
Computers in Biology and Medicine
 

AGGN: Attention-based Glioma Grading Network with Multi-scale Feature Extraction
and Multi-modal Information Fusion

--Manuscript Draft--
 

Manuscript Number: CIBM-D-22-07089R1

Article Type: Full Length Article

Keywords: Artificial Intelligence;  Glioma grading;  Feature extraction;  information fusion;
Magnetic resonance imaging (MRI)

Corresponding Author: Nianyin Zeng
Xiamen University
Xiamen, CHINA

First Author: Peishu Wu

Order of Authors: Peishu Wu

Zidong Wang

Baixun Zheng

Han Li

Fuad E. Alsaadi

Nianyin Zeng

Abstract: In this paper, a magnetic resonance imaging (MRI) oriented novel attention-based
glioma grading network (AGGN) is proposed. By applying the dual-domain attention
mechanism, both channel and spatial information can be considered to assign weights,
which benefits highlighting the key modalities and locations in the feature maps. Multi-
branch convolution and pooling operations are applied in a multi-scale feature
extraction module to separately obtain shallow and deep features on each modality,
and a multi-modal information fusion module is adopted to sufficiently merge low-level
detailed and high-level semantic features, which promotes the synergistic interaction
among different modality information. The proposed AGGN is comprehensively
evaluated through extensive experiments, and the results have demonstrated the
effectiveness and superiority of the proposed AGGN in comparison to other advanced
models, which also presents high generalization ability and strong robustness. In
addition, even without the manually labeled tumor masks, AGGN can present
considerable performance as other state-of-the-art algorithms, which alleviates the
excessive reliance on supervised information in the end-to-end learning paradigm.
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Explanation of this revision
Paper number: CIBM-D-22-07089

First of all, the authors would like to express their sincere thanks to the Editor and the

anonymous reviewers for their helpful comments and suggestions. The explanation of the

modifications as well as corrections in this revision can be arranged as follows (comment

numbers are in 1:1 correspondence with the reviewers’ comments).

Reply to Co Editor in Chief:

Many thanks for your time and efforts in handling our paper. In this revision, all the

comments from the three reviewers have been carefully taken into account and thoroughly

implemented.

Reply to Reviewer No. 1

In this paper, a self-attention-based network (namely, the attention-based glioma grad-

ing network (AGGN)) is developed to handle the intelligent analysis of brain magnetic

resonance imaging (MRI). The AGGN is composed of three meticulously designed mod-

ules (e.g. a dual-domain attention module, a multi-scale feature extraction module and

a multi-modal information fusion module). The proposed AGGN is capable of reducing

the reliance on supervised information of manual labels. Performance of the proposed

AGGN is comprehensively evaluated on both internal and external testing sets, which

yields satisfactory robustness and generalization ability.

The problem addressed is quite interesting. The paper is clearly written and well orga-

nized. Some comments are given below that might help with the presentation:

(1) Comment: The motivation of studying the intelligent analysis for the brain MRI

should be introduced. Compared with the existing glioma grading methods, what

are the essential advantages of the developed AGGN?

Reply: Page 1, right column, line 10; Page 2, left column, line 4; Page 2, left

column, line 21

Thanks for your useful comment. In this revision, we have clarified the importance

and motivation of the brain MRI intelligent analysis, and further analyzed the ad-

vantages of the proposed AGGN over other general methods.

“Particularly, the MRI has advantages of strong specificity and sensitivity in tumor

localization and pathological analysis [6], which can generate multi-modal images to

reflect brain feature information at different levels by modulating imaging parame-

ters.”
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“In addition, most existing glioma grading algorithms have great reliance on the data

with manually labeled tumor masks, while it is a time-consuming and laborious task

to obtained those masks.”

“In addition, the ability of extracting features with strong presentation also guaran-

tees the model robustness and generalization performance to some extents.”

(2) Comment: By now, various fusion methods have been reported in the literature.

What are the main advantages of the multi-modal information fusion utilized in this

paper?

Reply: Page 5, left column, line -8

Thanks for your useful comment. Different from the general feature fusion methods,

the multi-modal information fusion module used in this paper promotes the fusion

of multi-scale features in different modalities. The main advantage of multi-modal

information fusion module is to further integrate the enhanced semantic and de-

tailed features. In this revision, we have further emphasized the advantages of the

developed multi-modal information fusion module.

“In the proposed AGGN, the multi-modal information fusion module is deployed

to further integrate enhanced detailed and semantic features, and the structure is

already illustrated in the green box of Fig. 2. In brief, fusion convolution realizes

the integration of complementary advantages among the features of four modalities,

where multi-scale feature maps in sizes of 24 × 24, 12 × 12 and 6 × 6 are fused.

MB reduction block is adopted to transform the feature maps to vectors with strong

presentation, which makes it feasible to further cascade the outputs of both multi-scale

feature extraction and multi-modal information fusion module.”

(3) Comment: In the multi-scale feature extraction module, the output of the dual-

domain attention module is split into four single-modal maps. The reasons and

advantages of such a setting should be proposed.

Reply: Page 4, right column, line 2

Thanks for your helpful comments. As you have suggested, this revision points

out the reasons and advantages of dividing multi-modal MR image into four single

modals for processing, which will be more conducive to understanding the structure

of AGGN and the role of multi-scale feature extraction module. In this revision, we

have already added the reasons and advantages of doing so.

“As previously mentioned, the four MRI modalities have contained rich pathological

information with different concerns. To realize sufficient feature extraction on each

modality, output of the dual-domain attention module is further split into four single-

modal maps to enter the multi-scale feature extraction module (see Fig. 2), which can
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promote in-depth analysis of the key features enhanced by attention mechanism and

can also benefit the subsequent multi-modal information fusion as well.”

(4) Comment: The computational complexity of the proposed method should be dis-

cussed.

Reply: Page 10, left column, line 2

Thanks for your useful comments. We have analyzed and discussed the computa-

tional cost of the proposed AGGN algorithm in detail in terms of time complexity

and space complexity.

In this revision, we have followed your advice by adding model parameters and float-

ing point operation of AGGN, which illustrates the efficient computational ability

of AGGN for the glioma grading task.

“D. Computational Complexity Analysis

In this study, the number of model parameters (Params) and floating point opera-

tions (FLOPs) are adopted to depict the spatial and time complexity of the proposed

AGGN, respectively. Excessive parameters will impede the light-weight deployment

of model on edge devices, and too large FLOPs will influence the convergence during

model training, which directly determines the accuracy of the model inference.

On the one hand, Params of the proposed AGGN is 16.37M, which is 9.13M fewer

than that of the classical ResNet-50 model. According to Table III, the accuracy of

AGGN is even 5.52% higher than that of ResNet-50, which demonstrates that the de-

veloped AGGN can effectively balance the computational costs and accuracy. It may

owe to the proposed AGGN has effectively reduced the parameters by replacing large-

size kernels with a series of small-sized ones. Meanwhile, the accuracy of AGGN

is mainly guaranteed by the structural advantages, including employing dual-domain

attention mechanism to highlight key features, realizing feature extraction on each

individual modality, and integrating multi-modal information in different levels.

On the other hand, the FLOPs of AGGN are 24,790M, which mainly due to the large

size of multi-channel input samples, where the data processing has consumed great

deals of the FLOPs. It is also worth mentioning that during the model training, none

of obvious over-fitting phenomenon has occurred, which implies that the training and

inference time consumed by the proposed AGGN is acceptable.

To sum up, the proposed AGGN can effectively achieve the balance between model

complexity and accuracy, which has achieved satisfactory results in the glioma grad-

ing task with considerable efficiency.”

(5) Comment: Different metrics are adopted for performance evaluation. The practical

significances of those metrics should be discussed.
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Reply: Page 6, right column, line 10

Thanks for your thoughtful suggestions. In order to comprehensively evaluate perfor-

mance of the proposed AGGN, six indicators accuracy, precision, recall, specificity,

F1 score and AUC are utilized in the experiment section, each of which focuses on

different aspects.

In this revision, by discussing the theoretical and practical significance of each metric,

the logic and readability of the experimental results are both enhanced.

“As can be seen, the accuracy describes the ratio of correct classifications of both

HGG and LGG; the precision aims at all samples predicted as HGG, and calculates

the proportion of correct prediction; the recall refers to the ratio of correctly identified

HGG samples, which measures whether a model can screen all positive samples;

similar to recall, the specificity reflects the ability of identifying negative samples of

a model; the F1 score takes the harmonic average between accuracy and recall, and

for all above five metrics, the larger their values are, the better the model performance

is.

In addition, the receiver operating characteristic (ROC) curve and area under this

curve (AUC) are also employed for the model evaluation. Specifically, the ROC

curve takes the value of 1 − specificity (also known as false positive rate) as the

horizontal axis and recall as the vertical one, AUC is the area enclosed by ROC

curve and the two coordinate axes.”

(6) Comment: Some future research topics should be discussed in the introduction

or conclusion parts. For example, is it possible to consider other MRI-based tasks

based on the AGGN framework?

Reply: Page 2, left column, line 21; Page 10, right column, line 15

Thanks for your helpful comments. Following your advice, we have expanded the

future research topics in corresponding place. Especially, the applications of the

proposed AGGN in MRI-based tasks and other fields are further analyzed.

In this paper, we have supplemented the future work, and have well addressed your

concerns by adding more analysis on application areas.

“In addition, the ability of extracting features with strong presentation also guaran-

tees the model robustness and generalization performance to some extents. Therefore,

it is also feasible and promising to apply the developed AGGN into other MRI-based

tasks, such as the diagnosis of Parkinson’s disease and Alzheimer’s disease [32],

[49].”

“In future work, we aim to 1) apply the developed AGGN framework to other MRI-

based tasks such as stroke and and cancer diagnosis; 2) investigate fine-grained

glioma grading methods to support quantitative analysis; 3) further optimize the
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structure of AGGN through fuzzy system and tensor decomposition techniques. [18],

[23], [26], [43]”

(7) Comment: There are some typos throughout the paper that should be corrected.

Reply: Page 2, right column, line 33; Page 3, left column, line 25; Page 5, right

column, line 20; Page 9, right column, line 16

Thanks for your thoughtful suggestions. In this revision, we have carefully checked

our manuscript and corrected some spelling, grammar and formatting errors for

further improving the quality of this manuscript.

“Transfer learning paradigm has been introduced in [39], with two well-known CNN-

based models AlexNet and GoogleNet, experimental results indicate that the pre-

trained model can enhance the performance.”

“Feature fusion is another important operation in many DL-based methods, which

promotes sufficient integration of information at different levels so as to enhance the

presentation ability of features and improve the model performance.”

“In addition, substantial comparison experiments and ablation studies have been car-

ried out to further validate the effectiveness and superiority of the proposed model.

At first, experimental environment is briefly introduced.”

“Further explorations of the essential mechanism show that the volume of glioma

from patients can be quite different, whereas the proposed MB conv block has adopted

ACBs with different sizes to extract image features in parallel, which can obtain

fine-grained texture and tissue information of multi-modal brain MRI.”

Reply to Reviewer No. 2

This work attempts to improve the performance of glioma grading tasks without the

help of mask labels. Besides, the developed framework is reasonable and the experimental

results fully demonstrate the effectiveness of the methods. Although attention mechanisms

have been a routine operation in deep learning, relatively few studies have been used to

simultaneously select the modality and location most useful for diagnosis. I think this

work is interesting. Overall, it is a well-written paper, and I have some questions and

suggestions for it.

(1) Comment: Why do you use multimodal MR images of the brain, because they can

provide more information?

Reply:

Thanks for your useful comments. Due to the four modalities in brain MRI can

sufficiently present structural and functional information of tumors, the multi-modal

MRI technique has become an important diagnostic tool of grading glioma in clinic.
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(2) Comment: I don’t quite understand the meaning of multimodality in this article,

so I hope the authors can explain it.

Reply: Page 1, right column, line 14

Thanks for your questions. In this revision, we have explained the T1, T2, T1ce and

FLAIR modalities of MRI in detail.

“To be specific, four modalities are included in MRI [3], where the T1-weighted

(T1) modality displays brain anatomy, and the T2-weighted (T2) one locates le-

sion area; fluid-attenuated inversion recovery (FLAIR) and T1-weighted contrast-

enhanced (T1ce) modalities are generally used for visualization of peritumor and

internal conditions so as to make further pathological analysis [8].”

(3) Comment: In methodology, what is the meaning of BP in Eq.(4)?

Reply:

Thanks for your questions. BP stands for the “BN-PRelu” block in Fig. 3, which

contains two sequential operations, batch normalization and parametric relu.

(4) Comment: The drawing of AGGN framework is beautiful, while the authors should

explain what the three numbers in each bracket in Fig. 2 mean.

Reply: Thanks for your useful comments. The numbers in brackets of Fig. 2

indicate the size of feature maps (i.e., height, width, number of channels).

(5) Comment: The description of data division is a little confusing.

Reply: Page 6, left column, line 1; Page 6, left column, line 15; Fig. 5

Thanks for your thoughtful suggestions. In this revision, the details of how dataset

is divided into training, testing and validation set, as well as the multimodal images

processing, are further described.

“The dataset is divided into training set, testing set and validation set, where the

training set and testing set are independent of each other, while the validation set is

obtained by further splitting the training set. To be specific, ratio of the training and

testing set is 2 : 1, where the images of training set come from 2018 BraTS. The

testing set includes the internal and external subsets, which contain images from

2018 and 2019 BraTS, respectively. It should be pointed out that the main difference

between internal and external testing subset is that samples of the latter belong to

different data-source as those of training samples, and neither of the two subsets

participates in the model training. Furthermore, one-fifth of the training samples are

picked out to form the validation set for model tuning and selection.

“In addition, preprocessing is performed on the initial data before training the model,

where tumor masks are used to screen tumor-free slices at first, and it is noticeable
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that the selected slices without tumor are not fed into the subsequent process. For

slices that contain tumor tissues, the foreground region is standardized and the pro-

portion of background is reduced so that they are center-cropped to 192× 192 in size;

afterwards, four modalities are treated as four channels of the image. Finally, the

dataset is divided according to the previously mentioned rules, and data augmentation

operations are only performed on the training samples, including random rotation,

translation and clipping. For a clear view, above preprocessing steps and dataset

division are shown in Fig. 5.”

Fig.5. Flowchart of preprocessing for brain MRI datasets.

(6) Comment: Since attentional selection of modality and location has been done, why

not conduct ablation studies on the dual-domain attention mechanism?

Reply: Page 9, left column, line 14; Table. V; Fig. 10

Thanks for your helpful suggestions. To further validate the performance of the

proposed dual-domain attention mechanism, we have adopted an additional ablation

study to evaluate our AGGN. Experimental results have shown the effectiveness

of proposed attention mechanism, which is a competent and efficient module with

strong ability of highlighting important features.

In this revision, we have supplemented the experiments and presented the results

and discussions in Section IV-C with Table. V and Fig. 10.

“To validate the effectiveness of core components in the proposed AGGN, substantial

ablation studies are performed on the internal testing set in this subsection. The

designed dual-domain attention mechanism is firstly verified and the results are re-

ported in Table V, where AGG1, AGG2 and AGG3 refer to the model with none

of attention modules, only spatial and only channel attention module, respectively.

Obviously, in comparison to AGG1, on most indicators the performance has been

improved to a certain extent after introducing the spatial or channel attention mech-

anism. It is also found that the applied dual-domain attention module in the proposed

AGGN has realized significant performance enhancement, which improves accuracy,

recall, F1 score and AUC by 2.92%, 3.61%, 4.23% and 1.6%, respectively.
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In addition, the ROC curves of four models listed in Table V are presented in Fig. 10,

where it can be seen that the proposed AGGN has obtained the best results. In

particular, when false positive rate is 0, the true positive rate of AGGN is close

to 0.85 and AUC is 0.992, which implies that the proposed AGGN can accurately

identify HGG with almost none of false detection. Therefore, the proposed AGGN is

a reliable model that can provide a solid guarantee for the diagnosis and treatment

of critical patients.

According to above results, effectiveness of the dual-domain attention mechanism

is sufficiently validated. Before extracting multi-scale features, channel-domain at-

tention is firstly introduced to low-level detail information, which determines what

deserves attention in each modality of brain MRI; afterwards, spatial-domain atten-

tion is used to learn spatial dependence among high-level semantic information, so

as to figure out the important locations in feature maps. As a result, the proposed

AGGN can both recognize and localize the significant pathological features in brain

MRI with strong robustness.

Table V

Ablation studies of dual-domain attention mechanism on internal testing set

Models
Metrics

accuracy precision recall specificity F1 score AUC

AGG1 0.9320 1.0000 0.9160 1.0000 0.9027 0.9760

AGG2 0.9481 0.9866 0.9467 0.9532 0.9270 0.9860

AGG3 0.9476 1.0000 0.9349 1.0000 0.9238 0.9900

AGGN 0.9612 0.9987 0.9521 0.9952 0.9450 0.9920

Fig. 10. ROC curves of AGG1, AGG2, AGG3, and AGGN. ”
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(7) Comment: Fig.6, Tables 2, 3, internal test means the results in validation set?

Reply:

Thanks for your useful questions. In Fig.6, Tables 2 and 3, the testing set includes

the internal and external subsets, which contain images from 2018 and 2019 BraTS,

respectively. It should be pointed out that the main difference between internal and

external testing subset is that samples of the latter belong to different data-source as

training samples, and neither of the two subsets participates in the model training.

In this revision, we have further explained the difference of internal and external

datasets.

(8) Comment: There should be a more detailed analysis and discussion of the obtained

results.

Reply: Page 6, right column, line -4; Page 7, left column, line 19; Page 8, left

column, line 4; Page 9, left column, line 6

Thanks for your thoughtful suggestions. In this revision, we have added detailed

discussion in Section IV; and moreover, the analysis of the results combined with

the principle of AGGN is provided as well.

“At the same time, AGGN presents similar performance on internal and external

testing sets, which demonstrates the robustness of AGGN in terms of handling var-

ious glioma MRI data; and moreover, this result indicates that AGGN can adapt to

data from multi-center medical institution with strong generalization ability.”

“In this group of experiment, the proposed AGGN presents noticeable competitiveness

in comparison to similar framework, which indicates the advantages in structural

configuration.”

“Through this group of experiment, it is demonstrated that the proposed AGGN has

overwhelming overall performance against other advanced CNN-based and domain-

specific models on most metrics, which may owe to the meticulously designed and in-

troduced dual-domain attention mechanism, multi-scale feature extraction and multi-

modal information fusion modules.”

“It is also worth mentioning that the AUC of 0.992 (without masks) is already an

excellent result. Hence, it can be concluded that performance of AGGN has little

reliance on the masks, which demonstrates that AGGN can overcome the high de-

pendence of manually labeled annotations so as to achieve the end-to-end applications

in practice.”

Reply to Reviewer No. 3

In this paper, the authors have proposed an efficient convolutional neural network-based

grading model for glioma magnetic resonance images, which is called attention-based
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glioma grading network (AGGN). Specifically, the proposed AGGN contains three major

modules of dual-domain attention mechanism, multi-scale feature extraction and multi-

modal information fusion. Finally, the validity and superiority of the proposed AGGN for

glioma grading tasks have been demonstrated through adequate experimental validation

and results analysis. In the field of medical image analysis, this work has certain theoret-

ical research significance. Here are some comments for the authors to further improve the

quality of the manuscript.

(1) Comment: In the introduction section, it is suggested to further analyze the dif-

ficulties in processing glioma images, as well as to elaborate on the limitations en-

countered by existing methods in performing the task of glioma grading.

Reply: Page 1, right column, line 6 and line -5

Thanks for your suggestions. As you have pointed out that there are so many

difficulties in processing glioma images, and it is necessary to provide more analysis

to the readers so that the limitations encountered by existing methods can be known.

In this revision, we have further elaborated the glioma grading task, analyzed the

multi-modal characteristics of brain MR images and the difficulties of pre-processing

and manual annotation. Moreover, the shortcomings of existing methods for glioma

grading tasks are pointed out as well.

“In clinical practice, the glioma grading task is mainly accomplished by imaging diag-

nosis [2], [13], [34], including computed tomography (CT) [19], magnetic resonance

imaging (MRI) [22] and positron emission tomography (PET) [54], etc. Particularly,

the MRI has advantages of strong specificity and sensitivity in tumor localization

and pathological analysis [6], which can generate multi-modal images to reflect brain

feature information at different levels by modulating imaging parameters. To be spe-

cific, four modalities are included in MRI [3], where the T1-weighted (T1) modality

displays brain anatomy, and the T2-weighted (T2) one locates lesion area; fluid-

attenuated inversion recovery (FLAIR) and T1-weighted contrast-enhanced (T1ce)

modalities are generally used for visualization of peritumor and internal conditions

so as to make further pathological analysis [8].”

“It is noticeable that in the context of applying DL-based models for medical image

analysis [24], [27], a common and challenging issue is the robust feature extraction,

which has great impact on the downstream tasks (e.g., segmentation and classifica-

tion). Regarding to the glioma grading task, above problem is reflected on identifying

different modalities with highly similar imaging features, and it is also tough to effec-

tively utilize both semantic and detailed information under different MRI modalities.

In addition, most existing glioma grading algorithms have great reliance on the data

with manually labeled tumor masks, while it is a time-consuming and laborious task

to obtained those masks.”
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(2) Comment:The scientific problem to be solved in this paper remains unclear, and

what are the challenging issues in this work?

Reply: Page 1, right column, line 25 and line 32

Thanks for your useful comment. This paper aims to develop a computer-aided

diagnosis system for grading glioma based on the multi-modal magnetic resonance

images, therefore, the scientific problem can be described as “how to extract robust

features with strong presentation by fully considering different modalities of the

input”. The most challenging issue is to identify different modalities with highly

similar imaging features, and it is also tough to realize the effective feature fusion.

In addition, it is noticeable that most existing glioma grading algorithms rely on the

data with manually labeled tumor masks. Therefore, we also aim to overcome above

deficiency by achieving comparable results without the masks due to it is always a

time-consuming and laborious task to obtain them.

In this revision, we have clearly pointed out the major challenges in this study.

“It is worth pointing out that inspecting the diverse information provided by multi-

modal MRI is a laborious task, which inevitably increases the workload on radiologists

or neurosurgeons.”

“Hence, it can be inferred that both the high heterogeneity of brain tumors and experi-

ences of doctors will influence the final diagnostic results. As a result, it is necessary

and beneficial to develop computer-aided diagnosis (CAD) systems to realize accurate

glioma grading with less manpower [46]-[48].”

(3) Comment: The authors should present more details about strengths of the devel-

oped AGGN, especially for the importance of the dual-domain attention mechanism.

Reply: Page 2, left column, line 9

Thanks for your useful comments. Following your suggestion, we have further intro-

duced the advantages of the developed AGGN. To be specific, three major modules,

in particular the attention mechanism, effectively capture potential correlations and

key information from scattered features in different imaging modalities and improve

the ability to distinguish intra-class variation and inter-class similarities of gliomas.

In this revision, we have already refined the motivation and necessity of AGGN and

the individual modules presented in the introduction section.

“In particular, by meticulously designing three modules to realize the function of

dual-domain attention, multi-scale feature extraction and multi-modal information

fusion, the proposed AGGN can efficiently capture potential correlations and key

information from scattered features in different imaging modalities, and enhance

the ability to distinguish intra-class variability and inter-class similarity existing at

different grades of glioma. Based on the final fused highly discriminative features,
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the proposed AGGN can present comparable grading performance even without the

manual labeled tumor masks. In addition, the ability of extracting features with strong

presentation also guarantees the model robustness and generalization performance to

some extents.”

(4) Comment: The overall framework of the proposed AGGN shown in Fig. 2 seems

similar to other existing models, therefore what is the major contribution of this

study to related research?

Reply: Page 2, left column, line -14; Page 3, right column, line 1

Thanks for your helpful suggestion. As a matter of fact, the framework of deep

learning-based models for a certain task can be universal, such as most object detec-

tion models consist of the backbone, neck part and detection head, which accounts

for why the framework of AGGN is similar to some other models. In this study, it

is worth pointing out that both the multi-scale feature extraction and multi-modal

information fusion modules are meticulously designed, and the details have been

already elaborated in Section III. In particular, characteristics of the brain MRI

have been well considered so as to boost robust feature extraction; and with the

extracted features with strong presentation, the proposed AGGN is proven powerful

for grading glioma even without the assistance of manual labels, which can provide

valuable experiences to alleviate the excessive reliance on supervised information in

the end-to-end learning paradigm.

In this revision, we have further highlighted the major contributions of this study in

corresponding places.

“Designed multi-scale feature extraction and multi-modal information fusion modules

benefit extracting discriminative features with strong presentation.”

“Afterwards, the pre-processed multi-modal MRI data will enter the dual-domain at-

tention mechanism module, where the weights are assigned in both channel and spa-

tial dimensions to highlight the key information and suppress the unimportant one in

feature maps. Next, the multi-modal MRI is split, and in the followed multi-scale fea-

ture extraction module, parallel processing is performed on each single-modality map,

including sequential operations of multi-branch convolution (MB conv), convolution-

pooling (C-P) and multi-branch pooling (MB pool), and the final output of each

pathway is in the size of 1 × 1 × 256. It is noticeable that during above procedure,

maps with three sizes on each modality are individually concatenated and fed into the

multi-modal information fusion module, which contains the fusion convolution and

MB reduction operations. At last, seven feature maps in the same size are cascaded

and fed into the linear layers, which is responsible to accomplish the glioma grading

task.”
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(5) Comment: More details need to be described about brain MRI datasets, including

training / testing / validation data setting.

Reply: Page 6, left column, line 1

Thanks for your helpful comments. In this revision, we have added more descriptions

of the utilized brain MR datasets, including the division of the training, testing and

validation sets.

“The dataset is divided into training set, testing set and validation set, where the

training set and testing set are independent of each other, while the validation set is

obtained by further splitting the training set. To be specific, ratio of the training and

testing set is 2 : 1, where the images of training set come from 2018 BraTS. The

testing set includes the internal and external subsets, which contain images from

2018 and 2019 BraTS, respectively.”

(6) Comment: Since the authors have highlighted that the applied modules are metic-

ulously designed, how can they prove the advantages of the proposed architecture?

Reply: Page 7, left column, line 4

Thanks for your useful comment. In order to prove the architectural advantages

of the proposed AGGN, another adaptive multi-modal fusion network (AMMFNet)

in [35] has been adopted for comparison. It is noticeable that the AMMFNet has

similar structure to the proposed AGGN, and according to the results illustrated

in Fig. 7, our method has yielded improvement to different extents on all applied

indicators, which indicates that those meticulously designed modules do facilitate a

better feature extraction.

In this revision, we have discussed the structural advantages of the proposed AGGN

in Section IV-B.

“In this part, to validate the architectural advantages of our method, adaptive multi-

modal fusion network (AMMFNet) [42] is adopted as baseline model for comparison,

which is a similar glioma grading framework to the proposed AGGN. In Fig. 7,

performance enhancement of AGGN on six indicators is illustrated, which shows

that in comparison to AMMFNet, the proposed AGGN has improved all indicators to

different extents. In particular, the most significant improvement is on specificity,

which increases 11.52%. As previously mentioned, high specificity is equivalent to

low false positive rate.”

(7) Comment: In the experimental part, AGGN should be supplemented with a per-

formance validation with algorithms for glioma grading, in addition to a comparison

with the classical models.

Reply: Page 8, left column, line 11
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Thanks for your useful comments. In this revision, we have supplemented an extra

experiment with other state-of-the-art glioma grading algorithms to further validate

the performance advantages of the proposed AGGN, where corresponding experi-

mental results and the discussions have been displayed in Section IV-D-4).

“4) Comparisons with state-of-the-art glioma grading algorithms

In this part, comparison between proposed AGGN and other state-of-the-art glioma

grading algorithms are presented, including multistream CNN [9], multi-scale CNN

[10], CAE-GAN (convolutional autoencoder and generative adversarial network) [1],

pre-trained GoogleNet [44], 3DConvNet [53] and AMMFNet [42]. It should be pointed

out that in previous experiments, data from the mentioned internal and external

testing sets have none of the tumor masks, while most of recently related methods

for the same task require the assistance of additional tumor masks. Consequently, to

make a fair comparison, in this group of experiments, tumor masks have been added

to original images for training, and the results are reported in Table IV. Notice that

the data of other algorithms are cited from corresponding original papers, and “–”

denotes none of relevant data is provided.

Table IV

Performance of AGGN and other advanced models on tumor mask assisted data

Models
Metrics

accuracy recall specificity AUC

Multistream CNN 0.9087 – – –

Multi-scale CNN 0.8947 – – –

CAE-GAN 0.9204 – – –

Pre-trained GoogleNet 0.9450 – – 0.9680

3DConvNet 0.9710 0.9470 0.9680 –

AMMFNet 0.9820 1.0000 0.9330 0.9970

AGGN (ours) 0.9899 1.0000 0.9678 0.9980

As can be found in Table IV, with assistance of tumor masks, the proposed AGGN

can present the state-of-the-art performance. In particular, the AUC value of AGGN

with and without tumor masks are 0.998 and 0.992, respectively, which implies that

the assistance of tumor masks does further improve the model performance. It is also

worth mentioning that the AUC of 0.992 (without masks) is already an excellent

result. Hence, it can be concluded that performance of AGGN has little reliance

on the masks, which demonstrates that AGGN can overcome the high dependence of

manually labeled annotations so as to achieve the end-to-end applications in practice.

”
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(8) Comment: How are the so-called internal and external datasets defined, and what

conclusions can be drawn from Fig. 6? More discussions should be provided.

Reply: Page 6, left column, line 1

Thanks for your useful suggestion. In this study, the collected data are from different

sources, which are further split into the training and testing set; and furthermore,

the testing set is further divided into two subsets. If the samples in a subset have

shared the same data-source with the training ones, the subset is called “internal”

dataset; otherwise, the subset is named the “external” dataset. According to Fig.

6, the proposed AGGN has presented satisfactory results on both datasets, which

reflects that our method is reliable in glioma grading task. More importantly, this

result has implied that the proposed AGGN can adapt to data from multi-center

medical institution with high generalization ability.

In this revision, we have further explained how internal and external datasets are

defined, and more discussions on Fig. 6 are provided in corresponding places.

“The dataset is divided into training set, testing set and validation set, where the

training set and testing set are independent of each other, while the validation set is

obtained by further splitting the training set. To be specific, ratio of the training and

testing set is 2 : 1, where the images of training set come from 2018 BraTS. The

testing set includes the internal and external subsets, which contain images from

2018 and 2019 BraTS, respectively. It should be pointed out that the main difference

between internal and external testing subset is that samples of the latter belong to

different data-source as those of training samples, and neither of the two subsets

participates in the model training. Furthermore, one-fifth of the training samples are

picked out to form the validation set for model tuning and selection.

(9) Comment: More limitations of the study can be illustrated in conclusion.

Reply: Page 10, right column, line 15

Thanks for your thoughtful comments. At the end of this manuscript, we have

summarized the existing limitations of the proposed AGGN, aiming at which a clear

outlook of potential improvements in future work has been presented.

In this revision, we have followed your advice and clarified the future work in terms

of limitations of this work, which mainly covers three perspectives of task migration

adaption, quantitative lesion analysis, and model lightweighting studies.

“Although the proposed AGGN has presented satisfactory performance on the glioma

grading task, it still has some spaces for further improvement, including task migra-

tion adaption, quantitative lesion analysis, and model lightweighting studies.”

(10) Comment: Future work must be clarified in the conclusion to present a clear out-

look.

15



Reply: Page 10, right column, line 19

Thanks for your helpful comment. Following your advice, in this revision, we have

further discussed potential future work at the end of our manuscript.

“In future work, we aim to 1) apply the developed AGGN framework to other MRI-

based tasks such as stroke and cancer diagnosis; 2) investigate fine-grained glioma

grading methods to support quantitative analysis; 3) further optimize the structure of

AGGN through fuzzy system and tensor decomposition techniques. [18], [23], [26],

[43]”
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 The proposed AGGN can alleviate the reliance on manually labeled tumor masks. 

 

 Dual-domain attention is useful for selecting the modality and location of MRI. 

 

 Multi-modal and multi-scale learning benefits analyzing brain MRI comprehensively. 

 

 Effective fusion methods enhance the presentation ability of robust features. 
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AGGN: Attention-based Glioma Grading Network
with Multi-scale Feature Extraction and

Multi-modal Information Fusion
Peishu Wu, Zidong Wang, Baixun Zheng, Han Li, Fuad E. Alsaadi and Nianyin Zeng∗

Abstract—In this paper, a magnetic resonance imaging (MRI)
oriented novel attention-based glioma grading network (AGGN)
is proposed. By applying the dual-domain attention mechanism,
both channel and spatial information can be considered to
assign weights, which benefits highlighting the key modalities
and locations in the feature maps. Multi-branch convolution
and pooling operations are applied in a multi-scale feature
extraction module to separately obtain shallow and deep features
on each modality, and a multi-modal information fusion module
is adopted to sufficiently merge low-level detailed and high-level
semantic features, which promotes the synergistic interaction
among different modality information. The proposed AGGN is
comprehensively evaluated through extensive experiments, and
the results have demonstrated the effectiveness and superiority
of the proposed AGGN in comparison to other advanced models,
which also presents high generalization ability and strong ro-
bustness. In addition, even without the manually labeled tumor
masks, AGGN can present considerable performance as other
state-of-the-art algorithms, which alleviates the excessive reliance
on supervised information in the end-to-end learning paradigm.

Index Terms—Artificial intelligence; glioma grading; feature
extraction; information fusion; magnetic resonance imaging
(MRI)

I. INTRODUCTION

As one of the most common primary tumors caused by the
cancerization of glial cells in the brain or spinal cord, glioma
accounts for nearly half of intracranial tumors and 36% of
the nervous system tumors [30]. According to the criteria of
the World Health Organization (WHO), glioma can be graded
as four levels from I to IV [28], where low-grade glioma
(LGG) includes grades I-II, and grades III-IV are the so-called
high-grade glioma (HGG). It is worth mentioning that LGG
may be cured by drug therapy and surgical excision, whereas
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radiotherapy and chemotherapy are required to cure HGG.
Moreover, patients with the glioma of grade IV even suffer
from low survival rate less than 10% [20]. Consequently, it is
of vital significance to realize accurate preoperative grading
of glioma.

In clinical practice, the glioma grading task is mainly
accomplished by imaging diagnosis [2], [13], [34], including
computed tomography (CT) [19], magnetic resonance imaging
(MRI) [22] and positron emission tomography (PET) [54],
etc. Particularly, the MRI has advantages of strong specificity
and sensitivity in tumor localization and pathological analysis
[6], which can generate multi-modal images to reflect brain
feature information at different levels by modulating imaging
parameters. To be specific, four modalities are included in
MRI [3], where the T1-weighted (T1) modality displays brain
anatomy, and the T2-weighted (T2) one locates lesion area;
fluid-attenuated inversion recovery (FLAIR) and T1-weighted
contrast-enhanced (T1ce) modalities are generally used for
visualization of peritumor and internal conditions so as to
make further pathological analysis [8]. Due to above four
modalities can sufficiently present structural and functional
information of tumors, the multi-modal MRI technique has
become an important diagnostic tool of grading glioma in
clinic.

It is worth pointing out that inspecting the diverse infor-
mation provided by multi-modal MRI is a laborious task,
which inevitably increases the workload on radiologists or
neurosurgeons. For a clear view, the MRI slices of LGG and
HGG are illustrated in Fig. 1(a) and Fig. 1(b), respectively.
Experienced doctors generally distinguish LGG from HGG
by observing the clarity of tumor contour and the presence
of edema in peritumor areas. Hence, it can be inferred that
both the high heterogeneity of brain tumors and experiences
of doctors will influence the final diagnostic results. As a
result, it is necessary and beneficial to develop computer-aided
diagnosis (CAD) systems to realize accurate glioma grading
with less manpower [46]–[48].

Owing to the continuous development of the deep learning
(DL) techniques [29], [55], plenty of CAD methods have been
proposed and applied to the intelligent analysis of brain MRI
[7], [16], [25], [33], and related studies regarding to glioma
grading tasks are reviewed in Section II. It is noticeable that in
the context of applying DL-based models for medical image
analysis [24], [50], a common and challenging issue is the
robust feature extraction, which has great impact on the down-
stream tasks (e.g., segmentation and classification). Regarding
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(a) LGG (b) HGG

Fig. 1. MRI visualization of gliomas with different grades.

to the glioma grading task, above problem is reflected on
identifying different modalities with highly similar imaging
features, and it is also tough to effectively utilize both semantic
and detailed information under different MRI modalities. In
addition, most existing glioma grading algorithms have great
reliance on the data with manually labeled tumor masks, while
it is a time-consuming and laborious task to obtained those
masks.

Based on above discussions, in this paper, a novel attention-
based glioma grading network (AGGN) is proposed to over-
come the mentioned challenges. In particular, by meticulously
designing three modules to realize the function of dual-
domain attention, multi-scale feature extraction and multi-
modal information fusion, the proposed AGGN can efficiently
capture potential correlations and key information from scat-
tered features in different imaging modalities, and enhance
the ability to distinguish intra-class variability and inter-class
similarity existing at different grades of glioma. Based on the
final fused highly discriminative features, the proposed AGGN
can present comparable grading performance even without
the manual labeled tumor masks. In addition, the ability of
extracting features with strong presentation also guarantees
the model robustness and generalization performance to some
extents. Therefore, it is also feasible and promising to apply
the developed AGGN into other MRI-based tasks, such as the
diagnosis of Parkinson’s disease and Alzheimer’s disease [32],
[49]. Major contributions of this paper are outlined as follows:

1) A novel brain MRI analysis method AGGN is proposed
for grading glioma, which can reduce the reliance on
supervised information of manual labels.

2) Designed multi-scale feature extraction and multi-modal
information fusion modules benefit extracting discrimi-
native features with strong presentation.

3) Evaluations on both internal and external brain MRI
datasets have demonstrated superiority of the proposed
AGGN, which yields satisfactory robustness and gener-
alization ability.

The remainder of this paper is organized as follows. Related
work on glioma grading is presented in Section II. The
proposed AGGN and the key components are elaborated in
Section III. Substantial experimental validations and com-
prehensive discussions are presented in Section IV. Finally,
conclusions with an outlook of future work are drawn in
Section V.

II. RELATED WORK

In this section, related glioma grading methods are re-
viewed. As glioma grading is essentially an image classifica-
tion task, representative feature extraction and fusion methods
are briefly introduced as well.

A. Glioma Grading Methods

In clinic, CAD methods play an important role in grading
glioma with brain MRI data, and as early as 2010, the authors
in [56] have used a support vector machine (SVM) to realize
the preliminary assessment of glioma grade and achieved
accuracy of 82%. In [15], a two-level clustering method has
been proposed for MRI preprocessing, after which an SVM is
adopted to accomplish the glioma grading task. A combination
of SVM and multi-layer perceptron has been adopted to glioma
grading in [40], where feature selection is performed on tumor
sub-regions of different modalities. In addition to SVM, other
classic machine learning models have also been applied in this
area, and one can refer to [17] for more information.

Owing to the rapid development of DL techniques, deep
neural networks (DNNs) based glioma grading models have
already become the mainstream, where convolutional neural
network (CNN) is one of the most popular architectures,
including 2D- and 3D-CNN according to dimension of the
convolution operations. In [31], a lightweight 2D-CNN model
has been developed with only basic components like convolu-
tion and pooling layers, and the proposed method has realized
fast inference with low computational complexity. In [45], the
authors have proposed a 3D-CNN, where the volume of inter-
ests is segmented to promote an efficient feature extraction. In
particular, performance between 2D Mask R-CNN and 3D U-
Net in glioma grading task has been compared in [53], and it
is found that 2D model achieves higher sensitivity but lower
specificity than the 3D one. Transfer learning paradigm has
been introduced in [44], with two well-known CNN-based
models AlexNet and GoogleNet, experimental results indicate
that the pre-trained model can enhance the performance. Sim-
ilarly, it is deemed in [52] that the pre-trained CNN model can
extract high-dimensional information of feature maps, which
benefits further grading of glioma with stronger presentation
than the low-dimensional texture or shape features.

In addition, a three-stage DNN model has been developed in
[36], which successively performs the rough contour segmen-
tation, the precise contour extraction and the classification.
In [1], the generative adversarial network has been utilized
to solve the problems of limited samples in brain MRI.
Meanwhile, an adaptive encoder has been employed to extract
multi-modal features in [1], which finally achieves precision
of 92% on the glioma grading task.

Although above methods have proven effective, following
two important issues still deserve further improvement. Firstly,
most grading models rely on tumor mask-based data, and
it is difficult to achieve end-to-end training without manual
annotation; secondly, it is of vital significance to efficiently
capture and integrate multi-modal pathological glioma features
from MRI data, which has not been well addressed in existing
methods.
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To overcome the mentioned problems, in the proposed
AGGN, three modules are meticulously designed to realize
dual-domain attention mechanism, multi-scale feature extrac-
tion and multi-modal information fusion, so that highly dis-
criminative features with strong presentation can be extracted.
Details of the proposed AGGN are presented in Section III.

B. Feature Extraction and Fusion Methods

In the context of DL-based medical image processing,
extracted robust features with strong presentation will have a
great impact on the model performance. Representative CNN-
based feature extractor include the visual geometry group
(VGG) [35], GoogleNet [37], Inception v1-v4 [38], [39],
residual network (ResNet) [12], re-parameterization VGG
(RepVGG) [5], etc. In particular, VGG has reduced the amount
of model parameters by stacking small convolution modules;
GoogleNet and Inception v1 have utilized multi-branch ar-
chitectures with multi-size convolutions to extract features;
Inception v2-v4 models have further proposed the concept
of BatchNorm, asymmetric decomposition convolution kernel
and residual inception to enhance the performance; ResNet has
solved the gradient explosion problem by skip connections in
deep structures; in RepVGG, the dominance of both detection
speed and accuracy have been achieved by decoupling the
training process and inference stage.

Feature fusion is another important operation in many
DL-based methods, which promotes sufficient integration of
information at different levels so as to enhance the presentation
ability of features and improve the model performance. One of
the most representative feature fusion structures is the feature
pyramid network (FPN) [21], which contains two pathways
for bottom-up forward propagation and top-down sampling
recovery, respectively, and the lateral connections in FPN have
facilitated information fusion. It is noticeable that many FPN
variants have been successfully proposed, such as path aggre-
gation network (PANet) [27], bidirectional FPN (BiFPN) [41]
and atrous spatial pyramid pooling-balanced FPN (ABFPN)
[51], etc. Particularly, the ABFPN is an enhanced multi-
scale feature fusion structure, which improves the model
performance via sufficiently utilizing context information and
generating balanced enhanced features with rich receptive
fields.

III. METHODOLOGY

In this section, the proposed AGGN is elaborated with
implementation details, including the designed dual-domain
attention mechanism, multi-scale feature extraction and multi-
modal information fusion modules. To begin with, the overall
framework of AGGN is illustrated in Fig. 2.

A. Overall Framework of AGGN

According to Fig. 2, in the proposed AGGN, firstly pre-
processing operations including standardization, center crop-
ping, modal splicing, data partitioning and augmentation are
performed on the input brain MRI images with four modalities

T1, T2, T1ce and FLAIR. Afterwards, the pre-processed multi-
modal MRI data will enter the dual-domain attention mecha-
nism module, where the weights are assigned in both channel
and spatial dimensions to highlight the key information and
suppress the unimportant one in feature maps. Next, the
multi-modal MRI is split, and in the followed multi-scale
feature extraction module, parallel processing is performed
on each single-modality map, including sequential operations
of multi-branch convolution (MB conv), convolution-pooling
(C-P) and multi-branch pooling (MB pool), and the final
output of each pathway is in the size of 1 × 1 × 256. It is
noticeable that during above procedure, maps with three sizes
on each modality are individually concatenated and fed into
the multi-modal information fusion module, which contains
the fusion convolution and MB reduction operations. At last,
seven feature maps in the same size are cascaded and fed
into the linear layers, which is responsible to accomplish the
glioma grading task.

In the following subsections, above mentioned three major
modules of AGGN are presented with details.

B. Dual-domain Attention Mechanism

Attention mechanism is essentially a procedure of weight-
ing features by pixel-wise operations in channel or spatial
dimension, where the position that can reflect the detailed or
semantic information of targets will be assigned large weights.
In the proposed AGGN, a novel dual-domain attention mecha-
nism is designed, and the structure is presented in Fig. 3. It is
worth mentioning that the pre-processed input data are directly
sent into the designed dual-domain attention module to model
the target location and individual modalities, where different
weights are assigned based on both channel and spatial im-
portance of the features, so as to realize focused attention on
the useful information and simultaneously suppress the useless
one.

As is shown in Fig. 3, the input map will successively
pass through the channel attention (CA) and spatial atten-
tion (SA) components. To be specific, in the former one,
the size of feature maps in four modalities is compressed
through operations of three parallel branches, where 1 × 1
convolution, asymmetric convolution block (ACB), average
pooling and BN-PRelu (batch normalization and parametric
Relu) operations are performed. It is noticeable that ACB
replaces square convolution with asymmetric one equivalently
[4], which can effectively avoid significant information loss
and reduce the number of parameters. By concatenating the
three branches, diverse information is shared and afterwards
weights are assigned via activation operation and element-wise
multiplication with the original input data.

In subsequent spatial attention component, average and
maximum pooling layers are placed at first to compress the
channel of feature maps, and the outputs are concatenated to
enter series of ACB blocks to learn the parameters in spatial
dimension. Similarly, after the sigmoid activation function, the
spatial-domain weight assignment for different pixel regions
is eventually achieved by element-wise multiplication. As a
result, the applied dual-domain attention mechanism can figure
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Fig. 2. Framework of the proposed attention-based glioma grading network (AGGN).

Fig. 3. Dual-domain attention mechanism module.

out both “where” and “what” the model should pay attention
to. Work principle of above module is described by following
equation.

outputam = SA
{
M

[
CA (F c

i )
]x,y
j

}
,

(i = 1, ..., n; j = 1, 2, 3, 4)
(1)

where F c
· and M

(x,y)
· refer to the feature map of channel c and

modality of brain MRI in position (x, y), respectively; n is the
number of feature maps, j denotes the modal and outputam
is the final output.

C. Multi-scale Feature Extraction

As previously mentioned, the four MRI modalities have con-
tained rich pathological information with different concerns.
To realize sufficient feature extraction on each modality, output
of the dual-domain attention module is further split into four
single-modal maps to enter the multi-scale feature extraction
module (see Fig. 2), which can promote in-depth analysis of
the key features enhanced by attention mechanism and can
also benefit the subsequent multi-modal information fusion as
well. On each branch, the involved MB conv, C-P and MB
pool are displayed in Figs. 4(a)-4(c), respectively.

The MB conv block is used to extract the shallow features
of each modal. As can be seen from Fig. 4(a), three parallel
branches with different operations are included so that the
extracted feature maps can contain rich information, and the
last concatenation further integrates different features. Through
MB conv block, the number of channels increases but the
size of feature maps declines; and moreover, the applied ACB
block can avoid large amount of information loss during the
down-sampling procedure. In following Eq. 2, how MB conv
block works is described.

outputmc = BP
(
AC1

3 (C1 (Fm))
)
⊕BP

(
AC2

3 (C1 (Fm))
)

⊕MP (C1 (Fm)) , where Fm = BP (C3 (Fi))
(2)

where outputmc is the block output, Fi and Fm refer to input
and intermediate feature maps, respectively; Ck (k = 1, 3)
represents k × k standard convolution, and ACm

3 indicates
the ACB operation with kernel size of three and m repetition
times; BP and MP stand for BN-PRelu and maximum
pooling operations, respectively.
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(a) MB conv (b) C-P (c) MB pool

Fig. 4. Architectures of blocks in multi-scale feature extraction module.

Following the MB conv block, a series of C-P blocks are
placed to continuously mine deep semantic features of each
modality, where the ACB and maximum pooling operations
with skip connection are adopted, which can be expressed as
follows:

outputcp = Fm ⊕MP
(
BP

(
AC1

3 (Fm)
))

,

where Fm = BP
(
AC1

3 (C1 (Fi))
) (3)

It is noticeable that each branch has been equipped with
three C-P blocks, and output of each C-P block will serve
as input of the multi-modal information fusion module (see
Fig. 2).

At the end of the multi-scale feature extraction module, MB
pool blocks are deployed to generate the final output in size
of 1× 1× 256 for all modalities. It should be pointed out that
the designing of MB pool is derived from improvement on
the multi-receptive field pooling block in [42]. To be specific,
multi-branch down-sampling is used in MB pool to convert the
small-size map into a feature vector, and original convolution
used in [42] is replaced by the asymmetric one with small
kernels, which can expand the depth and enhance the feature
extraction. In following Eq. (4), work principle of the MB pool
is depicted.

outputmp = AP 2(BP (C1(Fi)))⊕AP 1(BP (AC3(C1(Fi))))

⊕AP 1(C1(Fi))
(4)

where outputmp is the block output, and AP i (i = 1, 2)
denotes that the average pooling operation is repeated for i
times.

D. Multi-modal Information Fusion Module

In the proposed AGGN, the multi-modal information fusion
module is deployed to further integrate enhanced detailed and
semantic features, and the structure is already illustrated in the
green box of Fig. 2. In brief, fusion convolution realizes the
integration of complementary advantages among the features
of four modalities, where multi-scale feature maps in sizes of
24× 24, 12× 12 and 6× 6 are fused. MB reduction block is
adopted to transform the feature maps to vectors with strong

presentation, which makes it feasible to further cascade the
outputs of both multi-scale feature extraction and multi-modal
information fusion module. MB reduction block consists of
the sequential connection of the MB convolution (MC) and
MB pool (MP ) blocks, therefore, the block output outputmr

can be obtained by:

outputmr = MP (MC(Fi)) (5)

where Fi denotes the input feature maps.
In addition, it is worth pointing out that the structure

of fusion convolution block is similar to that of the C-P
block, while the major difference is that the 2D convolution
is replaced by the 3D one for fusion of feature maps with
different modalities. According to Fig. 2, a finally constructed
vector in size of 1× 1× 1792 is fed into the last linear layers
to obtain the glioma grading results, which is deemed to have
strong presentation ability.

IV. RESULTS AND DISCUSSIONS

In this section, the proposed AGGN is comprehensively
evaluated on both internal and external public brain MRI
dataset. In addition, substantial comparison experiments and
ablation studies have been carried out to further validate the
effectiveness and superiority of the proposed model. At first,
experimental environment is briefly introduced.

A. Dataset Preprocessing and Experimental Settings

The experimental data used in this paper come from the
2018 and 2019 brain tumor segmentation (BraTS) challenges
organized by medical image computing and computer assisted
intervention society (MICCAI) [11], which are collected by
3T MRI systems of 17 institutions. The dataset includes
multi-modal MRI from 326 glioma patients (250 for HGG,
76 for LGG), in which each case contains 155 slice data
of four modalities, and the original size of each image is
240×240. In addition, professional radiologists have annotated
and calibrated the edema, necrosis and core areas of glioma
to obtain tumor masks, and grading results are determined
through further pathological analysis.
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The dataset is divided into training set, testing set and
validation set, where the training set and testing set are
independent of each other, while the validation set is obtained
by further splitting the training set. To be specific, ratio of the
training and testing set is 2 : 1, where the images of training set
come from 2018 BraTS. The testing set includes the internal
and external subsets, which contain images from 2018 and
2019 BraTS, respectively. It should be pointed out that the
main difference between internal and external testing subset
is that samples of the latter belong to different data-source
as those of training samples, and neither of the two subsets
participates in the model training. Furthermore, one-fifth of
the training samples are picked out to form the validation set
for model tuning and selection.

In addition, preprocessing is performed on the initial data
before training the model, where tumor masks are used to
screen tumor-free slices at first, and it is noticeable that the
selected slices without tumor are not fed into the subsequent
process. For slices that contain tumor tissues, the foreground
region is standardized and the proportion of background is
reduced so that they are center-cropped to 192× 192 in size;
afterwards, four modalities are treated as four channels of
the image. Finally, the dataset is divided according to the
previously mentioned rules, and data augmentation operations
are only performed on the training samples, including random
rotation, translation and clipping. For a clear view, above
preprocessing steps and dataset division are shown in Fig. 5.

Fig. 5. Flowchart of preprocessing for brain MRI datasets.

All experiments in this study are carried out on the deep
learning framework Pytorch, and the operating system is
Windows 10 with NVIDIA GTX 2080Ti single GPU. Hyper-
parameter settings are provided in Table I, as for model
parameters, initialization of convolution and fully-connected
layers adopts the Kaiming method and normal distribution,
respectively.

B. Performance Evaluation

To comprehensively evaluate performance of the proposed
AGGN, four groups of experiments are carried out, which aim
at verifying the generalization ability, architectural advantages,
superiority against other representative CNN-based models
and competitiveness in comparison to state-of-the-art glioma
grading methods, respectively. Metrics accuracy, precision,
recall, specificity, F1 score are adopted for performance

TABLE I
HYPERPARAMETER SETTINGS

Variables Values

Training epochs 100
Batch size 32
Optimizer Adam

Initial learning rate 0.0001
First-order moment decay coefficient 0.9

Second-order moment decay coefficient 0.999

evaluation, which can be calculated by following Eqs. (6)-
(10):

accuracy =
TP + TN

TP + FP + FN + TN
(6)

precision =
TP

TP + FP
(7)

recall =
TP

TP + FN
(8)

specificity =
TN

FP + TN
(9)

F1 score = 2× recall × precision

recall + precision
(10)

where TP/TN and FP/FN refer to the number of correct
and wrong predictions of the HGG and LGG samples, respec-
tively. As can be seen, the accuracy describes the ratio of
correct classifications of both HGG and LGG; the precision
aims at all samples predicted as HGG, and calculates the
proportion of correct prediction; the recall refers to the ratio
of correctly identified HGG samples, which measures whether
a model can screen all positive samples; similar to recall, the
specificity reflects the ability of identifying negative samples
of a model; the F1 score takes the harmonic average between
accuracy and recall, and for all above five metrics, the larger
their values are, the better the model performance is.

In addition, the receiver operating characteristic (ROC)
curve and area under this curve (AUC) are also employed for
the model evaluation. Specifically, the ROC curve takes the
value of 1 − specificity (also known as false positive rate)
as the horizontal axis and recall as the vertical one, AUC is
the area enclosed by ROC curve and the two coordinate axes.

1) Generalization ability of AGGN: At first, results ob-
tained by the proposed AGGN on both internal and external
testing sets are shown in Fig. 6, notice that in the former,
training and testing samples share the same data-source; on
the contrary, different sources are contained in the latter. As
a result, this group of experiment can objectively reflect the
generalization ability of the proposed AGGN. As is shown, the
worst result is the F1 score on external dataset, which reaches
0.933; advantages of precision, specificity and AUC are
noticeable on both datasets, which validates that the propose
AGGN is highly reliable in glioma grading task. At the same
time, AGGN presents similar performance on internal and
external testing sets, which demonstrates the robustness of
AGGN in terms of handling various glioma MRI data; and
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moreover, this result indicates that AGGN can adapt to data
from multi-center medical institution with strong generaliza-
tion ability.

Fig. 6. Evaluation of AGGN on internal and external testing sets.

2) Architectural advantages of AGGN: In this part, to
validate the architectural advantages of our method, adaptive
multi-modal fusion network (AMMFNet) [42] is adopted as
baseline model for comparison, which is a similar glioma grad-
ing framework to the proposed AGGN. In Fig. 7, performance
enhancement of AGGN on six indicators is illustrated, which
shows that in comparison to AMMFNet, the proposed AGGN
has improved all indicators to different extents. In particular,
the most significant improvement is on specificity, which
increases 11.52%. As previously mentioned, high specificity
is equivalent to low false positive rate. Consequently, it is
verified that AGGN has strong ability to correctly identify
negative samples, which can effectively avoid the waste of
medical resources. In addition, precision is increased by
5.27%, which implies that AGGN is able to achieve accurate
diagnosis of HGG. In this group of experiment, the proposed
AGGN presents noticeable competitiveness in comparison to
similar framework, which indicates the advantages in structural
configuration.

TABLE II
PERFORMANCE COMPARISON OF PROPOSED AGGN AND FOUR CLASSIC

MODELS ON INTERNAL TESTING SET

Metrics
Models

[12] [14] [35] [39] AGGN

accuracy 0.9013 0.9038 0.8785 0.9330 0.9612
precision 0.7763 0.9632 0.8848 0.9687 0.9987
recall 0.9234 0.9119 0.9476 0.9181 0.9521

specificity 0.8320 0.8747 0.7235 0.9749 0.9952
F1 score 0.8687 0.8676 0.8506 0.9046 0.9450
AUC 0.9530 0.9570 0.9480 0.9780 0.9920

3) Comparisons with other CNN-based models: In order to
further validate the competitiveness of the proposed AGGN,
four other representative CNN-based models are adopted for

Fig. 7. Performance comparison between AGGN and AMMFNet.

TABLE III
PERFORMANCE COMPARISON OF PROPOSED AGGN AND FOUR CLASSIC

MODELS ON EXTERNAL TESTING SET

Metrics
Models

[12] [14] [35] [39] AGGN

accuracy 0.8967 0.9052 0.8780 0.9446 0.9519
precision 0.9304 0.9672 0.8688 0.9987 0.9987
recall 0.9323 0.9122 0.9658 0.9325 0.9401

specificity 0.7890 0.8775 0.6937 0.9948 0.9953
F1 score 0.8614 0.8639 0.8503 0.9193 0.9334
AUC 0.9410 0.9570 0.9580 0.9700 0.9840

comparison in this group of experiments, including ResNet-50
[12], DenseNet-101 [14], VGG-19 [35] and Inception-v4 [39].
For fairness, all models share the same training and testing
data, and the results on internal and external datasets are
reported in Table. II and Table. III, respectively. In addition,
an illustration is presented in Fig. 8.

As can be seen from Table II, all the indicators of AGGN
are better than those of other representative CNN models on
internal dataset, which are 2.82%, 3.0%, 0.45%, 2.03%, 4.04%
and 1.4% higher than the sub-optimal model on accuracy,
precision, recall, specificity, F1 score and AUC respec-
tively. While on the external testing set, the proposed AGGN
also achieves satisfactory results of 95.19%, 99.87%, 94.01%,
99.53%, 93.34% and 98.40% on above six metrics, respec-
tively. On five out of the six indicators, AGGN has obtained
the best results.

In addition, the ROC curves with magnification on the two
testing sets are presented in Fig. 9, which can effectively
evaluate the diagnostic ability of a model and can maintain
strong stability when the distribution of positive and negative
samples changes. Notice that the curve close to the upper left
corner has high prediction accuracy, and accordingly, the larger
AUC value, the better model performance is. As shown in
Fig. 9, the ROC curve of AGGN is above all other models
on both the internal and external testing sets, and the AUC
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Fig. 8. Performance comparison of AGGN with advanced CNN-based models on internal (left) and external (right) testing sets.

(a) On internal testing set (b) On external testing set

Fig. 9. ROC curves of the proposed AGGN and other CNN models.

values reach 0.992 and 0.984, respectively. Consequently, the
strong generalization ability of AGGN while facing different
data sources is further verified.

Through this group of experiment, it is demonstrated that
the proposed AGGN has overwhelming overall performance
against other advanced CNN-based and domain-specific mod-
els on most metrics, which may owe to the meticulously
designed and introduced dual-domain attention mechanism,
multi-scale feature extraction and multi-modal information
fusion modules.

4) Comparisons with state-of-the-art glioma grading algo-
rithms: In this part, comparison between proposed AGGN and
other state-of-the-art glioma grading algorithms are presented,

including multistream CNN [9], multi-scale CNN [10], CAE-
GAN (convolutional autoencoder and generative adversarial
network) [1], pre-trained GoogleNet [44], 3DConvNet [53]
and AMMFNet [42]. It should be pointed out that in previous
experiments, data from the mentioned internal and external
testing sets have none of the tumor masks, while most of
recently related methods for the same task require the assis-
tance of additional tumor masks. Consequently, to make a fair
comparison, in this group of experiments, tumor masks have
been added to original images for training, and the results are
reported in Table IV. Notice that the data of other algorithms
are cited from corresponding original papers, and “–” denotes
none of relevant data is provided.
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TABLE IV
PERFORMANCE OF AGGN AND OTHER ADVANCED MODELS ON TUMOR

MASK ASSISTED DATA

Models
Metrics

accuracy recall specificity AUC

Multistream CNN 0.9087 – – –
Multi-scale CNN 0.8947 – – –

CAE-GAN 0.9204 – – –
Pre-trained GoogleNet 0.9450 – – 0.9680

3DConvNet 0.9710 0.9470 0.9680 –
AMMFNet 0.9820 1.0000 0.9330 0.9970

AGGN (ours) 0.9899 1.0000 0.9678 0.9980

As can be found in Table IV, with assistance of tumor
masks, the proposed AGGN can present the state-of-the-art
performance. In particular, the AUC value of AGGN with
and without tumor masks are 0.998 and 0.992, respectively,
which implies that the assistance of tumor masks does further
improve the model performance. It is also worth mentioning
that the AUC of 0.992 (without masks) is already an excellent
result. Hence, it can be concluded that performance of AGGN
has little reliance on the masks, which demonstrates that
AGGN can overcome the high dependence of manually labeled
annotations so as to achieve the end-to-end applications in
practice.

C. Ablation Study

To validate the effectiveness of core components in the
proposed AGGN, substantial ablation studies are performed
on the internal testing set in this subsection. The designed
dual-domain attention mechanism is firstly verified and the
results are reported in Table V, where AGG1, AGG2 and
AGG3 refer to the model with none of attention modules,
only spatial and only channel attention module, respectively.
Obviously, in comparison to AGG1, on most indicators the
performance has been improved to a certain extent after
introducing the spatial or channel attention mechanism. It
is also found that the applied dual-domain attention module
in the proposed AGGN has realized significant performance
enhancement, which improves accuracy, recall, F1 score
and AUC by 2.92%, 3.61%, 4.23% and 1.6%, respectively.

In addition, the ROC curves of four models listed in Table V
are presented in Fig. 10, where it can be seen that the proposed
AGGN has obtained the best results. In particular, when false
positive rate is 0, the true positive rate of AGGN is close
to 0.85 and AUC is 0.992, which implies that the proposed
AGGN can accurately identify HGG with almost none of
false detection. Therefore, the proposed AGGN is a reliable
model that can provide a solid guarantee for the diagnosis and
treatment of critical patients.

According to above results, effectiveness of the dual-domain
attention mechanism is sufficiently validated. Before extracting
multi-scale features, channel-domain attention is firstly intro-
duced to low-level detail information, which determines what
deserves attention in each modality of brain MRI; afterwards,
spatial-domain attention is used to learn spatial dependence
among high-level semantic information, so as to figure out

Fig. 10. ROC curves of AGG1, AGG2, AGG3, and AGGN.

the important locations in feature maps. As a result, the pro-
posed AGGN can both recognize and localize the significant
pathological features in brain MRI with strong robustness.

In the following, ablation study results on multi-branch
convolution block and the multi-modal information fusion
module are reported in Table VI. It should be pointed out that
except for the investigated components, other configurations
of AGGN remain unchanged so as to make objective and
convincing comparisons.

Firstly, as the most important component of the multi-scale
feature extraction module, MB conv block is compared with
multi-receptive field (MRF) conv block of AMMFNet. As can
be seen from Table VI, the MB conv block has overwhelmed
the MRF conv block on all metrics, which demonstrates that
the multi-branch structure has superiority in dealing with
glioma grading task based on brain MRI. Further explorations
of the essential mechanism show that the volume of glioma
from patients can be quite different, whereas the proposed
MB conv block has adopted ACBs with different sizes to
extract image features in parallel, which can obtain fine-
grained texture and tissue information of multi-modal brain
MRI. Therefore, it can be inferred that the multi-scale feature
extraction module has made great contribution to the overall
model performance.

Secondly, the designed multi-modal information fusion
module is compared with the approach in [42]. As reported
in Table VI, on four out of six indicators, proposed AGGN
has achieved slight performance improvement. Specifically,
AGGN improves accuracy, recall, F1 score and AUC by
3.4%, 0.6%, 0.3% and 0.7%, respectively. It is worth men-
tioning that in the proposed AGGN, final input vector to the
classifier is a concatenation of outputs from seven branches,
and this number is fewer than that in [42]. Consequently, it can
be concluded that AGGN has achieved comparable results to
the model in [42] with a simplified structure. Additionally,
the concatenation manner in AGGN has avoided stacking
redundant features, which not only benefits highly-efficient
feature fusion, but also simultaneously avoids excessively
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TABLE V
ABLATION STUDIES OF DUAL-DOMAIN ATTENTION MECHANISM ON INTERNAL TESTING SET

Models
Metrics

accuracy precision recall specificity F1 score AUC

AGG1 0.9320 1.0000 0.9160 1.0000 0.9027 0.9760
AGG2 0.9481 0.9866 0.9467 0.9532 0.9270 0.9860
AGG3 0.9476 1.0000 0.9349 1.0000 0.9238 0.9900
AGGN 0.9612 0.9987 0.9521 0.9952 0.9450 0.9920

TABLE VI
ABLATION STUDIES OF MB CONV BLOCK AND INFORMATION FUSION METHODS

Models
Metrics

accuracy precision recall specificity F1 score AUC

MRF conv block of AMMFNet 0.9577 0.9960 0.9502 0.9856 0.9400 0.9840
MB conv block of AGGN 0.9612 0.9987 0.9521 0.9952 0.9450 0.9920

Fusion method in [42] 0.9578 1.0000 0.9461 1.0000 0.9420 0.9850
Fusion method of AGGN 0.9612 0.9987 0.9521 0.9952 0.9450 0.9920

complicating the model.

D. Computational Complexity Analysis

In this study, the number of model parameters (Params)
and floating point operations (FLOPs) are adopted to depict
the spatial and time complexity of the proposed AGGN, re-
spectively. Excessive parameters will impede the light-weight
deployment of model on edge devices, and too large FLOPs
will influence the convergence during model training, which
directly determines the accuracy of the model inference.

On the one hand, Params of the proposed AGGN is
16.37M, which is 9.13M fewer than that of the classical
ResNet-50 model. According to Table III, the accuracy of
AGGN is even 5.52% higher than that of ResNet-50, which
demonstrates that the developed AGGN can effectively balance
the computational costs and accuracy. It may owe to the
proposed AGGN has effectively reduced the parameters by
replacing large-size kernels with a series of small-sized ones.
Meanwhile, the accuracy of AGGN is mainly guaranteed by
the structural advantages, including employing dual-domain
attention mechanism to highlight key features, realizing feature
extraction on each individual modality, and integrating multi-
modal information in different levels.

On the other hand, the FLOPs of AGGN are 24,790M,
which mainly due to the large size of multi-channel input
samples, where the data processing has consumed great deals
of the FLOPs. It is also worth mentioning that during the
model training, none of obvious over-fitting phenomenon has
occurred, which implies that the training and inference time
consumed by the proposed AGGN is acceptable.

To sum up, the proposed AGGN can effectively achieve the
balance between model complexity and accuracy, which has
achieved satisfactory results in the glioma grading task with
considerable efficiency.

V. CONCLUSION

In this paper, a novel self-attention based network AGGN
has been developed, which mainly consists of three meticu-

lously designed modules, including a dual-domain attention
module, a multi-scale feature extraction and a multi-modal
information fusion one. Robust features with strong presen-
tation ability are constructed by integrating outputs of the
latter two modules, which are used to eventually realize the
glioma grading task. Performance of the proposed AGGN has
been comprehensively evaluated on both internal and external
testing sets, and the results have demonstrated the superiority
of AGGN against other state-of-the-art algorithms. Further-
more, substantial ablation studies have verified effectiveness
of the designed three modules in AGGN, which can take full
advantages of detailed and semantic information so that model
performance can be greatly improved, and simultaneously
computational burdens are released to some extent.

Although the proposed AGGN has presented satisfactory
performance on the glioma grading task, it still has some
spaces for further improvement, including task migration adap-
tion, quantitative lesion analysis, and model lightweighting
studies. In future work, we aim to 1) apply the developed
AGGN framework to other MRI-based tasks such as stroke and
cancer diagnosis; 2) investigate fine-grained glioma grading
methods to support quantitative analysis; 3) further optimize
the structure of AGGN through fuzzy system and tensor
decomposition techniques. [18], [23], [26], [43]
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AGGN: Attention-based Glioma Grading Network
with Multi-scale Feature Extraction and

Multi-modal Information Fusion
Peishu Wu, Zidong Wang, Baixun Zheng, Han Li, Fuad E. Alsaadi and Nianyin Zeng∗

Abstract—In this paper, a magnetic resonance imaging (MRI)
oriented novel attention-based glioma grading network (AGGN)
is proposed. By applying the dual-domain attention mechanism,
both channel and spatial information can be considered to
assign weights, which benefits highlighting the key modalities
and locations in the feature maps. Multi-branch convolution
and pooling operations are applied in a multi-scale feature
extraction module to separately obtain shallow and deep features
on each modality, and a multi-modal information fusion module
is adopted to sufficiently merge low-level detailed and high-level
semantic features, which promotes the synergistic interaction
among different modality information. The proposed AGGN is
comprehensively evaluated through extensive experiments, and
the results have demonstrated the effectiveness and superiority
of the proposed AGGN in comparison to other advanced models,
which also presents high generalization ability and strong ro-
bustness. In addition, even without the manually labeled tumor
masks, AGGN can present considerable performance as other
state-of-the-art algorithms, which alleviates the excessive reliance
on supervised information in the end-to-end learning paradigm.

Index Terms—Artificial intelligence; glioma grading; feature
extraction; information fusion; magnetic resonance imaging
(MRI)

I. INTRODUCTION

As one of the most common primary tumors caused by the
cancerization of glial cells in the brain or spinal cord, glioma
accounts for nearly half of intracranial tumors and 36% of
the nervous system tumors [30]. According to the criteria of
the World Health Organization (WHO), glioma can be graded
as four levels from I to IV [28], where low-grade glioma
(LGG) includes grades I-II, and grades III-IV are the so-called
high-grade glioma (HGG). It is worth mentioning that LGG
may be cured by drug therapy and surgical excision, whereas
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radiotherapy and chemotherapy are required to cure HGG.
Moreover, patients with the glioma of grade IV even suffer
from low survival rate less than 10% [20]. Consequently, it is
of vital significance to realize accurate preoperative grading
of glioma.

In clinical practice, the glioma grading task is mainly
accomplished by imaging diagnosis [2], [13], [34], including
computed tomography (CT) [19], magnetic resonance imaging
(MRI) [22] and positron emission tomography (PET) [54],
etc. Particularly, the MRI has advantages of strong specificity
and sensitivity in tumor localization and pathological analysis
[6], which can generate multi-modal images to reflect brain
feature information at different levels by modulating imaging
parameters. To be specific, four modalities are included in
MRI [3], where the T1-weighted (T1) modality displays brain
anatomy, and the T2-weighted (T2) one locates lesion area;
fluid-attenuated inversion recovery (FLAIR) and T1-weighted
contrast-enhanced (T1ce) modalities are generally used for
visualization of peritumor and internal conditions so as to
make further pathological analysis [8]. Due to above four
modalities can sufficiently present structural and functional
information of tumors, the multi-modal MRI technique has
become an important diagnostic tool of grading glioma in
clinic.

It is worth pointing out that inspecting the diverse infor-
mation provided by multi-modal MRI is a laborious task,
which inevitably increases the workload on radiologists or
neurosurgeons. For a clear view, the MRI slices of LGG and
HGG are illustrated in Fig. 1(a) and Fig. 1(b), respectively.
Experienced doctors generally distinguish LGG from HGG
by observing the clarity of tumor contour and the presence
of edema in peritumor areas. Hence, it can be inferred that
both the high heterogeneity of brain tumors and experiences
of doctors will influence the final diagnostic results. As a
result, it is necessary and beneficial to develop computer-aided
diagnosis (CAD) systems to realize accurate glioma grading
with less manpower [46]–[48].

Owing to the continuous development of the deep learning
(DL) techniques [29], [55], plenty of CAD methods have been
proposed and applied to the intelligent analysis of brain MRI
[7], [16], [25], [33], and related studies regarding to glioma
grading tasks are reviewed in Section II. It is noticeable that in
the context of applying DL-based models for medical image
analysis [24], [50], a common and challenging issue is the
robust feature extraction, which has great impact on the down-
stream tasks (e.g., segmentation and classification). Regarding
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(a) LGG (b) HGG

Fig. 1. MRI visualization of gliomas with different grades.

to the glioma grading task, above problem is reflected on
identifying different modalities with highly similar imaging
features, and it is also tough to effectively utilize both semantic
and detailed information under different MRI modalities. In
addition, most existing glioma grading algorithms have great
reliance on the data with manually labeled tumor masks, while
it is a time-consuming and laborious task to obtained those
masks.

Based on above discussions, in this paper, a novel attention-
based glioma grading network (AGGN) is proposed to over-
come the mentioned challenges. In particular, by meticulously
designing three modules to realize the function of dual-
domain attention, multi-scale feature extraction and multi-
modal information fusion, the proposed AGGN can efficiently
capture potential correlations and key information from scat-
tered features in different imaging modalities, and enhance
the ability to distinguish intra-class variability and inter-class
similarity existing at different grades of glioma. Based on the
final fused highly discriminative features, the proposed AGGN
can present comparable grading performance even without
the manual labeled tumor masks. In addition, the ability of
extracting features with strong presentation also guarantees
the model robustness and generalization performance to some
extents. Therefore, it is also feasible and promising to apply
the developed AGGN into other MRI-based tasks, such as the
diagnosis of Parkinson’s disease and Alzheimer’s disease [32],
[49]. Major contributions of this paper are outlined as follows:

1) A novel brain MRI analysis method AGGN is proposed
for grading glioma, which can reduce the reliance on
supervised information of manual labels.

2) Designed multi-scale feature extraction and multi-modal
information fusion modules benefit extracting discrimi-
native features with strong presentation.

3) Evaluations on both internal and external brain MRI
datasets have demonstrated superiority of the proposed
AGGN, which yields satisfactory robustness and gener-
alization ability.

The remainder of this paper is organized as follows. Related
work on glioma grading is presented in Section II. The
proposed AGGN and the key components are elaborated in
Section III. Substantial experimental validations and com-
prehensive discussions are presented in Section IV. Finally,
conclusions with an outlook of future work are drawn in
Section V.

II. RELATED WORK

In this section, related glioma grading methods are re-
viewed. As glioma grading is essentially an image classifica-
tion task, representative feature extraction and fusion methods
are briefly introduced as well.

A. Glioma Grading Methods

In clinic, CAD methods play an important role in grading
glioma with brain MRI data, and as early as 2010, the authors
in [56] have used a support vector machine (SVM) to realize
the preliminary assessment of glioma grade and achieved
accuracy of 82%. In [15], a two-level clustering method has
been proposed for MRI preprocessing, after which an SVM is
adopted to accomplish the glioma grading task. A combination
of SVM and multi-layer perceptron has been adopted to glioma
grading in [40], where feature selection is performed on tumor
sub-regions of different modalities. In addition to SVM, other
classic machine learning models have also been applied in this
area, and one can refer to [17] for more information.

Owing to the rapid development of DL techniques, deep
neural networks (DNNs) based glioma grading models have
already become the mainstream, where convolutional neural
network (CNN) is one of the most popular architectures,
including 2D- and 3D-CNN according to dimension of the
convolution operations. In [31], a lightweight 2D-CNN model
has been developed with only basic components like convolu-
tion and pooling layers, and the proposed method has realized
fast inference with low computational complexity. In [45], the
authors have proposed a 3D-CNN, where the volume of inter-
ests is segmented to promote an efficient feature extraction. In
particular, performance between 2D Mask R-CNN and 3D U-
Net in glioma grading task has been compared in [53], and it
is found that 2D model achieves higher sensitivity but lower
specificity than the 3D one. Transfer learning paradigm has
been introduced in [44], with two well-known CNN-based
models AlexNet and GoogleNet, experimental results indicate
that the pre-trained model can enhance the performance. Sim-
ilarly, it is deemed in [52] that the pre-trained CNN model can
extract high-dimensional information of feature maps, which
benefits further grading of glioma with stronger presentation
than the low-dimensional texture or shape features.

In addition, a three-stage DNN model has been developed in
[36], which successively performs the rough contour segmen-
tation, the precise contour extraction and the classification.
In [1], the generative adversarial network has been utilized
to solve the problems of limited samples in brain MRI.
Meanwhile, an adaptive encoder has been employed to extract
multi-modal features in [1], which finally achieves precision
of 92% on the glioma grading task.

Although above methods have proven effective, following
two important issues still deserve further improvement. Firstly,
most grading models rely on tumor mask-based data, and
it is difficult to achieve end-to-end training without manual
annotation; secondly, it is of vital significance to efficiently
capture and integrate multi-modal pathological glioma features
from MRI data, which has not been well addressed in existing
methods.
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To overcome the mentioned problems, in the proposed
AGGN, three modules are meticulously designed to realize
dual-domain attention mechanism, multi-scale feature extrac-
tion and multi-modal information fusion, so that highly dis-
criminative features with strong presentation can be extracted.
Details of the proposed AGGN are presented in Section III.

B. Feature Extraction and Fusion Methods

In the context of DL-based medical image processing,
extracted robust features with strong presentation will have a
great impact on the model performance. Representative CNN-
based feature extractor include the visual geometry group
(VGG) [35], GoogleNet [37], Inception v1-v4 [38], [39],
residual network (ResNet) [12], re-parameterization VGG
(RepVGG) [5], etc. In particular, VGG has reduced the amount
of model parameters by stacking small convolution modules;
GoogleNet and Inception v1 have utilized multi-branch ar-
chitectures with multi-size convolutions to extract features;
Inception v2-v4 models have further proposed the concept
of BatchNorm, asymmetric decomposition convolution kernel
and residual inception to enhance the performance; ResNet has
solved the gradient explosion problem by skip connections in
deep structures; in RepVGG, the dominance of both detection
speed and accuracy have been achieved by decoupling the
training process and inference stage.

Feature fusion is another important operation in many
DL-based methods, which promotes sufficient integration of
information at different levels so as to enhance the presentation
ability of features and improve the model performance. One of
the most representative feature fusion structures is the feature
pyramid network (FPN) [21], which contains two pathways
for bottom-up forward propagation and top-down sampling
recovery, respectively, and the lateral connections in FPN have
facilitated information fusion. It is noticeable that many FPN
variants have been successfully proposed, such as path aggre-
gation network (PANet) [27], bidirectional FPN (BiFPN) [41]
and atrous spatial pyramid pooling-balanced FPN (ABFPN)
[51], etc. Particularly, the ABFPN is an enhanced multi-
scale feature fusion structure, which improves the model
performance via sufficiently utilizing context information and
generating balanced enhanced features with rich receptive
fields.

III. METHODOLOGY

In this section, the proposed AGGN is elaborated with
implementation details, including the designed dual-domain
attention mechanism, multi-scale feature extraction and multi-
modal information fusion modules. To begin with, the overall
framework of AGGN is illustrated in Fig. 2.

A. Overall Framework of AGGN

According to Fig. 2, in the proposed AGGN, firstly pre-
processing operations including standardization, center crop-
ping, modal splicing, data partitioning and augmentation are
performed on the input brain MRI images with four modalities

T1, T2, T1ce and FLAIR. Afterwards, the pre-processed multi-
modal MRI data will enter the dual-domain attention mecha-
nism module, where the weights are assigned in both channel
and spatial dimensions to highlight the key information and
suppress the unimportant one in feature maps. Next, the
multi-modal MRI is split, and in the followed multi-scale
feature extraction module, parallel processing is performed
on each single-modality map, including sequential operations
of multi-branch convolution (MB conv), convolution-pooling
(C-P) and multi-branch pooling (MB pool), and the final
output of each pathway is in the size of 1 × 1 × 256. It is
noticeable that during above procedure, maps with three sizes
on each modality are individually concatenated and fed into
the multi-modal information fusion module, which contains
the fusion convolution and MB reduction operations. At last,
seven feature maps in the same size are cascaded and fed
into the linear layers, which is responsible to accomplish the
glioma grading task.

In the following subsections, above mentioned three major
modules of AGGN are presented with details.

B. Dual-domain Attention Mechanism

Attention mechanism is essentially a procedure of weight-
ing features by pixel-wise operations in channel or spatial
dimension, where the position that can reflect the detailed or
semantic information of targets will be assigned large weights.
In the proposed AGGN, a novel dual-domain attention mecha-
nism is designed, and the structure is presented in Fig. 3. It is
worth mentioning that the pre-processed input data are directly
sent into the designed dual-domain attention module to model
the target location and individual modalities, where different
weights are assigned based on both channel and spatial im-
portance of the features, so as to realize focused attention on
the useful information and simultaneously suppress the useless
one.

As is shown in Fig. 3, the input map will successively
pass through the channel attention (CA) and spatial atten-
tion (SA) components. To be specific, in the former one,
the size of feature maps in four modalities is compressed
through operations of three parallel branches, where 1 × 1
convolution, asymmetric convolution block (ACB), average
pooling and BN-PRelu (batch normalization and parametric
Relu) operations are performed. It is noticeable that ACB
replaces square convolution with asymmetric one equivalently
[4], which can effectively avoid significant information loss
and reduce the number of parameters. By concatenating the
three branches, diverse information is shared and afterwards
weights are assigned via activation operation and element-wise
multiplication with the original input data.

In subsequent spatial attention component, average and
maximum pooling layers are placed at first to compress the
channel of feature maps, and the outputs are concatenated to
enter series of ACB blocks to learn the parameters in spatial
dimension. Similarly, after the sigmoid activation function, the
spatial-domain weight assignment for different pixel regions
is eventually achieved by element-wise multiplication. As a
result, the applied dual-domain attention mechanism can figure
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Fig. 2. Framework of the proposed attention-based glioma grading network (AGGN).

Fig. 3. Dual-domain attention mechanism module.

out both “where” and “what” the model should pay attention
to. Work principle of above module is described by following
equation.

outputam = SA
{
M

[
CA (F c

i )
]x,y
j

}
,

(i = 1, ..., n; j = 1, 2, 3, 4)
(1)

where F c
· and M

(x,y)
· refer to the feature map of channel c and

modality of brain MRI in position (x, y), respectively; n is the
number of feature maps, j denotes the modal and outputam
is the final output.

C. Multi-scale Feature Extraction

As previously mentioned, the four MRI modalities have con-
tained rich pathological information with different concerns.
To realize sufficient feature extraction on each modality, output
of the dual-domain attention module is further split into four
single-modal maps to enter the multi-scale feature extraction
module (see Fig. 2), which can promote in-depth analysis of
the key features enhanced by attention mechanism and can
also benefit the subsequent multi-modal information fusion as
well. On each branch, the involved MB conv, C-P and MB
pool are displayed in Figs. 4(a)-4(c), respectively.

The MB conv block is used to extract the shallow features
of each modal. As can be seen from Fig. 4(a), three parallel
branches with different operations are included so that the
extracted feature maps can contain rich information, and the
last concatenation further integrates different features. Through
MB conv block, the number of channels increases but the
size of feature maps declines; and moreover, the applied ACB
block can avoid large amount of information loss during the
down-sampling procedure. In following Eq. 2, how MB conv
block works is described.

outputmc = BP
(
AC1

3 (C1 (Fm))
)
⊕BP

(
AC2

3 (C1 (Fm))
)

⊕MP (C1 (Fm)) , where Fm = BP (C3 (Fi))
(2)

where outputmc is the block output, Fi and Fm refer to input
and intermediate feature maps, respectively; Ck (k = 1, 3)
represents k × k standard convolution, and ACm

3 indicates
the ACB operation with kernel size of three and m repetition
times; BP and MP stand for BN-PRelu and maximum
pooling operations, respectively.
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(a) MB conv (b) C-P (c) MB pool

Fig. 4. Architectures of blocks in multi-scale feature extraction module.

Following the MB conv block, a series of C-P blocks are
placed to continuously mine deep semantic features of each
modality, where the ACB and maximum pooling operations
with skip connection are adopted, which can be expressed as
follows:

outputcp = Fm ⊕MP
(
BP

(
AC1

3 (Fm)
))

,

where Fm = BP
(
AC1

3 (C1 (Fi))
) (3)

It is noticeable that each branch has been equipped with
three C-P blocks, and output of each C-P block will serve
as input of the multi-modal information fusion module (see
Fig. 2).

At the end of the multi-scale feature extraction module, MB
pool blocks are deployed to generate the final output in size
of 1× 1× 256 for all modalities. It should be pointed out that
the designing of MB pool is derived from improvement on
the multi-receptive field pooling block in [42]. To be specific,
multi-branch down-sampling is used in MB pool to convert the
small-size map into a feature vector, and original convolution
used in [42] is replaced by the asymmetric one with small
kernels, which can expand the depth and enhance the feature
extraction. In following Eq. (4), work principle of the MB pool
is depicted.

outputmp = AP 2(BP (C1(Fi)))⊕AP 1(BP (AC3(C1(Fi))))

⊕AP 1(C1(Fi))
(4)

where outputmp is the block output, and AP i (i = 1, 2)
denotes that the average pooling operation is repeated for i
times.

D. Multi-modal Information Fusion Module

In the proposed AGGN, the multi-modal information fusion
module is deployed to further integrate enhanced detailed and
semantic features, and the structure is already illustrated in the
green box of Fig. 2. In brief, fusion convolution realizes the
integration of complementary advantages among the features
of four modalities, where multi-scale feature maps in sizes of
24× 24, 12× 12 and 6× 6 are fused. MB reduction block is
adopted to transform the feature maps to vectors with strong

presentation, which makes it feasible to further cascade the
outputs of both multi-scale feature extraction and multi-modal
information fusion module. MB reduction block consists of
the sequential connection of the MB convolution (MC) and
MB pool (MP ) blocks, therefore, the block output outputmr

can be obtained by:

outputmr = MP (MC(Fi)) (5)

where Fi denotes the input feature maps.
In addition, it is worth pointing out that the structure

of fusion convolution block is similar to that of the C-P
block, while the major difference is that the 2D convolution
is replaced by the 3D one for fusion of feature maps with
different modalities. According to Fig. 2, a finally constructed
vector in size of 1× 1× 1792 is fed into the last linear layers
to obtain the glioma grading results, which is deemed to have
strong presentation ability.

IV. RESULTS AND DISCUSSIONS

In this section, the proposed AGGN is comprehensively
evaluated on both internal and external public brain MRI
dataset. In addition, substantial comparison experiments and
ablation studies have been carried out to further validate the
effectiveness and superiority of the proposed model. At first,
experimental environment is briefly introduced.

A. Dataset Preprocessing and Experimental Settings

The experimental data used in this paper come from the
2018 and 2019 brain tumor segmentation (BraTS) challenges
organized by medical image computing and computer assisted
intervention society (MICCAI) [11], which are collected by
3T MRI systems of 17 institutions. The dataset includes
multi-modal MRI from 326 glioma patients (250 for HGG,
76 for LGG), in which each case contains 155 slice data
of four modalities, and the original size of each image is
240×240. In addition, professional radiologists have annotated
and calibrated the edema, necrosis and core areas of glioma
to obtain tumor masks, and grading results are determined
through further pathological analysis.
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The dataset is divided into training set, testing set and
validation set, where the training set and testing set are
independent of each other, while the validation set is obtained
by further splitting the training set. To be specific, ratio of the
training and testing set is 2 : 1, where the images of training set
come from 2018 BraTS. The testing set includes the internal
and external subsets, which contain images from 2018 and
2019 BraTS, respectively. It should be pointed out that the
main difference between internal and external testing subset
is that samples of the latter belong to different data-source
as those of training samples, and neither of the two subsets
participates in the model training. Furthermore, one-fifth of
the training samples are picked out to form the validation set
for model tuning and selection.

In addition, preprocessing is performed on the initial data
before training the model, where tumor masks are used to
screen tumor-free slices at first, and it is noticeable that the
selected slices without tumor are not fed into the subsequent
process. For slices that contain tumor tissues, the foreground
region is standardized and the proportion of background is
reduced so that they are center-cropped to 192× 192 in size;
afterwards, four modalities are treated as four channels of
the image. Finally, the dataset is divided according to the
previously mentioned rules, and data augmentation operations
are only performed on the training samples, including random
rotation, translation and clipping. For a clear view, above
preprocessing steps and dataset division are shown in Fig. 5.

Fig. 5. Flowchart of preprocessing for brain MRI datasets.

All experiments in this study are carried out on the deep
learning framework Pytorch, and the operating system is
Windows 10 with NVIDIA GTX 2080Ti single GPU. Hyper-
parameter settings are provided in Table I, as for model
parameters, initialization of convolution and fully-connected
layers adopts the Kaiming method and normal distribution,
respectively.

B. Performance Evaluation

To comprehensively evaluate performance of the proposed
AGGN, four groups of experiments are carried out, which aim
at verifying the generalization ability, architectural advantages,
superiority against other representative CNN-based models
and competitiveness in comparison to state-of-the-art glioma
grading methods, respectively. Metrics accuracy, precision,
recall, specificity, F1 score are adopted for performance

TABLE I
HYPERPARAMETER SETTINGS

Variables Values

Training epochs 100
Batch size 32
Optimizer Adam

Initial learning rate 0.0001
First-order moment decay coefficient 0.9

Second-order moment decay coefficient 0.999

evaluation, which can be calculated by following Eqs. (6)-
(10):

accuracy =
TP + TN

TP + FP + FN + TN
(6)

precision =
TP

TP + FP
(7)

recall =
TP

TP + FN
(8)

specificity =
TN

FP + TN
(9)

F1 score = 2× recall × precision

recall + precision
(10)

where TP/TN and FP/FN refer to the number of correct
and wrong predictions of the HGG and LGG samples, respec-
tively. As can be seen, the accuracy describes the ratio of
correct classifications of both HGG and LGG; the precision
aims at all samples predicted as HGG, and calculates the
proportion of correct prediction; the recall refers to the ratio
of correctly identified HGG samples, which measures whether
a model can screen all positive samples; similar to recall, the
specificity reflects the ability of identifying negative samples
of a model; the F1 score takes the harmonic average between
accuracy and recall, and for all above five metrics, the larger
their values are, the better the model performance is.

In addition, the receiver operating characteristic (ROC)
curve and area under this curve (AUC) are also employed for
the model evaluation. Specifically, the ROC curve takes the
value of 1 − specificity (also known as false positive rate)
as the horizontal axis and recall as the vertical one, AUC is
the area enclosed by ROC curve and the two coordinate axes.

1) Generalization ability of AGGN: At first, results ob-
tained by the proposed AGGN on both internal and external
testing sets are shown in Fig. 6, notice that in the former,
training and testing samples share the same data-source; on
the contrary, different sources are contained in the latter. As
a result, this group of experiment can objectively reflect the
generalization ability of the proposed AGGN. As is shown, the
worst result is the F1 score on external dataset, which reaches
0.933; advantages of precision, specificity and AUC are
noticeable on both datasets, which validates that the propose
AGGN is highly reliable in glioma grading task. At the same
time, AGGN presents similar performance on internal and
external testing sets, which demonstrates the robustness of
AGGN in terms of handling various glioma MRI data; and
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moreover, this result indicates that AGGN can adapt to data
from multi-center medical institution with strong generaliza-
tion ability.

Fig. 6. Evaluation of AGGN on internal and external testing sets.

2) Architectural advantages of AGGN: In this part, to
validate the architectural advantages of our method, adaptive
multi-modal fusion network (AMMFNet) [42] is adopted as
baseline model for comparison, which is a similar glioma grad-
ing framework to the proposed AGGN. In Fig. 7, performance
enhancement of AGGN on six indicators is illustrated, which
shows that in comparison to AMMFNet, the proposed AGGN
has improved all indicators to different extents. In particular,
the most significant improvement is on specificity, which
increases 11.52%. As previously mentioned, high specificity
is equivalent to low false positive rate. Consequently, it is
verified that AGGN has strong ability to correctly identify
negative samples, which can effectively avoid the waste of
medical resources. In addition, precision is increased by
5.27%, which implies that AGGN is able to achieve accurate
diagnosis of HGG. In this group of experiment, the proposed
AGGN presents noticeable competitiveness in comparison to
similar framework, which indicates the advantages in structural
configuration.

TABLE II
PERFORMANCE COMPARISON OF PROPOSED AGGN AND FOUR CLASSIC

MODELS ON INTERNAL TESTING SET

Metrics
Models

[12] [14] [35] [39] AGGN

accuracy 0.9013 0.9038 0.8785 0.9330 0.9612
precision 0.7763 0.9632 0.8848 0.9687 0.9987
recall 0.9234 0.9119 0.9476 0.9181 0.9521

specificity 0.8320 0.8747 0.7235 0.9749 0.9952
F1 score 0.8687 0.8676 0.8506 0.9046 0.9450
AUC 0.9530 0.9570 0.9480 0.9780 0.9920

3) Comparisons with other CNN-based models: In order to
further validate the competitiveness of the proposed AGGN,

Fig. 7. Performance comparison between AGGN and AMMFNet.

TABLE III
PERFORMANCE COMPARISON OF PROPOSED AGGN AND FOUR CLASSIC

MODELS ON EXTERNAL TESTING SET

Metrics
Models

[12] [14] [35] [39] AGGN

accuracy 0.8967 0.9052 0.8780 0.9446 0.9519
precision 0.9304 0.9672 0.8688 0.9987 0.9987
recall 0.9323 0.9122 0.9658 0.9325 0.9401

specificity 0.7890 0.8775 0.6937 0.9948 0.9953
F1 score 0.8614 0.8639 0.8503 0.9193 0.9334
AUC 0.9410 0.9570 0.9580 0.9700 0.9840

four other representative CNN-based models are adopted for
comparison in this group of experiments, including ResNet-50
[12], DenseNet-101 [14], VGG-19 [35] and Inception-v4 [39].
For fairness, all models share the same training and testing
data, and the results on internal and external datasets are
reported in Table. II and Table. III, respectively. In addition,
an illustration is presented in Fig. 8.

As can be seen from Table II, all the indicators of AGGN
are better than those of other representative CNN models on
internal dataset, which are 2.82%, 3.0%, 0.45%, 2.03%, 4.04%
and 1.4% higher than the sub-optimal model on accuracy,
precision, recall, specificity, F1 score and AUC respec-
tively. While on the external testing set, the proposed AGGN
also achieves satisfactory results of 95.19%, 99.87%, 94.01%,
99.53%, 93.34% and 98.40% on above six metrics, respec-
tively. On five out of the six indicators, AGGN has obtained
the best results.

In addition, the ROC curves with magnification on the two
testing sets are presented in Fig. 9, which can effectively
evaluate the diagnostic ability of a model and can maintain
strong stability when the distribution of positive and negative
samples changes. Notice that the curve close to the upper left
corner has high prediction accuracy, and accordingly, the larger
AUC value, the better model performance is. As shown in
Fig. 9, the ROC curve of AGGN is above all other models
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Fig. 8. Performance comparison of AGGN with advanced CNN-based models on internal (left) and external (right) testing sets.

(a) On internal testing set (b) On external testing set

Fig. 9. ROC curves of the proposed AGGN and other CNN models.

on both the internal and external testing sets, and the AUC
values reach 0.992 and 0.984, respectively. Consequently, the
strong generalization ability of AGGN while facing different
data sources is further verified.

Through this group of experiment, it is demonstrated that
the proposed AGGN has overwhelming overall performance
against other advanced CNN-based and domain-specific mod-
els on most metrics, which may owe to the meticulously
designed and introduced dual-domain attention mechanism,
multi-scale feature extraction and multi-modal information
fusion modules.

4) Comparisons with state-of-the-art glioma grading algo-
rithms: In this part, comparison between proposed AGGN and

other state-of-the-art glioma grading algorithms are presented,
including multistream CNN [9], multi-scale CNN [10], CAE-
GAN (convolutional autoencoder and generative adversarial
network) [1], pre-trained GoogleNet [44], 3DConvNet [53]
and AMMFNet [42]. It should be pointed out that in previous
experiments, data from the mentioned internal and external
testing sets have none of the tumor masks, while most of
recently related methods for the same task require the assis-
tance of additional tumor masks. Consequently, to make a fair
comparison, in this group of experiments, tumor masks have
been added to original images for training, and the results are
reported in Table IV. Notice that the data of other algorithms
are cited from corresponding original papers, and “–” denotes
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none of relevant data is provided.

TABLE IV
PERFORMANCE OF AGGN AND OTHER ADVANCED MODELS ON TUMOR

MASK ASSISTED DATA

Models
Metrics

accuracy recall specificity AUC

Multistream CNN 0.9087 – – –
Multi-scale CNN 0.8947 – – –

CAE-GAN 0.9204 – – –
Pre-trained GoogleNet 0.9450 – – 0.9680

3DConvNet 0.9710 0.9470 0.9680 –
AMMFNet 0.9820 1.0000 0.9330 0.9970

AGGN (ours) 0.9899 1.0000 0.9678 0.9980

As can be found in Table IV, with assistance of tumor
masks, the proposed AGGN can present the state-of-the-art
performance. In particular, the AUC value of AGGN with
and without tumor masks are 0.998 and 0.992, respectively,
which implies that the assistance of tumor masks does further
improve the model performance. It is also worth mentioning
that the AUC of 0.992 (without masks) is already an excellent
result. Hence, it can be concluded that performance of AGGN
has little reliance on the masks, which demonstrates that
AGGN can overcome the high dependence of manually labeled
annotations so as to achieve the end-to-end applications in
practice.

C. Ablation Study

To validate the effectiveness of core components in the
proposed AGGN, substantial ablation studies are performed
on the internal testing set in this subsection. The designed
dual-domain attention mechanism is firstly verified and the
results are reported in Table V, where AGG1, AGG2 and
AGG3 refer to the model with none of attention modules,
only spatial and only channel attention module, respectively.
Obviously, in comparison to AGG1, on most indicators the
performance has been improved to a certain extent after
introducing the spatial or channel attention mechanism. It
is also found that the applied dual-domain attention module
in the proposed AGGN has realized significant performance
enhancement, which improves accuracy, recall, F1 score
and AUC by 2.92%, 3.61%, 4.23% and 1.6%, respectively.

In addition, the ROC curves of four models listed in Table V
are presented in Fig. 10, where it can be seen that the proposed
AGGN has obtained the best results. In particular, when false
positive rate is 0, the true positive rate of AGGN is close
to 0.85 and AUC is 0.992, which implies that the proposed
AGGN can accurately identify HGG with almost none of
false detection. Therefore, the proposed AGGN is a reliable
model that can provide a solid guarantee for the diagnosis and
treatment of critical patients.

According to above results, effectiveness of the dual-domain
attention mechanism is sufficiently validated. Before extracting
multi-scale features, channel-domain attention is firstly intro-
duced to low-level detail information, which determines what
deserves attention in each modality of brain MRI; afterwards,

Fig. 10. ROC curves of AGG1, AGG2, AGG3, and AGGN.

spatial-domain attention is used to learn spatial dependence
among high-level semantic information, so as to figure out
the important locations in feature maps. As a result, the pro-
posed AGGN can both recognize and localize the significant
pathological features in brain MRI with strong robustness.

In the following, ablation study results on multi-branch
convolution block and the multi-modal information fusion
module are reported in Table VI. It should be pointed out that
except for the investigated components, other configurations
of AGGN remain unchanged so as to make objective and
convincing comparisons.

Firstly, as the most important component of the multi-scale
feature extraction module, MB conv block is compared with
multi-receptive field (MRF) conv block of AMMFNet. As can
be seen from Table VI, the MB conv block has overwhelmed
the MRF conv block on all metrics, which demonstrates that
the multi-branch structure has superiority in dealing with
glioma grading task based on brain MRI. Further explorations
of the essential mechanism show that the volume of glioma
from patients can be quite different, whereas the proposed
MB conv block has adopted ACBs with different sizes to
extract image features in parallel, which can obtain fine-
grained texture and tissue information of multi-modal brain
MRI. Therefore, it can be inferred that the multi-scale feature
extraction module has made great contribution to the overall
model performance.

Secondly, the designed multi-modal information fusion
module is compared with the approach in [42]. As reported
in Table VI, on four out of six indicators, proposed AGGN
has achieved slight performance improvement. Specifically,
AGGN improves accuracy, recall, F1 score and AUC by
3.4%, 0.6%, 0.3% and 0.7%, respectively. It is worth men-
tioning that in the proposed AGGN, final input vector to the
classifier is a concatenation of outputs from seven branches,
and this number is fewer than that in [42]. Consequently, it can
be concluded that AGGN has achieved comparable results to
the model in [42] with a simplified structure. Additionally,
the concatenation manner in AGGN has avoided stacking
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TABLE V
ABLATION STUDIES OF DUAL-DOMAIN ATTENTION MECHANISM ON INTERNAL TESTING SET

Models
Metrics

accuracy precision recall specificity F1 score AUC

AGG1 0.9320 1.0000 0.9160 1.0000 0.9027 0.9760
AGG2 0.9481 0.9866 0.9467 0.9532 0.9270 0.9860
AGG3 0.9476 1.0000 0.9349 1.0000 0.9238 0.9900
AGGN 0.9612 0.9987 0.9521 0.9952 0.9450 0.9920

TABLE VI
ABLATION STUDIES OF MB CONV BLOCK AND INFORMATION FUSION METHODS

Models
Metrics

accuracy precision recall specificity F1 score AUC

MRF conv block of AMMFNet 0.9577 0.9960 0.9502 0.9856 0.9400 0.9840
MB conv block of AGGN 0.9612 0.9987 0.9521 0.9952 0.9450 0.9920

Fusion method in [42] 0.9578 1.0000 0.9461 1.0000 0.9420 0.9850
Fusion method of AGGN 0.9612 0.9987 0.9521 0.9952 0.9450 0.9920

redundant features, which not only benefits highly-efficient
feature fusion, but also simultaneously avoids excessively
complicating the model.

D. Computational Complexity Analysis

In this study, the number of model parameters (Params)
and floating point operations (FLOPs) are adopted to depict
the spatial and time complexity of the proposed AGGN, re-
spectively. Excessive parameters will impede the light-weight
deployment of model on edge devices, and too large FLOPs
will influence the convergence during model training, which
directly determines the accuracy of the model inference.

On the one hand, Params of the proposed AGGN is
16.37M, which is 9.13M fewer than that of the classical
ResNet-50 model. According to Table III, the accuracy of
AGGN is even 5.52% higher than that of ResNet-50, which
demonstrates that the developed AGGN can effectively balance
the computational costs and accuracy. It may owe to the
proposed AGGN has effectively reduced the parameters by
replacing large-size kernels with a series of small-sized ones.
Meanwhile, the accuracy of AGGN is mainly guaranteed by
the structural advantages, including employing dual-domain
attention mechanism to highlight key features, realizing feature
extraction on each individual modality, and integrating multi-
modal information in different levels.

On the other hand, the FLOPs of AGGN are 24,790M,
which mainly due to the large size of multi-channel input
samples, where the data processing has consumed great deals
of the FLOPs. It is also worth mentioning that during the
model training, none of obvious over-fitting phenomenon has
occurred, which implies that the training and inference time
consumed by the proposed AGGN is acceptable.

To sum up, the proposed AGGN can effectively achieve the
balance between model complexity and accuracy, which has
achieved satisfactory results in the glioma grading task with
considerable efficiency.

V. CONCLUSION

In this paper, a novel self-attention based network AGGN
has been developed, which mainly consists of three meticu-
lously designed modules, including a dual-domain attention
module, a multi-scale feature extraction and a multi-modal
information fusion one. Robust features with strong presen-
tation ability are constructed by integrating outputs of the
latter two modules, which are used to eventually realize the
glioma grading task. Performance of the proposed AGGN has
been comprehensively evaluated on both internal and external
testing sets, and the results have demonstrated the superiority
of AGGN against other state-of-the-art algorithms. Further-
more, substantial ablation studies have verified effectiveness
of the designed three modules in AGGN, which can take full
advantages of detailed and semantic information so that model
performance can be greatly improved, and simultaneously
computational burdens are released to some extent.

Although the proposed AGGN has presented satisfactory
performance on the glioma grading task, it still has some
spaces for further improvement, including task migration adap-
tion, quantitative lesion analysis, and model lightweighting
studies. In future work, we aim to 1) apply the developed
AGGN framework to other MRI-based tasks such as stroke and
cancer diagnosis; 2) investigate fine-grained glioma grading
methods to support quantitative analysis; 3) further optimize
the structure of AGGN through fuzzy system and tensor
decomposition techniques. [18], [23], [26], [43]
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