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Abstract—In this paper, a two-stage deep offline-to-online
transfer learning framework (DOTLF) is proposed for long-
distance pipeline leakage detection (PLD). At the offline training
stage, a feature transfer-based long short-term memory network
with regularization information (TL-LSTM-Ri) is developed
where a maximum mean discrepancy regularization term is
employed to extract domain-invariant features and an adjacent-
bias-corrected regularization term is introduced to extract early
fault features from pipeline samples under different scenarios. At
the online detection stage, the trained TL-LSTM-Ri is employed
for motion prediction so as to monitor the operating condition of
the pipeline in real time. To demonstrate its application potential,
the DOTLF is successfully applied to handle the PLD problem
on the long-distance oil-gas pipeline data. Experimental results
demonstrate the effectiveness of the proposed DOTLF for real-
time PLD under real-world scenarios.

Index Terms—Deep transfer learning, dynamic threshold, long
short-term memory network, pipeline leakage detection, small
samples.

I. INTRODUCTION

A pipeline is an energy-efficient carrier for transporting
fluids (e.g., oil, water, and natural gas) with high commercial
value, which plays a significant role in modern petroleum
industry [45]. Due to the corrosive and flammable nature
of petroleum, the failure of pipeline (such as leakage and
blockage) would occur, which could lead to economic loss
and serious safety hazards (e.g., environmental pollution and
loss of human life) [32], [47]. As such, it is of vital importance
to carry out fault detection to ensure the safe operation of the
pipeline [3], [7], [14], [27], [37], [38], [49], [51], [52], [59].

The fault detection of pipeline and pipe network has attract-
ed an ever-increasing interest from both academia and industry
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[32], [45]. A great many data analysis methods have been
developed for fault detection [1]. Among them, modern deep
learning (DL) techniques have been successfully exploited
in pipeline leakage detection (PLD) thanks to the powerful
feature extraction ability [20], [26], [30], [35], [39], [54], [58].
Although some DL-based PLD methods exhibit promising
performance, there are two major requirements to train an
effective DL model: 1) a large number of samples with high-
quality annotations are needed for model training; and 2)
the training and testing samples should obey the same data
distribution. Unfortunately, it is nearly impossible to meet
the aforementioned requirements in real-world PLD scenarios
since the pipeline at abnormal state will be maintained imme-
diately, and it is expensive and time-consuming to manually
annotate the samples [13].

Transfer learning (TL) provides a useful framework for
tackling the insufficient training data problem, which aims to
transfer the knowledge from the source domain to the target
domain [36]. Leveraging the power of TL, a great number
of industrial fault detection methods have been put forward
in the past few years [4], [9], [11], [16], [17], [19], [22],
[23], [40], [42]. Owing to the lack of large-scale annotated
real-world pipeline datasets, a commonly used way is to
simulate the pipeline operation in the laboratory to obtain
sufficient source domain data [56]. In fact, there might be a
large discrepancy between the distribution of the pipeline data
collected under different operating conditions and working
environments, which would cause the domain shift problem.

Fortunately, a variety of domain adaption-based TL methods
have been proposed to overcome the domain shift problem for
fault detection [9], [16], [23], [42], [56]. For instance, a deep
convolutional transfer learning network has been developed in
[9] to deal with the problem of bearing data without label by
not only maximizing the domain recognition errors but also
minimizing the probability distribution distance. Recently, a
multi-layer domain adaptation method has been proposed in
[56] to reduce the distribution discrepancy and narrow the
inter-class distance of the transferable features for tackling the
problem of bearing fault diagnosis. More recently, a residual
joint adaptation adversarial network has been presented in
[16] for intelligent fault detection, where the joint distribution
discrepancy has been considered in transferring the detection
knowledge. In this context, the domain adaption-based TL
method is chosen to handle the PLD problem with small
samples in this paper.

It should be mentioned that most existing DL-based fault
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detection methods mainly exploit fault features (which are
extracted from historical data) to classify the input data into
normal or fault states. Nevertheless, these methods may not
trigger alarms in time when encountering unseen faults. In this
case, the aforementioned DL-based fault detection methods
cannot meet the requirement of real-world PLD under complex
scenarios. To tackle the aforementioned PLD problem, we aim
to develop a novel DL-based fault detection method to predict
the pipeline pressure, where an alarm would trigger when the
real-time sensor data exceeds the dynamic threshold of the
predicted value.

According to the above discussions, we are motivated to
solve the real-time PLD problem with small samples. The
following key challenges need to be addressed: 1) how to
build a reliable real-time PLD method; 2) how to train an
effective detection model with insufficient data; and 3) how to
guarantee the detection accuracy of the designed PLD method.
Pertaining to the aforementioned challenges, we endeavor
to propose a novel two-stage deep offline-to-online transfer
learning framework (DOTLF) for real-world PLD in this paper.
In the proposed DOTLF, a feature transfer-based long short-
term memory network with regularization information (TL-
LSTM-Ri) is proposed to extract domain-invariant features so
as to improve the prediction accuracy and solve the small
sample problem at the offline training stage. At the online
detection stage, the developed TL-LSTM-Ri is employed for
motion prediction to monitor the working condition of the
pipeline in real time. The main contributions of this paper are
summarized as follows.

1) A novel DOTLF is proposed for real-time PLD, which
can not only tackle the small sample problem but also
detect unseen faults with high accuracy.

2) A novel feature transfer-based LSTM-Ri algorithm is
developed where a maximum mean discrepancy-based
regularization term is employed to alleviate the domain
shift problem and an adjacent bias-corrected regulariza-
tion term is designed to extract normal condition features
and early fault features.

3) The proposed DOTLF is successfully exploited in an-
alyzing real-world oil-gas pipeline data and detecting
pipeline leakage in real time under complex industrial
scenarios. Experimental results demonstrate that the
proposed DOTLF exhibits competitive or even superior
performance than some oil-gas PLD methods in terms
of detection accuracy.

The rest of this paper is organized as follows. The back-
ground of the LSTM and the TL are introduced in Section II.
The details of the developed DOTLF and the TL-LSTM-Ri are
introduced in Section III. Experiment setting and results are
presented in Section IV. Finally, the conclusions are drawn,
and the future work is pointed out in Section V.

II. PRELIMINARIES

A. Long Short-Term Memory Network

The recurrent neural network (RNN) has become a popular
algorithm for dealing with time-dependent problems in the past
few decades, see [15], [25], [43] and the references therein.

The structure of a standard RNN is displayed in Fig. 1. As
shown in Fig. 1, the output of the hidden layer is determined
by the current input and the output of the previous hidden
layers.

Fig. 1: The structure of the standard RNN.

To handle the vanishing gradient and exploding gradient
problems, various DL methods have been recently proposed
such as the LSTM [12], the gated recurrent unit (GRU) [5],
the temporal convolutional network (TCN) [2]. Compared to
the GRU and the TCN, the LSTM exhibits competitive or
even superior performance thanks to its network architecture.
The structure of a single storage unit in the standard LSTM
is shown in Fig. 2.

Fig. 2: The structure of a single storage unit of the LSTM.

The key to the LSTM structure is to design the cell state
as shown in Fig. 2. The cell can be regarded as a conveyor
belt, which directly transmits the information obtained from
the previous layers through the whole chain to the current layer
with linear interactions. Generally, three gates are designed to
store/abandon information to the cell state in the LSTM. It
can be seen in Fig. 2 that a single storage unit of the standard
LSTM contains a forget gate, an input gate, and an output gate.
The forget gate aims to determine how much information from
the previous layers should be discarded at the current layer by
using the sigmoid function. The forget gate ft is described as
follows:

ft =σ (Wf · [ht−1, xt] + bf ) , (1)

where σ(·) is the standard sigmoid function; t is the current
iteration; Wf and bf represent the weight and bias of the forget
gate, respectively; xt is the input data; and ht−1 denotes the
output of hidden layer at the (t− 1)th iteration.



FINAL VERSION 3

The input gate it is employed to determine how much
information from the new input should be preserved in the
current cell state, which can be formulated as (2). Meanwhile,
the new state information C̃t is obtained by (3). As such, the
current cell state Ct can be updated by (4):

it =σ(Wi · [ht−1, xt] + bi), (2)

C̃t =tanh(Wc · [ht−1, xt] + bc), (3)

Ct =ft ∗ Ct−1 + it ∗ C̃t, (4)

where ∗ represents the point-wise multiplication; Wi is the
weight of the input gate; bi is the bias of the input gate; Wc

is the weight of the new state information; and bc represents
the bias of the new state information.

The purpose of the output gate is to decide how much
information should be propagated to the next layer. In general,
the output gate ŷt is updated as follows:

ŷt =σ(Wo · [ht−1, xt] + bo), (5)
ht =ŷt ∗ tanh(Ct), (6)

where Ct denotes the cell state at the tth iteration; Wo and bo
are the weight and the bias of the output gate, respectively;
ht denotes the output of the LSTM cell at the tth iteration.

B. Transfer Learning

Transfer learning (TL) provides a framework where a sys-
tem could apply knowledge/skills obtained from previous tasks
to new tasks, which can be used to handle few-shot or even
zero-shot problems [34], [53]. In TL, two datasets are drawn
from the source domain and target domain, respectively. The
source data aims to provide the detection knowledge to train
the models. The target data makes full use of the transferred
knowledge with the purpose of solving classification or re-
gression problems with a limited number of samples. In fact,
the TL methods may not perform well without taking the
correlation between source data and target data into account,
which leads to the phenomenon of negative transfer. As such,
it is necessary to fully consider the correlation between source
data and target data when using the TL methods.

III. A NOVEL OFFLINE-TO-ONLINE TRANSFER LEARNING
FRAMEWORK

This paper aims to develop an intelligent PLD method by
transferring the acquired fault diagnosis knowledge from the
pipeline samples under laboratory conditions (PLCs) to the
pipeline samples under real-case conditions (PRCs). A two-
stage offline-to-online transfer learning framework is designed
for PLD. In the proposed framework, the leak detection
process is divided into the offline training stage and the online
detection stage.

A. Problem Formulation

In this paper, we aim to perform a two-stage offline-to-
online PLD based on the transfer learning framework, where
the PLD knowledge acquired from the PLCs is employed for
data analysis on the PRCs. Let Ds and Dt denote the source
domain and the target domain, respectively.

Suppose that we have the sample space Xs ∈ Ds and Xt ∈
Dt, the data sampled from the source and target domains are
denoted by xs ∈ Xs and xt ∈ Xt, respectively. The source
data for offline training and the target data for online detection
obey the marginal probability distribution P (xs) and P (xt),
respectively.

The source domain Ds consists of the sample space Xs

and the distribution P (xs) of PLCs, which can be represented
by Ds = {Xs, P (xs)}. The target domain Dt consists of the
sample space Xt and the distribution P (xt) of PRCs, which
can be denoted by Dt = {Xt, P (xt)}.

Due to the lack of annotated target domain data, it is
necessary to apply the detection knowledge acquired from the
source domain to assist the data analysis on the target domain
data. In this context, the source domain Ds should provide
sufficient detection knowledge for PLD of the target domain
Dt. It should be noted that both Ds and Dt should include the
pipeline operation information under normal conditions and
leakage conditions.

Remark 1: Different from traditional fault detection prob-
lems, the online pipeline leakage detection can be treated as
an outlier detection problem [41], [61]. Note that most online
detection models tend to fail in identifying incipient faults
due to insufficient real-world pipeline data. Therefore, this
paper aims to put forward a novel two-stage TL framework for
PLD, where sufficient detection knowledge is acquired at the
offline training stage by analyzing PLCs for online detection.
The proposed TL-based PLD framework could: 1) effectively
capture the domain-invariant features from the source data and
target data, which significantly improves the generalization
ability of the detection model; and 2) extract the features under
the normal condition and the fault-working condition, which
contributes to the fault detection at early stage.

B. Overview of the DOTLF

In this paper, the DOTLF is put forward for real-time PLD.
The flowchart of the proposed DOTLF is shown in Fig. 3.
At the offline training stage, the TL-LSTM-Ri is presented
where a modified loss function is developed to tackle the
small samples problem and the high false-alarm rate problem.
To be specific, the mean square error (MSE), the maximum
mean discrepancy (MMD) regularizer, and an adjacent bias-
corrected (AB) regularizer are employed to construct the mod-
ified loss function. Owing to the developed loss function, the
proposed TL-LSTM-Ri is capable of 1) adaptively extracting
the common feature representation of the PRCs and the PLCs;
and 2) effectively distinguishing the features extracted from
the normal state and the incipient fault state. At the online
detection stage, the trained TL-LSTM-Ri is employed for
motion prediction to monitor the working condition of the
pipeline in real time, which can adaptively tune the threshold
under different conditions.

C. Offline Training Stage

In this subsection, a novel TL-LSTM-Ri is put forward
where a novel loss function is developed by introducing two
regularization terms to the traditional loss function of the



FINAL VERSION 4

Fig. 3: The flowchart of the DOTLF algorithm.

LSTM. To be specific, the introduction of the MMD aims to
reduce the distribution discrepancy between the source domain
and the target domain. The utilization of the AB regularization
term focuses on improving the discrimination between the
incipient fault features and the normal features. The structure
of the TL-LSTM-Ri is displayed in Fig. 4.

1) Motivation: The RNN algorithm and its variants (espe-
cially the LSTM) have achieved a great success in dealing with
time-series problems. Note that the traditional LSTM is point-
to-point prediction. Nevertheless, the prediction accuracy tends
to be negatively impacted by some outliers (anomalies but not
faults). Under this circumstance, a seemingly natural idea is
to develop an adjacent bias-corrected predictor, which could
reduce prediction bias by making the predicted data more
similar to its neighboring regions. In this paper, a novel
TL-LSTM-Ri is proposed for high-accuracy pipeline leakage
prediction. The proposed TL-LSTM-Ri could analyze the
feature information about the trend of the pipeline pressure
by using the designed AB regularization term, which benefits
the fault detection on early minor faults.

2) Loss Function: The proposed loss function includes
three parts which are the loss function of the traditional LSTM,
the MMD, and the AB regularization term. The loss function

Fig. 4: The structure of the TL-LSTM-Ri.

of the traditional LSTM (i.e., MSE) is given as follows:

L1(xs; θ) =
1

ns

ns∑
i=1

(x̂s(i)− xs(i))
2
, (7)

where xs(i) represents the ith source data; x̂s(i) denotes the
ith predicted data; θ represents the parameters in the LSTM;
and ns represents the total number of the source data.

With the purpose of eliminating the prediction bias, a novel
regularization term is designed. The loss of the AB term is
given as follows:

L2(xs; θ) = ln

 1

ns

ns∑
i=1

(
x̂s(i)−

1

n

n∑
τ=1

xs(i− τ)

)2
 , (8)

where τ represents a known constant; n denotes the upper
bound of the known constant; ns represents the total number
of the source domain samples. Note that the loss of the AB
regularization term is calculated according to (8) when τ is
smaller than i, and otherwise we set τ = 0.

In order to capture the domain-invariant features, the MMD
is employed in this paper [6], [33]. Unlike the Kullback-
Leibler (KL) divergence, the MMD is suitable for estimating
the non-parametric distance among different distributions by
means of the reproducing kernel Hilbert space (RKHS) [31].
The MMD distance is given as follows:

MMD(xs, xt) =

∥∥∥∥∥∥ 1

ns

ns∑
i=1

φ(xs(i))−
1

nt

nt∑
j=1

φ(xt(j))

∥∥∥∥∥∥
H

, (9)

where H denotes the RKHS; φ(·) is the nonlinear mapping
from the original feature space to the RKHS; xs and xt
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represent the input samples obtained from the source data and
target data, respectively; ns and nt stand for the total number
of samples in the source data and the target data, respectively.
In this paper, an MMD-based regularizer is designed to reduce
the distribution discrepancy between source data and target
data. The loss function of the designed MMD regularizer is
given by:

L3(xs, xt; θ) =
MMD(xs, xt)

1 +MMD(xs, xt)
. (10)

In this paper, the proposed loss function of the TL-LSTM-Ri
is given by:

L(xs, xt; θ) = (L1(xs; θ) + γL2(xs; θ))L3(xs, xt; θ), (11)

where γ is a constant value to balance the MSE loss function
and the AB loss function.

Remark 2: The main novelty of the proposed TL-LSTM-
Ri lies in the design of a novel loss function for motion
prediction based on the transferred knowledge. Compared with
the classic MMD constraint, a fractional form of the MMD is
designed as a regularization term. The designed MMD-based
regularization term approaches to 1 with the increase of the
MMD, and the designed term trends to reach 0 as MMD
decreases. Such a fractional MMD regularization term acts
like a control parameter, which could influence the knowledge
transfer between the source domain and the target domain. The
designed AB regularization term acts as a “smoothing” factor,
which would result in the moving prediction rather than the
point-to-point prediction for real-time fault detection.

In this paper, the Adam gradient descent algorithm
is employed to minimize (11). Letting f(xs, xt; θ) =
MMD(xs, xt), g(xs; θ) = L1(xs; θ) + γL2(xs; θ), one has:

L(xs, xt; θ) =
f(xs, xt; θ)

1 + f(xs, xt; θ)
g(xs; θ). (12)

The gradient is computed by:

∂L(xs, xt; θ)

∂θ
=

g(xs; θ)

(f(xs, xt; θ) + 1)2
∂f(xs, xt; θ)

∂θ

+
f(xs, xt; θ)

1 + f(xs, xt; θ)

∂g(xs; θ)

∂θ
.

(13)

During the training process, the weighting parameters θ of
the proposed TL-LSTM-Ri are updated as follows:

θ ← θ − α
∂L(xs, xt; θ)

∂θ
, (14)

where α is the learning rate.

D. Online Pipeline Leakage Detection Stage

The process of online detection is illustrated in Fig. 5. First
of all, the real PRCs (depicted in black) for the first T − 1
time points are fed into the trained TL-LSTM-Ri model to
predict the PRCs (depicted in red) at the moment T . Then,
the predicted PRCs at the moment T are compared with
the corresponding real PRCs to judge the pipeline condition
according to the dynamic threshold. Note that if the sample
points at moment T are under fault condition, then the
predicted PRCs at moment T will replace the real PRCs as the

input of the detection model to predict the PRCs at moment
T + 1. Conversely, the real PRCs at moment T will continue
to be used to predict the PRCs at moment T +1, and the cycle
repeats until the end. In summary, the prediction mode of the
DOTLF can be discussed in two cases: 1) if the current sample
is normal, the DOTLF can be considered as a one-step-ahead
prediction; and 2) if the current sample is faulty, the DOTLF
can be regarded as a combination of one-step-ahead prediction
and multi-step-ahead prediction.

Fig. 5: Process of online detection.

IV. EXPERIMENTS AND RESULTS

In this paper, experiments are carried out according to the
following four steps: 1) data collection and pre-processing; 2)
model pre-training; 3) diagnostic knowledge transfer; and 4)
real-time fault diagnosis. In the experiment, a large number of
PLCs collected from the laboratory are chosen as the source
data and a limited number of PRCs are employed as the target
data. In the following subsections, we discuss the details about
the data pre-processing, the offline training process as well as
the online detection process.

A. Data Preprocessing

It is known that the TL technique could reduce the distri-
bution discrepancy between the source and target domains. In
this paper, the source data and target data are chosen from the
PLCs and PRCs, respectively. The experimental platform for
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simulating the real-world pipeline data is depicted in Fig. 6.
A simulation sample is shown in Fig. 7. The parameters of
the experimental system are illustrated in the following: the
length of the pipeline is 180m, there is a leakage point every
10m, the pressure is 0.5MPa, and the flow rate is 60m3/h.
The PRCs are collected from the oil pipeline network system.
A real-world sample is the negative pressure wave signal
which is shown in Fig. 8. It can be observed in Figs. 7-8
that the amplitude difference between the two signals reaches
6 orders of magnitude, which would affect the knowledge
transfer performance. Additionally, owing to the influence
of the sensors and the outside environment (e.g., moving
vehicles and site construction), the collected pipeline pressure
signal is often corrupted or even drowned by various noises,
which gives rise to omission and misreporting of possible
accidents. To overcome the aforementioned weaknesses, the
normalization and denoising strategies proposed in [46] are
employed to alleviate the noise interference.

Fig. 6: The experimental platform of the pipeline leakage detection.

Fig. 7: Laboratory data.

Fig. 8: Field data.

B. Experiment Results of the Offline Training Stage

In this section, the performance of the proposed TL-LSTM-
Ri is evaluated by comparing with the standard LSTM, the TL-
LSTM, and the LSTM-Ri. For implementation of the proposed
TL-LSTM-Ri, a four-layer LSTM is employed to extract
features from the pipeline data followed by a three-layer fully
connected network for domain adaptation and prediction. For
fairness of comparison, the identical network structure and
parameters are utilized in all the algorithms. The batch size is
set to be 200. The learning rate α of the optimizer is set to
be 1e− 4. The step size is set to be 12. The iteration number
is set to be 2500, and γ is set to be 1e− 3.

The experimental results of the LSTM, the LSTM-Ri, the
TL-LSTM, and the proposed TL-LSTM-Ri at the offline train-
ing stage are shown in Fig. 9. Intuitively, as shown in Fig. 9(a)
and Fig. 9(c), there is a large gap between the predicted data
and the real data. In contrast, it can be seen clearly that the
predicted data completely tracks the real-time data in Fig. 9(b)
and Fig. 9(d). Notably, the real data are described by the
blue curves, and the predicted data are denoted by the red
curves. The performance of the utilized algorithms is evaluated
according to the difference between the predicted and real
data. It can be found that the proposed TL-LSTM-Ri achieves
the smallest error among the four algorithms, which indicates
the superiority of the proposed TL-LSTM-Ri. By introducing
the MMD, the proposed TL-LSTM-Ri exhibits better feature
extraction performance than other utilized algorithms.

The loss of the proposed TL-LSTM-Ri is described in
Fig. 10, where the vertical coordinate indicates the loss
value, and the horizontal coordinate represents the number
of iterations. As shown in Fig. 10, the loss of the proposed
TL-LSTM-Ri decreases gradually and converges very fast,
which indicates the fast convergence and robustness of the
TL-LSTM-Ri at the offline training stage. To summarize, the
proposed TL-LSTM-Ri outperforms the compared algorithms
in terms of prediction performance.
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(a) (b)

(c) (d)

Fig. 9: The real data and the predicted data obtained by using a) LSTM; b) LSTM-Ri; c) TL-LSTM; and d) TL-LSTM-Ri.

Fig. 10: The loss function of the MMD-based LSTM with regular-
ization terms.

C. Experiment Results of the Online PLD Stage

The performance of the online PLD system is evaluated
under both fault and normal conditions. The parameters of
the selected algorithms remain the same at the offline PLD
stage. In our experiments, the upper bound on the dynamic
threshold (UDT) is set as UDT = Dprediction × (1 + 2%),
and the lower bound on the dynamic threshold (LDT) is set
as LDT = Dprediction × (1 − 2%), where Dprediction is the
predicted value obtained by the employed algorithm.

1) Case 1: Online PLD System for Fault Conditions: The
four online PLD systems under fault condition have been
constructed by using the selected algorithms, which are shown
in Fig. 11. The constructed online PLD systems can be roughly
divided into the direct transfer learning (DTL) ones and the
adaptive transfer learning (ATL) ones. To be specific, the two
DTL-based systems are established by using the LSTM and the
LSTM-Ri, and the ATL-based systems are constructed based
on the TL-LSTM and the TL-LSTM-Ri.

As displayed in Fig. 11, the blue curve represents the
field data collected from the oil pipeline network system.
The red curve represents the predicted sample, and two black
dotted lines are the upper and lower bounds of the dynamic
thresholds. The sampling frequency of the oil pipeline network
system is 1024Hz. In the experiment, the pipeline leakage
occurs at a certain time. The signal size is 16384 and the
time window is set to be T = 16s.

It can be clearly seen in Fig. 11(a) and Fig. 11(b), the two
online PLD systems with the DTL-based LSTM and the DTL-
based LSTM-Ri are employed to detect the incipient leakage,
respectively. The online detection systems based on the ATL
are utilized to identify the leakage as shown in Fig. 11(c) and
Fig. 11(d). It can be seen that there is a large error between the
predicted data of the DTL and the real data, which indicates
high false-alarm rate, see enlarged Figs. 12-13 for details.

Comparing with the DTL-based PLD systems, the ATL-
based systems obtain less error between the predicted and real
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(a) (b)

(c) (d)

Fig. 11: The online PLD systems by using a) LSTM; b) LSTM-Ri; c) TL-LSTM; and d) TL-LSTM-Ri.

Fig. 12: The online PLD system built by using the LSTM algorithm.

data, which could detect the incipient leakages with less or
no false alarm as shown in Figs. 14-15. To summarize, the
TL-LSTM-Ri-based PLD system outperforms other designed
PLD systems, which could not only detect the leakages but
also greatly reduce the false-alarm rate.

2) Case 2: Online PLD System for Normal Conditions: To
monitor the pipeline operation under normal conditions, the
proposed ATL-based LSTM-Ri is employed to build the online
PLD system. As shown in Figs. 16-17, the predicted data could
“perfectly” track the real data within the bounds, indicating
that the proposed online PLD system is able to alleviate the

omission and the misreporting problems.

D. Generalization Ability Evaluation

In previous experiments, we have verified the superior per-
formance of the DOTLF algorithm, which utilizes knowledge
of the source domain (laboratory voltage data) to train a
detection model for the target domain (field pressure data). In
this experiment, we further evaluate the generalization ability
of our algorithm in another target domain. Specifically, we
test our algorithm with pipeline samples from flow sensors,
as shown in Figs. 18-19. First of all, we can observe that
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Fig. 13: The online PLD system built by using the LSTM-Ri algorithm.

Fig. 14: The online PLD system built by using the TL-LSTM algorithm.

Fig. 15: The online PLD system built by using the TL-LSTM-Ri algorithm.
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Fig. 17: The TL-LSTM-Ri-based online PLD system under normal conditions: An enlarged case.

Fig. 16: The TL-LSTM-Ri-based online PLD system under normal
conditions.

the predicted data precisely tracks the real data under normal
condition without any abnormal trends, which verifies that our
method can guarantee prediction accuracy, even in the unseen
domain. Simultaneously, the DOTLF is capable of accurately
detecting incipient leakages under fault condition with few
or no false alarms, which demonstrates that our method can
achieve expected detection accuracy in the unseen domain.
Clearly, our superior generalization performance remains even
in the case of more challenging unseen domains.

E. Comparison with the State-of-the-Art

Additional experiments on statistical measurements are im-
plemented in this section to further verify the superiority of
our TL-LSTM-Ri algorithm.

1) Baseline Algorithms: To comprehensively evaluate the
superiority of the proposed TL-LSTM-Ri algorithm, we com-
pare its performance with that of four state-of-the-art TL
methods, including CNN-MMD [24], DANN [8], DeepCO-
RAL [44], and JAN [29]. Specifically, except for the CNN-
MMD algorithm that is constructed via convolutional neural
networks, all other compared methods share the same network
and parameter configuration as the proposed algorithm.

Fig. 18: Online PLD system based on TL-LSTM-Ri algorithm
operating under normal condition.

.

.

.

.

.

.

.

.

Fig. 19: Online PLD system based on TL-LSTM-Ri algorithm
operating under fault condition.
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2) Evaluation Metrics: In this work, we calculate the
following four statistical metrics to evaluate the detection relia-
bility of the proposed TL-LSTM-Ri algorithm, including false-
alarm rate (FAR), missing-alarm rate (MAR), fault-detection
rate (FDR), and total accuracy (ACC). Concretely, FAR indi-
cates the misclassified negative instances as a percentage of
the total negative instances, which is formulated as follows:

FAR =
FP

FP + TN
, (15)

where FP refers to the instance whose true class is negative
while the predicted class is positive; TN represents the instance
whose true class is negative and the predicted class is negative.
It is important to note that in pipeline fault detection, we
uniformly categorize faulty samples as positive and normal
samples as negative. In addition, MAR denotes the misclas-
sified positive instances as a percentage of the total positive
instances, which is formulated as follows:

MAR =
FN

TP+ FN
, (16)

where FN is the instance whose true class is positive while
the predicted class is negative; TP represents the instance
whose true class is positive and the predicted class is positive.
Moreover, FDR is the correctly classified positive instances
as a percentage of the total positive instances, which is
formulated as follows:

FDR =
TP

TP + FN
. (17)

Furthermore, ACC denotes the correctly classified instances
as a percentage of the total instances, which is formulated as
follows:

ACC =
TP+ TN

TP+ FN+ TN+ FP
. (18)

Besides the above accuracy-related metrics, we also record
the detection time (DT) for evaluating the real-time perfor-
mance of the TL-LSTM-Ri algorithm and all baselines.

3) Experimental Results: Table. I shows the values of FAR,
MAR, FDR, ACC, and DT for the TL-LSTM-Ri algorithm
and all baselines. It can be found that our TL-LSTM-Ri
algorithm achieves the better FAR value (1.00%) than CNN-
MMD (−10.3%), DANN (−3.66%), DeepCORAL (−3.16%),
and JAN (−1.16%). Moreover, we can also find that the
proposed algorithm obtains the best performance in MAR,
FDR, and ACC. Therefore, our way of predicting the pipeline
data is more efficient than all baselines. In terms of real-time
performance, although our algorithm does not achieve the best
result, its DT value is small enough to meet the detection
requirements. Based on the above experimental results, we
can conclude that our TL-LSTM-Ri algorithm can not only
satisfy the real-time performance but also further improve the
accuracy of fault detection.

V. CONCLUSION

In this paper, a two-stage incipient fault detection method
has been proposed for online PLD where an offline-to-online
transfer learning framework has been developed to deal with

real-time leakage detection with high false-alarm rate. At the
offline training stage, a novel TL-LSTM-Ri has been proposed
to transfer the detection knowledge from the PLCs to the
PRCs, which has solved the insufficient training data problem.
By introducing the regularization terms (i.e., MMD and AB)
into the transfer learning framework, the robustness of the
PLD model has been enhanced while the false-alarm rate
has been reduced. At the online detection stage, a dynamic
threshold generated by the proposed TL-LSTM-Ri has been
utilized to detect the incipient fault in real time by compar-
ing with the PRCs. Experiment results have shown that the
proposed DOTLF outperforms some selected PLD methods
under both normal and fault conditions. In the future, we aim
to 1) optimize the source domain data to efficiently transfer
detection knowledge [10], [19], [48], [55], [57]; and 2) design
an advanced control strategy to further improve the detection
accuracy and detection rate of the TL-LSTM-Ri-based PLD
method [18], [21], [28], [50], [60].
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