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A New Particle Swarm Optimization Algorithm for
Outlier Detection: Industrial Data Clustering in
Wire Arc Additive Manufacturing

Jingzhong Fang, Zidong Wang, Weibo Liu, Stanislao
Xiaohui

Abstract—In this paper, a novel outlier detection method
is proposed for industrial data analysis based on the fuzzy
C-means (FCM) algorithm. An adaptive switching randomly
perturbed particle swarm optimization algorithm (ASRPPSO)
is put forward to optimize the initial cluster centroids of the
FCM algorithm. The superiority of the proposed ASRPPSO is
demonstrated over five existing PSO algorithms on a series of
benchmark functions. To illustrate its application potential, the
proposed ASRPPSO-based FCM algorithm is exploited in the
outlier detection problem for analyzing the real-world industrial
data collected from a wire arc additive manufacturing pilot line
in Sweden. Experimental results demonstrate that the propsed
ASRPPSO-based FCM algorithm outperforms the standard FCM
algorithm in detecting outliers of real-world industrial d ata.

Note to Practitioners—Electric arc (which is governed by the
current and arc voltage) plays a significant role in monitoring
the operating status of the wire arc additive manufacturing
(WAAM) process. The nominal periodic current and voltage
may occasionally change abruptly due to anomalies (such as
arc instability, unstable metal transfer, geometrical devations,
and surface contaminations), which would affect the qualy
of the fabricated component. This paper focuses on detectin
possible anomalies by analyzing the current and voltage dimg
the WAAM process. A novel clustering-based outlier detectin
method is proposed for anomaly detection where abnormal and
normal instances are categorized into two separate cluster
A new particle swarm optimization algorithm is put forward
to optimize the initial cluster centroid so as to improve the
detection accuracy. The proposed outlier detection methods
applied to real-world data collected from a WAAM pilot line f or
detecting abnormal instances. Experimental results demairate
the effectiveness of the proposed outlier detection methodhe
proposed outlier detection method can be applied to other in
dustrial applications including electrical engineering,mechanical
engineering and medical engineering. In the future, we aimad
develop an online outlier detection system based on the proged
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method for real-time for anomaly detection and defect predétion.

Index Terms—Industrial data analysis, outlier detection, fuzzy
C-means, particle swarm optimization, wire arc additive mau-
facturing.

I. INTRODUCTION

Additive manufacturing (AM) is a disruptive technology
in industrial manufacturing, which has attracted an ever-
increasing research interest during the past few yearsn®ur
the AM process, the metal material required by the produactio
specification is deposited to the substrate layer by laydeun
the control of a computer [8]. Compared with some traditiona
subtractive manufacturing technologies, the AM techngplog
exhibits better design flexibility and produces less waste.
Thanks to its strong abilities in fabricating componentthwi
complex geometries, the AM technology has been succegsfull
applied to a variety of fields such as electrical engineering
healthcare and transportation [9], [14].

To meet the requirement of fabricating components with
complex structures at fine resolutions, a large number of AM
methods have been developed, e.g., selective laser supteri
direct energy deposition (DED), liquid binding in three-
dimensional printing, contour crafting and laminated cbje
manufacturing [26]. Among existing AM methods, the DED
method is a competitive one which uses high-power energy
sources (including laser beam, electron beam, and elegtr)c
to deposit the metal powder or feedstock wire into the sabestr
layer by layer without the requirement of a strict seal dtite
[8].

Wire arc AM (WAAM) is a wire-based DED method with
relatively high deposition efficiency. Compared with otiAdd
methods, the WAAM has demonstrated significant advantages
in material loss and cost savings [31]. In WAAM, the quality
of the fabricated component is highly dependent on the op-
erating status (manipulator- and feedstock feeding acgura
shielding gas flow, metal surface contaminations, heat- and
metal transfer, heat accumulation, and part distortiofe T
electric arc used as a heat source is primarily governed by
the total current and arc voltage. These quantities ar@btra
forward to monitor, and they directly convey vital inforrat
about the operating status. During processing, the nominal
periodic current and voltage may occasionally change dlyrup
because of anomalies in the conditions such as, arc inggabil
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unstable metal transfer, geometrical deviations, andasarf scale optimization problems [19]. During the past few desad
contaminations. All such indications should be detected aa great many PSO variants have been proposed to improve the
possibly classified since they could be directly influendimg convergence rate and the search ability of the optimizeighwh
quality of the fabricated component. can be roughly categorized into four groups: 1) adjusting

Reaching a sufficient detection performance is of higtontrol parameters; 2) developing novel velocity updating
industrial relevance since it will make quality control reor strategies; 3) designing new topological structures; apd 4
efficient. If the data is accessible as a post process batchhybridizing with other EC algorithms [6], [15], [21], [32],
can be used to guide and optimize post process inspectif8¥], [38], [42], [53], [54]. For instance, the PSO algorith
If the process change point detection can be implementedwith a linear decreasing inertia weight (PSO-LIDIW) hasrbee
real time, it can be used to initiate either a controlled stqgroposed in [37], [38]. A PSO algorithm with time-varying
of the process to directly enable some rectifying actions @cceleration coefficients (PSO-TVAC) has been introduced
even better, enable an automatic corrective action (clssadl in [32]. An adaptive weighted PSO algorithm has been put
control). forward in [21], where an adaptive weighting strategy (AWU)

Serving as a popular data analysis method, outlier detectivas been designed to control the acceleration coefficients,
plays an important role in identifying abnormal instancH3]] which could significantly enhance the convergence rate ®f th
In the past few decades, a lot of outlier detection metho®SO algorithm.
have been proposed [1], [13], [40], [45], [56]. For example, A switching PSO (SPSO) algorithm has been put forward
machine-learning-based outlier detection methods haea bén [42] by employing a switching strategy to update the
employed in [40] to analyze the semiconductor manufacgurinvelocity of the particles, where the switching strategyidis
etching data. A new outlier detection method has been deviile evolutionary process into four evolutionary states. (i.
oped in [45] for process monitoring based on the Gaussiaonvergence, exploitation, exploration and jumping-oBY
process method. In this context, it becomes natural to applging the switching strategy, the SPSO algorithm has shown
outlier detection methods to analyze the current and veltdg relatively fast convergence rate. Nevertheless, the gepdot
the welding equipment in WAAM, where the instances witlof the switching strategy as well as the AWU could not solve
sudden change are treated as outliers. the premature convergence problem.

As a powerful family of outlier detection methods, the In the literature, some popular PSO variants have been pro-
clustering-based outlier detection methods are utilipeidén- posed by embedding random perturbations (e.g., time delays
tify abnormal instances according to the corresponding-cliand noises) in the PSO algorithm with hope to alleviate the
tering results. Compared with existing clustering aldoris premature convergence problem [21], [54]. In [54], a swiigh
including the density-based spatial clustering of apfiices delayed PSO (SDPSO) algorithm has been developed, where
with noise (DBSCAN) algorithm and the K-means algorithntjme delays are embedded in the velocity updating equatfion o
the fuzzy C-means (FCM) algorithm has the advantages tbe SPSO algorithm. Compared with the SPSO algorithm, the
easy implementation and high efficiency, which has been s@PPSO algorithm exhibits stronger search ability esphcial
cessfully applied to a large number of real-world applimasi for multimodal optimization problems. It should be noticed
[44], [46], [47]. Nevertheless, as a distance-based dlingte that the employment of the perturbation has proven to be
algorithm, the clustering performance of the FCM algoritism another effective way to help particles jump out of the local
highly dependent on the initial location of the cluster ceist optima [2], [16]. In this situation, it is reasonable to athagly
[43]. Selecting an optimal set of initial cluster centroggems embed the random perturbation into the PSO algorithm based
to be an effective way to guarantee the performance of the the switching strategy to alter the dynamical behavior of
FCM algorithm. the particles and expand the search range of the optimizer.

It is worth mentioning that evolutionary computation (EC) Motivated by the above discussions, the purpose of this
has been widely used to solve various optimization problerpgper is to develop an adaptive switching randomly pertlirbe
[39], [50]-[52]. Among the EC algorithms, the particle swar particle swarm optimization (ASRPPSO) algorithm so as to
optimization (PSO) algorithm is a population-based ond¢ivh automatically choose an optimal set of initial locations of
is inspired by the mimics of social interactions, e.g., birdhe cluster centroids of the FCM algorithm. Specifically, a
flocking and fish schooling [55], [57]. In comparison withdistance-based weighting strategy is designed to ad#ptive
some existing EC algorithms, the PSO algorithm has the f@lontrol the acceleration coefficients. The switching syt
lowing three advantages: 1) the number of parameters etjuiis employed to accelerate the searching process and balance
to be adjusted is relatively small; 2) the convergence ritee the global and local searches. In addition, Gaussian white
PSO algorithm is relatively fast; and 3) the implementatién noises are embedded in the velocity updating equation to
the PSO algorithm is simple [5], [41]. Owing to the technicaiandomly alter the system dynamics of the optimizer, which
merits of the PSO algorithm, a seemingly reasonable idem iscould expand the search space and alleviate the premature
adopt the PSO algorithm to optimize the initial locationghef convergence problem. The proposed ASRPPSO-based FCM
cluster centroids with the purpose of improving the clustgr algorithm is applied to detect outliers in real-world data.
performance of the FCM algorithm. The main contributions of this paper can be summarized in

Despite their wide applicability, most existing populatio the following three aspects:
based EC algorithms suffer from premature convergence, and) a novel ASRPPSO is proposed where an AWU strategy
this is particularly true when dealing with complex and &rg is designed to adaptively adjust the acceleration coef-
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ficients, and the Gaussian white noises are adaptivelyich could bring negative influence on the manufacturing
embedded into the velocity updating equation based pnocess. In this case, it is of practical importance to uskeou
the switching strategy; detection techniques for online monitoring of the WAAM
2) an ASRPPSO-based FCM algorithm is developed whaueocess.
the ASRPPSO is employed for selecting the optimal So far, a large number of outlier detection methods have
locations of the initial cluster centroids of the FCMbeen introduced for data analysis in WAAM [4], [12], [17],
algorithm; and [33]. For instance, a non-contact in-situ 3D laser profiltene
3) the developed ASRPPSO-based FCM algorithm is aimspection system has been presented in [12] to monitor
plied to outlier detection of the real-world industrial datthe visual surface defects. A modular anomaly detector has
collected from a WAAM pilot line. Experimental resultsbeen put forward in [33] for analyzing multivariate time-
demonstrate the effectiveness of the proposed outlggries data in the WAAM process. In [4], a convolutional
detection method. neural network-based method has been proposed for real-
The remaining parts of this paper are organized as followi§ne anomaly detection in WAAM. In [17], an image-based
The background of AM and outlier detection are discusséproach has been presented for defect detection in WAAM.
in Section Il, where the description of the utilized datessst
also presented. In Section Ill, the proposed ASRPPSO and fieDescription of the Data Sets
ASRPPSO-based FCM algorithm are introduced. Experimen—T
tal results of the ASRPPSO and the ASRPPSO-based F%AM pilot line deployed in Sweden. In total, there are

algorithm are presented in Section IV. Finally, conclusiand five data sets where each data set contains 98000 instances.
discussions on relevant future work are presented in Sectiﬁ] this paper, each data set represents an individual test. |

he utilized data is acquired through the process in a

V. the collected data sets, there are four variables which are
“X _Value”, “WeldCurrent”, “WeldVoltage”, and “Computer-
Il. BACKGROUND Time”. “X_Value” represents the time stamp. “WeldCurrent”
A. Additive Manufacturing and “WeldVoltage” denote the processing current and veltag

AM, also known as 3D printing, has been recognized as’ spectively. “Computer time” is the total time of the prese

breakthrough technology which shows great applicatiormot The _detalls of the vanable; are summarlzed_ln Tab_le I. The
tials in industrial machinery, assembly processes, an@lyupdetans of data pre-processing are presented in Section IV.
chains [7]. An AM system consists of three parts: a motion
system, heat source and feedstock. Due to the advantages of lIl. METHODOLOGY
high deposition rate, high material utilization, low costda  The FCM algorithm is a competitive clustering algorithm,
environmental friendliness, the WAAM has become a populahose initial location of the cluster centroid is a decidaetor
AM method, which uses the electric arc as the heat source aftécting the clustering results of the FCM algorithm. Chga
the wire as the feedstock. Depending on the heat source, ithis highly desirable to seek the best location of the ihitia
heat and metal transfer in WAAM can be generally dividedentroid for the best clustering performance, which giiss r
into three categories of equipment including the Gas Twmsto a rather challenging optimization problem that has rexki
Arc Welding, the Gas Metal Arc Welding, and the Plasma Aréttle research attention so far except the preliminanorsf
Welding [48]. made in [27], [35]. In fact, as one of the powerful optimipati
In fact, there are several key factors affecting the peaigorithms, the PSO algorithm is ideally suited in optimgi
formance of WAAM, e.g., the programming strategieshe initial location of the cluster centroid, see [27], [3B}
manipulator- and feedstock feeding accuracy, shielding gaore details.
flow, metal surface contaminations, heat- and metal transfe In the PSO algorithm, the control parameters (i.e., the
heat accumulation, and part distortion [49]. In recent geaiinertia weight and acceleration coefficients) are utilized
a variety of advanced techniques (which focuses on tbalance the global and local search. In recent years, some
aforementioned factors) have been put forward to improge thariant PSO algorithms (which modify the control paramster
performance of the WAAM. For instance, in [28], an improvetiave been proposed to balance the global and local search
heat transfer and fluid flow model has been introduced [82], [37], [38]. The PSO-LIDIW algorithm and the PSO-
WAAM, which could determine the parameters that influencEVAC algorithm both demonstrate competitive performamce i
the microstructure, properties, and defect formation @& thmaintaining the balance between the global and local search
component. In [24], a WAAM modelling strategy has beenompared with the original PSO algorithm.
developed based on a novel heat source model, which ha#t should be noticed that the solution accuracy of many PSO
shown high accuracy in measuring distortions. variants is improved with the sacrifice of the convergente ra
Note that the quality of AM products is highly dependent of8]. With the purpose of adequately improving the convergen
the welding equipment used. To monitor the WAAM processate and the capability of finding the global best solution,
outlier detection techniques are widely adopted to anallyee the AWPSO algorithm has been put forward in [21], where
sensor data (e.g., current and voltage) of the welding macha sigmoid-function-based AWU strategy has been proposed
used with the purpose of detecting abnormal points. In génetto adjust the acceleration coefficients. Specifically, thWgLA
the abnormal points indicate the sudden change of the gpcesrategy makes full use of the distance from each particle
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TABLE |
DATA SETS DESCRIPTION
Variable Description Data Type Unit
X_Value The time stamp Numerical s
WeldCurrent The current of the equipment  Numerical A
WeldVoltage The voltage of the equipment  Numerical V/

ComputerTime The total time of the process  Numerical s

towards its personal best (pbest) and global best positiacceleration coefficients; andr, represent random numbers

(gbest) at each step, which significantly improves the cenveelected within[0, 1]; pbest; ;, represents the personal best

gence rate of the optimizer. Unfortunately, the searchitgbil position found by theith particle itself at thekth iteration;

of the AWPSO algorithm is not satisfactory when dealing withbest;, represents the global best position of the entire swarm

complex optimization problems. at the kth iteration; a1 ¢, and oz ¢, are parameters which
Recently, some PSO algorithms have been proposedate used to adjust the Gaussian white noises according to the

alleviate premature convergence based on different singch evolutionary state; and; andJj, represent two independent

strategies [21], [42], [54]. By using the switching strateGaussian white noises.

gy, the evolution process is divided into four evolutionary The procedure of the proposed ASRPPSO is presented in

states (including the exploration, exploitation, coneerce, Algorithm 1.

and jumping-out states). The velocity is updated based on

different updating strategies at each state, which offees tAlgorithm 1 The Procedure of the ASRPPSO

opportunity of improving the search ability and guarameei 1 "|njtialize the parameters of the ASRPPSO including

the convergence rate of the optimizer at the same time. More the population sizeP, inertia weightw;, acceleration

recently, adding noises to perturb the particle’s moverhast coefficientsc; 1, ¢ 1, and the maximum velocit¥, ax.
been proven to be an effective way to improve the searchy set a swarm that haR particles.

ability of each individual particle. In [21], the intensity 3. |nitialize the positionz; ;, the velocityv, ;, and
adjustable Gaussian white noise has been added in thetyeloci pbest; , of each particlg(i = 1,2, ..., P); and
updating equation to randomly alter the acceleration eonst initialize gbest; of the swarm.

in order to explore the search space thoroughly. Motivated b 4. Calculate each particle’s fitness value.

the above discussions, it becomes natural to embed themando s ypdate thepbest, . of each particle angbest), of
noises to the PSO algorithm according to the evolutionary  the swarm.

states to further alleviate the premature convergencelgmob g, CalculateE; according to Eq. (5) and Eq. (6), and

and improve the search ability of the optimizer. confirm the evolutionary state according to Eq. (7).
In this paper, a novel ASRPPSO is put forward where an7, Updatewy, c1.x andey . Of each particle based on

AWU strategy is designed to adjust the acceleration coeffi-  Eq. (2), Eq. (3) and Eq. (4).

cients. In the ASRPPSO, the SWitChing strategy is utilized t 8. Update the \/e|ocity)i7]C and the posi'[ior‘]CZ.Jg of each

improve the particle’s search ability, and the Gaussiantevhi particle based on Eq. (1).

noises are embedded in the velocity updating equation based. Terminate the algorithm if the maximum iteration is

on the switching strategy to help the particles escape ftwm t reached or the fitness value reaches the threshold.
local optima. In addition, an ASRPPSO-based FCM algorithm | not, repeat Steps 4-8.

is proposed for outlier detection, where the ASRPPSO s

adopted to choose an optimal set of initial locations of the ] . o o ]
cluster centroids in the FCM algorithm. 2) Inertia Weight: The inertia weight is an important pa-

rameter which is designed to adequately balance the glolal a
local search. The inertia weight shows the ability of péetdo
A. The ASRPPSO inherit their previous velocities. In order to balance thebgl
1) Framework of the ASRPPSOhe updating equations of search and the local search, the inertia weight is adaptivel
the proposed ASRPPSO in terms of velocity and position aftered by a linear decreasing inertia weight strategy whic
the ith particle at thgk + 1)th iteration are given as follows: has been introduced in [37], [38]. In the proposed ASRPPSO,
the updating equation of the inertia weight is shown as Vadto

Vi1 = WUk + c1 1 (pbest; , — i)

+ CQ’kT2 (gbeStk B xi’k) W = Wmax — (wmax - wmin) X E (2)
+ a6, 01 (pbestiyk — a:lk) (1)
+ g6, 0 (gbesty, — xi) wherew,.x andwy,i, denote the maximal and minimal value

of the inertia weight, respectivelyk and K represent the
current iteration number and the maximum iteration number,
where k represents the current iteration numbey; denotes respectively; and the maximum and minimum inertia weights
the inertia weight at theth iteration;c; , andcy ), are the are set to be 0.9 and 0.4, respectively.

T k+1 = Tk + V4 k+1
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3) Acceleration CoefficientsAccording to [21], using an where¢, = 1 denotes the convergence stdie— 2 represents
AWU function to demonstrate the relationship between thbe exploitation state;;, = 3 denotes the exploration state, and
acceleration coefficients and the distances from the parti¢; = 4 represents the jumping-out state.
to its pbest and gbest is a good way to adaptively adjust5) An Adaptive Weighted Velocity Updating Strategyie
acceleration coefficients, which can significantly imprefre novel velocity updating strategy can be explained based on
convergence rate. In this proposed ASRPPSO, a tanh-fumctifour evolutionary states, which is summarized in Table HeT
based AWU strategy is introduced to accelerate the movemestision factorsy; ¢, andas ¢, are used for determining the
of particles, which aims to improve the convergence rate. value of the Gaussian white noise, which are dependent on

Inspired by [21], the AWU function need to be monotonievolutionary states; anddenotes the current iteration number.
cally increasing and bounding. The tanh function is a tylpica
activation function of the neural networks, which perfectl

fits the requirements mentioned above. In addition, the tanh TABLE Il
function is differentiable, which can iteratively refledtet PARAMETERS'NTHEVELESngFl,JgBAT'NGSTRATEGY OF THE
characteristics of the weight updating process. Henceatfite
function seems to be an appropriate choice. The updating Evolutionary State &, aie¢, aae,
equations of the acceleration coefficients are demondtexe Convergence 1 0 0
follows: Epr0|tat.|on 2 1 0.3
Exploration 3 0.3 1
—2b Jumping-out 4 1 1
C1k +n o (3)

- 1+ exp (2a (pbesti,;C — Tik — m))

—2b 6) Gaussian White Noisdnspired by [21], to improve the
T 1texp (2a (gbest), — i, — m)) +n (4)  search ability of the optimizer by altering the system dyitam
) of the PSO algorithm, the Gaussian white noiseandd, are
wherea andb are two parameters used to describe the curvgyqed into the velocity updating equation to randomly pértu
which represent the steepness and the peak value, regpgctivhe movement of the particles. Note that the mean value and

m denotes the offset of the central pointis a negative value; \ariance of5; ands, remain the same for the four evolutionary
andexp(-) is the natural exponential function. states.

It is worth mentioning that, in Eq. (3) and Eq. (4},
b, m, andn are all constant values. Appropriate values of
the parameters would effectively enhance the performahcefo The ASRPPSO-based FCM Algorithm
the optimization algorithm. In the proposed ASRPPSO, theDue to the fact that the FCM algorithm’s performance is
parameters are set by= —0.035, b = —0.275, m = 0, and highly dependent on the initial cluster centroids, the ABRP
n = 1.2 based on the experimental experience. SO is employed for optimally selecting the initial cluster
4) Evolutionary States:In the ASRPPSO, the particle’scentroids. As discussed before, the Gaussian white noise is
velocity as well as position are adjusted based on the evombedded in the velocity updating model so that the paiicle
tionary states, which are identified by the evolutionarytdac ability of getting rid of local optima is enhanced, which
(calculated based on the mean distance from each paiticigdicates that the probability of getting better clustenteaids
to other particles). The equation of mean distaices shown would be improved. The procedure of the ASRPPSO-based

C2k

as follows: clustering algorithm is described in Algorithm 2.
L S|
2
d; = o Z Z (Zir — Tj,) (5) IV. EXPERIMENTAL RESULTS
j=1 \r=1 A. The ASRPPSO
where S and D represent the swarm size and the dimension The performance of the developed ASRPPSO is evaluated
of the particle, respectively. _ _ on a series of benchmark functions. Here, 13 selected CEC
Denoted, as the global best particle df, the evolutionary pasic benchmark functions are chosen for performance@valu
factor E; can thus be calculated by: tion. The details of selected benchmark functions are ptede
dy — duin in Table 1ll and Table IV. The experimental results of the
Ef =~ (6) ASRPPSO are compared with the experimental results of

dmax - dmin

some existing PSO algorithms. In this experiment, the swarm

wherednax anddni, are the maximum and minimum @f,  size and the dimension of the selected benchmark functions
respectively. It is worth mentioning thdf; belongs to[0,1]. are set to be 30. For all chosen algorithms, the maximum
Based on the evolutionary factor, the four states can fgration is set to be 10000. In order to avoid contingency,

classified as follows: each experiment is repeated 30 times independently. In the
1, 0.00<E;<0.25 experiment, the mean and variance of the Gaussian white
2, 0.25< Ef < 0.50 noises are set to be 0.5 and 1, respectively. The CPU used
&k = 3, 0.50 < Ef <0.75 (™) in the experiment is Intel Core i7-10700K. The programming
4, 0.75 < Ef <1.00 platform used in the experiment is MATLAB R2021a.
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TABLE Il

DETAILS OF SELECTED BENCHMARK FUNCTIONS

Function number Function name Search Range  Minimum  Thiésho
Fi(z) Sphere Function —100, 100] 0 0.1
Fs(z) Schwefel 1.2 Function —100, 100] 0 0.1
Fs(x) Schwefel 2.21 Function —100, 100] 0 0.1
Fy(z) Schwefel 2.22 Function —10,10] 0 0.1
F5(x) Rosenbrock Function —30, 30] 0 100
Fs(x) Step Function —100, 100] 0 0.1
Fr(x) Bent Cigar Function —10, 10] 0 100
Fs(z) Rastrigin Function —5.12,5.12] 0 50
Fy(x) Zakharov Function —5, 5] 0 0.1
Fio(z) Levy Function —10, 10] 0 0.1
Fi1(x) Ackley Function —32,32] 0 0.1
Fia(z) Griewank Function —100, 100] 0 0.1
Fiz(x) Sum of Different Powers Function [—100, 100] 0 0.1
TABLE IV
DETAILS OF THE SELECTED BENCHMARK FUNCTIONS

Function number Function name Mathematical formula

Fi(z) Sphere Function Fi(zr)=Y" a3

Fy(z) Schwefel 1.2 Function B(z) =", (ijl z;

Fs(x) Schwefel 2.21 Function F3(z) = max;{|z:|,1 <¢ < D}

Fu(z) Schwefel 2.22 Function Fi(z) = 32 o + T12, |4

Fs(z) Rosenbrock Function Fs(z) = 30" (100(zip1 — %)% + (zi — 1)?)

Fs(z) Step Function Fo(z) = 32 (lo: +0.5))3

Fr(x) Bent Cigar Function Fr(z) =27 +10°37 27

Fs(z) Rastrigin Function Fs(z) =8, (27 —10cos 27z + 10)

2 4
Fy(z) Zakharov Function Fy(z) =2 a7 + (Zil O.5ixi) + (Zi’;l O.5ixi)
Fio(x) Levy Function Fio(x) = sin® mwq + Zf’;ll(wi —1)% (14 10sin® (rw; + 1))
+(wp — 1)2 (1 + sin? 27er) o owi =1+ ‘%1

Fii(z) Ackley Function Fi1(z) = —20exp <—0.21/ L3P, m?) — exp (% S P cos 271'231-) +20+e

Fia(2) Griewank Function Fua(w) = 31 qo55 — [y cos S5 + 1

Fiz(x) Sum of Different Powers Function Fis(z) = 327 | ||

In the experiment, five PSO algorithms (including the basic

PSO algorithm, the PSO-LIDIW algorithm [37], [38], the
SPSO algorithm [42], the SDPSO algorithm [54], and th
AWPSO algorithm [21] are selected for comparison. Expe
imental results of the adopted algorithms via thirteenctete
benchmark functions are summarized. The convergence pl
of the algorithms on each benchmark function are display
in Figs. 1-13. The vertical coordinate and the horizonti
coordinate of the convergence plots indicate the logarith
value of the mean fithess value and the generation numt
respectively.

The statistical results (including minimum, mean and sta
dard deviation) of the fitness values of the utilized aldoris
on each benchmark function are listed in Table V and Table"
for performance evaluation. It is worth mentioning that th
results of the PSO algorithms on selected unimodal funstio

are listed in Table V, and the results of the PSO algorithn..

on selected multimodal functions are listed in Table VI. Th

converges are listed in Table V and Table VI as well.

Mean fitness value
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confirm the evolutionary state according to Eq. (7).
8. Updatewy, c1 ; andcg j, of each particle based on
Eqg. (2), Eq. (3) and Eq. (4).

9. Update the velocity;, ,, and the positiorz; ,, of each

particle based on Eq. (1).

10. Terminate the algorithm if the maximum iteration is

reached. If not, repeat Steps 4-9.

1) Convergence Plot:ilt can be found from the figures

3.2 :

TABLE V
STATISTICAL RESULTS OF THE SELECTEP SOALGORITHMS ON UNIMODAL FUNCTIONS
PSO PSO-LIDIW SPSO SDPSO AWPSO ASRPPSO
Fi(r)  Minimum 1.62 x 103 820 x 107%% 342 x 107197 322x10°° 1.69x10°79 7.02 x 1062
Mean 3.30 x 103 3.33 x 102 3.33 x 102 2.57 x 1072 1.00 x 103 1.20 x 10~47
Std. Dev.  3.05 x 102 1.83 x 103 1.83 x 103 7.58 x 1072 3.05 x 103 6.37 x 1047
Ratio 0% 96.67% 96.67% 93.33% 90% 100%
Con.num 10000 5142 580 6440 3770 1927
Fs3(x)  Minimum  1.59 x 10! 4.03x 1072 1.58 x 1076 2.27 1.02x107°  5.09 x 104
Mean 1.92 x 10t 1.25 x 10~1 1.82 x 10~° 3.63 1.42 x 10~* 1.27 x 1072
Std. Dev.  1.40 8.04 x 102 2.53 x 107° 8.09 x 1071 234 x10* 1.94 x 102
Ratio 0% 43.33% 100% 0% 100% 100%
Con.num 10000 9853 3233 10000 5820 4153
Fs(x)  Minimum  1.81 x 102 0.00 0.00 0.00 0.00 0.00
Mean 2.31 x 103 6.67 x 102 3.33 x 102 2.33x 1071 3.33 x 102 0.00
Std. Dev.  2.48 x 102 2.54 x 103 1.83 x 1071 5.68 x 1071 1.83 x 103 0.00
Ratio 0% 93.33% 96.67% 83.33% 96.67% 100%
Con.num 10000 5537 1748 6906 3447 2166
Fr(x)  Minimum  1.66 x 107 2.36 x 1074 1.44 x 1075 4.42 6.06 x 1075 1.02 x 104
Mean 2.14 x 107 6.67 x 106 4.96 x 10! 3.98 x 103 3.33 x 10° 4.34 x 10t
Std. Dev.  2.06 x 106 2.54 x 107 5.05 x 10! 1.34 x 10% 1.83 x 107 5.04 x 10!
Ratio 0% 50% 53.33% 10% 53.33% 56.67%
Con.num 10000 7617 4836 9749 6359 5531
Fy(x)  Minimum  1.61 x 10! 931 x 10715 1.75x 10746 1.64x 107! 591 x 10722 280 x 10718
Mean 5.74 x 101 1.05 x 108 1.05 x 108 4.82 3.92 x 10! 2.08 x 10!
Std. Dev. 4.14 x 10! 5.78 x 106 5.78 x 106 9.39 4.99 x 10! 3.09 x 10!
Ratio 0% 33.33% 76.67% 0% 33.33% 60%
Con.num 10000 8888 2988 10000 8010 5537
Fis(x)  Minimum  4.62 x 107232 0.00 0.00 0.00 0.00 0.00
Mean 4.92 x 107150 0.00 0.00 0.00 0.00 0.00
Std. Dev. 2.69 x 10~149  0.00 0.00 0.00 0.00 0.00
Ratio 100% 100% 100% 100% 100% 100%
Con.num 3 2 2 2 2 2
Algorithm 2 The Procedure of the ASRPPSO-based FCI~ o
Algorithm 52
1. Initialize parameters of the ASRPPSO and the FCM s‘i M §§8_L.D.W
clustering algorithm including the population sizg ssl) s
inertia weightw; , acceleration coefficients 1, ¢2,1, and li\ — % — AWPSO
the maximum velocityW,, .. g ** ‘&, — @ “ASRPPSO
2. Set a swarm that haB particles. S aapl
3. Initialize the positionz; 1, the velocityv; 1, andpbest; 1 g 42,‘{\.,
. DT ’ ’ g Q= MRS S
of each particlel; and initialize gbest, of the swarm. = ANR_N AR AR
4. Getting the cluster centroids. g ' iz
5. Calculate the fitness value of each particle. Y TerEreeeaaas
6. Set thepbest; , of each particle and thebest; of the s6r W
i e . B e e e e e e S S e e e e
swarm. 34} %9000 000000000
7. CalculateE’; according to Eq. (5) and Eqg. (6), and

0 2000

4000

6000

8000 10000

Generation number

Fig. 2. Convergence plot for the Schwefel 1.2 Functiof(z)

selected PSO algorithms. In Fig. 4, the differences between
the mean fitness values of selected PSO algorithms are not
obvious. To summarize, the proposed ASRPPSO exhibits

satisfactory convergence performance.

2) Statistical Analysis:The statistical results of selected

that the proposed ASRPPSO shows better convergence R8O algorithms are presented in Table V and Table VI, which
formance than selected PSO algorithms. In Fig. 1, Figs. 5€@ntain the minimum, the mean fitness value, and the standard
Fig. 10 and Figs. 12-13, the ASRPPSO obtains the smallégviation of the solutions. The minimum fithess value, the
mean fitness value. In Figs. 2-3, Figs. 8-9 and Fig. 11, tineean fitness value, and the standard deviation are the eval-
mean fithess value of the ASRPPSO is smaller than mostuattion indices of the search ability of the algorithm. As the
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TABLE VI
STATISTICAL RESULTS OF SELECTEDP SOALGORITHMS ON MULTIMODAL FUNCTIONS
PSO PSO-LIDIW SPSO SDPSO AWPSO ASRPPSO
Fa(x)  Minimum  5.24 x 103 2,55 x 1073 1.30 x 10713 2.21 x 102 5.63 x 10712 2,93 x 10~?
Mean 1.21 x 10% 6.61 x 103 3.17 x 103 1.77 x 103 6.72 x 103 2.56 x 103
Std. Dev.  5.40 x 103 6.95 x 103 5.33 x 103 3.17 x 103 8.17 x 103 4.28 x 103
Ratio 0% 33.33% 66.67% 0% 40% 66.67%
Con.num 10000 9770 5277 10000 8299 5987
Fy(x)  Minimum  1.73 x 10! 234 x 10740 317 x 107192 941 x107*  1.03x 1072°  6.70 x 1018
Mean 3.80 x 10! 2.07 x 10! 1.30 x 10* 6.39 2.60 x 10! 1.60 x 10t
Std. Dev.  1.67 x 10! 1.47 x 10t 1.26 x 10* 8.88 1.54 x 10* 1.19 x 10t
Ratio 0% 13.33% 33.33% 50% 6.67% 20%
Con.num 10000 9284 6755 8351 9527 8350
Fs(z)  Minimum  2.34 x 10° 3.02x 1072 3.89 2.31 x 10! 248 x 1072 5.00 x 1072
Mean 4.31 x 10° 9.36 x 103 3.16 x 103 3.15 x 103 9.06 x 103 1.76 x 102
Std. Dev.  1.10 x 10° 2.74 x 10* 1.64 x 10% 1.64 x 10% 2.74 x 10* 5.57 x 102
Ratio 0% 70% 86.67% 56.67% 80% 86.67%
Con.num 15000 11145 2388 10800 7547 4132
Fs(x)  Minimum  1.78 x 102 1.49 x 10t 4.97 x 10t 3.00 x 10% 1.59 x 10! 8.95
Mean 1.94 x 102 4.04 x 10t 8.98 x 10t 6.11 x 10% 5.36 x 101 4.75 x 101
Std. Dev.  1.08 x 10! 2.24 x 10t 2.55 x 101 2.20 x 10! 2.58 x 101 2.11 x 10t
Ratio 0% 70% 3.33% 36.67% 46.67% 56.67%
Con.num 10000 6446 9674 8107 6805 5372
Fio(x)  Minimum  5.29 1.50 x 10732 8.95 x 1072 1.00 x 107%  1.50 x 10732 1.50 x 10732
Mean 7.22 6.65 x 10~2 8.63 1.80 2.74 x 1072 8.90 x 10~13
Std. Dev. 8.01 x 10~1  2.56 x 101 7.89 2.95 1.50 x 10~1 4.93 x 10~12
Ratio 0% 93.33% 3.33% 53.33% 96.67% 100%
Con.num 10000 5175 9691 7667 3210 1958
Fii(z)  Minimum  9.42 6.22 x 10715 6.22x 1071 178 x 1073  6.22x 107  6.22x 10710
Mean 1.09 x 10t 8.82x 1071 897 x 101! 399 x 1072  2.34 1.44 x 10~ 14
Std. Dev. 1.78 3.48 x 10715 9.60 x 1071 4.61 x 1072 5.32 4.68 x 10715
Ratio 0% 100% 46.67% 90% 83.33% 100%
Con.num 10000 5037 5487 7082 4281 2009
Fia(x)  Minimum  1.73 x 10% 0.00 0.00 7.25x 1075  0.00 0.00
Mean 2.20 x 10% 6.05 2.12 x 1072 5.83x 1072  3.02 1.54 x 102
Std. Dev.  2.56 2.29 x 10! 2.46 x 102 7.20 x 1072 1.64 x 10t 2.18 x 102
Ratio 0% 93.33% 96.67% 80% 96.67% 100%
Con.num 10000 5435 756 7877 3191 1960
F3 F4
2 14 T
\ Jr — & —PSO
Mol S R R R e e e e S R R PSO-LIDIW
1y . **\ 12¢ — + —SPSO 1
. \R x SDPSO
g ) ¥ b\ \‘\ 5
% 4l e . S ol
E 0 . %ese0000e0 E |
c -2 N \ c 6
g S« 8
= — 4 —Pso + 1\ =
3t PSO-LIDIW ‘*:\ ar
— + —SPSO R
. . SDPSO b T )
Gl - —AWPSO [ p!
— @ — ASRPPSO N S iitti{*f }}m&tﬁ
° 0 2000 4000 6000 8000 10000 0 0 2000 4000 6000 8000 10000

Generation number

Fig. 3. Convergence plot for the Schwefel 2.21 Functigy(z)
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Fig. 4. Convergence plot for the Schwefel 2.22 Functior(z)

selected benchmark functions are all minimization prolslenrest of the benchmark functions, the ASRPPSO also shows
so the smaller the fitness value, the better the solutiondougompetitive performance in terms of the minimum fitness

by the particles.

value. Compared with other selected PSO algorithms, the
In Table V and Table VI, the minimum fitness value 0ASRPPSO obtains the smallest mean fitness valué'dnm),

the ASRPPSO is the smallest among all that of the selectBe(z)-F7(x), Fio(x) and Fia(z)-Fi3(x). Considering the

PSO algorithms orFs (), Fs(z) and Fio(z)-Fi3(z). On the standard deviation of the fitness value, the ASRPPSO obtains
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the smallest one o (x), F5(z)-F7(x), Fio(x) and Fia(x)-
Fi5(x) compared with other chosen algorithms. To conclude,
the ASRPPSO has shown competitive performance on the
benchmark functions in terms of the solution quality and the
search capability based on the statistical analysis.

3) Success RatioThe success ratio is also listed in Table V
and Table VI. According to the table, the ASRPPSO has
the highest success ratio dn (x)-F3(x), F5(x)-F7(z) and
Fio(z)-Fi3(2), which means that the ASRPPSO could find
the optimum with high probability. The success ratio of the
ASRPPSO onFy(x) also shows competitive performance
compared with other PSO algorithms. The ratio of all selécte
PSO algorithms orFy(z) and Fs(z) is not satisfactory be-
cause the number of local optima of these functions are very
large, which indicates that it is difficult to find the glohall
optimal solution.

4) Convergence RateThe number of iterations when the
algorithm converges is illustrated in Table V and Table VI
as well. It can be seen from the table that the ASRPPSO
performed well in all 13 functions compared with other
selected algorithms.

To summarize, by comparing with other selected PSO
algorithms, the proposed ASRPPSO demonstrates superior
performance over the compared ones in terms of convergence
and search ability.

B. Evaluation of the ASRPPSO-based FCM Algorithm

To verify the effectiveness of the proposed ASRPPSO-based
FCM clustering algorithm, the lIris data from UCI machine
learning repository is employed for performance evalumtio
Experimental results are assessed by using the Rand Index
(RI), the Adjusted Rand Index (ARI) and the Weighted Kappa
(WK) coefficient.

The Rand Index (RI) is a similarity measure indicator
between two data clustering algorithms. Notice that when th
clustering results are random, RI is not a constant close to 0
As such, the ARl is introduced to overcome this shortcoming.
The value of the ARI is between -1 and 1. When the clustering
results are compared with labelled data, the larger the #iel,
higher the accuracy of the clustering results. In additibe,
larger the ARI, the higher the performance similarity bedwe
two clustering algorithms.

The WK coefficient is a statistic tool which has the ability of
measuring the inter-rater reliability of categorizingtarsces
[23]. The value of the WK coefficient shows the agreement
between two comparators. If the value is negative, the agree
ment between two comparators is worse than random. If the
value is 0, it means the agreement between the comparators
is equal to random. If the value is closer to 1, the agreement
between the two comparators is higher.

The comparison evaluation of the clustering results bygisin
the ASRPPSO-based FCM algorithm and the traditional FCM
algorithm is listed in Table VII.

According to Table VII, the WK coefficient, ARI and RI of
the ASRPPSO-based FCM algorithm &x&287, 0.7287 and
0.8797, respectively. The WK coefficient, ARI and RI of the
FCM algorithm aré.7149, 0.7149 and0.8737, respectively. It
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TABLE VI
EVALUATION OF TWO CLUSTERING ALGORITHMS

Algorithm WK ARI RI
ASRPPSO-based FCM  0.7287 0.7287 0.8797
FCM 0.7149 0.7149 0.8737

can be found from the results that the ASRPPSO-based F(
algorithm is an effective clustering algorithm, which ebits
better performance than the FCM algorithm in aspects of WI
ARI and RI. Therefore, the effectiveness and reliabilitythod
developed ASRPPSO-based FCM algorithm are proven ba:
on experimental results.

C. Outlier Detection on WAAM Data Sets
1) Data Pre-ProcessingAs mentioned previously in Sec-

Cluster

Silhouette Cluster Evaluation

0 0.2 0.4 0.6 0.8 1

Silhouette Value

11

tion Il, there are four variables (e.g._Xalue, Current, \olt- Fig. 14. The average silhouette coefficient of the clusterésult on data set

age, and ComputerTime) in each data set. In the experiment,

only the voltage and current are utilized for outlier detatt
The missing value and null value in the data sets are remo\
for data cleaning. In order to avoid the influence betwee
different attributes, it is necessary to make every inganc
each data set have the same scale so that each feature iy eq
measured. Thus, thein-max normalization process is carried
out to pre-process the data. Thén-max normalization is
given by:
Xy, = ®
max — <*min

where X y, denotes théth normalized data of the variabl€;
Xmax and X,,;, represent the maximum and the minimun
value of the variableX in the data, respectively.

2) The Results of the Outlier Detection on WAAM Dat
Sets: During the AM process, some values of current an
voltage may occasionally change abruptly, which indicat

that the process is unstable. In this case, these instanees .

Cluster

Silhouette Cluster Evaluation
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regarded as outliers. The results of the outlier detectien %lg 15. The average silhouette coefficient of the clusteresult on data set

shown in Table VIII.

TABLE VI
OUTLIER DETECTIONRESULTS

Data Set Clusterl Cluster2 (Outlier)

Data Set 1 81326 16674
Data Set 2 78979 19021
Data Set 3 79954 18046
Data Set 4 83023 14977
Data Set 5 83096 14904

The clustering performance of the developed outlier dete
tion method on the WAAM data sets is evaluated by usir
the silhouette coefficients, which is an effective approtch
assess the unlabelled data clustering results [34]. Glnere
the silhouette coefficient value is between -1 and 1. Tt
performance of clustering is better when the value is clos
to 1. In this experiment, the clustering performance of tt

proposed method is evaluated by using the average silleouett

Cluster

Silhouette Cluster Evaluation

0 0.2 0.4 0.6 0.8
Silhouette Value

coefficients of all data points in each data set. Experlmenmg 16. The average silhouette coefficient of the clusteresult on data set

results are shown in Table IX and Figs. 14-18.
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TABLE IX
THE AVERAGE SILHOUETTE COEFFICIENTS OF THE CLUSTERING RESUB

Data Set Average Silhouette Coefficients
Data Set 1 0.9135
Data Set 2 0.9034
Data Set 3 0.9073
Data Set 4 0.9123
Data Set 5 0.9315
Silhouette Cluster Evaluation
ST
Z
3
2 |-
—0‘.4 —6.2 0 0;2 0‘.4 0‘.6 0‘.8 1‘
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Fig. 17. The average silhouette coefficient of the clusteresult on data set
4

From Figs. 14-18, most of the silhouette values are positive

12

V. CONCLUSION

In this paper, an optimized FCM-based outlier detection
method has been proposed to analyze the current and voltage
data collected through the process in a WAAM pilot line
deployed in Sweden. Specifically, the ASRPPSO has been
developed to optimize the initial locations of the cluster
centroids in the FCM algorithm. An AWU strategy has been
designed in the ASRPPSO to adaptively adjust the accedarati
coefficients, and the Gaussian white noise has been added
to the velocity updating equation based on the evolutionary
states. Experimental results have shown the superiority of
the ASRPPSO over some existing PSO algorithms in terms
of convergence rate and solution quality. To demonstrate it
application potential, the ASRPPSO-based FCM algorithen ha
been applied to outlier detection on the real-world WAAM
data, which contributes to the online monitoring of the WAAM
process with hope to fabricate qualified components.

Future work can be summarized into the following five as-
pects: 1) designing a parameter selection strategy to aitom
cally choose the parameters of the adaptive weighting fomct
2) adjusting the mean and variance of the random noises
adaptively for different evolutionary states; 3) applyitige
ASRPPSO to multi-objective optimization problems; and 4)
analyzing the dynamical behavior of the ASRPPSO by using
the Lyapunov-like stability theory and the filtering tectimés
[11], [18], [20], [30]; and 5) deploying the proposed outlie
detection algorithm to some other data analysis applinatio
[22], [29].
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