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Abstract—In this paper, a novel outlier detection method
is proposed for industrial data analysis based on the fuzzy
C-means (FCM) algorithm. An adaptive switching randomly
perturbed particle swarm optimization algorithm (ASRPPSO)
is put forward to optimize the initial cluster centroids of t he
FCM algorithm. The superiority of the proposed ASRPPSO is
demonstrated over five existing PSO algorithms on a series of
benchmark functions. To illustrate its application potential, the
proposed ASRPPSO-based FCM algorithm is exploited in the
outlier detection problem for analyzing the real-world industrial
data collected from a wire arc additive manufacturing pilot line
in Sweden. Experimental results demonstrate that the proposed
ASRPPSO-based FCM algorithm outperforms the standard FCM
algorithm in detecting outliers of real-world industrial d ata.

Note to Practitioners—Electric arc (which is governed by the
current and arc voltage) plays a significant role in monitoring
the operating status of the wire arc additive manufacturing
(WAAM) process. The nominal periodic current and voltage
may occasionally change abruptly due to anomalies (such as
arc instability, unstable metal transfer, geometrical deviations,
and surface contaminations), which would affect the quality
of the fabricated component. This paper focuses on detecting
possible anomalies by analyzing the current and voltage during
the WAAM process. A novel clustering-based outlier detection
method is proposed for anomaly detection where abnormal and
normal instances are categorized into two separate clusters.
A new particle swarm optimization algorithm is put forward
to optimize the initial cluster centroid so as to improve the
detection accuracy. The proposed outlier detection methodis
applied to real-world data collected from a WAAM pilot line f or
detecting abnormal instances. Experimental results demonstrate
the effectiveness of the proposed outlier detection method. The
proposed outlier detection method can be applied to other in-
dustrial applications including electrical engineering,mechanical
engineering and medical engineering. In the future, we aim to
develop an online outlier detection system based on the proposed
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method for real-time for anomaly detection and defect prediction.
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I. I NTRODUCTION

Additive manufacturing (AM) is a disruptive technology
in industrial manufacturing, which has attracted an ever-
increasing research interest during the past few years. During
the AM process, the metal material required by the production
specification is deposited to the substrate layer by layer under
the control of a computer [8]. Compared with some traditional
subtractive manufacturing technologies, the AM technology
exhibits better design flexibility and produces less waste.
Thanks to its strong abilities in fabricating components with
complex geometries, the AM technology has been successfully
applied to a variety of fields such as electrical engineering,
healthcare and transportation [9], [14].

To meet the requirement of fabricating components with
complex structures at fine resolutions, a large number of AM
methods have been developed, e.g., selective laser sintering,
direct energy deposition (DED), liquid binding in three-
dimensional printing, contour crafting and laminated object
manufacturing [26]. Among existing AM methods, the DED
method is a competitive one which uses high-power energy
sources (including laser beam, electron beam, and electricarc)
to deposit the metal powder or feedstock wire into the substrate
layer by layer without the requirement of a strict seal structure
[8].

Wire arc AM (WAAM) is a wire-based DED method with
relatively high deposition efficiency. Compared with otherAM
methods, the WAAM has demonstrated significant advantages
in material loss and cost savings [31]. In WAAM, the quality
of the fabricated component is highly dependent on the op-
erating status (manipulator- and feedstock feeding accuracy,
shielding gas flow, metal surface contaminations, heat- and
metal transfer, heat accumulation, and part distortion). The
electric arc used as a heat source is primarily governed by
the total current and arc voltage. These quantities are straight
forward to monitor, and they directly convey vital information
about the operating status. During processing, the nominal
periodic current and voltage may occasionally change abruptly
because of anomalies in the conditions such as, arc instability,
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unstable metal transfer, geometrical deviations, and surface
contaminations. All such indications should be detected and
possibly classified since they could be directly influencingthe
quality of the fabricated component.

Reaching a sufficient detection performance is of high
industrial relevance since it will make quality control more
efficient. If the data is accessible as a post process batch, it
can be used to guide and optimize post process inspection.
If the process change point detection can be implemented in
real time, it can be used to initiate either a controlled stop
of the process to directly enable some rectifying actions or,
even better, enable an automatic corrective action (closedloop
control).

Serving as a popular data analysis method, outlier detection
plays an important role in identifying abnormal instances [10].
In the past few decades, a lot of outlier detection methods
have been proposed [1], [13], [40], [45], [56]. For example,
machine-learning-based outlier detection methods have been
employed in [40] to analyze the semiconductor manufacturing
etching data. A new outlier detection method has been devel-
oped in [45] for process monitoring based on the Gaussian
process method. In this context, it becomes natural to apply
outlier detection methods to analyze the current and voltage of
the welding equipment in WAAM, where the instances with
sudden change are treated as outliers.

As a powerful family of outlier detection methods, the
clustering-based outlier detection methods are utilized to iden-
tify abnormal instances according to the corresponding clus-
tering results. Compared with existing clustering algorithms
including the density-based spatial clustering of applications
with noise (DBSCAN) algorithm and the K-means algorithm,
the fuzzy C-means (FCM) algorithm has the advantages of
easy implementation and high efficiency, which has been suc-
cessfully applied to a large number of real-world applications
[44], [46], [47]. Nevertheless, as a distance-based clustering
algorithm, the clustering performance of the FCM algorithmis
highly dependent on the initial location of the cluster centroid
[43]. Selecting an optimal set of initial cluster centroidsseems
to be an effective way to guarantee the performance of the
FCM algorithm.

It is worth mentioning that evolutionary computation (EC)
has been widely used to solve various optimization problems
[39], [50]–[52]. Among the EC algorithms, the particle swarm
optimization (PSO) algorithm is a population-based one, which
is inspired by the mimics of social interactions, e.g., birds
flocking and fish schooling [55], [57]. In comparison with
some existing EC algorithms, the PSO algorithm has the fol-
lowing three advantages: 1) the number of parameters required
to be adjusted is relatively small; 2) the convergence rate of the
PSO algorithm is relatively fast; and 3) the implementationof
the PSO algorithm is simple [5], [41]. Owing to the technical
merits of the PSO algorithm, a seemingly reasonable idea is to
adopt the PSO algorithm to optimize the initial locations ofthe
cluster centroids with the purpose of improving the clustering
performance of the FCM algorithm.

Despite their wide applicability, most existing population-
based EC algorithms suffer from premature convergence, and
this is particularly true when dealing with complex and large-

scale optimization problems [19]. During the past few decades,
a great many PSO variants have been proposed to improve the
convergence rate and the search ability of the optimizer, which
can be roughly categorized into four groups: 1) adjusting
control parameters; 2) developing novel velocity updating
strategies; 3) designing new topological structures; and 4)
hybridizing with other EC algorithms [6], [15], [21], [32],
[37], [38], [42], [53], [54]. For instance, the PSO algorithm
with a linear decreasing inertia weight (PSO-LIDIW) has been
proposed in [37], [38]. A PSO algorithm with time-varying
acceleration coefficients (PSO-TVAC) has been introduced
in [32]. An adaptive weighted PSO algorithm has been put
forward in [21], where an adaptive weighting strategy (AWU)
has been designed to control the acceleration coefficients,
which could significantly enhance the convergence rate of the
PSO algorithm.

A switching PSO (SPSO) algorithm has been put forward
in [42] by employing a switching strategy to update the
velocity of the particles, where the switching strategy divides
the evolutionary process into four evolutionary states (i.e.,
convergence, exploitation, exploration and jumping-out). By
using the switching strategy, the SPSO algorithm has shown
relatively fast convergence rate. Nevertheless, the deployment
of the switching strategy as well as the AWU could not solve
the premature convergence problem.

In the literature, some popular PSO variants have been pro-
posed by embedding random perturbations (e.g., time delays
and noises) in the PSO algorithm with hope to alleviate the
premature convergence problem [21], [54]. In [54], a switching
delayed PSO (SDPSO) algorithm has been developed, where
time delays are embedded in the velocity updating equation of
the SPSO algorithm. Compared with the SPSO algorithm, the
SDPSO algorithm exhibits stronger search ability especially
for multimodal optimization problems. It should be noticed
that the employment of the perturbation has proven to be
another effective way to help particles jump out of the local
optima [2], [16]. In this situation, it is reasonable to adaptively
embed the random perturbation into the PSO algorithm based
on the switching strategy to alter the dynamical behavior of
the particles and expand the search range of the optimizer.

Motivated by the above discussions, the purpose of this
paper is to develop an adaptive switching randomly perturbed
particle swarm optimization (ASRPPSO) algorithm so as to
automatically choose an optimal set of initial locations of
the cluster centroids of the FCM algorithm. Specifically, a
distance-based weighting strategy is designed to adaptively
control the acceleration coefficients. The switching strategy
is employed to accelerate the searching process and balance
the global and local searches. In addition, Gaussian white
noises are embedded in the velocity updating equation to
randomly alter the system dynamics of the optimizer, which
could expand the search space and alleviate the premature
convergence problem. The proposed ASRPPSO-based FCM
algorithm is applied to detect outliers in real-world data.

The main contributions of this paper can be summarized in
the following three aspects:

1) a novel ASRPPSO is proposed where an AWU strategy
is designed to adaptively adjust the acceleration coef-
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ficients, and the Gaussian white noises are adaptively
embedded into the velocity updating equation based on
the switching strategy;

2) an ASRPPSO-based FCM algorithm is developed where
the ASRPPSO is employed for selecting the optimal
locations of the initial cluster centroids of the FCM
algorithm; and

3) the developed ASRPPSO-based FCM algorithm is ap-
plied to outlier detection of the real-world industrial data
collected from a WAAM pilot line. Experimental results
demonstrate the effectiveness of the proposed outlier
detection method.

The remaining parts of this paper are organized as follows.
The background of AM and outlier detection are discussed
in Section II, where the description of the utilized data sets is
also presented. In Section III, the proposed ASRPPSO and the
ASRPPSO-based FCM algorithm are introduced. Experimen-
tal results of the ASRPPSO and the ASRPPSO-based FCM
algorithm are presented in Section IV. Finally, conclusions and
discussions on relevant future work are presented in Section
V.

II. BACKGROUND

A. Additive Manufacturing

AM, also known as 3D printing, has been recognized as a
breakthrough technology which shows great application poten-
tials in industrial machinery, assembly processes, and supply
chains [7]. An AM system consists of three parts: a motion
system, heat source and feedstock. Due to the advantages of
high deposition rate, high material utilization, low cost and
environmental friendliness, the WAAM has become a popular
AM method, which uses the electric arc as the heat source and
the wire as the feedstock. Depending on the heat source, the
heat and metal transfer in WAAM can be generally divided
into three categories of equipment including the Gas Tungsten
Arc Welding, the Gas Metal Arc Welding, and the Plasma Arc
Welding [48].

In fact, there are several key factors affecting the per-
formance of WAAM, e.g., the programming strategies,
manipulator- and feedstock feeding accuracy, shielding gas
flow, metal surface contaminations, heat- and metal transfer,
heat accumulation, and part distortion [49]. In recent years,
a variety of advanced techniques (which focuses on the
aforementioned factors) have been put forward to improve the
performance of the WAAM. For instance, in [28], an improved
heat transfer and fluid flow model has been introduced in
WAAM, which could determine the parameters that influence
the microstructure, properties, and defect formation of the
component. In [24], a WAAM modelling strategy has been
developed based on a novel heat source model, which has
shown high accuracy in measuring distortions.

Note that the quality of AM products is highly dependent on
the welding equipment used. To monitor the WAAM process,
outlier detection techniques are widely adopted to analyzethe
sensor data (e.g., current and voltage) of the welding machine
used with the purpose of detecting abnormal points. In general,
the abnormal points indicate the sudden change of the process,

which could bring negative influence on the manufacturing
process. In this case, it is of practical importance to use outlier
detection techniques for online monitoring of the WAAM
process.

So far, a large number of outlier detection methods have
been introduced for data analysis in WAAM [4], [12], [17],
[33]. For instance, a non-contact in-situ 3D laser profilometer
inspection system has been presented in [12] to monitor
the visual surface defects. A modular anomaly detector has
been put forward in [33] for analyzing multivariate time-
series data in the WAAM process. In [4], a convolutional
neural network-based method has been proposed for real-
time anomaly detection in WAAM. In [17], an image-based
approach has been presented for defect detection in WAAM.

B. Description of the Data Sets

The utilized data is acquired through the process in a
WAAM pilot line deployed in Sweden. In total, there are
five data sets where each data set contains 98000 instances.
In this paper, each data set represents an individual test. In
the collected data sets, there are four variables which are
“X Value”, “WeldCurrent”, “WeldVoltage”, and “Computer-
Time”. “X Value” represents the time stamp. “WeldCurrent”
and “WeldVoltage” denote the processing current and voltage,
respectively. “Computer time” is the total time of the process.
The details of the variables are summarized in Table I. The
details of data pre-processing are presented in Section IV.

III. M ETHODOLOGY

The FCM algorithm is a competitive clustering algorithm,
whose initial location of the cluster centroid is a decisivefactor
affecting the clustering results of the FCM algorithm. Clearly,
it is highly desirable to seek the best location of the initial
centroid for the best clustering performance, which gives rise
to a rather challenging optimization problem that has received
little research attention so far except the preliminary efforts
made in [27], [35]. In fact, as one of the powerful optimization
algorithms, the PSO algorithm is ideally suited in optimizing
the initial location of the cluster centroid, see [27], [35]for
more details.

In the PSO algorithm, the control parameters (i.e., the
inertia weight and acceleration coefficients) are utilizedto
balance the global and local search. In recent years, some
variant PSO algorithms (which modify the control parameters)
have been proposed to balance the global and local search
[32], [37], [38]. The PSO-LIDIW algorithm and the PSO-
TVAC algorithm both demonstrate competitive performance in
maintaining the balance between the global and local search
compared with the original PSO algorithm.

It should be noticed that the solution accuracy of many PSO
variants is improved with the sacrifice of the convergence rate
[3]. With the purpose of adequately improving the convergence
rate and the capability of finding the global best solution,
the AWPSO algorithm has been put forward in [21], where
a sigmoid-function-based AWU strategy has been proposed
to adjust the acceleration coefficients. Specifically, the AWU
strategy makes full use of the distance from each particle
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TABLE I
DATA SETS DESCRIPTION

Variable Description Data Type Unit
X Value The time stamp Numerical s
WeldCurrent The current of the equipment NumericalA
WeldVoltage The voltage of the equipment NumericalV
ComputerTime The total time of the process Numericals

towards its personal best (pbest) and global best position
(gbest) at each step, which significantly improves the conver-
gence rate of the optimizer. Unfortunately, the search ability
of the AWPSO algorithm is not satisfactory when dealing with
complex optimization problems.

Recently, some PSO algorithms have been proposed to
alleviate premature convergence based on different switching
strategies [21], [42], [54]. By using the switching strate-
gy, the evolution process is divided into four evolutionary
states (including the exploration, exploitation, convergence,
and jumping-out states). The velocity is updated based on
different updating strategies at each state, which offers the
opportunity of improving the search ability and guaranteeing
the convergence rate of the optimizer at the same time. More
recently, adding noises to perturb the particle’s movementhas
been proven to be an effective way to improve the search
ability of each individual particle. In [21], the intensity-
adjustable Gaussian white noise has been added in the velocity
updating equation to randomly alter the acceleration constants
in order to explore the search space thoroughly. Motivated by
the above discussions, it becomes natural to embed the random
noises to the PSO algorithm according to the evolutionary
states to further alleviate the premature convergence problem
and improve the search ability of the optimizer.

In this paper, a novel ASRPPSO is put forward where an
AWU strategy is designed to adjust the acceleration coeffi-
cients. In the ASRPPSO, the switching strategy is utilized to
improve the particle’s search ability, and the Gaussian white
noises are embedded in the velocity updating equation based
on the switching strategy to help the particles escape from the
local optima. In addition, an ASRPPSO-based FCM algorithm
is proposed for outlier detection, where the ASRPPSO is
adopted to choose an optimal set of initial locations of the
cluster centroids in the FCM algorithm.

A. The ASRPPSO

1) Framework of the ASRPPSO:The updating equations of
the proposed ASRPPSO in terms of velocity and position of
the ith particle at the(k + 1)th iteration are given as follows:

vi,k+1 = wkvi,k + c1,kr1
(

pbesti,k − xi,k

)

+ c2,kr2 (gbestk − xi,k)

+ α1,ξkδ1
(

pbesti,k − xi,k

)

+ α2,ξkδ2 (gbestk − xi,k)

xi,k+1 = xi,k + vi,k+1

(1)

wherek represents the current iteration number;wk denotes
the inertia weight at thekth iteration; c1,k and c2,k are the

acceleration coefficients;r1 andr2 represent random numbers
selected within[0, 1]; pbesti,k represents the personal best
position found by theith particle itself at thekth iteration;
gbestk represents the global best position of the entire swarm
at the kth iteration; α1,ξk and α2,ξk are parameters which
are used to adjust the Gaussian white noises according to the
evolutionary state; andδ1 and δ2 represent two independent
Gaussian white noises.

The procedure of the proposed ASRPPSO is presented in
Algorithm 1.

Algorithm 1 The Procedure of the ASRPPSO
1. Initialize the parameters of the ASRPPSO including

the population sizeP , inertia weightw1, acceleration
coefficientsc1,1, c2,1, and the maximum velocityVmax.

2. Set a swarm that hasP particles.
3. Initialize the positionxi,1, the velocityvi,1, and

pbesti,1 of each particle(i = 1, 2, . . . , P ); and
initialize gbest1 of the swarm.

4. Calculate each particle’s fitness value.
5. Update thepbesti,k of each particle andgbestk of

the swarm.
6. CalculateEf according to Eq. (5) and Eq. (6), and

confirm the evolutionary state according to Eq. (7).
7. Updatewk, c1,k andc2,k of each particle based on

Eq. (2), Eq. (3) and Eq. (4).
8. Update the velocityvi,k and the positionxi,k of each

particle based on Eq. (1).
9. Terminate the algorithm if the maximum iteration is

reached or the fitness value reaches the threshold.
If not, repeat Steps 4-8.

2) Inertia Weight: The inertia weight is an important pa-
rameter which is designed to adequately balance the global and
local search. The inertia weight shows the ability of particles to
inherit their previous velocities. In order to balance the global
search and the local search, the inertia weight is adaptively
altered by a linear decreasing inertia weight strategy which
has been introduced in [37], [38]. In the proposed ASRPPSO,
the updating equation of the inertia weight is shown as follows:

w = wmax − (wmax − wmin)×
k

K
(2)

wherewmax andwmin denote the maximal and minimal value
of the inertia weight, respectively;k and K represent the
current iteration number and the maximum iteration number,
respectively; and the maximum and minimum inertia weights
are set to be 0.9 and 0.4, respectively.
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3) Acceleration Coefficients:According to [21], using an
AWU function to demonstrate the relationship between the
acceleration coefficients and the distances from the particle
to its pbest and gbest is a good way to adaptively adjust
acceleration coefficients, which can significantly improvethe
convergence rate. In this proposed ASRPPSO, a tanh-function-
based AWU strategy is introduced to accelerate the movement
of particles, which aims to improve the convergence rate.

Inspired by [21], the AWU function need to be monotoni-
cally increasing and bounding. The tanh function is a typical
activation function of the neural networks, which perfectly
fits the requirements mentioned above. In addition, the tanh
function is differentiable, which can iteratively reflect the
characteristics of the weight updating process. Hence, thetanh
function seems to be an appropriate choice. The updating
equations of the acceleration coefficients are demonstrated as
follows:

c1,k =
−2b

1 + exp
(

2a
(

pbesti,k − xi,k −m
)) + n (3)

c2,k =
−2b

1 + exp (2a (gbestk − xi,k −m))
+ n (4)

wherea andb are two parameters used to describe the curve,
which represent the steepness and the peak value, respectively;
m denotes the offset of the central point;n is a negative value;
andexp(·) is the natural exponential function.

It is worth mentioning that, in Eq. (3) and Eq. (4),a,
b, m, and n are all constant values. Appropriate values of
the parameters would effectively enhance the performance of
the optimization algorithm. In the proposed ASRPPSO, the
parameters are set bya = −0.035, b = −0.275, m = 0, and
n = 1.2 based on the experimental experience.

4) Evolutionary States:In the ASRPPSO, the particle’s
velocity as well as position are adjusted based on the evolu-
tionary states, which are identified by the evolutionary factor
(calculated based on the mean distance from each particlei

to other particles). The equation of mean distancedi is shown
as follows:

di =
1

S − 1

S
∑

j=1

√

√

√

√

D
∑

r=1

(xi,r − xj,r)
2 (5)

whereS andD represent the swarm size and the dimension
of the particle, respectively.

Denotedg as the global best particle ofdi, the evolutionary
factorEf can thus be calculated by:

Ef =
dg − dmin

dmax − dmin

(6)

wheredmax anddmin are the maximum and minimum ofdi,
respectively. It is worth mentioning thatEf belongs to[0, 1].

Based on the evolutionary factor, the four states can be
classified as follows:

ξk =















1, 0.00 ≤ Ef ≤ 0.25
2, 0.25 < Ef ≤ 0.50
3, 0.50 < Ef ≤ 0.75
4, 0.75 < Ef ≤ 1.00

(7)

whereξk = 1 denotes the convergence state,ξk = 2 represents
the exploitation state,ξk = 3 denotes the exploration state, and
ξk = 4 represents the jumping-out state.

5) An Adaptive Weighted Velocity Updating Strategy:The
novel velocity updating strategy can be explained based on
four evolutionary states, which is summarized in Table II. The
decision factorsα1,ξk andα2,ξk are used for determining the
value of the Gaussian white noise, which are dependent on
evolutionary states; andk denotes the current iteration number.

TABLE II
PARAMETERS IN THE VELOCITY UPDATING STRATEGY OF THE

ASRPPSO

Evolutionary State ξk α1,ξk α2,ξk

Convergence 1 0 0
Exploitation 2 1 0.3
Exploration 3 0.3 1
Jumping-out 4 1 1

6) Gaussian White Noise:Inspired by [21], to improve the
search ability of the optimizer by altering the system dynamics
of the PSO algorithm, the Gaussian white noisesδ1 andδ2 are
added into the velocity updating equation to randomly perturb
the movement of the particles. Note that the mean value and
variance ofδ1 andδ2 remain the same for the four evolutionary
states.

B. The ASRPPSO-based FCM Algorithm

Due to the fact that the FCM algorithm’s performance is
highly dependent on the initial cluster centroids, the ASRPP-
SO is employed for optimally selecting the initial cluster
centroids. As discussed before, the Gaussian white noise is
embedded in the velocity updating model so that the particle’s
ability of getting rid of local optima is enhanced, which
indicates that the probability of getting better cluster centroids
would be improved. The procedure of the ASRPPSO-based
clustering algorithm is described in Algorithm 2.

IV. EXPERIMENTAL RESULTS

A. The ASRPPSO

The performance of the developed ASRPPSO is evaluated
on a series of benchmark functions. Here, 13 selected CEC
basic benchmark functions are chosen for performance evalua-
tion. The details of selected benchmark functions are presented
in Table III and Table IV. The experimental results of the
ASRPPSO are compared with the experimental results of
some existing PSO algorithms. In this experiment, the swarm
size and the dimension of the selected benchmark functions
are set to be 30. For all chosen algorithms, the maximum
iteration is set to be 10000. In order to avoid contingency,
each experiment is repeated 30 times independently. In the
experiment, the mean and variance of the Gaussian white
noises are set to be 0.5 and 1, respectively. The CPU used
in the experiment is Intel Core i7-10700K. The programming
platform used in the experiment is MATLAB R2021a.



FINAL VERSION 6

TABLE III
DETAILS OF SELECTED BENCHMARK FUNCTIONS

Function number Function name Search Range Minimum Threshold
F1(x) Sphere Function [−100, 100] 0 0.1
F2(x) Schwefel 1.2 Function [−100, 100] 0 0.1
F3(x) Schwefel 2.21 Function [−100, 100] 0 0.1
F4(x) Schwefel 2.22 Function [−10, 10] 0 0.1
F5(x) Rosenbrock Function [−30, 30] 0 100
F6(x) Step Function [−100, 100] 0 0.1
F7(x) Bent Cigar Function [−10, 10] 0 100
F8(x) Rastrigin Function [−5.12, 5.12] 0 50
F9(x) Zakharov Function [−5, 5] 0 0.1
F10(x) Levy Function [−10, 10] 0 0.1
F11(x) Ackley Function [−32, 32] 0 0.1
F12(x) Griewank Function [−100, 100] 0 0.1
F13(x) Sum of Different Powers Function [−100, 100] 0 0.1

TABLE IV
DETAILS OF THE SELECTED BENCHMARK FUNCTIONS

Function number Function name Mathematical formula
F1(x) Sphere Function F1(x) =

∑D

i=1
x2
i

F2(x) Schwefel 1.2 Function F2(x) =
∑D

i=1

(

∑i

j=1
xj

)2

F3(x) Schwefel 2.21 Function F3(x) = maxi{|xi| , 1 ≤ i ≤ D}

F4(x) Schwefel 2.22 Function F4(x) =
∑D

i=1
|xi|+

∏D

i=1
|xi|

F5(x) Rosenbrock Function F5(x) =
∑D−1

i=1

(

100(xi+1 − xi
2)2 + (xi − 1)2

)

F6(x) Step Function F6(x) =
∑D

i=1
(⌊xi + 0.5⌋)2

F7(x) Bent Cigar Function F7(x) = x2
1 + 106

∑D

i=2
x2
i

F8(x) Rastrigin Function F8(x) =
∑D

i=1

(

x2
i − 10 cos 2πxi + 10

)

F9(x) Zakharov Function F9(x) =
∑D

i=1
x2
i +

(

∑D

i=1
0.5ixi

)2

+
(

∑D

i=1
0.5ixi

)4

F10(x) Levy Function F10(x) = sin2 πw1 +
∑D−1

i=1
(wi − 1)2

(

1 + 10 sin2 (πwi + 1)
)

+(wD − 1)2
(

1 + sin2 2πwD

)

, wi = 1 + xi−1

4

F11(x) Ackley Function F11(x) = −20 exp

(

−0.2
√

1

D

∑D

i=1
x2
i

)

− exp
(

1

D

∑D

i=1
cos 2πxi

)

+ 20 + e

F12(x) Griewank Function F13(x) =
∑D

i=1

x2

i

4000
−

∏D

i=1
cos xi

√

i
+ 1

F13(x) Sum of Different Powers Function F14(x) =
∑D

i=1
|xi|

i+1

In the experiment, five PSO algorithms (including the basic
PSO algorithm, the PSO-LIDIW algorithm [37], [38], the
SPSO algorithm [42], the SDPSO algorithm [54], and the
AWPSO algorithm [21] are selected for comparison. Exper-
imental results of the adopted algorithms via thirteen selected
benchmark functions are summarized. The convergence plots
of the algorithms on each benchmark function are displayed
in Figs. 1-13. The vertical coordinate and the horizontal
coordinate of the convergence plots indicate the logarithm
value of the mean fitness value and the generation number,
respectively.

The statistical results (including minimum, mean and stan-
dard deviation) of the fitness values of the utilized algorithms
on each benchmark function are listed in Table V and Table VI
for performance evaluation. It is worth mentioning that the
results of the PSO algorithms on selected unimodal functions
are listed in Table V, and the results of the PSO algorithms
on selected multimodal functions are listed in Table VI. The
success ratio and the iteration number when the algorithm
converges are listed in Table V and Table VI as well.
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Fig. 1. Convergence plot for the Sphere FunctionF1(x)
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TABLE V
STATISTICAL RESULTS OF THE SELECTEDPSOALGORITHMS ON UNIMODAL FUNCTIONS

PSO PSO-LIDIW SPSO SDPSO AWPSO ASRPPSO
F1(x) Minimum 1.62× 103 8.20× 10−65 3.42× 10−197 3.22× 10−5 1.69× 10−79 7.02 × 10−62

Mean 3.30× 103 3.33× 102 3.33× 102 2.57× 10−2 1.00× 103 1.20 × 10−47

Std. Dev. 3.05× 103 1.83× 103 1.83× 103 7.58× 10−2 3.05× 103 6.37 × 10−47

Ratio 0% 96.67% 96.67% 93.33% 90% 100%
Con.num 10000 5142 580 6440 3770 1927

F3(x) Minimum 1.59× 101 4.03× 10−2 1.58× 10−6 2.27 1.02× 10−5 5.09 × 10−4

Mean 1.92× 101 1.25× 10−1 1.82× 10−5 3.63 1.42× 10−4 1.27 × 10−2

Std. Dev. 1.40 8.04× 10−2 2.53× 10−5 8.09× 10−1 2.34× 10−4 1.94 × 10−2

Ratio 0% 43.33% 100% 0% 100% 100%
Con.num 10000 9853 3233 10000 5820 4153

F6(x) Minimum 1.81× 103 0.00 0.00 0.00 0.00 0.00
Mean 2.31× 103 6.67× 102 3.33× 10−2 2.33× 10−1 3.33× 102 0.00
Std. Dev. 2.48× 102 2.54× 103 1.83× 10−1 5.68× 10−1 1.83× 103 0.00
Ratio 0% 93.33% 96.67% 83.33% 96.67% 100%
Con.num 10000 5537 1748 6906 3447 2166

F7(x) Minimum 1.66× 107 2.36× 10−4 1.44× 10−5 4.42 6.06× 10−5 1.02 × 10−4

Mean 2.14× 107 6.67× 106 4.96× 101 3.98× 103 3.33× 106 4.34 × 101

Std. Dev. 2.06× 106 2.54× 107 5.05× 101 1.34× 104 1.83× 107 5.04 × 101

Ratio 0% 50% 53.33% 10% 53.33% 56.67%
Con.num 10000 7617 4836 9749 6359 5531

F9(x) Minimum 1.61× 101 9.31× 10−15 1.75× 10−46 1.64× 10−1 5.91× 10−22 2.80 × 10−18

Mean 5.74× 101 1.05× 106 1.05× 106 4.82 3.92× 101 2.08 × 101

Std. Dev. 4.14× 101 5.78× 106 5.78× 106 9.39 4.99× 101 3.09 × 101

Ratio 0% 33.33% 76.67% 0% 33.33% 60%
Con.num 10000 8888 2988 10000 8010 5537

F13(x) Minimum 4.62× 10−232 0.00 0.00 0.00 0.00 0.00
Mean 4.92× 10−150 0.00 0.00 0.00 0.00 0.00
Std. Dev. 2.69× 10−149 0.00 0.00 0.00 0.00 0.00
Ratio 100% 100% 100% 100% 100% 100%
Con.num 3 2 2 2 2 2

Algorithm 2 The Procedure of the ASRPPSO-based FCM
Algorithm

1. Initialize parameters of the ASRPPSO and the FCM
clustering algorithm including the population sizeP ,
inertia weightw1, acceleration coefficientsc1,1, c2,1, and
the maximum velocityVmax.

2. Set a swarm that hasP particles.
3. Initialize the positionxi,1, the velocityvi,1, andpbesti,1

of each particlei; and initializegbest1 of the swarm.
4. Getting the cluster centroids.
5. Calculate the fitness value of each particle.
6. Set thepbesti,k of each particle and thegbestk of the
swarm.
7. CalculateEf according to Eq. (5) and Eq. (6), and

confirm the evolutionary state according to Eq. (7).
8. Updatewk, c1,k andc2,k of each particle based on

Eq. (2), Eq. (3) and Eq. (4).
9. Update the velocityvi,k and the positionxi,k of each

particle based on Eq. (1).
10. Terminate the algorithm if the maximum iteration is

reached. If not, repeat Steps 4-9.

1) Convergence Plot:It can be found from the figures
that the proposed ASRPPSO shows better convergence per-
formance than selected PSO algorithms. In Fig. 1, Figs. 5-7,
Fig. 10 and Figs. 12-13, the ASRPPSO obtains the smallest
mean fitness value. In Figs. 2-3, Figs. 8-9 and Fig. 11, the
mean fitness value of the ASRPPSO is smaller than most of
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Fig. 2. Convergence plot for the Schwefel 1.2 FunctionF2(x)

selected PSO algorithms. In Fig. 4, the differences between
the mean fitness values of selected PSO algorithms are not
obvious. To summarize, the proposed ASRPPSO exhibits
satisfactory convergence performance.

2) Statistical Analysis:The statistical results of selected
PSO algorithms are presented in Table V and Table VI, which
contain the minimum, the mean fitness value, and the standard
deviation of the solutions. The minimum fitness value, the
mean fitness value, and the standard deviation are the eval-
uation indices of the search ability of the algorithm. As the
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TABLE VI
STATISTICAL RESULTS OF SELECTEDPSOALGORITHMS ON MULTIMODAL FUNCTIONS

PSO PSO-LIDIW SPSO SDPSO AWPSO ASRPPSO
F2(x) Minimum 5.24× 103 2.55 × 10−3 1.30× 10−13 2.21× 102 5.63× 10−12 2.93× 10−9

Mean 1.21× 104 6.61 × 103 3.17× 103 1.77× 103 6.72× 103 2.56× 103

Std. Dev. 5.40× 103 6.95 × 103 5.33× 103 3.17× 103 8.17× 103 4.28× 103

Ratio 0% 33.33% 66.67% 0% 40% 66.67%
Con.num 10000 9770 5277 10000 8299 5987

F4(x) Minimum 1.73× 101 2.34 × 10−40 3.17× 10−102 9.41× 10−4 1.03× 10−29 6.70× 10−18

Mean 3.80× 101 2.07 × 101 1.30× 101 6.39 2.60× 101 1.60× 101

Std. Dev. 1.67× 101 1.47 × 101 1.26× 101 8.88 1.54× 101 1.19× 101

Ratio 0% 13.33% 33.33% 50% 6.67% 20%
Con.num 10000 9284 6755 8351 9527 8350

F5(x) Minimum 2.34× 105 3.02 × 10−2 3.89 2.31× 101 2.48× 10−2 5.00× 10−2

Mean 4.31× 105 9.36 × 103 3.16× 103 3.15× 103 9.06× 103 1.76× 102

Std. Dev. 1.10× 105 2.74 × 104 1.64× 104 1.64× 104 2.74× 104 5.57× 102

Ratio 0% 70% 86.67% 56.67% 80% 86.67%
Con.num 15000 11145 2388 10800 7547 4132

F8(x) Minimum 1.78× 102 1.49 × 101 4.97× 101 3.00× 101 1.59× 101 8.95
Mean 1.94× 102 4.04 × 101 8.98× 101 6.11× 101 5.36× 101 4.75× 101

Std. Dev. 1.08× 101 2.24 × 101 2.55× 101 2.20× 101 2.58× 101 2.11× 101

Ratio 0% 70% 3.33% 36.67% 46.67% 56.67%
Con.num 10000 6446 9674 8107 6805 5372

F10(x) Minimum 5.29 1.50 × 10−32 8.95× 10−2 1.00× 10−4 1.50× 10−32 1.50× 10−32

Mean 7.22 6.65 × 10−2 8.63 1.80 2.74× 10−2 8.90× 10−13

Std. Dev. 8.01× 10−1 2.56 × 10−1 7.89 2.95 1.50× 10−1 4.93× 10−12

Ratio 0% 93.33% 3.33% 53.33% 96.67% 100%
Con.num 10000 5175 9691 7667 3210 1958

F11(x) Minimum 9.42 6.22 × 10−15 6.22× 10−15 1.78× 10−3 6.22× 10−15 6.22× 10−15

Mean 1.09× 101 8.82 × 10−15 8.97× 10−1 3.99× 10−2 2.34 1.44× 10−14

Std. Dev. 1.78 3.48 × 10−15 9.60× 10−1 4.61× 10−2 5.32 4.68× 10−15

Ratio 0% 100% 46.67% 90% 83.33% 100%
Con.num 10000 5037 5487 7082 4281 2009

F12(x) Minimum 1.73× 101 0.00 0.00 7.25× 10−5 0.00 0.00
Mean 2.20× 101 6.05 2.12× 10−2 5.83× 10−2 3.02 1.54× 10−2

Std. Dev. 2.56 2.29 × 101 2.46× 10−2 7.20× 10−2 1.64× 101 2.18× 10−2

Ratio 0% 93.33% 96.67% 80% 96.67% 100%
Con.num 10000 5435 756 7877 3191 1960

0 2000 4000 6000 8000 10000

Generation number

-5

-4

-3

-2

-1

0

1

2

M
ea

n 
fit

ne
ss

 v
al

ue

F3

PSO
PSO-LIDIW
SPSO
SDPSO
AWPSO
ASRPPSO

Fig. 3. Convergence plot for the Schwefel 2.21 FunctionF3(x)

selected benchmark functions are all minimization problems,
so the smaller the fitness value, the better the solution found
by the particles.

In Table V and Table VI, the minimum fitness value of
the ASRPPSO is the smallest among all that of the selected
PSO algorithms onF6(x), F8(x) andF10(x)-F13(x). On the
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Fig. 4. Convergence plot for the Schwefel 2.22 FunctionF4(x)

rest of the benchmark functions, the ASRPPSO also shows
competitive performance in terms of the minimum fitness
value. Compared with other selected PSO algorithms, the
ASRPPSO obtains the smallest mean fitness value onF1(x),
F5(x)-F7(x), F10(x) and F12(x)-F13(x). Considering the
standard deviation of the fitness value, the ASRPPSO obtains
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Fig. 5. Convergence plot for the Rosenbrock FunctionF5(x)
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Fig. 6. Convergence plot for the Step FunctionF6(x)
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Fig. 7. Convergence plot for the Bent Cigar FunctionF7(x)
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Fig. 8. Convergence plot for the Rastrigin FunctionF8(x)
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Fig. 9. Convergence plot for the Zakharov FunctionF9(x)

0 2000 4000 6000 8000 10000

Generation number

-14

-12

-10

-8

-6

-4

-2

0

2

4

M
ea

n 
fit

ne
ss

 v
al

ue

F10

PSO
PSO-LIDIW
SPSO
SDPSO
AWPSO
ASRPPSO

Fig. 10. Convergence plot for the Levy FunctionF10(x)
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Fig. 11. Convergence plot for the Ackley FunctionF11(x)
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Fig. 12. Convergence plot for the Griewank FunctionF12(x)
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Fig. 13. Convergence plot for the Sum of Different Power Function F13(x)

the smallest one onF1(x), F5(x)-F7(x), F10(x) andF12(x)-
F13(x) compared with other chosen algorithms. To conclude,
the ASRPPSO has shown competitive performance on the
benchmark functions in terms of the solution quality and the
search capability based on the statistical analysis.

3) Success Ratio:The success ratio is also listed in Table V
and Table VI. According to the table, the ASRPPSO has
the highest success ratio onF1(x)-F3(x), F5(x)-F7(x) and
F10(x)-F13(x), which means that the ASRPPSO could find
the optimum with high probability. The success ratio of the
ASRPPSO onF9(x) also shows competitive performance
compared with other PSO algorithms. The ratio of all selected
PSO algorithms onF4(x) and F8(x) is not satisfactory be-
cause the number of local optima of these functions are very
large, which indicates that it is difficult to find the globally
optimal solution.

4) Convergence Rate:The number of iterations when the
algorithm converges is illustrated in Table V and Table VI
as well. It can be seen from the table that the ASRPPSO
performed well in all 13 functions compared with other
selected algorithms.

To summarize, by comparing with other selected PSO
algorithms, the proposed ASRPPSO demonstrates superior
performance over the compared ones in terms of convergence
and search ability.

B. Evaluation of the ASRPPSO-based FCM Algorithm

To verify the effectiveness of the proposed ASRPPSO-based
FCM clustering algorithm, the Iris data from UCI machine
learning repository is employed for performance evaluation.
Experimental results are assessed by using the Rand Index
(RI), the Adjusted Rand Index (ARI) and the Weighted Kappa
(WK) coefficient.

The Rand Index (RI) is a similarity measure indicator
between two data clustering algorithms. Notice that when the
clustering results are random, RI is not a constant close to 0.
As such, the ARI is introduced to overcome this shortcoming.
The value of the ARI is between -1 and 1. When the clustering
results are compared with labelled data, the larger the ARI,the
higher the accuracy of the clustering results. In addition,the
larger the ARI, the higher the performance similarity between
two clustering algorithms.

The WK coefficient is a statistic tool which has the ability of
measuring the inter-rater reliability of categorizing instances
[23]. The value of the WK coefficient shows the agreement
between two comparators. If the value is negative, the agree-
ment between two comparators is worse than random. If the
value is 0, it means the agreement between the comparators
is equal to random. If the value is closer to 1, the agreement
between the two comparators is higher.

The comparison evaluation of the clustering results by using
the ASRPPSO-based FCM algorithm and the traditional FCM
algorithm is listed in Table VII.

According to Table VII, the WK coefficient, ARI and RI of
the ASRPPSO-based FCM algorithm are0.7287, 0.7287 and
0.8797, respectively. The WK coefficient, ARI and RI of the
FCM algorithm are0.7149, 0.7149 and0.8737, respectively. It
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TABLE VII
EVALUATION OF TWO CLUSTERING ALGORITHMS

Algorithm WK ARI RI
ASRPPSO-based FCM 0.7287 0.7287 0.8797
FCM 0.7149 0.7149 0.8737

can be found from the results that the ASRPPSO-based FCM
algorithm is an effective clustering algorithm, which exhibits
better performance than the FCM algorithm in aspects of WK,
ARI and RI. Therefore, the effectiveness and reliability ofthe
developed ASRPPSO-based FCM algorithm are proven based
on experimental results.

C. Outlier Detection on WAAM Data Sets

1) Data Pre-Processing:As mentioned previously in Sec-
tion II, there are four variables (e.g., XValue, Current, Volt-
age, and ComputerTime) in each data set. In the experiment,
only the voltage and current are utilized for outlier detection.
The missing value and null value in the data sets are removed
for data cleaning. In order to avoid the influence between
different attributes, it is necessary to make every instance in
each data set have the same scale so that each feature is equally
measured. Thus, themin-max normalization process is carried
out to pre-process the data. Themin-max normalization is
given by:

XNi
=

Xi −Xmin

Xmax −Xmin

(8)

whereXNi
denotes theith normalized data of the variableX ;

Xmax and Xmin represent the maximum and the minimum
value of the variableX in the data, respectively.

2) The Results of the Outlier Detection on WAAM Data
Sets: During the AM process, some values of current and
voltage may occasionally change abruptly, which indicates
that the process is unstable. In this case, these instances are
regarded as outliers. The results of the outlier detection are
shown in Table VIII.

TABLE VIII
OUTLIER DETECTIONRESULTS

Data Set Cluster1 Cluster2 (Outlier)
Data Set 1 81326 16674
Data Set 2 78979 19021
Data Set 3 79954 18046
Data Set 4 83023 14977
Data Set 5 83096 14904

The clustering performance of the developed outlier detec-
tion method on the WAAM data sets is evaluated by using
the silhouette coefficients, which is an effective approachto
assess the unlabelled data clustering results [34]. Generally,
the silhouette coefficient value is between -1 and 1. The
performance of clustering is better when the value is closer
to 1. In this experiment, the clustering performance of the
proposed method is evaluated by using the average silhouette
coefficients of all data points in each data set. Experimental
results are shown in Table IX and Figs. 14-18.

Fig. 14. The average silhouette coefficient of the clustering result on data set
1

Fig. 15. The average silhouette coefficient of the clustering result on data set
2

Fig. 16. The average silhouette coefficient of the clustering result on data set
3
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TABLE IX
THE AVERAGE SILHOUETTE COEFFICIENTS OF THE CLUSTERING RESULTS

Data Set Average Silhouette Coefficients
Data Set 1 0.9135
Data Set 2 0.9034
Data Set 3 0.9073
Data Set 4 0.9123
Data Set 5 0.9315

Fig. 17. The average silhouette coefficient of the clustering result on data set
4

From Figs. 14-18, most of the silhouette values are positive,
which means most data points are assigned to the right
clusters. At the same time, according to Table IX the average
silhouette coefficients are all close to 1. Overall, the results
of the ASRPPSO-based FCM clustering algorithm on the AM
data are reasonable, which demonstrates the effectivenessof
the developed method.

Fig. 18. The average silhouette coefficient of the clustering result on data set
5

V. CONCLUSION

In this paper, an optimized FCM-based outlier detection
method has been proposed to analyze the current and voltage
data collected through the process in a WAAM pilot line
deployed in Sweden. Specifically, the ASRPPSO has been
developed to optimize the initial locations of the cluster
centroids in the FCM algorithm. An AWU strategy has been
designed in the ASRPPSO to adaptively adjust the acceleration
coefficients, and the Gaussian white noise has been added
to the velocity updating equation based on the evolutionary
states. Experimental results have shown the superiority of
the ASRPPSO over some existing PSO algorithms in terms
of convergence rate and solution quality. To demonstrate its
application potential, the ASRPPSO-based FCM algorithm has
been applied to outlier detection on the real-world WAAM
data, which contributes to the online monitoring of the WAAM
process with hope to fabricate qualified components.

Future work can be summarized into the following five as-
pects: 1) designing a parameter selection strategy to automati-
cally choose the parameters of the adaptive weighting function;
2) adjusting the mean and variance of the random noises
adaptively for different evolutionary states; 3) applyingthe
ASRPPSO to multi-objective optimization problems; and 4)
analyzing the dynamical behavior of the ASRPPSO by using
the Lyapunov-like stability theory and the filtering techniques
[11], [18], [20], [30]; and 5) deploying the proposed outlier
detection algorithm to some other data analysis applications
[22], [29].
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Fredrik Sikstr öm received his Ph.D. degree in
electrical engineering from the Chalmers University
of Technology, Sweden in 2010. In 2011 he was
employed at the University West in Sweden as an as-
sistant professor and since 2019 he holds a position
as associated professor in production technology. His
research activities are focused on in-process moni-
toring and automatic control of laser and arc welding
as well as metallic directed energy deposition. He
has published 35 publications indexed by ISI or
SCOPUS.

Xiaohui Liu received the B.Eng. Degree in Comput-
ing from Hohai University, Nanjing, China, in 1982
and the Ph.D. degree in Computer Science from
Heriot-Watt University, Edinburgh, UK, in 1988. He
is currently a Professor of Computing at Brunel
University London where he conducts research in
AI and intelligent data analysis, with applications in
diverse areas including biomedicine and engineering.


