F -radius of the zonotope given in (18) satisfies∥∥∥∥∥diag
{

b1

⌊2R⃗1/q1⌋
Iq1 , · · · ,

bN

⌊2R⃗N/qN ⌋
IqN

}∥∥∥∥∥
2

F

= tr

diag

 b21(
⌊2R⃗1/q1⌋

)2 Iq1 , · · · , b2N(
⌊2R⃗N/qN ⌋

)2 IqN



=

N∑
j=1

qjb
2
j(

⌊2R⃗j/qj⌋
)2 . (19)

Hence, the bit rate allocation protocol is designed by solving the following optimization problem

min
R⃗1,R⃗2,··· ,R⃗N

N∑
j=1

qjb
2
j(

⌊2R⃗j/qj⌋
)2

s.t. (4), R⃗1, R⃗2, · · · , R⃗N ∈ N∗. (20)

In the rest of this paper, (R⃗1, R⃗2, · · · , R⃗N ) is set to be a solution to the optimization problem
(20).

3.3. Zonotopes Restraining Local Estimation Errors and Design of Local Estimators

In this subsection, the sequence of matrices Ẑj(s) ensuring that êj(s) ∈
⟨
0, Ẑj(s)

⟩
(s ∈ N) will

be given. Moreover, the F -radius of
⟨
0, Ẑj(s+ 1)

⟩
will be minimized by appropriately designing

the estimator parameter Fj(s+ 1).

Theorem 1. Let the estimator parameter Fj(s + 1) be given. Suppose that the local estimation
error êj(s) satisfies

êj(s) ∈
⟨
0, Ẑj(s)

⟩
with Ẑj(s) being a known matrix. Then, êj(s+ 1) satisfies

êj(s+ 1) ∈
⟨
0, Ẑj(s+ 1)

⟩
(21)

where

Ẑj(s+ 1) ,
[
Ξj(s+ 1)Žj(s+ 1) − bj

⌊2R⃗j/qj ⌋
Fj(s+ 1)

−Fj(s+ 1)Vj(s+ 1)

]
, (22)

Žj(s+ 1) ,
[
Ĝj(s) B(s)W (s)

]
. (23)

Proof. See Appendix Appendix C.

10



Theorem 2. Assume that the local estimator parameter Fj(s+ 1) is designed as

Fj(s+ 1) = ΥT
j (s+ 1)Θ−1

j (s+ 1) (24)

where

Υj(s+ 1) , Cj(s+ 1)Žj(s+ 1)ŽT
j (s+ 1),

Θj(s+ 1) , Cj(s+ 1)Žj(s+ 1)ŽT
j (s+ 1)CT

j (s+ 1)

+
b2j(

⌊2R⃗j/qj⌋
)2 I + Vj(s+ 1)V T

j (s+ 1).

Then, the local estimation error êj(s) satisfies êj(s) ∈ ⟨0, Ẑj(s)⟩ for s ∈ N where Ẑj(s) (s ∈ N) are
given by (22)-(23) with

Ẑj(0) = X̄(0). (25)

Moreover, the F -radius of the zonotope
⟨
0, Ẑj(s+ 1)

⟩
is minimized with the minimum F -radius

satisfying

∥Ẑj(s+ 1)∥2F
= tr

{
Žj(s+ 1)ŽT

j (s+ 1)

−ΥT
j (s+ 1)Θ−1

j (s+ 1)Υj(s+ 1)
}
. (26)

Proof. See Appendix Appendix D.

Algorithm 1 provides a way to recursively obtain the local estimator parameter and the local
zonotopic set containing the local estimation error at each time instant.

3.4. Design of Distributed Fusion Estimator

In this subsection, we focus on the design of the distributed fusion estimator.
Let

x̂(s) ,
N∑
j=1

Ωj(s)x̂j(s)

be the fused estimate where Ωj(s) ∈ Rp×p (j = 1, 2, · · · , N) are the fusion weights to be determined

subject to
∑N

j=1 Ωj(s) = Ip.

Define e(s) , x(s) − x̂(s) as the global estimation error. According to êj(s) ∈ ⟨0, Ẑj(s)⟩ and
Lemma 1, one has

e(s)

=
N∑
j=1

Ωj(s)x(s)−
N∑
j=1

Ωj(s)x̂j(s) =
N∑
j=1

Ωj(s)êj(s)

11



Algorithm 1: Zonotopic SMSE Algorithm

Input: ⟨x̄(0), X̄(0)⟩, R⃗j .

Output: x̂j(s+ 1), ⟨0, Ẑj(s+ 1)⟩.
1 Initialization: Given positive integers smax and Mj , set s = 0, x̂j(0) = x̄(0), Ẑj(0) = X̄(0) ;
2 for s ≤ smax do
3 Calculate x̌j(s+ 1) by (8);

4 Calculate Ĝj(s) by (16) ;

5 Calculate Žj(s+ 1) by (23);
6 Calculate Fj(s+ 1) by (24) ;
7 Update x̂j(s+ 1) by (8) ;

8 Update Ẑj(s+ 1) by (22) ;

9 if the number of columns of Ẑj(s+ 1) is greater than Mj then

10 set Ẑj(s+ 1) = diagv{|Ẑj(s+ 1)|1} ;

11 Output x̂j(s+ 1), ⟨0, Ẑj(s+ 1)⟩ ;

∈
⟨
0,
[
Ω1(s)Ẑ1(s) Ω2(s)Ẑ2(s) · · · ΩN (s)ẐN (s)

]⟩
, ⟨0, Ẑ(s)⟩. (27)

According to (27), the fusion weights are given by solving the following optimization problem

min
Ω1(s),Ω2(s),··· ,ΩN (s)

∥∥∥Ẑ(s)
∥∥∥2
F

s.t.
N∑
j=1

Ωj(s) = Ip. (28)

To solve the optimization problem (28), the following lemma is useful.

Lemma 4. Suppose that the matrix ∂g(x(s))
∂x(s) is nonsingular for all s ∈ N. Then, the matrix

Ẑj(s)Ẑ
T
j (s) is nonsingular for all j = 1, 2, · · · , N and s ∈ N.

Proof. See Appendix Appendix E.

For the sake of ensuring that the matrix Ẑj(s)Ẑ
T
j (s) is nonsingular, we assume that the matrix

∂g(x(s))
∂x(s) is nonsingular for all s ∈ N in the rest of this paper.

Theorem 3. The solution to the optimization problem (28) is given as follows:

Ωj(s) =

 N∑
j=1

(
Ẑj(s)Ẑ

T
j (s)

)−1

−1 (
Ẑj(s)Ẑ

T
j (s)

)−1

. (29)

Proof. See Appendix Appendix F.

12



In Theorem 3, with the matrix-weighted fusion method, the solution to the optimization problem
(28) is provided. Two other widely-used fusion methods in distributed fusion are the scalar-weighted
and diagonal-matrix-weighted methods. In the following corollaries, let us give the solution to the
optimization problem (28) when adopting these two methods.

Corollary 1. In the case that the fusion weights are scalars, i.e., Ωj(s) = ωj(s)Ip with ωj(s) ∈ R,
the solution to the optimization problem (28) is given by

ωj(s) =

 N∑
j=1

(
tr
{
Ẑj(s)Ẑ

T
j (s)

})−1

−1

×
(
tr
{
Ẑj(s)Ẑ

T
j (s)

})−1

. (30)

Proof. See Appendix Appendix G.

Corollary 2. In the case that the fusion weights are diagonal matrices, i.e., Ωj(s) = diag
{
ϖ

(1)
j (s), · · · , ϖ(p)

j (s)
}

with ϖ
(i)
j (s) ∈ R (i = 1, 2, · · · , p), the solution to the optimization problem (28) is given by

ϖ
(i)
j (s) =

 N∑
j=1

(
Ẑ

(i)
j (s)

(
Ẑ

(i)
j (s)

)T)−1
−1

×
(
Ẑ

(i)
j (s)

(
Ẑ

(i)
j (s)

)T)−1

(31)

with

Ẑ
(i)
j (s) =

[
0 · · · 0︸ ︷︷ ︸

i−1

1 0 · · · 0︸ ︷︷ ︸
p−i

]
Ẑj(s),

Proof. See Appendix Appendix H.

The distributed fusion estimator design procedure is summarized in Algorithm 2.

Algorithm 2: Distributed Fusion Algorithm

Input: x̂j(s) and ⟨0, Ẑj(s)⟩, j = 1, 2, · · · , N .

Output:
∑N

j=1 Ωj(s)x̂j(s), ⟨0, Ẑ(s)⟩.
1 Initialization: Given smax, set s = 0 ;
2 for s ≤ smax do
3 Calculate Ωj(s) (j = 1, 2, · · · , N) ;

4 Compute
∑N

j=1 Ωj(s)x̂j(s) ;

5 Obtain Ẑ(s) by (27) ;

6 Output
∑N

j=1 Ωj(s)x̂j(s) and ⟨0, Ẑ(s)⟩ ;
7 Output

∑N
j=1 Ωj(s)x̂j(s) + |Ẑ(s)|1 and

∑N
j=1 Ωj(s)x̂j(s)− |Ẑ(s)|1;

13



Remark 4. In Theorem 3 and Corollaries 1-2, under a zonotopes-based fusion framework, three
distributed fusion estimators are designed by using the matrix-weighted method, the scalar-weighted
method and the diagonal-matrix-weighted method, respectively. Resting on the obtained results, a
distributed fusion algorithm (Algorithm 2) is then proposed. The computational complexity of Al-
gorithm 2 with different fusion weights is given in TABLE 1. Note that the matrix-weighted, the
scalar-weighted and the diagonal-matrix-weighted fusion methods have been well-studied in distribut-
ed fusion problems subject to stochastic noises, but have received little research attention yet as for
UBB noises.

Table 1: Computational complexity of Algorithm 2

Fusion weights Ωj(s) (j = 1, 2, · · · , N) Number of flops
matrices given by (29) O

(
p2Mj

)
scalars given by (30) O (pMj)

diagonal matrices given by (31) O (pMj)

In the following theorem, it is shown that with the above calculated fusion weights, the estima-
tion accuracy of the fused estimate x̂(s) is no worse than that of each local estimate.

Theorem 4. In the case that the matrix-weighted/scalar-weighted/diagonal-matrix-weighted method
is used, if the fusion weights Ωj(s) (j = 1, 2, · · · , N) are chosen as a solution to the optimization
problem (28), then one has ∥∥∥Ẑ(s)

∥∥∥
F
≤
∥∥∥Ẑj(s)

∥∥∥
F
, ∀j ∈ {1, 2, · · · , N}. (32)

Proof. See Appendix Appendix I.

Remark 5. In this paper, a systematic investigation has been launched on the distributed zonotopic
fusion estimation issue for a class of nonlinear networked systems with both UBB noises and bit rate
constraints. Compared with existing studies, this paper possesses the following distinguished features:
1) an allocation protocol is designed under a bit rate constraint such that the zonotope restraining
the decoding error is minimized (in the sense of the F -radius); 2) the distributed fusion problem
studied is new as the UBB noises and the bit rate constraints are considered, for the first time,
for general nonlinear networked systems; 3) a novel method is proposed to deal with the nonlinear
function in the system with hope to improve the estimation accuracy; and 4) three kinds of fusion
weights (i.e., matrices, scalars and diagonal matrices) are designed under a zonotopes-based fusion
framework.

4. ILLUSTRATIVE EXAMPLE

Consider a nonlinear system in the form (1)-(2) with the following parameters:

g(x(s)) =

1.15x(1)(s) + 0.2 cos(x(2)(s))
0.2x(1)(s) + 0.05 sin(x(2)(s))

0.5x(2)(s) + 0.8x(3)(s)

 ,

C1(s) =

[
0.1 0.2 0
0.3 0.15 0.2

]
, C2(s) =

[
0.15 0 0.2
0.1 0.5 0.4

]
,
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C3(s) =

[
0.2 0.1 0
0.1 0 0.3

]
, B(s) = 0.1I

where for i = 1, 2, 3, x(i)(s) represents the i-th component of x(s).
The process and measurement noises are selected as

w(s) = 0.2
[
sin(s) cos(s) − sin(s)

]T
,

v1(s) = 0.5
[
cos(s) sin(s)

]T
,

v2(s) = 0.3
[
sin(s) − sin(s)

]T
,

v3(s) = 0.2
[
cos(s) − sin(s)

]T
,

which implies that

W (s) = 0.2I, V1(s) = 0.5I, V2(s) = 0.3I, V3(s) = 0.2I.

The total bit rate is set to be 24 (i.e., R⃗ = 24) and the positive scalars bj (j = 1, 2, 3) are chosen

as b1 = 27, b2 = 21 and b3 = 16. Then, the value of the bit rates R⃗j (j = 1, 2, 3) can be determined

by solving the optimization problem (20). By using the exhaustive method, it is found that R⃗1 = 9,

R⃗2 = 8 and R⃗3 = 7 is a solution to the optimization problem (20).

Set smax = 30 and M1 = M2 = M3 = 100. With the initial value x(0) =
[
0.1 0.7 0.9

]T
and ⟨x̄(0), X̄(0)⟩ = 0.5 ⊙ ⟨1, I⟩, the local estimates and the parameters of the local estimators are

obtained via Algorithm 1. Then, by executing Algorithm 2, the fused estimate
∑N

j=1 Ωj(s)x̂j(s)

and fused zonotope
⟨
0, Ẑ(s)

⟩
under different fusion weights (i.e., matrix weights, scalar weights

and diagonal matrix weights) are obtained at each time instant. The simulation results are shown

in Figs. 2-5. Figs. 2-4 depict the state variables x
(i)
s (i = 1, 2, 3), their estimates x̂

(i)
s (i.e., the i-th

component of
∑N

j=1 Ωj(s)x̂j(s)) and their bounds calculated by using Algorithm 2 under different
classes of fusion weights, which implies that the proposed fusion estimation method performs indeed
well. Fig. 5 gives information about the F -radii of the local zonotopes ⟨0, Ẑj(s)⟩ (j = 1, 2, 3) and
the fused zonotopes (under different classes of fusion weights). It is clear from Fig. 5 that the
fused estimates have better estimation accuracy than the local estimates, which shows the merits
brought by the fusion under the established zonotopes-based fusion framework and the correctness
of Theorem 4. Moreover, among the fused estimates with different fusion weights, the one with the
matrix weights possesses the best estimation accuracy, and the one with the scalar weights has the
worst estimation accuracy, which is consistent with the theoretical results.

5. CONCLUSION

This paper has addressed the distributed fusion for nonlinear networked systems subject to UBB
noises and bit rate constraints. By solving an off-line optimization problem subject to the bit rate
constraint, a bit rate allocation protocol has been designed to distribute the limited bandwidth
resource of the communication network to each sensor node. Based on the received data from
the network, several local extended-Kalman-type estimators have been designed such that the
F -radii of the zonotopic sets confining the local estimation errors are minimized. By using the
obtained local estimates and zonotopic sets, distributed fusion estimators weighted by matrices,
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Figure 2: x(i)(s), their estimates x̂(i)(s) (i = 1, 2, 3) and their bounds (with matrix weights).

scalars and diagonal matrices have been designed, respectively. In the end, the validity of the
proposed distributed fusion method has been illustrated via a simulation example. Future research
topics would include the extension of this paper to more complicated systems such as nonlinear
time-delay systems [29, 8] and complex networks [50, 19, 17].

Appendix A. The Proof of Lemma 2

For presentation clarity, the proof is divided into the following two steps.

Step 1 Proof of
∣∣g̃(i)(êj(s))∣∣ ≤ ∥∥∥Ẑj(s)

∥∥∥
∞

m
(i)
j (s) with g̃(i)(êj(s)) being the i-th component of

g̃(êj(s)).
According to the mean value theorem, one has

g(x(s)) = g(x̂j(s)) +


G(1)(s)
G(2)(s)

...
G(p)(s)

 êj(s) (A.1)
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Figure 3: x(i)(s), their estimates x̂(i)(s) (i = 1, 2, 3) and their bounds (with scalar weights).

where for i = 1, 2, · · · , p,

G(i)(s) , ∂g(i)(x(s))

∂x(s)

∣∣∣
x(s)=x̂j(s)+ρ(i)(s)êj(s)

with ρ(i)(s) ∈ (0, 1) is a scalar.
In view of (15), it follows from êj(s) = x(s)− x̂j(s) and Definition 1 that there exists a vector

zj(s) satisfying

∥zj(s)∥∞ ≤ 1 (A.2)

such that

êj(s) = Ẑj(s)zj(s). (A.3)

From (A.3), one has

x̂j(s) + ρ(i)(s)êj(s)

= x̂j(s) + Ẑj(s)ρ
(i)(s)zj(s)
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Figure 4: x(i)(s), their estimates x̂(i)(s) (i = 1, 2, 3) and their bounds (with diagonal matrix weights).

∈
⟨
x̂j(s), Ẑj(s)

⟩
. (A.4)

Utilizing (A.3) again and taking (A.4) into account, one has∥∥∥G(i)(s)êj(s)
∥∥∥
∞

=
∥∥∥G(i)(s)Ẑj(s)zj(s)

∥∥∥
∞

≤
∥∥∥G(i)(s)

∥∥∥
∞

∥∥∥Ẑj(s)
∥∥∥
∞

∥zj(s)∥∞

≤ m
(i)
j (s)

∥∥∥Ẑj(s)
∥∥∥
∞

. (A.5)

Here, the existence of m
(i)
j (s) is guaranteed by the assumption that g(x(s)) is twice continuously

differentiable.
According to (A.5), one can see that there exists a scalar z

(i)
j (s) ∈ [−1, 1] such that

G(i)(s)êj(s)

= m
(i)
j (s)

∥∥∥Ẑj(s)
∥∥∥
∞

z
(i)
j (s). (A.6)
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From (A.1) and (A.6), it is easy to see from g̃(êj(s)) = g(x(s))− g(x̂j(s)) that∣∣∣g̃(i)(êj(s))∣∣∣ ≤ m
(i)
j (s)

∥∥∥Ẑj(s)
∥∥∥
∞

. (A.7)

Step 2 Proof of |g̃(i)(êj(s))| ≤
∣∣∣∣∂g(i)(x(s))

∂x(s)

∣∣∣
x(s)=x̂j(s)

Ẑj(s)

∣∣∣∣1+ p
2

∥∥∥Ẑj(s)
∥∥∥2
∞

m̄
(i)
j (s).

Applying the first-order Taylor-series expansion to g(x(s)) yields

g(x(s))

= g(x̂j(s)) + G(s)êj(s)

+
1

2


êTj (s)G

(1)(s)

êTj (s)G
(2)(s)

...
êTj (s)G

(p)(s)

 êj(s) (A.8)

where

G(s) , ∂g(x(s))

∂x(s)

∣∣∣
x(s)=x̂j(s)

,
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G (i)(s) , ∂2g(i)(x(s))

∂x2(s)

∣∣∣
x(s)=x̂j(s)+ϱ(i)(s)êj(s)

and ϱ(i)(s) ∈ (0, 1) is a scalar for i = 1, 2, · · · , p.
Recalling (A.2) and (A.3), one has

∥êj(s)∥∞ =
∥∥∥Ẑj(s)zj(s)

∥∥∥
∞

≤
∥∥∥Ẑj(s)

∥∥∥
∞

. (A.9)

In accordance with (A.9), it is obvious that there exist a vector ηj(s) ∈ Rp with ∥ηj(s)∥∞ ≤ 1 such
that

êj(s) =
∥∥∥Ẑj(s)

∥∥∥
∞

ηj(s). (A.10)

Substituting (A.10) into êTj (s)G
(i)(s)êj(s) gives

êTj (s)G
(i)(s)êj(s)

=
∥∥∥Ẑj(s)

∥∥∥2
∞

ηTj (s)G
(i)(s)ηj(s). (A.11)

Similar to (A.4), one has

x̂j(s) + ϱ(i)(s)êj(s)

= x̂j(s) + Ẑj(s)ϱ
(i)(s)zj(s)

∈
⟨
x̂j(s), Ẑj(s)

⟩
. (A.12)

According to (A.11) and (A.12), one can see that∥∥∥êTj (s)G (i)(s)êj(s)
∥∥∥
∞

=
∥∥∥Ẑj(s)

∥∥∥2
∞

∥∥∥ηTj (s)G (i)(s)ηj(s)
∥∥∥
∞

≤
∥∥∥Ẑj(s)

∥∥∥2
∞

∥∥ηTj (s)∥∥∞ ∥∥∥G (i)(s)
∥∥∥
∞

∥ηj(s)∥∞

≤ pm̄
(i)
j (s)

∥∥∥Ẑj(s)
∥∥∥2
∞

(A.13)

where the existence of m̄
(i)
j (s) is also guaranteed by the assumption that g(x(s)) is twice continuously

differentiable.
With (A.13), one can see that there exists a scalar z̄

(i)
j (s) ∈ [−1, 1] such that

êTj (s)G
(i)(s)êj(s)

= pm̄
(i)
j (s)

∥∥∥Ẑj(s)
∥∥∥2
∞

z̄
(i)
j (s). (A.14)

From (A.3), (A.8) and (A.14), one can easily obtain that∣∣∣g̃(i)(êj(s))∣∣∣
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=

∣∣∣∣G(i)(s)Ẑj(s)zj(s) +
p

2

∥∥∥Ẑj(s)
∥∥∥2
∞

m̄
(i)
j (s)z̄

(i)
j (s)

∣∣∣∣
=
∣∣∣G(i)(s)Ẑj(s)zj(s)

∣∣∣+ ∣∣∣∣p2 ∥∥∥Ẑj(s)
∥∥∥2
∞

m̄
(i)
j (s)z̄

(i)
j (s)

∣∣∣∣
≤
∣∣∣G(i)(s)Ẑj(s)

∣∣∣1+
p

2

∥∥∥Ẑj(s)
∥∥∥2
∞

m̄
(i)
j (s) (A.15)

where G(i)(s) represents the i-th row of the matrix G(s).
Aggregation of Step 1 and Step 2

With (A.7) and (A.15), one can easily find that g̃(i)(êj(s)) ≤ Ĝ(i)
j (s), which together with

Definition 1 implies that

g̃(i)(êj(s) ∈
⟨
0, Ĝ(i)

j (s)
⟩
. (A.16)

Based on (A.16), one can easily obtain (16). The proof is now complete.

Appendix B. The Proof of Lemma 3

From (6), it is easy to see that(
bj

⌊2R⃗j/qj⌋

)−1

ς
(l)
j (s) ∈ ⟨0, 1⟩. (B.1)

Then, it follows from (B.1) and Lemma 1 that

ς
(l)
j (s) =

bj

⌊2R⃗j/qj⌋

(
bj

⌊2R⃗j/qj⌋

)−1

ς
(l)
j (s)

∈

⟨
0,

bj

⌊2R⃗j/qj⌋

⟩
, (B.2)

which further leads to

ςj(s) =
[
ς
(1)
j (s) · · · ς

(qj)
j (s)

]T
∈

⟨
0,

bj

⌊2R⃗j/qj⌋
I

⟩
. (B.3)

The proof is now complete.

Appendix C. The Proof of Theorem 1

Recalling the one-step prediction error ěj(s+1) given in (9), one has from Lemma 1 and Lemma
2 that

ěj(s+ 1) = g̃(êj(s)) +B(s)w(s)

∈ ⟨0, Ĝj(s)⟩ ⊕B(s)⊙ ⟨0,W (s)⟩
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=
⟨
0,
[
Ĝj(s) B(s)W (s)

]⟩
=
⟨
0, Žj(s+ 1)

⟩
. (C.1)

Then, it follows from (C.1) and Lemma 3 that

êj(s+ 1)

= Ξj(s+ 1)ěj(s+ 1)− Fj(s+ 1)ςj(s+ 1)

− Fj(s+ 1)vj(s+ 1)

∈ Ξj(s+ 1)⊙ Žj(s+ 1)⊕ (−Fj(s+ 1))⊙

⟨
0,

bj

⌊2R⃗j/qj⌋
I

⟩
⊕ (−Fj(s+ 1))⊙ ⟨0, Vj(s+ 1)⟩,

which together with Lemma 1 gives

êj(s+ 1) =
⟨
0, Ẑj(s+ 1)

⟩
.

The proof is now complete.

Appendix D. The Proof of Theorem 2

We first prove that the local estimation error êj(s) satisfies êj(s) ∈ ⟨0, Ẑj(s)⟩ (s ∈ N) by resorting
to mathematical induction.

When s = 0, it follows from Assumption 1 and the initial value of the estimator (8) that

êj(0) ∈
⟨
0, Ẑj(0)

⟩
.

Assume that êj(s) ∈
⟨
0, Ẑj(s)

⟩
holds. From Theorem 1, one has êj(s + 1) ∈

⟨
0, Ẑj(s+ 1)

⟩
.

Hence, êj(s) ∈
⟨
0, Ẑj(s)

⟩
holds for ∀s ∈ N.

It remains to prove that the estimator parameter given in (24) can minimize the F -radius of⟨
0, Ẑj(s+ 1)

⟩
.

With (22), one has ∥∥∥Ẑj(s+ 1)
∥∥∥2
F

= tr
{
Ẑj(s+ 1)ẐT

j (s+ 1)
}

= tr
{
Ξj(s+ 1)Žj(s+ 1)ŽT

j (s+ 1)ΞT
j (s+ 1)

+
b2j(

⌊2R⃗j/qj⌋
)2Fj(s+ 1)FT

j (s+ 1)

+ Fj(s+ 1)Vj(s+ 1)V T
j (s+ 1)FT

j (s+ 1)
}

= tr
{
Fj(s+ 1)Θj(s+ 1)FT

j (s+ 1)− Fj(s+ 1)Υj(s+ 1)
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−ΥT
j (s+ 1)FT

j (s+ 1) + Žj(s+ 1)ŽT
j (s+ 1)

}
= tr

{(
FT
j (s+ 1)−Θ−1

j (s+ 1)Υj(s+ 1)
)T

Θj(s+ 1)

×
(
FT
j (s+ 1)−Θ−1

j (s+ 1)Υj(s+ 1)
)

+ Žj(s+ 1)ŽT
j (s+ 1)

−ΥT
j (s+ 1)Θ−1

j (s+ 1)Υj(s+ 1)
}
. (D.1)

From (D.1), it is easy to see that the estimator parameter given in (24) can minimize the F -radius

of
⟨
0, Ẑj(s+ 1)

⟩
and the minimum F -radius satisfies (26), which ends the proof.

Appendix E. The Proof of Lemma 4

This lemma is proven by induction.
When s = 0, one can see from Assumption 1 and Ẑj(0) = X̄(0) that Ẑj(0)Ẑ

T
j (0) is nonsingu-

lar. Assume that Ẑj(s)Ẑ
T
j (s) is nonsingular. It remains to show that Ẑj(s + 1)ẐT

j (s + 1) is also
nonsingular.

Recall that Ẑj(s)Ẑ
T
j (s) is nonsingular. Then, in accordance with the assumption that ∂g(x(s))

∂x(s)

is nonsingular, it is easy to see from the expression of Ĝj(s) (given in (16)) that Ĝj(s) is positive-
definite, which together with (23) gives Žj(s+ 1)ŽT

j (s+ 1) > 0. Then, it follows the expression of

Ẑj(s+ 1) (given in (22)) that

Ẑj(s+ 1)ẐT
j (s+ 1)

=

((
Žj(s+ 1)ŽT

j (s+ 1)
)−1

+ CT
j (s+ 1)

×
((

b2j/
(
⌊2R⃗j/qj⌋

)2)
I + Vj(s+ 1)V T

j (s+ 1)

)−1

× Cj(s+ 1)

)
>0,

which implies that Ẑj(s+ 1)ẐT
j (s+ 1) is nonsingular. The proof is now complete.

Appendix F. The Proof of Theorem 3

Utilizing the Lagrange multiplier method, the following auxiliary function is introduced:

J (s) ,
p∑

i=1

(
α(i)(s)

)T Ip −
N∑
j=1

Ωj(s)

β(i)(s)

+
∥∥∥Ẑ(s)

∥∥∥2
F

(F.1)
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where
(
α(i)(s)

)T
=
[
α(i,1)(s) α(i,2)(s) · · · α(i,p)(s)

]
∈ R1×p is a row vector whose components

are the Lagrange multipliers and β(i)(s) ,
[
0 · · · 0︸ ︷︷ ︸
i−1

1 0 · · · 0︸ ︷︷ ︸
p−i

]T
.

According to (27), J (s) can be rewritten as

J (s) = tr

{
N∑
j=1

Ωj(s)Ẑj(s)Ẑ
T
j (s)Ω

T
j (s)

+

p∑
i=1

(
α(i)(s)

)T (
Ip −

N∑
j=1

Ωj(s)

)
β(i)(s)

}
. (F.2)

Then, taking the partial derivative of J (s) with respect to Ωj(s) gives

∂J (s)

∂Ωj(s)
= 2Ωj(s)Ẑj(s)Ẑ

T
j (s)−

p∑
i=1

α(i)(s)
(
β(i)(s)

)T
. (F.3)

Letting the derivative in (F.3) be zero, one obtains

2Ωj(s)Ẑj(s)Ẑ
T
j (s) = α(s)β(s) (F.4)

where

α(s) ,
[
α(1)(s) α(2)(s) · · · α(p)(s)

]
,

β(s) ,
[
β(1)(s) β(2)(s) · · · β(p)(s)

]T
.

It follows from (F.4), Lemma 4 and β(s) = Ip that

2Ωj(s) = α(s)
(
Ẑj(s)Ẑ

T
j (s)

)−1

. (F.5)

Summing up (F.5) on both sides from 1 to N with respect to j results in

2
N∑
j=1

Ωj(s) = α(s)
N∑
j=1

(
Ẑj(s)Ẑ

T
j (s)

)−1

. (F.6)

Combining (F.6) with the restriction
∑N

j=1 Ωj(s) = Ip yields

α(s) = 2

(
N∑
j=1

(Ẑj(s)Ẑ
T
j (s))

−1

)−1

. (F.7)

Substituting (F.7) into (F.5) and taking

∂2J (s)

∂Ω2
j (s)

= 2Ẑj(s)Ẑ
T
j (s) > 0

into account, it is easy to see that under the constraint
∑N

j=1 Ωj(s) = Ip,
∥∥∥Ẑ(s)

∥∥∥2
F
is minimized by

the matrix weights given in (29). The proof is now complete.
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Appendix G. The Proof of Corollary 1

By means of the Lagrange multiplier method, the following auxiliary function is introduced:

J1(s) , tr


N∑
j=1

ω2
j (s)Ẑj(s)Ẑ

T
j (s)

+ λ(s)(ωT (s)1− 1) (G.1)

where λ(s) ∈ R denotes the Lagrange multiplier and ω(s) ,
[
ω1(s) ω2(s) · · · ωN (s)

]T
.

Taking the partial derivative of J1(s) with respect to ωj(s) and letting the calculated derivative
be zero, one has

∂J1(s)

∂ωj(s)
= 2ωj(s)tr

{
Ẑj(s)Ẑ

T
j (s)

}
+ λ(s) = 0, (G.2)

which gives

λ(s)
(
tr
{
Ẑj(s)Ẑ

T
j (s)

})−1

= −2ωj(s). (G.3)

Here, the invertibility of tr
{
Ẑj(s)Ẑ

T
j (s)

}
is affirmed by Lemma 4.

Summing up (G.3) on both sides from 1 to N with respect to j yields

λ(s) = −2

( N∑
j=1

(
tr
{
Ẑj(s)Ẑ

T
j (s)

})−1
)−1

. (G.4)

Substituting (G.4) into (G.2) obtains (30). Noticing

∂2J1(s)

∂ω2
j (s)

= 2tr
{
Ẑj(s)Ẑ

T
j (s)

}
> 0,

one can easily see that the weights given by (30) are the solution to the optimization problem (28).

Appendix H. The Proof of Corollary 2

With Ωj(s) = diag
{
ϖ

(1)
j (s), · · · , ϖ(p)

j (s)
}
, one has

∥∥∥Ẑ(s)
∥∥∥2
F
=

p∑
i=1

N∑
j=1

(
ϖ

(i)
j (s)

)2
Ẑ

(i)
j (s)

(
Ẑ

(i)
j (s)

)T
. (H.1)

By introducing the following Lagrangian function

J2(s) ,
p∑

i=1

N∑
j=1

(
ϖ

(i)
j (s)

)2
Ẑ

(i)
j (s)

(
Ẑ

(i)
j (s)

)T

+

p∑
i=1

λ̄(i)(s)

 N∑
j=1

ϖ
(i)
j (s)− 1

 (H.2)

where λ̄(i)(s) ∈ R (i = 1, 2, · · · , p) are the Lagrange multipliers, the proof is similar to that of
Corollary 1 and is thus omitted here.
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Appendix I. The Proof of Theorem 4

Since the fusion weights Ωj(s) (j = 1, 2, · · · , N) are chosen as a solution to the optimization
problem (28), one can easily obtain that

min
Ω1(s),Ω2(s),··· ,ΩN (s)

∥∥∥Ẑ(s)
∥∥∥2
F

= min
Ω1(s),Ω2(s),··· ,ΩN (s)

tr


N∑
j=1

Ωj(s)Ẑj(s)Ẑ
T
j (s)Ω

T
j (s)


≤ tr

{
Ẑj(s)Ẑ

T
j (s)

}
=
∥∥∥Ẑj(s)

∥∥∥2
F
, (I.1)

holds for all j ∈ {1, 2, · · · , N}, which ends the proof.
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