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Variance-Constrained Filter Design with Sensor
Resolution under Round-Robin Communication

Protocol: An Qutlier-

Resistant Mechanism

Hang Geng, Zidong Wang, Jun Hu, Qing-Long Han, and Yuhua €hen

Abstract—In this paper, a new outlier-resistant mechanism is
proposed to deal with the variance-constrained filtering ppblem
for a class of networked systems subject to sensor resolutio
under the Round-Robin protocol (RRP). Sensor resolution, Wich
serves as an important index in determining measurement ace
racy, is taken into account in the addressed filtering problen, and
the sensor-resolution-induced uncertainty is tackled by sing an
upper bounding technique. The RRP is employed to regulate #
order of signal transmission in order to relieve communicaton
overhead. In case of measurement outliers, a tailored satation
function is dedicatedly introduced to the filter structure for the
purpose of suppressing the outlier-corrupted innovationsthereby
maintaining satisfactory filtering performance. By solving a
matrix difference equation, an upper bound is first acquiredon
the error covariance of the devised filter, and the associatkfilter
parameters are subsequently determined through minimizig
the acquired bound. The validity of the developed variance-
constrained filter design approach is thoroughly demonstréed
via two simulation examples.

Index Terms—Variance-constrained filter, recursive filtering,
sensor resolution, measurement outlier, Round-Robin praicol.

|. INTRODUCTION

now, according to a wide variety of performance specificejo
many filtering algorithms have been presented in the liteeat
among which the so-called recursive filtering approach has
drawn particular research interest for its easy-to-imgem
nature [38]-[40]. Some typical recursive filtering approas
embrace the famous Kalman filter (KF) [8], extended KF [15],
unscented KF [30], cubature KF [2], and Tobit KF [18], [31]
algorithms, where the filtering error covariance is minietz
at every iteration via properly designing associated filter
parameters. For example, a variance-constrained reeursiv
filtering algorithm has been devised in [45] for 2-D systems
involving dynamical biases, random uncertainties andaunif
guantization, where upper bounds on error covariances have
been obtained and then minimized in the sense of matrietrac
It is well known that sensors are incapable of sensing
arbitrarily small variation of the monitored object, anceth
smallest variation that a sensor can detect is referred to as
sensor resolution [19], which is deemed as one of the most
significant specifications on the accuracy of the sampled. dat
To be specific, a low (high) sensor resolution means thaether
is a large (small) deviation between the obtained sensor mea

A central topic in signal processing is the filtering issugurement and the real system measurement. The low sensor

that has gained persistent research enthusiasm duringghe esolution, if inadequately handled, would undoubtediyegi
few decades [5]-[7], [9], [11], [12], [16]. Filtering aimot Tse 0 biased sensor measurements leading to poor tracking
reconstruct the signal of interest by making full use of avaiPerformance. To solve sensor-resolution-induced (SRippr
able observations that might be contaminated by noisesillup lems, some initial effort has been made in the area of target
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tracking where the main focus has been put on the establish-
ment of an appropriate resolution model that can be intedrat
with the standard Bayesian tracking filter, see e.g. [413].[5
Although the filtering problem under SRI effects has drawn
some preliminary attention, the corresponding resultsehav
been very few when the filtering error covariance is of a major
concern, and this constitutes one of the motivations forous t
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sensor resolution.

For large-scale networked systems, sensor observatiens ar
sometimes subject to abnormal disturbances which areeefer
to as measurement outliers. Such outliers appear freguentl
practice because of sensor aging (failures, faults or @sjag
sudden (unnoticed or unpredictable) external changes, and
cyber-attacks launched by adversaries [4], [13], [33],],[34
[46], [55]. Clearly, conventional filtering techniques ame
longer effective here since the direct utilization of measu
ment outliers would lead to anomalies in innovations and
subsequently out-of-range state estimates. As such, the so
called outlier-resistantrecursive filters have recently attracted
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a growing research interest with hope to guarantee the filmutlier-resistant filter is carefully designed with its pareters
performance that is insensitive to the occurred outlieds [Ipropitiously determined. In Section 1V, examples abouthfiig
[23]. For instance, a new observer has been built in [1] wheecentrol and robot localization are given in order to showcas
a carefully designed strategy (for saturated output ilgagt the usefulness of the proposed fusion framework, and a few
has been adopted to attenuate the influence from measurengentlusions are lastly drawn in Section V.
outliers on estimation performance. Nevertheless, thé-ava
able outlier-related results on variance-constrainedréilfor Il. PROBLEM FORMULATION
networked systgms have been very few, and this constituteg g nsider the following discrete-time system:
another motivation for the current investigation.

Nowadays, with the quick revolution of communica- Tpr1 = Apry + wr, (1)
tion technologies, networked systems have been gaining 2k = CpTr + Vg 2)
increasing popularity because of the convenient coopera- _ _
tion/communication of the system components (e.g. sens¥f@erézx € R™ is the state vector; € R is the measurement
and filters) through shared networks [26], [28], [32], [37]vector wnhqut con_S|der|ng sgnsor.resolqtmﬁ, and Cy, are
[44], [49], [54]. Notice that the network bandwidth of aknown matrices with compatible dimensions, andand v
communication channel is inevitably limited, and this ma§"® Zero-mean, white, Gaussian noises in the process and the
cause various network-induced phenomena (NIP) such as da@surement with covariances and Ry, respectivelyz, is
collision, network congestion, and packet dropout etc],[24N€ initial state of meam, and covariance’,,.
[27], [29], [35], [53]. As opposed to developing strategieat ~_ Definition 10 [52] Let 2. € R (i = 1,2,...,p) be the
handle the occurred NIP [3]’ [36], [42]’ [48], a mqnmactive ith element szk.-lf Zik takes_ Its Va'l..le |n_ the Sqthilj =
way in practice is to introduce adequatemmunication pro- 0 1, -+, Em} with m > 0 being a given integer, then
tocolsto orchestrate the transmission order of the sensor data,

e > e 3)

thereby better utilizing the limited communication resmur
and preventing the NIP from taking place [10], [14], [17]is the so-called sensor resolution whetec R* is the ith
[22], [47], [50], [51]. This situation gives rise to the tHir element of resolutiom.
motivation of the present research. Assumption 1:The random variablesy,, w, and xy are

In this paper, we endeavor to develop a new varianc@utually uncorrelated.
constrained filter for a general class of networked systemsln practical engineering, sensofi = 1,2,...,p) can only
undergoing complexities stemming jointly from sensor resgense the measurement range that is larger than certai, valu
lution, RRP scheduling and measurement outliers. Due to tad this value (known as the sensor resolution) is given in
existence of the underlying complexities, it is virtualijfigult ~ Definition 1. Taking into consideration (3), treetual output
to assure the convergence of the resultant error covaridsce Of sensori is

L S

a result, we turn to seek for certain upper bounds on those Zik <
error covariances (subject to variance constraints) witheh e | T FRR =T
to ensure.that the designed algorithm is non-dlvergentZ _and Zik =140, Zik € (=74 74), (4)
this constitutes another challenge of this paper. In aoiditi Zik
as the measurement contains the information of both sensor { T’_ -‘ Tiy  Zik < T
3

uncertainties and RRP scheduling, such information nesds t
be fully reflected in not only parameter determination biyhere[-] and[-] are the floor and ceiling functions, respec-
also performance investigation, and this constitutes thal fi tively. For sensori, let us define the difference between its
challenge of this paper. actual output z; ,, and ideal output; ;. by Z; 1 = Z;  — zi k-
The primary contributions we are delivering can be outlined In the current investigation, sensor outpats. € R (i =
in threefold.i) To our knowledge, we make one of the first fews 2; - - - - p) are transmitted to a remote estimator via a shared
attempts here at designing a variance-constrained yefeyut| transmission network. To prevent data collision and improv
resistant filter under SRI effects and RRP scheduling, whdhe utilization efficiency of the communication resourdee t
both the system and the sensor models are holistically coffRP is used to schedule data communication in the sensor-
prehensive in reflecting engineering practice. ii) In castrto t0-estimator channel where af} ; are appointed equitable
the existing recursive filters, an outlier-resistant meuisen is  Privileges to propagate through the communication network
subtly embedded into the structure of the variance-coirstch One-by-one in a circular way.
filter to curb adverse influences from outliers onto filtering At time %, define the coefficient with respect to the mea-
accuracy. iii) A minimal upper bound is found to exist bypurement update by; r, 2 6(hx —1), and the selected sensor
rigorously parameterizing the filter to cope with the tighWith transmission permission by, = modk —1,p) +1 €
couplings between the SRI uncertainty, scheduling protodd:2; - - --p} Where modk — 1, p) stands for the non-negative
as well as outlier-corrupted measurements. remainder ofk — 1 divided by p. Then, based on the zero-
The rest of this paper is structured as follows. In Section IPPUt strategy, at timet, the final measurement that reaches
we formulate the addressed variance-constrained filtagaesthe filter is [16] v
problem under the RRP, _the measurgment outlier .and the Y = Zfi,hkii,k- (5)
sensor resolution. In Section lll, a variance-constraiget =1
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In the previous section, it has been discussed that thesoutli In this paper, we aim to devise autlier-resistantfilter (6)
phenomenon of sensor measurements are widely encounténethe presence of the RRP and SRI effects such that 1) the
in practice which, if not adequately handled, would provokerror covariance?;, = E{z,ZT } of filter (6) is ensured with
abnormal measurement innovations and even render filtar upper bound;, ; and 2) the propitious gain of filter (6) is
divergence. To mitigate detrimental effects from the eutli designed with minimized;, .
phenomenon, we deliberately introduce a saturation fancti
o(-) into the following filter structure: 1. M AIN RESULTS

Tpr1 = ArZr + Kro(yr — Ur) (6) This section is mainly dedicated to determining 1) an upper
A . ) ) boundP;, ., in terms of solutions to a few matrix difference e-
wherei;, andy,, are the estimates af;, andy, respectively, gyations; and 2) a gaii, that minimizesP;, . The determina-
and g = 327 Tin,Cikx WhereCy . is thei-th entry of ion hrocedure exhibits the following two distinctive fargs:
Ck. K} is the filter gain to be designed(-): R — R is the 1) 5 yariance-constrained yet outlier-resistant filtereso
saturation function defined by is presented which accommodates not only the measurement
SN A i s \mind |5 | max outliers but also the RRP effects; and (2) a few outlierstesit

o (i) = sign(ziming i, 7} % terms (including the innovations, the covariance bounds as
wheregy, £ yi, — g is the measurement innovation, aiii®™*  well as the filter gains) are all encompassed.
is the known saturation level. For sensori, define the difference between measurements

Now, let us present the derivation process of the measuvéth and without sensor resolution by ;. £ Zik — Zik- 10
ment estimatej,,. For sensot, recalling?; , £ z; , — z; %, it start with, two useful lemmas are presented as follows that
is not difficult to obtain thatz; »| < r;. Then, (5) becomes would benefit the following derivations.
» Lemma 1: [43] Define matrix functions byg.(Y")
Ui = Zriﬁk [Zik + (Cinar + vig)] R™*™ — R™ ™ and p, (V') : R™*™ — R™*" that satisfy

=t or(Y) <pe(Y) = pf (), 0e(Y) = 0f (V), 06(Y) < 0x(X)
whereC; j, andv; j, are theith rows ofC, anduy, respectively.
Noting the facts thalz, x| < r;, 4 is defined as the estimateWhere0 < v = YTandy < X = X.T- Then, under the
of 1., andu, .. is a zero-mean Gaussian random variable, tfitial condition Yy = X, > 0, there exist solutiond}. and
estimates of; , z), anduv; , can be determined @ &, and Xk 0 Yir1 = 0k (Yi),  Xit1 = pr(Xi), such that, < X

0, respectively. As such, the measurement estimate beconigsirue fork > 0. . o
Lemma 2:For sensori, the differencez; ; satisfies the

p . .
N " following condition:
I = E LinoCi kg .

Pt : |Zi k| < i 9)
wherer; is the known sensor resolution of sensor

Define the filtering error of filter (6) byt Lz —
J (6) DY bl Proof: The proof is straightforward and is thus omitted

Zr+1. Consequently, we have the following error dynamics:

here. |

Tpp1 = Aplp +wp — Ko (yr — k). (8) For anya, 3 € RT, define the following scalar function:

Remark 1:In the sensor-to-estimator communication chan- s(a, B) = 0, if a<p, (10)
nel, measurements are possibly subject to outliers due to ’ 1, otherwise

various kinds of reasons such as intermittent sensor &sjur

) . Taking advantage of (10), function (7) is rewritten as
potential cyber-attacks and abrupt environment changes. | g g (10) )

fact, measurement outliers are biased observations wtatse v o(Ur) =y [L — s (|Uk], 5]
ues significantly exceed the normal observation range,taad t + g sign(gi)s (|, 77) (11)
certainly provokes substantial deviations of the innarai '
from their normal values which, in turn, brings in adverswhich yields
impacts on the final filtering performance. As such, in this _ _
p dos o(Gr) = didi + (1 — d) (12)

paper, we are dedicated to designingaatlier-resistantfilter

(6) in order to achieve the desired filtering performance ighere
the presence of the RRP and sensor resolution. It is observed o N
from (7) that, via the introduction of a specific saturation Uk = G sign(gi) , di. = s (9, |Gk]) -
function o(-), the innovation is now constrained below a Next, we calculate the error covarianée
given saturation levelj*** and, thus, the influence l‘roml._,[h (i : 1,2,....p) entry of Ry by Ri.
outliers onto the filtering performance is mitigated. Ba#lic Theorer7n ’1.-”;6 error covarianc@~l7
gex can often be specifie@ priori in the light of our ' Th
confidence/knowledge about possible sensor outputs in pracpP;
tical scenarios and, consequently, the filter (6) is saideo b »
outlier-resistantwhere the functior () is calledconfidence- _ | 4, _ g, ZFZ' o
dependent =

Define the

k41"
of filter (6) is

k41
T

p
Ay — Ky, Z Lin.Cik

i=1

P,




FINAL VERSION

+E dkKkZFz 1, Ci ke T ik Tk

i=1

di Ky, Zfz e
i=1

+ E{ Kidyle(Krdili) "} + E{

i=1

T
} + ]E{(l —dp) Ky

P P T
X Zfi,hkfi,k [(1 — di) Ky, Zri,hkéi,k }

P
(1 — dy) Ky Z Li hiVik
i=1

=1 =1
+ 1y + 107, — Mo — 113, + g + 115,
— Ty — I, — s — I, + Tl i + 10,
+ M7 + 107, — s — 13 5, + Q.
where

P
A, — Ky, Z Lin.Cik

=1
T }
’

p
Ay — Ky, Z Lin.Cik

Ty,

I, _E{

p
X [dkKk Z Lin,CikTh

im1
Iy 3 —E{

Tk,
=1
p T
X l(l — dk)Kk Zri,hkgi,k] }a
=1
P
s _E{(l — d)Kr > TinZik
1=1
p T
X l(l — dk)Kk Zriﬁkvi»k] }a
1=1
p
My —E{dkKk Zri,hkci,kjk
1=1
p T
X l(l — dk)Kk Zri,hkgi,k] }a
1=1

II5 5, =E dkKkZka Ci 1@ (Kpdyly) T },

{
]
|

(1 —dy) Ky ZFz o Zio (i) T } ;
=1
7, =E < (1 —dy, KkZka ol (Kpdyli) ™ }
=1
g = { A — K, Zri,hkci,k ifk(deklk)T} .
=1
Here, cross-term$l, , (t = 1,2,...,8) in (15)—(21) along

with the gain matrixK;, are to be determined Iater
Proof: Paying attention to (2), (4), (5) and ;, =
zi.k, We have

Uk =Yk — Uk

P
(1= dr) K Y Tinvik

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)

sz_

_Zrlhk'zlk+zrlhk 'kak+zrlflkvlk7 (22)

=1 =1

by which error dynamics (8) is reformulated as

Tp1 =ApTr — Kka@k) + wk

= | A *Kkzrl he Cike | T + di K, Zrl i Ci Tk
=1 =1
p
— Kydily, — (1 — di) Ky, Zri,hkéi,k
i=1
p
— (1 —dg)Kg Zri,hkvi,k + wy. (23)
i=1
Combining (23) and Assumption 1 yields
Pik+1
2E {1 T4 )
T

p
A — Ky, Z Lin.Cik
i1

p
= |A; — K, ZFi,hkCi,k
im1

P,

T

P p
+EJ di Ky, Z Lip.Cikr ldkKk Z Line Ci kT
i1 i=1

P
(1—di)Ki > Tingvin

=1

} + ]E{(l — dp) Ky

, T
[(1 — di) Ky Zri,hkgi,k }

i=1

+E { Kydily (Kpdili)™} + E{

p
(1 —di)Ky Z T b ik
im1

p
X E i Zik

i=1

+ 1y + 107, — Mo — 113, + g + 115,
— Iy — H4T,k — 151 — H?,k + I 1 + HF{;F,;C
+ M7 + 107, — Mg — 105 ), + Qx,

which is (13) where the cross-terfis ;, (t =1,2,...,8) are
given by (15)—(21). The proof is now complete. [ |
Remark 2: Given the outlier-induced saturation innovation
o(gx), it is literally impossible to directly acquire the error
covarianceP; from error dynamics (8), buf’;, acts as an
indispensable factor in determining our filter gain. In this
regard, the saturation innovatier(y,) is transformed into a
linear combination of the innovatigp, and the saturation level
ype* so as to facilitate the derivation of the error covariance
and filter gain. Thanks to such an innovation transformation
error dynamics (8) can be equally converted into a special
structure that not only explicitly accommodates the RRP and
SRI effects, but also greatly benefits the derivation of the
expectedekH. Notice that, attributable to the emergence of
a suite of complex cross-terms (eld; .t = 1,2,...,8) in
(13), it is technically difficult to find an explicit expressi
of the error covariancé’;, . As such, in terms of matrix
difference equations, we turn to explore the upper bound on
such newly appeared cross-terms, and this leads to theedesir
upper bound as shown in the following theorem.
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For known constant; (¢t =1,2,...,8), we denote
ay =1+m3t + 7t
as =1+m +7T2+7T8_1,
a3:1+7rl_1+ﬂ'4_1—|—7r5_1,

ay =1+ 75 + 76 + 77 + T3,

a5:1+7T2_1+7T3+7T4+7T6_1.

In line with (13)—(21), an explicit expression of the expaett
on the error covariance (23) is given in

upper boundP;, .,
the following theorem.

Theorem 2:Letthe constants; (t = 1,2,...,
conditions P;
equation

P
,Pik+1 éalKk Z Fzz,hk [tr{RZ,k}I]K;@r

i=1
p
+a |Ar — Ky, Z Lin.Cik
i—1
» T
X Pz, | Ar — K Zri,hkci,k + Qx
i=1
P
+ a3 K Z I‘Z—ﬁkOi_,k[tr{Pik}I]

i,k=1

+a4( mdx) KkKk +a5le"mk szKk

i=1

admits a solutiorP;, such thatP; > P;
that is, the error covarianck;

operation, we have

E{ Kidple(Kidily)" } <KRE {dily(dil)"} K

< (~mdx) KkKk ,

P P
E dkKkZFi,hkCi,kffk dkKkZFj,hij,kfk

i=1 j=1

P P
<Ky Y Tin Cikltr{Ps, }]

i=1 j=1

T T
Cj,krjﬁk Kk )

p p
E{E{(l — dp)* K, Z T b ik [Kk Zri,hkvi,k

i=1

p
Z Ri Ky K[,

i=1

i=1 =1

P p T
<Kp Y TinE{zrz} lKk > Fi,ﬁk]
=1 =1

P P
E{ (1 —di)*Kx Z Lin,Zik lKk Z Lin,Zik

(24)
(25)
(26)
(27)
(28)

8) and initial
= P;, > 0 be given. Then, the difference

T T
Cj,krj-ﬁkKk

(29)

holds fork > 0,
is upper bounded by
Proof: By means of the trace property and the matrix

(30)

(31)

)

(32)

'}

<pZF’L Ay szKk

where the last inequality holds from Lemma 2.
For any constants, (t =1,2,...,
in (15)—(18) satisfy

p
A, — K, Z Lin.Cik
im1

Hl,k‘f'H{k <m P;,

T

P
A — Ky, Z Tk 5 Cike
=1

p p
X Z Z LikCik [tr{Pik }I]

i=1 j=1

p
A — Ky, Z Lin.Cik

=1

P
Ap = K Y T nCin
i=1

p
+ W;lpT? Z Fithng7

i=1

o + 113, <ms Pz,

T

I + 113, <7T3pZFZ o PR K]
1=1

+ 3 'K, Z U7, [tr{R: - K],

=1

P
Iy + 105, <7r4pZka 2K Kl +7r41KkZ

1=1 =1

% Dy, Co e [tr{ Ps, HCT T, K

p p
15, + HsT,k <5 (g]rcnax)2 Ki K} + 775_1Kk Z Z
i=1 j=1
T T
X T ik[tr{Pik}I]Cj,ij,thk ,

Hﬁk—l—Hﬁk <ﬂ_6(~maX) KkKk
+7T6 pzrzhk szKk7
H7]€+H7k <ﬂ_7(~max) KkKk

+ 7 Ky ZR potH{Ri i KT
=1
Hgk—f—nsk <7Tg( max) KkKk

+ gt | Ax — Ky Zri,hkci,k

i=1

p
x Py, | A — K, er,hkcj-,k

j=1

Inserting (30)—(41) into (29), we have

Ps,,, <a1Kj, Zr

=1

[tr{R; ;K

+7_‘_1—1Kk

(33)

8), the cross-termsl, j

T T
Cj,k]‘—‘j7hk Kk )

(34)

(35)

(36)

37)

(38)

(39)

(40)

(41)
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P
+ag Ay — Ky, Zri,hkci,k

i=1

T

p
X Pz, |Ar — K Zri,hkci,k + Qk

i=1

P
+asKy Y Tip, Ciglte{Ps, }CT,T; n K[

ij=1

P
+ay () KiKQ +aspy T3, ri KK
i=1

(42)

wherea; (i =1,2,---,5) are denoted in (24)-(28).

and Pz, to Py, = pr(Pg,) and Py, | = ox(P;, ) such that
P, < P;, istrue fork > 0, i.e. P;, is upper bounded by
Py, ,» which completes the proof. [ |

It is found from Definition 1 and Lemma 2 that 1) the
sensor resolution is a specification index that evaluates th
error between the real and sampled sensor data, where a low
(high) sensor resolution means that there is a large (small)
error between the obtained sensor measurement and the real
system measurement; and 2) for each sensdts sensor
resolution induced error is restricted by an upper bound
Since a large (small) measurement error often leads to a larg
(small) filtering error covariance, we conclude that a large
(small)r; results in a bad (good) filtering performance. Such a

Inspired by (41) and (42), let us define matrix function§onclusion is later verified by Theorem 2 in our main results,
pr(Pg, ) : R — R™ ™ and g, (P;, ) : R™*"™ — R™™™ by

P

Tt1

épk(Pik)

P
£a1 Ky, Z F?ﬁk tr{R; 1 H] K,
i=1

p
Ay — Ky, Z Lin.Cik

i=1

+ as

» T
A, — Ky, Z Lin.Cik

i=1

P
+ a3 K Z Fi,hk C’iyk[tr{ij}I]CjT’kI‘jﬁkKkT

X Pik + Qk

ij=1
+ag ()" KK +a5pzrl i KR KL, (43)
=1
P.
Tp41
éQk(Pfck)
P p T
= | A, — K, ZFi,hkCi,k P, |Ar — Ky, Zri,hkci,k
i=1 i=1
T

p
dip Ky, Z Lin,Ci kg

i=1

p
+ES dp Ky Z Lin, Ci kg

i=1

+E { Kydily (Kpdili)™} + E{
i=1

T
} + ]E{(l — dp) Ky

p » T
X Zri,hkgi.,k [(1 — dy) Ky, Zfi,hkii,k }

i=1 i=1

p
(1 —dg)Kg Z i n,vik
i=1

+ 111, + ka =1 — H;k + 13 + H:;Qk
=Ty — 15, — s — 113, + g + 115,
+ 17 5 + H%F,k — g, — H;‘;k + Q.

p
(1 —dg)Kg Z T b ik

(44)

Bearing (43)—(44) in mind, one verifies that(P;, ) and
pr(P;, ) satisfy conditions in Lemma 1. Consequently, given
P;z, = P;, > 0, itis concluded that there exist solutioRs,

from which one confirms that; is a paramount parameter
in the determination of the bound that confines the resultant
filtering error covariance, and a large (smaillimplies a high
(low) bound on the error covariance, giving rise to a bad (oo
performance of the designed filter.

Remark 3:It will be shown in Theorem 3 that the upper
boundP;, ., presented in Theorem 2 can be rewritten as (49)
which further leads to the minimum upper bou’ﬁ’g’”l by
properly designing the filter gaii’;, as (45). This certamly
verifies thatP;, ,, is lower bounded byD;’:fl Note that in
terms of boundedness, we are more interested in exploring
the bondedness d?gj“l due to the reason that it guarantees
the proper filter gain as well as the expected locally optimal
performance of the designed filter. Theorem 3 will illustrat
that the structure ch}jfl is similar to that of the filtering error
covariance in Kalman-like filters (see references [25],])56
and thus it is not difficult to find both upper and lower bounds
on ngjfl by taking advantage of the boundedness analysis
procedure presented in [25], [56], where certain boundesine
assumptions on saturation levgid®* and matrices), R
AkA andC;, kC g should be made.

Next, we endeavor to minimize the bound attained in (29)
so as to achieve the expected filter gain.

Theorem 3:Let the constants, , (t =1,2,...,5) be giv-
en. Then, the bound given by (29) is minimized via designing
the gainKj, as

i,k

K =00, (45)

where

(46)

[1]
£
|

= a2AkPmk Z

I £ o Z r?, [tr{R:x}]
=1

kF’L Ak

1
p p
T
+a2§ E Ui n,Cik P, Cf 1Ly
i=1 j=1

P

P
+as Z Z i n, Ci,k[tr{Pik}I]kaka
i=1 j=1

P
+oag (TP I+ asp Y T2y, r2l.
=1

(47)
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Furthermore, the minimal bour[ﬂgjjf is

1

- - -Actwalvae | e
With Innovation Saturation | e

ngcirl = GQAk,PikAg + Qk _ EkH;IEg (48) Without Innovation Saturatio f'—’_,..
Proof: The boundP;, , in (29) can be converted into ool P
. yd .;"}
the following structure: P
2 /"‘ d
T T g vt
Pirsr =a2 APz, AL + Qp + KRl K]
! 4
— I(kE%1 — EkK;{ 50 /";/y
T = q-1=T 4
=a2Ap Pz, Ay + Qr — Bl "5y, P
= -1 = 17—-1\T s
+ (Kk — :ka )Hk(Kk — :ka ) (49) //f
///
where=;, andIl; are defined by (46) and (47), respectively. % 1 ® o s e o s o w0

Time (k)

It follows from (49) that, if K}, takes the form of (45), i.e.
K, = EkH,gl, thenij+1 achieves its minimal value as given
by (46), and the proof is complete. |

Remark 4:In this paper, a variance-constrained filter design
problem is concerned with sensor resolution under the RRP. AT:

: . S . or thesth
novel outlier-resistant mechanism is proposed to cope tivith
possible measurement outliers where an saturation steuistu

Fig. 1: True and estimated trajectories of pitch angle.

(s =1,2,...,n) entry of z;, (defined byz;),
its root mean-squared error (RM$HSs defined by

introduced to constrain the outlier effect onto the measure M _ R
ment innovation. Later on, the saturated innovatid;) is RMSEs £ i Z (xi(” - QZ(J))
transformed into a linear combination of the innovatign j=1

and the saturation leve};*** so as to facilitate subsequen(lvhere M = 500 is the number of Monte Carlo trials and
filter parameterization. An upper bound on the SRI unceuyaink = 100 is the time step in each trial. The mean squared error
(i.e. the difference between measurements with and withqgtx is defined by
sensor resolution) is then successfully attained in Lemma F

Subsequently, the error covariance of the filter is acquairedi A1 T ()

L . . L. . MSE & — 7 J 7 J )
minimized in Theorems 1-2 with the propitious gain paramete M E : k k
found in Theorem 3. It is worth mentioning that the obtained =1

minimal bound reflects all information from the underlying For all conducted simulations, the sampling sensor is sub-

system undergoing sensor resolution, measurement ocattlger ject to sensor resolution, the measurement transmission is

RRP scheduling. scheduled via the RRP, and the collected measurements are
Remark 5:So far, the variance-constrained filtering algocorrupted by possible outliers taking the form of a distudza

rithm has been well formulated for networked systems in tisggnal o;. In the sequel, examples on both flight control and

presence of multiple observation uncertainties that epem® robot localization are leveraged to testify the robustroéssir

outliers, stochastic noises and sensor resolution unddRRP. filter against outliers, where several performance comspas

A careful observation of the primary results outlined in lreen are made between the proposed outlier-resistant filter with

2 and Theorems 1-3 tells that all involved uncertaintiegtiog innovation saturation and the outlier-corrupted filter hoitit

er with the RRP that contribute to our system complexity afgnovation saturation.

explicitly reflected in our filter design and analysis process.

In comparison with the existing literature, the main resoft A Example of Flight Control

this paper owns the following distinctive characteristit$

the networked filtering problem discussed here is new in the

sense that the sensor resolution, measurement outlieRRRAd Try1 =Akz + Brug + wy,

are taken into careful consideration; 2) a variance-cairsd

yet outlier-resistant filtering scheme is devised to resdhe

mathematical complexities stemming from SRI uncertaintigvherez;, is the flight state consisting of the pitch angley,

and outlier-corrupted measurements; and 3) the perforenafié{Ch ratez, , as well as normal velocitys , anduy is the

of our developed filtering algorithm is testified through twd@iven input of elevator control.

Consider a longitudinal flight control model:

2z =Crxp + vg

practical examples as shown in the following section. [0.9944 —0.1203 —0.4302 30
Ap = (0.0017 0.9902 —0.0747] g2 =151,
IV. I1LLUSTRATIVE EXAMPLES | O 0.8187 0 5
In this section, we leverage two examples about flig% B 064(?0552 B 186’. ?8 < z < ‘7187
control (modified from [21]) and robot localization (modidie ~% — _O i813 Ok = 102 (S;gl((lfu)) 20 2 . 2 106

from [20]) to elucidate the applicability of the presentdtefi .
design strategy and performance analysis mechanism. Qr =0.0115, R, = 0.0115, P, = 0.0115, %0 = [O 0 O] ,
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= = =True value
*+++= With Innovation Saturation ||
Without Innovation Saturatio

~ — ~True Trajectory
With Innovation Saturation S i 11r
—-=-=Without Innovation Saturatiol

Position along X axix

. . . . . . . . . . . . . . . . . .
-90 -80 -70 -60 -50 -40 -30 -20 -10 0 10 0 10 20 30 40 50 60 70 80 90 100
Position along Y axis Time (k)

Fig. 8: Robot position: true and estimated trajectories. Fig. 9: Robot angle: true and estimated trajectories.
Cp =I5, 11 =20, = 2,75 = 1,1 = 1.0, 15 = 0.5, us, = 10, T
3 20.5,7T4 = 0.3,7T5 = 0.2,7‘1’6 = 0.7,7‘1’7 = 0.4,7‘1’8 =0.3 or

wherew = 0.0527 ande = [1 1 1]T. Convert the flight
control model into

10g,()

Tr1 =ApTr + Dk,
2z =Crxy + vr,

where 0, = Byur + wi can be equivalently treated as a
Gaussian noise of meaBu; along with covariance)y.

Figs. 1-3 depict trajectories of the pitch anglg, pitch PV N S —————"
rate x, 5, normal velocityxs ;, and their estimate$, j, @2 Time (k)
andzs , and Figs. 4—6 plot associated RMSEs. One observers
explicitly from Figs. 1-3 that estimation curves produced bFig. 10: Comparison: log (tr{ P2i"}) and log, (tr{P2"}).
the filter with innovation saturation almost coincide withet
true state curves, while estimation curves produced by the
filter without innovation saturation have large deviatidrn axis of the robot. The process noisg has a covarianc€@;, =
true state curves. It is apparently seen from Figs. 4-6 thdihg{0.05,0.05,0.05}, and the state transition matrix is
RMSE curves generated by the filter with innovation satarati

always reside lower than that generated by the filter without L0 —UkSi“(AfS,k—l)
innovation saturation. Ap =10 1  upCOZ3k-1)
Additionally, Fig. 7 sketches variation trends of tracevas 00 1

with respect toP;, and P"“” where the values of;, are
approximated by the correspondmg MSE values due to the i |m
possibility of analytically computing the error covari@®©ne
observes explicitly from Fig. 7 that values of lpdtr{P;, })

are always smaller than that of lpg(tr{P2"}). The above
demonstration figures apparently elucidate the robustogss
the filter with innovation saturation against outliers ahe t
correctness of the upper bound result claimed in Lemm

whereuy, = 1,7, T = 150 ms is the sampling interval and

= 30 mm/s is the displacement velocity of the robot.

In this example, two sensors with resolutiopn = 10 and
resolutionr, = 1 are deployed to collect the robot informa-
tion. The collected measurements before sensor resolat®n
*described by system (2) where the measurement noise has a
cgvananceR,C = I,. The measurement transition matrix is

and Theorems 1-3. b Ifl,k*l - zfz,;H 0
Cr = l2_m2,,7c—1 _ll_wf,k—l 1]
1z 12

B. Example of Robot Localization

Ix :\/(11 —x1k)? + (la — z2.1)?
Consider a robot localization scenario taken place in a 2D
X — Y plane, and the kinetic model of the mobile robot isvhere (I1,12) is the position of the landmark point. In the
characterized by system (1). The state of the robot consistssimulation, we setr; o = 2 m, 20 = 3 m, x30 = 2 rad/s,
the positionz; ; along theX axis, the positiomg r alongthe Pz = 0.0173, 13 = 5 m andl, = 5 m. The outlier signal
Y axis and the angles ;, between theX axis and the forward is set as0r = 30h for 0 < k < 30, o = 30hsin(wT") for
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30 < k < 60 and oy, = 30hcos(wT') for 70 < k < 100 where
T
h=1[1 1]".

The simulation results are given in Figs. 8-10 whergg)
Figs. 8-9 show the actual and estimated trajectories of both
robot position and. angle, while Fig. 1(.) PIOtS the tracn?inCSIrV?M] Y. Dong, Y. Song, and G. Wei, Efficient model-predictigentrol for
of the error covariancé’;, ,, and its minimal bound)ikﬂ- networked interval type-2 T-S fuzzy system with stochastemuni-
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