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Variance-Constrained Filter Design with Sensor
Resolution under Round-Robin Communication

Protocol: An Outlier-Resistant Mechanism
Hang Geng, Zidong Wang, Jun Hu, Qing-Long Han, and Yuhua Cheng

Abstract—In this paper, a new outlier-resistant mechanism is
proposed to deal with the variance-constrained filtering problem
for a class of networked systems subject to sensor resolution
under the Round-Robin protocol (RRP). Sensor resolution, which
serves as an important index in determining measurement accu-
racy, is taken into account in the addressed filtering problem, and
the sensor-resolution-induced uncertainty is tackled by using an
upper bounding technique. The RRP is employed to regulate the
order of signal transmission in order to relieve communication
overhead. In case of measurement outliers, a tailored saturation
function is dedicatedly introduced to the filter structure for the
purpose of suppressing the outlier-corrupted innovations, thereby
maintaining satisfactory filtering performance. By solving a
matrix difference equation, an upper bound is first acquired on
the error covariance of the devised filter, and the associated filter
parameters are subsequently determined through minimizing
the acquired bound. The validity of the developed variance-
constrained filter design approach is thoroughly demonstrated
via two simulation examples.

Index Terms—Variance-constrained filter, recursive filtering,
sensor resolution, measurement outlier, Round-Robin protocol.

I. I NTRODUCTION

A central topic in signal processing is the filtering issue
that has gained persistent research enthusiasm during the last
few decades [5]–[7], [9], [11], [12], [16]. Filtering aims to
reconstruct the signal of interest by making full use of avail-
able observations that might be contaminated by noises. Up till
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now, according to a wide variety of performance specifications,
many filtering algorithms have been presented in the literature,
among which the so-called recursive filtering approach has
drawn particular research interest for its easy-to-implement
nature [38]–[40]. Some typical recursive filtering approaches
embrace the famous Kalman filter (KF) [8], extended KF [15],
unscented KF [30], cubature KF [2], and Tobit KF [18], [31]
algorithms, where the filtering error covariance is minimized
at every iteration via properly designing associated filter
parameters. For example, a variance-constrained recursive
filtering algorithm has been devised in [45] for 2-D systems
involving dynamical biases, random uncertainties and uniform
quantization, where upper bounds on error covariances have
been obtained and then minimized in the sense of matrix-trace.

It is well known that sensors are incapable of sensing
arbitrarily small variation of the monitored object, and the
smallest variation that a sensor can detect is referred to as
sensor resolution [19], which is deemed as one of the most
significant specifications on the accuracy of the sampled data.
To be specific, a low (high) sensor resolution means that there
is a large (small) deviation between the obtained sensor mea-
surement and the real system measurement. The low sensor
resolution, if inadequately handled, would undoubtedly give
rise to biased sensor measurements leading to poor tracking
performance. To solve sensor-resolution-induced (SRI) prob-
lems, some initial effort has been made in the area of target
tracking where the main focus has been put on the establish-
ment of an appropriate resolution model that can be integrated
with the standard Bayesian tracking filter, see e.g. [41], [52].
Although the filtering problem under SRI effects has drawn
some preliminary attention, the corresponding results have
been very few when the filtering error covariance is of a major
concern, and this constitutes one of the motivations for us to
look into the variance-constrained filter design problem with
sensor resolution.

For large-scale networked systems, sensor observations are
sometimes subject to abnormal disturbances which are referred
to as measurement outliers. Such outliers appear frequently in
practice because of sensor aging (failures, faults or outages),
sudden (unnoticed or unpredictable) external changes, and
cyber-attacks launched by adversaries [4], [13], [33], [34],
[46], [55]. Clearly, conventional filtering techniques areno
longer effective here since the direct utilization of measure-
ment outliers would lead to anomalies in innovations and
subsequently out-of-range state estimates. As such, the so-
calledoutlier-resistantrecursive filters have recently attracted
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a growing research interest with hope to guarantee the filter
performance that is insensitive to the occurred outliers [1],
[23]. For instance, a new observer has been built in [1] where
a carefully designed strategy (for saturated output injection)
has been adopted to attenuate the influence from measurement
outliers on estimation performance. Nevertheless, the avail-
able outlier-related results on variance-constrained filters for
networked systems have been very few, and this constitutes
another motivation for the current investigation.

Nowadays, with the quick revolution of communica-
tion technologies, networked systems have been gaining
increasing popularity because of the convenient coopera-
tion/communication of the system components (e.g. sensors
and filters) through shared networks [26], [28], [32], [37],
[44], [49], [54]. Notice that the network bandwidth of a
communication channel is inevitably limited, and this may
cause various network-induced phenomena (NIP) such as data
collision, network congestion, and packet dropout etc. [24],
[27], [29], [35], [53]. As opposed to developing strategiesthat
handle the occurred NIP [3], [36], [42], [48], a moreproactive
way in practice is to introduce adequatecommunication pro-
tocolsto orchestrate the transmission order of the sensor data,
thereby better utilizing the limited communication resource
and preventing the NIP from taking place [10], [14], [17],
[22], [47], [50], [51]. This situation gives rise to the third
motivation of the present research.

In this paper, we endeavor to develop a new variance-
constrained filter for a general class of networked systems
undergoing complexities stemming jointly from sensor reso-
lution, RRP scheduling and measurement outliers. Due to the
existence of the underlying complexities, it is virtually difficult
to assure the convergence of the resultant error covariance. As
a result, we turn to seek for certain upper bounds on those
error covariances (subject to variance constraints) with hope
to ensure that the designed algorithm is non-divergent, and
this constitutes another challenge of this paper. In addition,
as the measurement contains the information of both sensor
uncertainties and RRP scheduling, such information needs to
be fully reflected in not only parameter determination but
also performance investigation, and this constitutes the final
challenge of this paper.

The primary contributions we are delivering can be outlined
in threefold.i) To our knowledge, we make one of the first few
attempts here at designing a variance-constrained yet outlier-
resistant filter under SRI effects and RRP scheduling, where
both the system and the sensor models are holistically com-
prehensive in reflecting engineering practice. ii) In contrast to
the existing recursive filters, an outlier-resistant mechanism is
subtly embedded into the structure of the variance-constrained
filter to curb adverse influences from outliers onto filtering
accuracy. iii) A minimal upper bound is found to exist by
rigorously parameterizing the filter to cope with the tight
couplings between the SRI uncertainty, scheduling protocol
as well as outlier-corrupted measurements.

The rest of this paper is structured as follows. In Section II,
we formulate the addressed variance-constrained filter design
problem under the RRP, the measurement outlier and the
sensor resolution. In Section III, a variance-constrainedyet

outlier-resistant filter is carefully designed with its parameters
propitiously determined. In Section IV, examples about flight
control and robot localization are given in order to showcase
the usefulness of the proposed fusion framework, and a few
conclusions are lastly drawn in Section V.

II. PROBLEM FORMULATION

Consider the following discrete-time system:

xk+1 = Akxk + ωk, (1)

zk = Ckxk + υk (2)

wherexk ∈ R
n is the state vector,zk ∈ R

p is the measurement
vector without considering sensor resolution,Ak andCk are
known matrices with compatible dimensions, andωk andυk
are zero-mean, white, Gaussian noises in the process and the
measurement with covariancesQk andRk, respectively.x0 is
the initial state of mean̄x0 and covariancePx0

.
Definition 1: [52] Let zi,k ∈ R (i = 1, 2, . . . , p) be the

ith element ofzk. If zi,k takes its value in the set{jri|j =
0,±1, . . . ,±m} with m > 0 being a given integer, then

r ,
[

r1 r2 · · · rp
]T

(3)

is the so-called sensor resolution whereri ∈ R
+ is the ith

element of resolutionr.
Assumption 1:The random variablesυk, ωk and x0 are

mutually uncorrelated.
In practical engineering, sensori (i = 1, 2, . . . , p) can only

sense the measurement range that is larger than certain value,
and this value (known as the sensor resolution) is given in
Definition 1. Taking into consideration (3), theactual output
of sensori is

z̄i,k =























⌊

zi,k
ri

⌋

ri, zi,k ≥ ri,

0, zi,k ∈ (−ri, ri),
⌈

zi,k
ri

⌉

ri, zi,k ≤ −ri

(4)

where⌊·⌋ and⌈·⌉ are the floor and ceiling functions, respec-
tively. For sensori, let us define the difference between its
actual output z̄i,k and ideal outputzi,k by z̃i,k , z̄i,k − zi,k.

In the current investigation, sensor outputsz̄i,k ∈ R (i =
1, 2, . . . , p) are transmitted to a remote estimator via a shared
transmission network. To prevent data collision and improve
the utilization efficiency of the communication resource, the
RRP is used to schedule data communication in the sensor-
to-estimator channel where all̄zi,k are appointed equitable
privileges to propagate through the communication network
one-by-one in a circular way.

At time k, define the coefficient with respect to the mea-
surement update byΓi,~k

, δ(~k− i), and the selected sensor
with transmission permission by~k , mod(k − 1, p) + 1 ∈
{1, 2, . . . , p} where mod(k− 1, p) stands for the non-negative
remainder ofk − 1 divided by p. Then, based on the zero-
input strategy, at timek, the final measurement that reaches
the filter is [16]

yk =

p
∑

i=1

Γi,~k
z̄i,k. (5)
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In the previous section, it has been discussed that the outlier
phenomenon of sensor measurements are widely encountered
in practice which, if not adequately handled, would provoke
abnormal measurement innovations and even render filter
divergence. To mitigate detrimental effects from the outlier
phenomenon, we deliberately introduce a saturation function
σ(·) into the following filter structure:

x̂k+1 = Akx̂k +Kkσ(yk − ŷk) (6)

wherex̂k and ŷk are the estimates ofxk andyk, respectively,
and ŷk =

∑p

i=1 Γi,~k
Ci,kx̂k whereCi,k is the i-th entry of

Ck. Kk is the filter gain to be designed.σ(·): R 7→ R is the
saturation function defined by

σ(ỹk) , sign(ỹk)min{|ỹk|, ỹ
max
k } (7)

whereỹk , yk − ŷk is the measurement innovation, andỹmax
k

is the known saturation level.
Now, let us present the derivation process of the measure-

ment estimatêyk. For sensori, recalling z̃i,k , z̄i,k − zi,k, it
is not difficult to obtain that|z̃i,k| < ri. Then, (5) becomes

yk =

p
∑

i=1

Γi,~k
[z̃i,k + (Ci,kxk + υi,k)]

whereCi,k andυi,k are theith rows ofCk andυk, respectively.
Noting the facts that|z̃i,k| < ri, x̂k is defined as the estimate
of xk, andυi,k is a zero-mean Gaussian random variable, the
estimates of̃zi,k, xk andυi,k can be determined as0, x̂k and
0, respectively. As such, the measurement estimate becomes

ŷk =

p
∑

i=1

Γi,~k
Ci,kx̂k.

Define the filtering error of filter (6) bỹxk+1 , xk+1 −
x̂k+1. Consequently, we have the following error dynamics:

x̃k+1 = Akx̃k + ωk −Kkσ(yk − ŷk). (8)

Remark 1: In the sensor-to-estimator communication chan-
nel, measurements are possibly subject to outliers due to
various kinds of reasons such as intermittent sensor failures,
potential cyber-attacks and abrupt environment changes. In
fact, measurement outliers are biased observations whose val-
ues significantly exceed the normal observation range, and this
certainly provokes substantial deviations of the innovations
from their normal values which, in turn, brings in adverse
impacts on the final filtering performance. As such, in this
paper, we are dedicated to designing anoutlier-resistantfilter
(6) in order to achieve the desired filtering performance in
the presence of the RRP and sensor resolution. It is observed
from (7) that, via the introduction of a specific saturation
function σ(·), the innovation is now constrained below a
given saturation level̃ymax

k and, thus, the influence from
outliers onto the filtering performance is mitigated. Basically,
ỹmax
k can often be specifieda priori in the light of our

confidence/knowledge about possible sensor outputs in prac-
tical scenarios and, consequently, the filter (6) is said to be
outlier-resistantwhere the functionσ(·) is calledconfidence-
dependent.

In this paper, we aim to devise anoutlier-resistantfilter (6)
in the presence of the RRP and SRI effects such that 1) the
error covariancePx̃k

, E{x̃kx̃
T
k } of filter (6) is ensured with

an upper boundPx̃k
; and 2) the propitious gain of filter (6) is

designed with minimizedPx̃k
.

III. M AIN RESULTS

This section is mainly dedicated to determining 1) an upper
boundPx̃k+1

in terms of solutions to a few matrix difference e-
quations; and 2) a gainKk that minimizesPx̃k

. The determina-
tion procedure exhibits the following two distinctive features:
1) a variance-constrained yet outlier-resistant filter scheme
is presented which accommodates not only the measurement
outliers but also the RRP effects; and (2) a few outlier-resistant
terms (including the innovations, the covariance bounds as
well as the filter gains) are all encompassed.

For sensori, define the difference between measurements
with and without sensor resolution bỹzi,k , z̄i,k − zi,k. To
start with, two useful lemmas are presented as follows that
would benefit the following derivations.

Lemma 1: [43] Define matrix functions by̺k(Y ) :
R

n×n → R
n×n andρk(Y ) : Rn×n → R

n×n that satisfy

̺k(Y ) ≤ρk(Y ) = ρTk (Y ), ̺k(Y ) = ̺Tk (Y ), ̺k(Y ) ≤ ̺k(X)

where0 < Y = Y T and Y ≤ X = XT . Then, under the
initial condition Y0 = X0 > 0, there exist solutionsYk and
Xk to Yk+1 = ̺k(Yk), Xk+1 = ρk(Xk), such thatYk ≤ Xk

is true fork ≥ 0.
Lemma 2:For sensori, the differencez̃i,k satisfies the

following condition:
|z̃i,k| < ri (9)

whereri is the known sensor resolution of sensori.
Proof: The proof is straightforward and is thus omitted

here.
For anyα, β ∈ R

+, define the following scalar function:

s(α, β) =

{

0, if α ≤ β;
1, otherwise.

(10)

Taking advantage of (10), function (7) is rewritten as

σ(ỹk) =ỹk [1− s (|ỹk|, ỹ
max
k )]

+ ỹmax
k sign(ỹk)s (|ỹk|, ỹmax

k ) (11)

which yields

σ(ỹk) = dklk + ỹk(1− dk) (12)

where

lk , ỹmax
k sign(ỹk) , dk , s (ỹmax

k , |ỹk|) .

Next, we calculate the error covariancePx̃k+1
. Define the

i-th (i = 1, 2, . . . , p) entry ofRk by Ri,k.
Theorem 1:The error covariancePx̃k+1

of filter (6) is

Px̃k+1

=

[

Ak −Kk

p
∑

i=1

Γi,~k
Ci,k

]

Px̃k

[

Ak −Kk

p
∑

i=1

Γi,~k
Ci,k

]T
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+ E







dkKk

p
∑

i=1

Γi,~k
Ci,kx̃k

[

dkKk

p
∑

i=1

Γi,~k
Ci,kx̃k

]T






+ E
{

Kkdklk(Kkdklk)
T
}

+ E

{

(1− dk)Kk

p
∑

i=1

Γi,~k
υi,k

×

[

(1 − dk)Kk

p
∑

i=1

Γi,~k
υi,k

]T }

+ E

{

(1− dk)Kk

×

p
∑

i=1

Γi,~k
z̃i,k

[

(1− dk)Kk

p
∑

i=1

Γi,~k
z̃i,k

]T }

+Π1,k +ΠT
1,k −Π2,k −ΠT

2,k +Π3,k +ΠT
3,k

−Π4,k −ΠT
4,k −Π5,k −ΠT

5,k +Π6,k +ΠT
6,k

+Π7,k +ΠT
7,k −Π8,k −ΠT

8,k +Qk (13)

where

Π1,k =E

{[

Ak −Kk

p
∑

i=1

Γi,~k
Ci,k

]

x̃k

×

[

dkKk

p
∑

i=1

Γi,~k
Ci,kx̃k

]T }

, (14)

Π2,k =E

{

[

Ak −Kk

p
∑

i=1

Γi,~k
Ci,k

]

x̃k

×

[

(1− dk)Kk

p
∑

i=1

Γi,~k
z̃i,k

]T }

, (15)

Π3,k =E

{

(1− dk)Kk

p
∑

i=1

Γi,~k
z̃i,k

×

[

(1− dk)Kk

p
∑

i=1

Γi,~k
υi,k

]T }

, (16)

Π4,k =E

{

dkKk

p
∑

i=1

Γi,~k
Ci,kx̃k

×

[

(1− dk)Kk

p
∑

i=1

Γi,~k
z̃i,k

]T }

, (17)

Π5,k =E

{

dkKk

p
∑

i=1

Γi,~k
Ci,kx̃k(Kkdklk)

T

}

, (18)

Π6,k =E

{

(1− dk)Kk

p
∑

i=1

Γi,~k
z̃i,k(Kkdklk)

T

}

, (19)

Π7,k =E

{

(1− dk)Kk

p
∑

i=1

Γi,~k
υT
i,k(Kkdklk)

T

}

, (20)

Π8,k =E

{[

Ak −Kk

p
∑

i=1

Γi,~k
Ci,k

]

x̃k(Kkdklk)
T

}

. (21)

Here, cross-termsΠt,k (t = 1, 2, . . . , 8) in (15)–(21) along
with the gain matrixKk+1 are to be determined later.

Proof: Paying attention to (2), (4), (5) and̃zi,k , z̄i,k −
zi,k, we have

ỹk =yk − ŷk

=

p
∑

i=1

Γi,~k
z̃i,k +

p
∑

i=1

Γi,~k
Ci,kx̃k +

p
∑

i=1

Γi,~k
υi,k, (22)

by which error dynamics (8) is reformulated as

x̃k+1 =Akx̃k −Kkσ(ỹk) + ωk

=

[

Ak −Kk

p
∑

i=1

Γi,~k
Ci,k

]

x̃k + dkKk

p
∑

i=1

Γi,~k
Ci,kx̃k

−Kkdklk − (1− dk)Kk

p
∑

i=1

Γi,~k
z̃i,k

− (1− dk)Kk

p
∑

i=1

Γi,~k
υi,k + ωk. (23)

Combining (23) and Assumption 1 yields

Px̃k+1

,E
{

x̃k+1x̃
T
k+1

}

=

[

Ak −Kk

p
∑

i=1

Γi,~k
Ci,k

]

Px̃k

[

Ak −Kk

p
∑

i=1

Γi,~k
Ci,k

]T

+ E







dkKk

p
∑

i=1

Γi,~k
Ci,kx̃k

[

dkKk

p
∑

i=1

Γi,~k
Ci,kx̃k

]T






+ E
{

Kkdklk(Kkdklk)
T
}

+ E

{

(1 − dk)Kk

p
∑

i=1

Γi,~k
υi,k

×

[

(1− dk)Kk

p
∑

i=1

Γi,~k
υi,k

]T }

+ E

{

(1− dk)Kk

×

p
∑

i=1

Γi,~k
z̃i,k

[

(1− dk)Kk

p
∑

i=1

Γi,~k
z̃i,k

]T }

+Π1,k +ΠT
1,k −Π2,k −ΠT

2,k +Π3,k +ΠT
3,k

−Π4,k −ΠT
4,k −Π5,k −ΠT

5,k +Π6,k +ΠT
6,k

+Π7,k +ΠT
7,k −Π8,k −ΠT

8,k +Qk,

which is (13) where the cross-termsΠt,k (t = 1, 2, . . . , 8) are
given by (15)–(21). The proof is now complete.

Remark 2:Given the outlier-induced saturation innovation
σ(ỹk), it is literally impossible to directly acquire the error
covariancePx̃k

from error dynamics (8), butPx̃k
acts as an

indispensable factor in determining our filter gain. In this
regard, the saturation innovationσ(ỹk) is transformed into a
linear combination of the innovatioñyk and the saturation level
ỹmax
k so as to facilitate the derivation of the error covariance

and filter gain. Thanks to such an innovation transformation,
error dynamics (8) can be equally converted into a special
structure that not only explicitly accommodates the RRP and
SRI effects, but also greatly benefits the derivation of the
expectedPx̃k+1

. Notice that, attributable to the emergence of
a suite of complex cross-terms (e.g.Πt,k, t = 1, 2, . . . , 8) in
(13), it is technically difficult to find an explicit expression
of the error covariancePx̃k+1

. As such, in terms of matrix
difference equations, we turn to explore the upper bound on
such newly appeared cross-terms, and this leads to the desired
upper bound as shown in the following theorem.
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For known constantπt (t = 1, 2, . . . , 8), we denote

a1 = 1 + π−1
3 + π−1

7 , (24)

a2 = 1 + π1 + π2 + π−1
8 , (25)

a3 = 1 + π−1
1 + π−1

4 + π−1
5 , (26)

a4 = 1 + π5 + π6 + π7 + π8, (27)

a5 = 1 + π−1
2 + π3 + π4 + π−1

6 . (28)

In line with (13)–(21), an explicit expression of the expected
upper boundPx̃k+1

on the error covariance (23) is given in
the following theorem.

Theorem 2:Let the constantsπt (t = 1, 2, . . . , 8) and initial
conditionsPx̃0

= Px̃0
> 0 be given. Then, the difference

equation

Px̃k+1
,a1Kk

p
∑

i=1

Γ2
i,~k

[tr{Ri,k}I]K
T
k

+ a2

[

Ak −Kk

p
∑

i=1

Γi,~k
Ci,k

]

× Px̃k

[

Ak −Kk

p
∑

i=1

Γi,~k
Ci,k

]T

+Qk

+ a3Kk

p
∑

i,k=1

Γi,~k
Ci,k[tr{Px̃k

}I]CT
j,kΓj,~k

KT
k

+ a4 (ỹ
max
k )

2
KkK

T
k + a5p

p
∑

i=1

Γ2
i,~k

r2iKkK
T
k

(29)

admits a solutionPx̃k
such thatPx̃k

≥ Px̃k
holds fork ≥ 0,

that is, the error covariancePx̃k
is upper bounded byPx̃k

.
Proof: By means of the trace property and the matrix

operation, we have

E
{

Kkdklk(Kkdklk)
T
}

≤KkE
{

dklk(dklk)
T
}

KT
k

≤ (ỹmax
k )

2
KkK

T
k , (30)

E











dkKk

p
∑

i=1

Γi,~k
Ci,kx̃k



dkKk

p
∑

j=1

Γj,~k
Cj,kx̃k





T










≤Kk

p
∑

i=1

p
∑

j=1

Γi,~k
Ci,k[tr{Px̃k

}I]CT
j,kΓj,~k

KT
k , (31)

E

{

E

{

(1− dk)
2Kk

p
∑

i=1

Γi,~k
υi,k

[

Kk

p
∑

i=1

Γi,~k
υi,k

]T }

≤

p
∑

i=1

Γ2
i,~k

Ri,kKkK
T
k , (32)

E

{

(1− dk)
2Kk

p
∑

i=1

Γi,~k
z̃i,k

[

Kk

p
∑

i=1

Γi,~k
z̃i,k

]T }

≤Kk

p
∑

i=1

Γi,~k
E
{

z̃i,kz̃
T
i,k

}

[

Kk

p
∑

i=1

Γi,~k

]T

≤p

p
∑

i=1

Γ2
i,~k

r2iKkK
T
k (33)

where the last inequality holds from Lemma 2.
For any constantsπt (t = 1, 2, . . . , 8), the cross-termsΠt,k

in (15)–(18) satisfy

Π1,k +ΠT
1,k ≤π1

[

Ak −Kk

p
∑

i=1

Γi,~k
Ci,k

]

Px̃k

×

[

Ak −Kk

p
∑

k=1

Γk,~k
Ci,k

]T

+ π−1
1 Kk

×

p
∑

i=1

p
∑

j=1

Γi,~k
Ci,k[tr{Px̃k

}I]CT
j,kΓj,~k

KT
k ,

(34)

Π2,k +ΠT
2,k ≤π2

[

Ak −Kk

p
∑

i=1

Γi,~k
Ci,k

]

Px̃k

×

[

Ak −Kk

p
∑

i=1

Γj,~k
Cj,k

]T

+ π−1
2 pr2i

p
∑

i=1

Γ2
i,~k

KkK
T
k , (35)

Π3,k +ΠT
3,k ≤π3p

p
∑

i=1

Γ2
i,~k

r2iKkK
T
k

+ π−1
3 Kk

p
∑

i=1

Γ2
i,~k

[tr{Ri,k}I]K
T
k , (36)

Π4,k +ΠT
4,k ≤π4p

p
∑

i=1

Γ2
i,~k

r2iKkK
T
k + π−1

4 Kk

p
∑

i=1

p
∑

j=1

× Γi,~k
Ci,k[tr{Px̃k

}I]CT
j,kΓj,~k

KT
k , (37)

Π5,k +ΠT
5,k ≤π5 (ỹ

max
k )2 KkK

T
k + π−1

5 Kk

p
∑

i=1

p
∑

j=1

× Γi,~k
Ci,k[tr{Px̃k

}I]CT
j,kΓj,~k

KT
k , (38)

Π6,k +ΠT
6,k ≤π6 (ỹ

max
k )

2
KkK

T
k

+ π−1
6 p

p
∑

i=1

Γ2
i,~k

r2iKkK
T
k , (39)

Π7,k +ΠT
7,k ≤π7 (ỹ

max
k )

2
KkK

T
k

+ π−1
7 Kk

p
∑

i=1

Γ2
i,~k

[tr{Ri,k}I]K
T
k , (40)

Π8,k +ΠT
8,k ≤π8 (ỹ

max
k )

2
KkK

T
k

+ π−1
8

[

Ak −Kk

p
∑

i=1

Γi,~k
Ci,k

]

× Px̃k



Ak −Kk

p
∑

j=1

Γj,~k
Cj,k





T

. (41)

Inserting (30)–(41) into (29), we have

Px̃k+1
≤a1Kk

p
∑

i=1

Γ2
i,~k

[tr{Ri,k}I]K
T
k
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+ a2

[

Ak −Kk

p
∑

i=1

Γi,~k
Ci,k

]

× Px̃k

[

Ak −Kk

p
∑

i=1

Γi,~k
Ci,k

]T

+Qk

+ a3Kk

p
∑

i,j=1

Γi,~k
Ci,k[tr{Px̃k

}I]CT
j,kΓj,~k

KT
k

+ a4 (ỹ
max
k )2 KkK

T
k + a5p

p
∑

i=1

Γ2
i,~k

r2iKkK
T
k

(42)

whereai (i = 1, 2, · · · , 5) are denoted in (24)-(28).
Inspired by (41) and (42), let us define matrix functions

ρk(Px̃k
) : Rn×n → R

n×n and̺k(Px̃k
) : Rn×n → R

n×n by

Px̃k+1

,ρk(Px̃k
)

,a1Kk

p
∑

i=1

Γ2
i,~k

[tr{Ri,k}I]K
T
k

+ a2

[

Ak −Kk

p
∑

i=1

Γi,~k
Ci,k

]

× Px̃k

[

Ak −Kk

p
∑

i=1

Γi,~k
Ci,k

]T

+Qk

+ a3Kk

p
∑

i,j=1

Γi,~k
Ci,k[tr{Px̃k

}I]CT
j,kΓj,~k

KT
k

+ a4 (ỹ
max
k )

2
KkK

T
k + a5p

p
∑

i=1

Γ2
i,~k

r2iKkK
T
k , (43)

Px̃k+1

,̺k(Px̃k
)

,

[

Ak −Kk

p
∑

i=1

Γi,~k
Ci,k

]

Px̃k

[

Ak −Kk

p
∑

i=1

Γi,~k
Ci,k

]T

+ E







dkKk

p
∑

i=1

Γi,~k
Ci,kx̃k

[

dkKk

p
∑

i=1

Γi,~k
Ci,kx̃k

]T






+ E
{

Kkdklk(Kkdklk)
T
}

+ E

{

(1− dk)Kk

p
∑

i=1

Γi,~k
υi,k

×

[

(1 − dk)Kk

p
∑

i=1

Γi,~k
υi,k

]T }

+ E

{

(1− dk)Kk

×

p
∑

i=1

Γi,~k
z̃i,k

[

(1− dk)Kk

p
∑

i=1

Γi,~k
z̃i,k

]T }

+Π1,k +ΠT
1,k −Π2,k −ΠT

2,k +Π3,k +ΠT
3,k

−Π4,k −ΠT
4,k −Π5,k −ΠT

5,k +Π6,k +ΠT
6,k

+Π7,k +ΠT
7,k −Π8,k −ΠT

8,k +Qk. (44)

Bearing (43)–(44) in mind, one verifies that̺k(Px̃k
) and

ρk(Px̃k
) satisfy conditions in Lemma 1. Consequently, given

Px̃0
= Px̃0

> 0, it is concluded that there exist solutionsPx̃k

andPx̃k
to Px̃k+1

= ρk(Px̃k
) andPx̃k+1

= ̺k(Px̃k
) such that

Px̃k
≤ Px̃k

is true for k ≥ 0, i.e. Px̃k
is upper bounded by

Px̃k
, which completes the proof.

It is found from Definition 1 and Lemma 2 that 1) the
sensor resolution is a specification index that evaluates the
error between the real and sampled sensor data, where a low
(high) sensor resolution means that there is a large (small)
error between the obtained sensor measurement and the real
system measurement; and 2) for each sensori, its sensor
resolution induced error is restricted by an upper boundri.
Since a large (small) measurement error often leads to a large
(small) filtering error covariance, we conclude that a large
(small)ri results in a bad (good) filtering performance. Such a
conclusion is later verified by Theorem 2 in our main results,
from which one confirms thatri is a paramount parameter
in the determination of the bound that confines the resultant
filtering error covariance, and a large (small)ri implies a high
(low) bound on the error covariance, giving rise to a bad (good)
performance of the designed filter.

Remark 3: It will be shown in Theorem 3 that the upper
boundPx̃k+1

presented in Theorem 2 can be rewritten as (49)
which further leads to the minimum upper boundPmin

x̃k+1
by

properly designing the filter gainKk as (45). This certainly
verifies thatPx̃k+1

is lower bounded byPmin
x̃k+1

. Note that in
terms of boundedness, we are more interested in exploring
the bondedness ofPmin

x̃k+1
due to the reason that it guarantees

the proper filter gain as well as the expected locally optimal
performance of the designed filter. Theorem 3 will illustrate
that the structure ofPmin

x̃k+1
is similar to that of the filtering error

covariance in Kalman-like filters (see references [25], [56]),
and thus it is not difficult to find both upper and lower bounds
on Pmin

x̃k+1
by taking advantage of the boundedness analysis

procedure presented in [25], [56], where certain boundedness
assumptions on saturation levelsỹmax

k and matricesQk, Ri,k,
AkA

T
k andCi,kC

T
i,k should be made.

Next, we endeavor to minimize the bound attained in (29)
so as to achieve the expected filter gain.

Theorem 3:Let the constantsat,k (t = 1, 2, . . . , 5) be giv-
en. Then, the bound given by (29) is minimized via designing
the gainKk as

Kk = ΞkΠ
−1
k , (45)

where

Ξk , a2AkPx̃k

p
∑

i=1

CT
i,kΓi,~k

, (46)

Πk , a1

p
∑

i=1

Γ2
i,~k

[tr{Ri,k}I]

+ a2

p
∑

i=1

p
∑

j=1

Γi,~k
Ci,kPx̃k

CT
j,kΓj,~k

+ a3

p
∑

i=1

p
∑

j=1

Γi,~k
Ci,k[tr{Px̃k

}I]CT
j,kΓj,~k

+ a4 (ỹ
max
k )

2
I + a5p

p
∑

i=1

Γ2
i,~k

r2i I. (47)
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Furthermore, the minimal boundPmin
x̃k+1

is

Pmin
x̃k+1

= a2AkPx̃k
AT

k +Qk − ΞkΠ
−1
k ΞT

k . (48)

Proof: The boundPx̃k+1
in (29) can be converted into

the following structure:

Px̃k+1
=a2AkPx̃k

AT
k +Qk +KkΠkK

T
k

−KkΞ
T
k − ΞkK

T
k

=a2AkPx̃k
AT

k +Qk − ΞkΠ
−1
k ΞT

k

+ (Kk − ΞkΠ
−1
k )Πk(Kk − ΞkΠ

−1
k )T (49)

whereΞk andΠk are defined by (46) and (47), respectively.
It follows from (49) that, ifKk takes the form of (45), i.e.

Kk = ΞkΠ
−1
k , thenPx̃k+1

achieves its minimal value as given
by (46), and the proof is complete.

Remark 4: In this paper, a variance-constrained filter design
problem is concerned with sensor resolution under the RRP. A
novel outlier-resistant mechanism is proposed to cope withthe
possible measurement outliers where an saturation structure is
introduced to constrain the outlier effect onto the measure-
ment innovation. Later on, the saturated innovationσ(ỹk) is
transformed into a linear combination of the innovationỹk
and the saturation level̃ymax

k so as to facilitate subsequent
filter parameterization. An upper bound on the SRI uncertainty
(i.e. the difference between measurements with and without
sensor resolution) is then successfully attained in Lemma 2.
Subsequently, the error covariance of the filter is acquiredand
minimized in Theorems 1–2 with the propitious gain parameter
found in Theorem 3. It is worth mentioning that the obtained
minimal bound reflects all information from the underlying
system undergoing sensor resolution, measurement outlierand
RRP scheduling.

Remark 5:So far, the variance-constrained filtering algo-
rithm has been well formulated for networked systems in the
presence of multiple observation uncertainties that encompass
outliers, stochastic noises and sensor resolution under the RRP.
A careful observation of the primary results outlined in Lemma
2 and Theorems 1–3 tells that all involved uncertainties togeth-
er with the RRP that contribute to our system complexity are
explicitly reflected in our filter design and analysis procedures.
In comparison with the existing literature, the main results of
this paper owns the following distinctive characteristics: 1)
the networked filtering problem discussed here is new in the
sense that the sensor resolution, measurement outliers andRRP
are taken into careful consideration; 2) a variance-constrained
yet outlier-resistant filtering scheme is devised to resolve the
mathematical complexities stemming from SRI uncertainties
and outlier-corrupted measurements; and 3) the performance
of our developed filtering algorithm is testified through two
practical examples as shown in the following section.

IV. I LLUSTRATIVE EXAMPLES

In this section, we leverage two examples about flight
control (modified from [21]) and robot localization (modified
from [20]) to elucidate the applicability of the presented filter
design strategy and performance analysis mechanism.

0 10 20 30 40 50 60 70 80 90 100

Time (k)

0

50

100

150

P
itc

h 
an
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e

Actual Value
With Innovation Saturation
Without Innovation Saturation

Fig. 1: True and estimated trajectories of pitch angle.

For thesth (s = 1, 2, . . . , n) entry of xk (defined byxs
k),

its root mean-squared error (RMSEs) is defined by

RMSEs ,

√

√

√

√

1

M

M
∑

j=1

(

x
s(j)
k − x̂

s(j)
k

)2

whereM = 500 is the number of Monte Carlo trials and
k = 100 is the time step in each trial. The mean squared error
of xk is defined by

MSE,
1

M

M
∑

j=1

(

(

x̃
(j)
k

)T

x̃
(j)
k

)

.

For all conducted simulations, the sampling sensor is sub-
ject to sensor resolution, the measurement transmission is
scheduled via the RRP, and the collected measurements are
corrupted by possible outliers taking the form of a disturbance
signal ok. In the sequel, examples on both flight control and
robot localization are leveraged to testify the robustnessof our
filter against outliers, where several performance comparisons
are made between the proposed outlier-resistant filter with
innovation saturation and the outlier-corrupted filter without
innovation saturation.

A. Example of Flight Control

Consider a longitudinal flight control model:

xk+1 =Akxk +Bkuk + ωk,

zk =Ckxk + υk

wherexk is the flight state consisting of the pitch anglex1,k,
pitch ratex2,k as well as normal velocityx3,k, anduk is the
given input of elevator control.

Ak =





0.9944 −0.1203 −0.4302
0.0017 0.9902 −0.0747

0 0.8187 0



 , ỹmax
k =





30
5
5



 ,

Bk =





0.4252
−0.0082
0.1813



 , ok =







10e, 20 < k < 40,
10e sin(w) 50 < k < 70,
10e cos(w), 80 < k < 100,

Qk =0.01I3, Rk = 0.01I3, Px0
= 0.01I3, x̄0 =

[

0 0 0
]T

,



FINAL VERSION 8

0 10 20 30 40 50 60 70 80 90 100

Time (k)

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0
P

itc
h 

ra
te

Actual Value
With Innovation Saturation
Without Innovation Saturation

Fig. 2: True and estimated trajectories of pitch rate.
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Fig. 3: True and estimated trajectories of normal velocity.
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Fig. 4: RMSE of pitch angle.
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Fig. 5: RMSE of pitch rate.
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Fig. 6: RMSE of normal velocity.
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.
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Fig. 8: Robot position: true and estimated trajectories.

Ck =I3, r1 = 20, r2 = 2, r3 = 1, π1 = 1.0, π2 = 0.5, uk = 10,

π3 =0.5, π4 = 0.3, π5 = 0.2, π6 = 0.7, π7 = 0.4, π8 = 0.3

wherew = 0.052π and e =
[

1 1 1
]T

. Convert the flight
control model into

xk+1 =Akxk + ω̃k,

zk =Ckxk + υk,

where ω̃k = Bkuk + ωk can be equivalently treated as a
Gaussian noise of meanBkuk along with covarianceQk.

Figs. 1–3 depict trajectories of the pitch anglex1,k, pitch
ratex2,k, normal velocityx3,k and their estimateŝx1,k, x̂2,k

andx̂3,k, and Figs. 4–6 plot associated RMSEs. One observers
explicitly from Figs. 1–3 that estimation curves produced by
the filter with innovation saturation almost coincide with the
true state curves, while estimation curves produced by the
filter without innovation saturation have large deviationsfrom
true state curves. It is apparently seen from Figs. 4–6 that
RMSE curves generated by the filter with innovation saturation
always reside lower than that generated by the filter without
innovation saturation.

Additionally, Fig. 7 sketches variation trends of trace curves
with respect toPx̃k

and Pmin
x̃k

where the values ofPx̃k
are

approximated by the corresponding MSE values due to the im-
possibility of analytically computing the error covariance. One
observes explicitly from Fig. 7 that values of log10 (tr{Px̃k

})
are always smaller than that of log10

(

tr{Pmin
x̃k

}
)

. The above
demonstration figures apparently elucidate the robustnessof
the filter with innovation saturation against outliers and the
correctness of the upper bound result claimed in Lemma 2
and Theorems 1–3.

B. Example of Robot Localization

Consider a robot localization scenario taken place in a 2D
~X − ~Y plane, and the kinetic model of the mobile robot is
characterized by system (1). The state of the robot consistsof
the positionx1,k along the~X axis, the positionx2,k along the
~Y axis and the anglex3,k between the~X axis and the forward
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Fig. 9: Robot angle: true and estimated trajectories.

0 10 20 30 40 50 60 70 80 90 100

Time (k)

-4

-2

0

2

4

6

8

10

12

lo
g

10
(.

)

Actual covariance
Minimum upper bound

Fig. 10: Comparison: log10
(

tr{Pmin
x̃k

}
)

and log10
(

tr{Pmin
x̃k

}
)

.

axis of the robot. The process noiseωk has a covarianceQk =
diag{0.05, 0.05, 0.05}, and the state transition matrix is

Ak =





1 0 −uksin(x̂3,k−1)
0 1 ukcos(x̂3,k−1)
0 0 1





whereuk = νkT , T = 150 ms is the sampling interval and
νk = 30 mm/s is the displacement velocity of the robot.

In this example, two sensors with resolutionr1 = 10 and
resolutionr2 = 1 are deployed to collect the robot informa-
tion. The collected measurements before sensor resolutionare
described by system (2) where the measurement noise has a
covarianceRk = I2. The measurement transition matrix is

Ck =

[

−
l1−x1,k−1

fk
−

l2−x2,k−1

fk
0

l2−x2,k−1

f2
k

−
l1−x1,k−1

f2
k

1

]

,

fk =
√

(l1 − x1,k)2 + (l2 − x2,k)2

where (l1, l2) is the position of the landmark point. In the
simulation, we setx1,0 = 2 m, x2,0 = 3 m, x3,0 = 2 rad/s,
Px̃0

= 0.01I3, l1 = 5 m and l2 = 5 m. The outlier signal
is set as0k = 30h for 0 < k < 30, ok = 30hsin(wT ) for
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30 < k < 60 andok = 30hcos(wT ) for 70 < k < 100 where
h =

[

1 1
]T

.
The simulation results are given in Figs. 8–10 where

Figs. 8–9 show the actual and estimated trajectories of both
robot position and angle, while Fig. 10 plots the trace curves
of the error covariancePx̃k+1

and its minimal boundPmin
x̃k+1

.
These simulation results apparently verify the correctness of
the results presented in Lemma 2 and Theorems 1–3, and
the applicability of such results in the scenario of robot
localization.

V. CONCLUSION

In this paper, we have addressed the variance-constrained
filtering problem for networked systems in the presence of the
sensor resolution and RRP. A novel outlier-resistant structure
has been devised in which a saturation function has been
deployed to restrict the outlier influence on measurement
innovations, thereby keeping the satisfactory performance of
our variance-constrained filter. By solving matrix difference
equations, upper bounds on the resultant error covariances
have been acquired, and associated filter gains have been
subsequently determined through minimizing such bounds.
Finally, simulation examples on flight control and mobile
robot have been exploited to validate the effectiveness of
the designed filter. Some future research directions are 1)
the variance-constrained filter design problem under other
communication protocols, e.g. the random access protocol and
the try-once-discard protocol; and 2) he variance-constrained
filter design problem under other measurement disturbances,
for example, sensor bias and sensor saturation.
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worked fusion estimation with multiple uncertainties and time-correlated
channel noise,Information Fusion, vol. 54, pp. 161–171, 2020.

[6] R. Caballero-́Aguila, A. Hermoso-Carazo, and J. Linares-Pérez, Net-
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