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Abstract—This paper is concerned with the influence maxi-
mization problem under a network with probabilistically un stable
links (PULs) via graph embedding for multi-agent systems
(MASs). First, two diffusion models, the unstable-link indepen-
dent cascade (UIC) model and the unstable-link linear threshold
(ULT) model, are designed for the influence maximization prob-
lem under the network with PULs. Second, the MAS model for
the influence maximization problem with PULs is established
and a series of interaction rules among agents are built for the
MAS model. Third, the similarity of the unstable structure of the
nodes is defined and a novel graph embedding method, termed
the unstable-similarity2vec (US2vec) approach, is proposed to
tackle the influence maximization problem under the network
with PULs. According to the embedding results of the US2vec
approach, the seed set is figured out by the developed algorithm.
Finally, extensive experiments are conducted to 1) verify the
validity of the proposed model and the developed algorithms,
and 2) illustrate the optimal solution for influence maximization
under different scenarios with PULs.

Index Terms—Influence maximization, graph embedding,
multi-agent systems, probabilistically unstable links.

I. I NTRODUCTION

FOr a long time, people obtain information from their
social circles in order to make decisions on their choices

of commodity, transportation means, restaurants, cinemas, etc.
Accordingly, the theory of social systems [29], [37], [46] has
been proposed to study humans’ behaviors and social activi-
ties, where it has been hypothesized that the minority playsa
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significant role in public opinion building [15]. Followingthis
hypothesis, influence diffusion models have been developed
to facilitate quantitative research as well as simulation of
human social activities [18], [20]. Based on the diffusion
models, the topic of influence maximization (IM) has gained
an ever-increasing popularity in a variety of application areas
such as location technology [13], big data [4] and community
identification [43]. Influence maximization has been regarded
as an appropriate way to simulate human activities and realistic
scenarios within a social network. For example, an online
influence maximization model with non-adaptive and adaptive
advert sequencing has been proposed to maximize the viral
marketing in social works [41].

Owing to the advance in the graph theory and the accessibil-
ity of the big database, much progress has been made recently
on the social science especially the analysis and mining of
social networks. Basically, the feedback loops, instabilities and
cascade effects have to be taken into simultaneous consider-
ation in simulating the complex human activities in networks
[6], [45], and this poses great challenges on the implemen-
tation of such simulations. Multi-agent systems (MASs) are
thought to be an effective way of solve this problem as they
are capable of adapting to various conditions/constraints[3],
[8]. In MASs, the special characteristics of agents (e.g. social-
ity, self-organization and coordination) play significantroles
in improving simulation effects. More specifically, influence
diffusion needs to be represented directly and in real-time
by agent communications in order to make opinion-forming
processes clear. So far, many researchers have been devoted
to the investigation of combining influence maximization and
MAS models in order to take advantage of both of them. For
instance, an effective agent-based algorithm has been proposed
to control the opinion formation in complex networks [1]. In
addition, based on MASs, the analysis of opinion formation
has been accomplished by agents in a social network.

Despite the advantages and convenience brought by MASs
in modelling influence maximization, diffusion effectiveness
has been limited to three main methods, i.e. the approximation
algorithm, the parameterized complexity theory and the dif-
fusion approach. Simulating a large-scale network consisting
of agents with complicated links and interaction may lead to
excessively long run times. Approaches to graph embedding
algorithms have been proposed as way of improving computa-
tional efficiency and have drawn considerable research interest
from both academic and industrial communities [28], [31].
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Generally, graph embedding approaches fall into three main
categories: factorization methods [7], [39], random walks[9],
[38], and deep learning [14]. Factorization methods typically
take a long time to run, for instance, the Spectral Clustering
of GE had the time complexityO(n3). The time complexity
of word2vec-based random walks are usuallyO(log n). As a
general algorithm, the adversarial graph embedding method
has been proposed to discern sensitive attributes reasonably
while keeping their competitiveness for every node [19].
By using the clustering in graph embedding algorithms, the
structure-based and attribute-based clustering methods have
been successfully applied to many applications, and this moti-
vates us to apply the structure-based clustering approach to the
topologies of MASs in the influence maximization problem.

Up till now, existing research has been dedicated to solving
the influence maximization problem underfixed topologies
or stable links, and little effort has been made on influence
maximization problems withprobabilistically unstable links
(PULs) that are frequently encountered in practice. The lack
of corresponding results is mainly due to the fact that, in
case of PULs, there would be a great deal of uncertainties on
the network topology that pose substantial challenges to the
influence maximization. Generally speaking, the phenomenon
of the PULs can be classified into three types, i.e. intermittent
links [21], probabilistic links [11], [34] and dynamic links
[24]. Each type results in its distinctive uncertainty on the
influence diffusion, and such uncertainties complicate the
community structure and bring in substantial difficulties in
influences calculation. Clearly, the ignorance of PULs in
existing results would inevitably lead to information missing
during the process of complicated influence diffusion.

Motivated by the above discussions, the main aim of this
paper is to design a graph-embedding-based method to solve
the influence maximization problem in the MASs with PULs.
This problem appears to be especially difficult as we are
inevitably confronted with the following three essential chal-
lenges: 1) how to design the rules of influence calculation
on different diffusion models undergoing PULs? 2) how to
combine influence diffusion with MASs’ characteristics ex-
hibiting agents’ sociality, self-organizing and coordination?
and 3) how to design a novel graph embedding algorithm
to tackle influence maximization in large-scale networks with
PULs? It is, therefore, the main purpose of this paper to
address the challenges.

This paper is concerned with the influence maximization
problem in MASs under the network that has PULs through
a novel graph embedding method. The main contributions of
this paper are highlighted as follows.

1) Two novel diffusion models are designed for MAS
simulation on the influence maximization problem in
social network with PULs.

2) A new series of communication rules of agents are
proposed to optimize influence spreading in MASs with
PULs, which makes the computation of the graph-
embedding method more efficient than in previous work.

3) A novel graph embedding method, i.e. the unstable-
similarity2vec (US2vec) algorithm, is proposed for deal-
ing with uncertain links where neighborhood informa-

tion and ability evaluations of agents are simultaneously
taken into account, thus making diffusion prediction
more precise than previous research.

4) A purposely selected method for seed set is put forward,
which takes into account the diffusion capability, the
information updating and the predictions and obtains a
lager diffusion range on IM than before.

The rest of this paper is organized as follows. Section II
discusses the related work of influence maximization algo-
rithms and their applications especially with MASs and ex-
isting graph embedding approaches. The problem formulation
is given in Section III. In Section IV, the models and the
proposed algorithms for the influence maximization problem
of MASs are provided. Section V presents the experiment
results, related analysis, and the comparisons with other state-
of-the-art approaches. Conclusions are drawn in Section VI
with a discussion of future research topics.

II. RELATED WORK

The influence maximization problem has been proved to be
NP-hard in [10] and applied to a wide range of scenarios.
In recent years, several methodologies have been proposed to
find a seed set for achieving near-optimal influence spread
in influence maximization problems where approximation has
been shown to be extremely effective [2], [12], [55]. Using
approximation, the influence maximization problem has often
been treated as a combinatorial optimization problem where
the solutions (at the approximation step) gradually enter into
near-optimal asymptotic bounds. For example, in [56], the
semi-definite-based algorithm has been designed to keep the
approximation ratio higher than1-1/e if the ratio of the
seeds to the total number of nodes resides in a certain range.
It should be noted that, although approximation algorithms
have been proposed to generate solutions that are close to
near-optimal asymptotic bounds, most of these algorithms
have suffered from the scalability issues. As network size
(or links) increase, computation time becomes untenable. It is
worth noting that these algorithms have all been implemented
with certain and stable networks. As such, it remains unclear
whether these existing algorithms are still applicable within
an uncertain and unstable environment [26].

Compared with approximation approaches, heuristic meth-
ods have advantages in run time and scalability [22], [48]. For
example, a K-shell decomposition-based heuristic algorithm
called KDBH has been proposed in [33], which has proven to
be a quick-finding approach on the most influential spreaders.
It is noted that heuristic algorithms have not provided a
worst-case bound on influence spread. As for community-
based solution approaches [36], [47], the community detection
of the underlying social network has been introduced as an
intermediate step to improve scalability. For example, the
K-ECC model has been leveraged in [51] to measure the
cohesiveness of subgraphs and find the influential community.
It is worth mentioning that all the above-mentioned methods
cannot deal with the rapid growth and the dynamic changing
of the large-scale network, whereas the graph embedding can
be regarded as an appropriate way of tackling scalability.
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Graph embedding methods can be categorized into factor-
ization based, random walk based, and deep learning based
schemes. Basic graph embedding approaches, such as large-
scale information network embedding (LINE) [40], high-order
proximity preserved embedding (HOPE) [30] and structural
deep network embedding (SDNE) [44], have been proposed
to accommodate the sparsity of huge real-world networks.
Structure preserving embedding (SPE) [35] (as a factorization-
based graph embedding approach) has been proposed to recon-
struct the input graph exactly. According to these methods,
the structure information of networks can be embedded into
a low-dimensional space. With the structure information in
the low dimensional space, graph embedding can easily tackle
huge and complicated networks. The attributed node to vector
(AN2VEC) method [23] attempts to disentangle information
shared by the structure of a network and its nodes’ features.A
manifold graph embedding method [50] has been developed
to solve community discovery problems through a structure
information propagation mechanism.

III. PROBLEM FORMULATION

In this section, the PUL-based influence maximization prob-
lem will be defined in a mathematically rigorous way.

The population of the PUL-based influence maximization
problem can be abstract as a graph, in which nodes represent
human or other entities and edges denotes the relationships
among the population. DenoteG , (V,E, P ) as a 3-tuple
network whereV is the set of nodes,E is the set of edges
and P represents the set of probabilities of edges. Here,
P , {{P1}, {P2}} is a 2-tuple set whereP1 denotes the
success probabilities of the influence diffusion on edges in
E andP2 denotes the stability probabilities of the edges (i.e.,
the probabilities for the edges to be stable).

Unstable Link: Every edge is a link and has a stability
parameterp2 (which is included inP2 of P ). The value ofp2
denotes the probability of successful connection of the linkage.
A link is said to be unstable ifp2 ∈ (0, 1), and is said to
be connected (stable or available) ifp2 = 1. To be specific,
when the influence is spread on a network with PULs, the
availabilities of unstable links are uncertain because ofp2 ∈
(0, 1) while the stable links are always available because of
p2 = 1. If the links are available, the success of influence
spreading is decided by a fixed probability which isp1 (p1 ∈
P1). At the same time, the availability of any unstable link
is decided by the two linked agents and the value ofp2 for
this link. When the influence is spreading on an unstable link,
two linking probabilities are given by two agents, respectively,
which are linked by the unstable link. As long as the two
linking probabilities are both larger thanp2, the unstable link
is considered to be available. The details of this process will
be illustrated in Section IV-A.

In order to deal with influence maximization with PULs, the
structural similarity with instability can be defined as follows:

Structural Similarity:

fq(u, v) =fq−1(u, v) + g(a(Rq(u)), a(Rq(v)))

+ g(b(R′

q(u)), b(R
′

q(v))),

q ≥ 0, |Rq(u)|, |Rq(v)| > 0 (1)

where u and v are two nodes in the networkG. fq(u, v)
means the similarity ofu and v within the distance ofq
(hop count) of themselves.Rq(u) denotes a set of nodes
whose minimal distance isq from nodeu. R′

q(u) denotes a
set of nodes whose minimal distance isq from nodeu only
through PULs. It should be notice that, ifR′

q(u) = ∅ then let
b(R′

q(u)) = {0}. a(Rq(u)) andb(Rq(u)) represent an ordered
degree sequence of the nodes inRq(u) andR′

q(u), respective-
ly. g(a(Rq(u)), a(Rq(v))) calculates the distance between the
two ordered degree sequences using the modified Dynamic
Time Warping method [16], [57]. It should be noticed that
q ≥ 0. Thus, whenq = 0, we let f−1 = 0.

Remark 1:We use Fig. 1 as a demonstration of the struc-
tural similarity, wherea1 anda66 are two nodes that are far
away from each other in the same network. In their distance of
q = 1, they are structurally similar (including the similarity in
instability): 5 degrees marked by blue lines, 2 PULs marked by
blue and dotted lines, and 2 triangular structures (△a1a2a10
and△a1a4a7 to a1; △a66a63a64 and△a66a67a68 to a66).
Similar situations apply toa9 and a68 whose degrees are
marked by red lines. Eq. (1) can be applied to the two pairs
of node (a1, a66 anda9, a68) to measure their similarities. The
structural similarity ofa1 anda66 in distanceq = 1 is:

f1(a1, a66) = f0(a1, a66) + g(a(R1(a1)), a(R1(a66)))

+ g(b(R′

1(a1)), b(R
′

1(a66)))

= 0 + g(a{a2, a3, a4, a5, a10}, a{a63, a64, a65, a67, a68})

+ g(b{a5, a7}, b{a65, a68})

= g((5, 5, 4, 3, 3, 2), (4, 4, 4, 3, 3, 3))

+ g((2, 1), (1, 1))

= 1 + 1 = 2.

The structural similarity ofa9 and a68 can be obtained by
following the same calculation procedure with the result of
f1(a9, a68) = 1.

Influence Diffusion: The process of influence diffusion
relies on the diffusion model. According to the rule of the
diffusion model, inactive nodes can be activated by some of
their active neighbor nodes at the current timet = t0 and
such an activation could be successful or unsuccessful (with
probabilities inP1). Such a diffusion step (att = t0) is then
repeated at the timet = t0 + 1, and this kind of repetition is
called an iteration of influence diffusion. If there is eventually
no node that can be activated, the iteration stops, which means
that the influence diffusion is finished. It should be noticedthat
the reconnection of every unstable link takes place only once
at every iteration of the influence diffusion.

Influence Maximization: Given a networkG , (V,E, P )
and a positive integerk, find a node setSconsisting ofk nodes
(also called seed nodes) fromV, such that the expected number
of activated nodes during the spreading process under the
diffusion model (which is also termed as influence diffusion)
is maximized.

Two diffusion models for influence maximization problem
with PULs have been proposed as follows.
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Fig. 1. Examples of the Structural Similarity with PULs

Unstable-link Independent Cascade (UIC) Model:The
independent cascade (IC) model is one of the basic diffusion
models [32]. The newly activated nodes are required by
the IC model to influence their neighbors according to the
corresponding activating probabilities of the edges in every
iteration. The main idea of this diffusion remains within the
UIC model, where the diffusion probability on an unstable link
is defined by the UIC model as:

p′1(u, v) = p1(u, v)σ
n, σ ∈ (0, 1) (2)

Because of the PULs’ continuous connections, the diffusion
probabilities on these links decrease by the attenuated param-
eter σ. n denotes the number of reconnections of the edge
(u, v).

Unstable-link Linear Threshold (ULT) Model: The linear
threshold (LT) model is a popular and general diffusion model
[17]. In the LT model, every node has its activated threshold
and different influence value on its neighbors. As long as
the accumulated influence value exceeds the threshold of an
individual node, it will be activated. In particular, in theULT
model, PULs always have continuous connections. On one
hand, the influence diffusion is attenuated by numerous re-
connections; on the other hand, the influence value diffused
on the unstable link may not be positive.

The influence value diffused on an unstable link can be
calculated in the ULT model as follows:

b′uv =

{

−δibuv, buv = p1(u, v) γ ≤ γv
δibuv, buv = p1(u, v) γ > γv

(3)

whereb′uv denotes the current influence value diffused on node
v by nodeu through unstable link(u, v), and buv indicates
the influence value foru to influence onv by their first-time
linking. γv indicates the link(u, v)’s probability of the positive
influence during the diffusion. If the probabilityγ is larger than
γv, the influence value will be positive.i represents the number
of re-connections andδ indicates the attenuated parameter of
the link (u, v).

According to Eq. (3), the calculation of the accumulation
of influence values on nodev can be designed as:

∑

u∈N(v)

buv =
∑

u′∈S(v)

bu′v +
∑

u′′∈US(v)

bu′′v (4)

whereN(v) denotes the set of the nodes which have made
influences on nodev, S(v) represents the set of nodes inN(v)

which have stable link(u′, v), US(v) indicates the set of the
nodes inN(v) which have unstable link(u′′, v).

Some important notations used in this paper are listed in
Table I.

TABLE I
MATHEMATICAL NOTATIONS

Symbol Description
G a graph,G , V, E, P
V the node set in graphG, V = {v1, v2, · · · , vn} (n

is the number of nodes.)
E the edge set in graphG, E = {(vi, vj), · · · }

(i, j) ∈ [1, n]
u v the node in V
P the probabilities set,P , P1, P2

P1 the success probabilities of the influence diffusion on
edges in E

P2 the stability probabilities of the edges
fq(u, v) the similarity of u and v within the distance of q
Rq(u) a set of nodes whose minimal distance is q from

node u
R′

q(u) a set of nodes whose minimal distance is q from
node u only through PULs

a(Rq(u)) an ordered degree sequence of the nodes inRq(u)
b(Rq(u)) an ordered degree sequence of the nodes inR′

q(u)
g(., .) the distance between the two ordered degree se-

quences
σ the attenuated parameter of the diffusion probabili-

ties
δ the attenuated parameter of one link
b′uv the current influence value diffused on node v by

node u through unstable link(u, v)
buv the influence value for u to influence on v by their

first-time linking
γ the threshold value of link(u, v)′s probability of the

positive influence
γv the link (u, v)′s probability of the positive influence

during the diffusion

IV. M AIN MODEL AND APPROACH

In this section, an influence maximization model based on
an MAS is designed where two diffusion models (i.e. the UIC
and ULT models) and an US2vec algorithm are established to
maximize the influence diffusion.

A. Influence maximization model on an MAS

In this section, an influence maximization model based on
agents is presented according to theInfluence Maximization
problem.

As shown in Fig. 2, every agent represents one node and
the links between agents denote the edges between nodes.
The dotted lines represent PULs and the full lines denote
normal links. The availability of PULs is implemented by
agent interactions. For example, in Fig. 2, the link between
agenta7 anda9 is unstable and the availability probability of
this link is p2(7,9). At every diffusion iteration,a7 anda9 will
give probability valuesp7(7,9) andp9(7,9), respectively.

Remark 2:Especially, the probability value given by a-
gent a2 is marked as p2′(.,.). As long as p7(7,9) >
p2(7,9) and p9(7,9) > p2(7,9), the link is available for the
influence diffusion. In addition, in Fig. 2, the activated nodes
are marked by grey, and the influence will be spread by them
on the corresponding diffusion model until no node can be
activated.
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Fig. 2. The influence maximization model based on MAS

Different from traditional influence maximization models,
the agent-based model proposed in this paper has a crucial
advantage of agent interactions. In order to facilitate appropri-
ate simulations (that mimic human activities) and accelerate
the influence diffusion by agents’ self-organizing, the rules of
agent interaction are given as follows:

1) observe the interactions of the agents to decide the
probability with which the PULs occur;

2) observe the success rate (for the links to be stable) and
evaluate the failure rate so as to predict the availability
of the successfully activated nodes; and

3) exchange the context information (including an agent’s
action strategies and its currently available links) be-
tween an agent and its linked ones.

It should be noticed that the interactions among agents
include information exchanging and action decisions, which
also helps the process of influence diffusion directly. The
specific algorithms of agent interactions and how they promote
the influence diffusion are shown in Section IV-B.

Next, according to the model in Fig. 1, the main algorithm
of influence maximization based on MAS is shown in Algo-
rithm 1.

Algorithm 1 Main Algorithm

Input: A network G = (V,E, P ) andk, a diffusion model
and its attenuated parameters

1: Initialize the seed node set SN.
2: Using US2vec algorithm to embedding the nodes includ-

ing spreading capability, faith evaluation, link information
and structural similarity.

3: Select the node which has the biggest integrated evaluation
in the results of US2vec by Algorithm 4 and put it into
SN .

Output: The seed setSN .

B. Agent interactions

As mentioned in the previous section, agent interactions
play significant roles in information exchange and influence
diffusion. The agent interactions are divided into three aspects:
the decision of the availability of PULs, evaluation of their
neighbors and communication of their environment change.

Firstly, the decision of the availability of PULs occurs to any
two agents which are linked by an unstable link. According
to the definition ofUnstable Link, the availability of the
links is decided by the two agents andp2. To be specific,
the two agents give two probabilities and, if both probabilities
are greater thanp2, then the link is available. The probability
given by an agent can be comprehended as a willingness index
of establishing the link of this agent at the moment, just like
a relationship between two persons. Besides, the probability
from one agent is not random but based on the observation of
its neighbors.

Let ai andaj be two agents linked by an unstable link(i, j)
and can observe the actions of each other, which means that
every decision ofai (aj) on any of its unstable link can be
observed byaj (ai). Then, the probability generated by them
on the unstable link can be calculated as follows:

pi(j)(i,j) =

{

(p2(i,j), 1), p, p ∈ (n′

i/ni, n
′

j/nj)
(0, p2(i,j)), 1− p, p ∈ (n′

i/ni, n
′

j/nj)
(5)

wherepi(j)(i,j) denotes the probability given by agenti(j). n′

i

represents the number of times that agentai’s probability on
one unstable link is bigger than the unstable link’s probability
and n′

j indicates agentaj ’s. ni is the number of agentai’s
historical actions andnj indicates the number of agentaj ’s. p
is a random value generated in the range of(n′

i/ni, n
′

j/nj). It
should be mentioned that the occurrence of the first commu-
nication between the two agents has an arbitrary probability.

It can be seen thatn′

i/ni is an evaluation of agentai’s
faith, reflecting its average willingness on all its PULs. Then,
the faith evaluation of agentai can be defined as:

fai
= n′

i/ni (6)

Secondly, the evaluation of an agent’s neighbors means the
judgement of its diffusion capability. The diffusion capability
dcai

of ai can be calculated by Eq. (7):

dcai
=



nl2 +









∑

(i,j)∈Unai
(2)

p2(i, j)











 /tl2 (7)

wherenl2 denotes the number of stable links among the 2-hop
range ofai, tl2 means the amount of links of 2-hop range of
ai andUnai

(2) represents the set of PULs in the same range.
Thirdly, the agent communication of environment change

is an effective way for information update and prediction. In
every selection step of the seed node, a basic link prediction
of their neighbors can be calculated by every agent’s obser-
vation. Then, the selection of a seed node can be guided by
predictions. For instance, if agentai has any changes on its
PULs, it will tell all neighbors linked to it. At the same time,
the prediction of availability of its PULs can be calculatedby:

preai
=

⌊(

1

I

I
∑

q=1

nt′q

)

/nt

⌋

(8)

wherepreai
indicates the prediction number ofai’s PULs,q is

the diffusion iteration number,nt is the number ofai’s PULs
andnt′q represents the number of the PULs available in the
qth iteration.
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According to Eqs. (6)-(8), the information vector of agent
ai can be defined asIVai

= (fai
, dcai

, preai
). Note that

the information vectorIVai
for agentai is embedded by the

algorithm US2vec, which means the node information is also
included in the process of graph embedding. The solution of
the seed set will be improved and supported by the embedding
of the nodes’ information.

The interactions of every agent in every diffusion iteration
are shown in Algorithm 2. All the interactions are based on
the observations of the agent’s neighbors. Every decision and
action of neighbors can be observed by agent-self through
links. To summarize, one agent observes and records neigh-
bors’ behaviors, then evaluates neighbors and decides the
corresponding probabilities.

Algorithm 2 Interaction Algorithm for Every Agentai
1: Obtain the information of neighbors’ actions by observa-

tions.
2: According to the data of observations:
3: for q=1 to |Neighborai

| do
4: if aq andai are linked by an unstable linkthen
5: Give the probability on this unstable link by E-

q. (5);
6: According to the probabilities of the two agents,

establish the link or not.
7: end if
8: Calculate the neighboraq ’s faith evaluation by Eq. (6);
9: Evaluateaq ’s diffusion capability by Eq. (7);

10: end for
11: Predict the availability ofai’s PULs by Eq. (8);
12: Generateai’s IVai

;
13: Update the record of information and ready to be accessed

to;

C. Unstable-Similarity2vec

Since only the structural information (e.g. degrees and
circles) has been taken into consideration in the general
structure-based graph embedding methods, such methods are
not appropriate for the influence maximization problem under
PULs. According to the model in Section IV-C, the diffusion
capability, faith evaluation and link information among agents
should be taken into the calculation of the US2vec algorithm.
The US2vec method is designed in Algorithm 3.

In line 1 of Algorithm 3, the similarity between any two
agents and the initialized information vectors are obtained.
After that, the distance between the agents is calculated and the
weighted layered graph is drawn. According to the similarity
and the information vector, the weight between any two nodes
in every layer can be obtained. Then, the stepping probability
in the random walk is calculated by:

pst =



















e−fq(u,v)

∑
t∈V e−fq(u,t) ,

stay in the current layerq
and stepping fromau to av

w(uq,uq+1)
w(uk,uq+1)+w(uq,uq−1)

, go to layerq + 1
w(uq,uq−1)

w(uk,uq+1)+w(uq,uq−1)
, go to layerq − 1

(9)

wherepst indicates the stepping probability andw(uq, uq+1)
means the weight from the layeruq to uq+1. The calculation
of w(uq, uq+1) is shown in Eq. (10):

w(uq , uq+1) = log(Γq(u) + Γ′

q(u) + e) (10)

whereΓq(u) (Γ′

q(u) ) indicates the number of nodeu’s stable
(unstable) links whose weight is larger than the average weight
of all stable (unstable) links in layerq. Besides,w(uq , uq−1)
is set as 1, which is referred from the struc2vec method [57].
In Eq. (9), the walking will stay in the current layer by the
probability of the first mathematical expression. If the walking
changes the layer, it will go to the next layer by the second
expression and go to the last layer by the third expression.
It can be noticed that the sum of the second and the third
expressions is 1.

Algorithm 3 US2vec Algorithm

Input: A networkG = (V,E, P )

1: Calculate the similarity between any two nodes according
to the definition of structural similarity andq in Eq. (1)
and access to the initialized information vectors of these
two nodes amongq-hop neighbors.

2: Measure the information vectors of any two nodes by
distance calculation:DC ← d(u, v).

3: Obtain the edge weight on any two nodes byefq(u,v)d(u,v).
4: Build weighted and layered graph by differentq-values.
5: Implement random walk method to generate a sequence

of nodes to determine the context of every node according
to the stepping probability by Eq. (9).

6: Training the model by the word2vec method (Skip-Gram)
according to the sequences generated in Step 5.

7: Use the trained model to classify all the nodes.

Output: The classification setsCS.

In Algorithm 3, the initializing of information vectors is
implemented by agent interactions. In this step, the third rule
of agent interaction is executed by all agents for 100 times,
thus, the information vector of any agent can be calculated
with the historical action records by Eqs. (6)-(8). On line 2,
the distance between IVs of any two nodes have been recorded
in the setDC. According to the similarities and distances
obtained on lines 1-2, the weighted and layered graph has been
established on lines 3-4. It should be noticed that not only the
similarities but also the embedding of the information vectors
are calculated in US2vec on line 3. Then, the model for node
classifying has been generated by random walk and word2vec
training on lines 5-6.

Based on the results of US2vec, the generation of seed nodes
is described by Algorithm 4.

In Step 1 of Algorithm 4, the rule of selecting seed nodes is
shown. According to the classifications from Algorithm 3, in
every iteration, agents with the maximum diffusion capability
are added into the seed setSN . In the case that the number
of agents (whose diffusion capability equalsfamax

) is more
than one, the filling of the seed set is accelerated and thus,
the selection method is efficient. With the generated new seed
nodes and the currently activated nodes, the information ofall
nodes is updated for the next iteration.
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Algorithm 4 Selection Algorithm

Input: A networkG = (V,E, P ), the classified setCS.

1: Select the agents who have the best diffusion capability
dcamax

in every classification.
2: Update the prediction information by agents communica-

tions.
3: Measure the inactivated nodes by the updated information

vectors and predictions values.
4: Mark the agent activating state by influence spreading on

the corresponding diffusion model.
5: Repeat Steps 1 and 4 until the node set is full.

Output: The seed node setSN .

V. EXPERIMENTS AND ANALYSIS

In this section, the proposed procedure of US2vec for
the influence maximization problem on the MAS with two
diffusion models is tested to show the effectiveness of the
developed algorithm by evaluating the influence spreading
results. Firstly, the spreading results of several influence maxi-
mization algorithms are compared with US2vec under the two
diffusion models on the MAS in Section V-A. Secondly, in
order to test the effectiveness of US2vec, the results under
different link settings are presented in Section V-B. Finally,
the whole model and algorithm are analyzed in Section V-C.
The whole framework is implemented in C++ and Python, and
tested in the environment of the TensorFlow 2.0 CPU vision.

A. Experiments on various algorithms for IM

This subsection focuses on the results of the influence
spreading by running several algorithms: the random algorith-
m, meta heuristic (MH), maxdegree method, stru2vec algo-
rithm and US2vec algorithm. The random algorithm focuses
on selecting the seed nodes randomly to establish the seed set,
and its results always present a fluctuant trend. The influence
maximization problem is considered as a0− 1 integer linear
programming problem by the meta heuristic algorithm and has
been solved by using the meta heuristic idea. The maxdegree
method is a heuristic algorithm based on degree centrality,
which means it chooses a seed node that has the max degree.

In order to compare the US2vec approach with other ex-
isting ones, the Twitter social network database is chosen for
this part of the experiments, because of its rich characters
and real-world links. Then, in order to test the robustness
and effectiveness of US2vec, the modified Twitter database
is introduced for further experiments. The original database
is sampled and modified into a new one that has a higher
similarity on the structure through the following steps:

1) Users sampling.First, the users who have the maximum
links are sampled and, according to these users, the rest
of the users are sampled by the Breadth-First-Search
method until the sample set is full.

2) Weight setting.This step sets the weights for every link
of the sampled users. First, the weight for diffusion
probability is set as the occurrence frequency of this link
in the original database and the index of link stability is

set as a random value in the range of(0, 1) based on the
probability of p or set as1 according to the probability
1− p, wherep is the percentage of unstable links in the
settings of the experiment. As soon as the new database
is obtained, every user has its observation and record on
their neighbors in the MAS model.

In order to display the performance of the two diffusion
models, 500 users are sampled from the original database. The
results of the five methods are shown in Fig. 3 and Fig. 4.

By sampling 500 users in the database and reset their link
parameters, the five algorithms are run 100 times on the same
new database, and the average percentages of diffusion results
are shown in Fig. 3. It can be seen from Fig. 3 that on
the UIC model, the best performance belongs to the US2vec
algorithm and the random method gets the worst results. With
the growing number of the seed set size, all the percentages of
influence diffusion of algorithms is improved. The reason for
this phenomenon is that the more the number of seed nodes
is, the larger the scope of the influence is. The maxdegree
and random approaches have relatively smaller percentages
of influence diffusion due to the fact that, the basic greedy
and random idea cannot deal with the PULs among users
even though the seed set size is growing. The MH method
and stru2vec have better performances than the maxdegree
and random as unwanted users are considered in the meta
heuristic which helps to avoid the influence diffusion on
PULs to a certain extent. Compared with US2vec, the simple
structural similarity is calculated in stru2vec without unstable
similarities, which leads to the worst performance.

The diffusion results on the ULT model are shown in
Fig. 4. Comparing with Fig. 3, the lines of the five methods
have similar trends. Because there are negative influence
calculations in the ULT model through Eq. (3), the maximum
of the diffusion percentage is lower than that in the UIC model
in Fig. 3. According to Fig. 3 and Fig. 4, it can be seen
that US2vec can deal with PULs in the network and obtain a
better result than the existing methods designed using the two
proposed diffusion models.

B. The effectiveness of US2vec

In order to test the effectiveness and efficiency, the al-
gorithms are run on different sizes of the database. 600,
1200, 1800, 2400 and 3000 users are, respectively, sampled in
the original database. After modifying the sampled database
as discussed previously, the information of PULs and agent
observations are set. According to Section V-A, it can be seen
that better performance is obtained by the US2vec, stru2vec
and MH methods. For the purpose of showing the advantage
of the US2vec method on the network with PULs, these three
methods are chosen to run 100 times on the two diffusion
models and the results are presented in Fig. 5 and Fig. 6.

From Fig. 5, the MH approach gets a trend where the
number of activated nodes gradually descends. The reason
for this phenomenon is that with the growing number of
nodes in the database, the meta heuristic cannot handle the
exponential searching space and the extremely complicated
calculation. Besides, the PULs in the database are not taken
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Fig. 3. The results on UIC model with 500 users
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Fig. 4. The results on ULT model with 500 users

into consideration, and a part of nodes that can be activated
are missed because of broken links. In contrast, stru2vec gets
better results on different node sizes because similar structures
of nodes help diffusion calculations. In addition, it can beeasy
to figure out that the best robustness is shown by US2vec.
Whatever the number of nodes is, the best performance (over
80%) is obtained by US2vec.

Similar results can also be found in the ULT model in
Fig. 6. US2vec gets the best performance on different sizes of
database among the three algorithms. Compared with Fig. 5,
under the ULT model, MH and stru2vec methods have worse
performance than US2vec due to the effect from the negative
influence diffusion.

Except for the node size, the set of the percentage of PULs
is also an important factor that affects the effectiveness of
influence diffusion. The sampled database is modified with
different settings of the percentage of PULs to test US2vec’s
efficiency. The results of US2vec under the two models in
different settings (of the user number and the percentage of
PULs) are shown in Fig. 7 and Fig. 8.
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Fig. 5. The results on UIC model with different user numbers
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Fig. 6. The results on ULT model with different user numbers
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Fig. 7. The results on UIC model with different settings

From Fig. 7 and Fig. 8, one can see that the percentage of
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Fig. 8. The results on IC model with different settings

activated nodes grows when US2vec runs under 500 users with
different settings of the percentage of PULs including 10%,
20% and 30%. Additionally, the influence diffusion can always
be insured by US2vec with 30% of PULs in the network no
matter the node number is 500, 800 or 1100. It should be
noticed that when the percentage of PULs is 5%, the diffusion
results are in the range of65∼72%. These results are similar
to that of stru2vecc because a low percentage of PULs cannot
reflect the advantages of US2vec. In the two diffusion models,
a stable percentage of activated nodes70∼90% is guaranteed
by US2vec.

C. Running time of the whole algorithm

To evaluate the running time of the US2vec+CA method on
the influence maximization issue, several approaches are tested
on the two diffusion models to compare with the proposed
method. The experiments are set as: the size of seed set is
15% of the population, and the percentage of PULs is 40%.
After running every approach on the two diffusion models
100 times, the average time costs are displayed in Fig. 9 and
Fig. 10.

It can be seen in Fig. 9 that, the running time is quite
different between various algorithms on the UIC model. For
these five methods, it is obvious that the running time does
not grow with the increasing population of nodes. The random
and maxdegree algorithms are faster than others, and the
random method is even faster than the maxdegree method. The
calculation of the maxdegree method always changes because
of the PULs, which requires more costs on the time. Although
there is a little fluctuation on the average running time of
the MH method, the performance can still be maintained as
the longest one in (140,160) minutes. The performance of
Struc2vec+CA and US2vec+CA are similar where the time
increases with the increase of the population. The difference
is that more time is required by US2vec+CA, and the reason is
that 40% of links are unstable causing calculation complexities
on similarities. It should be noticed that graph-based methods
obtain the average running time among (55,130) minutes.
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Fig. 9. The results on UIC model with different settings
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Fig. 10. The results on ULT model with different settings

Comparing the results on the UIC model in Fig. 9, the
performance of five algorithms on the ULT model is exhib-
ited in Fig. 10. Apparently, there is little difference in the
performance of the random, maxdegree and MH methods
on the two models, and more running time is required by
Struc2vec+CA and US2vec+CA approaches. The reason is that
the CA algorithm requires a long running time on the ULT
model because the updating calculations of the information
vector occupy a part of the running time.

D. A case study: an advertisement recommendation in a
campus network

The campus network is a kind of popular vehicle for
communications among university students. The topic of ad-
vertisements recommendation in a campus network is chosen
as a case study for the whole algorithm. The reason for
choosing the topic are as follows: 1) a campus network has
a number of unstable links because of the poor quality of
fiber and the low bandwidth; 2) the population of users in the
campus network is apposite for the calculation of GE method
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and analysis of IM problem; 3) the structure of the campus
network and the database of users are easy to obtain.

The database of the campus network in this case study had
been obtained from the school forum in the campus network
of Hunan industry polytechnic. There are 5,100 users on this
forum platform and 2,000 visits can be found per day. Social
relationships, online frequencies, message sending success
rates, failure rates of links are included in the original database.
An application advertisement of curriculum timetable is rec-
ommended to student users in this campus network, and the
influence range can be maximized by US2vec and Selection
algorithms.

In this advertisement recommendation, the ULT model had
been applied to the campus network. Considering that students
usually accept a new product through friends and classmates,
and when the influence of recommendations has been accumu-
lated over than people’s threshold, they will accept the product.
Thus, the ULT model is the most precise simulation for this
phenomenon. Corresponding to the influence maximization
model based on MAS, the real scenarios of campus network
have been mapped to the model as follows.

1) The weight of the link between two users (u and v)
is indicated byp1(u,v), and this weight denotes the
influence value when the advertisement influence is
spreading on this link by ULT model;

2) The connected probability of the unstable link between
two users (u andv) is indicated byp2(u,v), in this case
p2(u,v) reflects the connection quality of the campus
network.

3) The probabilitiespu(u,v) andpv(u,v) indicate the proba-
bility of being willing to communicate with each other
in every iteration of influence spreading.

After data preprocessing of campus network, the network
model with unstable links can be established. Because the user
population of campus network is 5100, the whole network
visualization is full of overlapping nodes. Thus, the visualized
topology with 200 nodes is shown in Fig. 11. In Fig. 11,
unstable links and stable links are indicated by dotted lines
and solid lines. In order to initialize advertisement diffusion,
all nodes are not activated and marked as blue nodes.

The experiments of maximizing advertisement diffusion
in the campus network are running with different settings:
the percentage of seed set is set as 8%, 10% and 15%,
respectively; the node population is set as 200, 1000, 3000
and 5100. With the running of US2vec and SA algorithms on
ULT models 100 times, the average number of activated nodes
are displayed in Fig. 12.

In Fig 12, when the number of seed nodes is growing,
the range of diffusion is becoming large, which means an
increasing number of users are accepting the advertisement.
It is no doubt that excellent effectiveness was obtained in the
campus network, the diffusion percentage always more than
80% no matter how many the user population is. Especially,
the visualized network of 200 users (the percentage of seed
nodes is 8%) is shown in Fig. 13, activated nodes are indicated
by the yellow nodes. Efficient contributions are made by the
ULT model and the two main algorithms (US2vec and SA) on
dealing with unstable links, and the MAS model based on GE

Fig. 11. The visualized topology of 200 users in the campus network
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Fig. 12. The results of advertisement recommendation amongdifferent
number of users

has been successfully applied to the maximization problem on
advertisement recommendation in the campus network.

VI. CONCLUSION

In this paper, the influence maximization issue under the
network with PULs has been addressed via the graph embed-
ding method on MASs. To address the difficulty of influence
diffusion on PULs, two diffusion models and a novel MAS
model have been proposed. To be specific, the calculations
of influence values have been included in the two diffusion
models and the agent interaction rules designed for influence
diffusion have been defined by the MAS model. A solid
foundation of influence diffusion for the network with PULs
has been established by the three models. Then, according
to the structural similarity of PULs and agent interactions,
the nodes have been embedded by a novel graph embedding
method, i.e. the US2vec algorithm. It should be pointed out
that the integrated information of the faith evaluation, the
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Fig. 13. The result of advertisement recommendation among 200 users in
the campus network

diffusion capability and the prediction of availability have
been embedded simultaneously in this algorithm. The diffu-
sion effectiveness has been accelerated by the embedding of
integrated information of agents. Based on the results of the
US2vec algorithm, the seed set can be figured out by the CA
method. By activating the nodes in the seed set and diffusing
influence in the corresponding diffusion model, the range of
influence diffusion has been maximized. Finally, the perfect
performance of the US2vec algorithm and the CA method have
been verified by extensive experiments for different parameters
under different scenarios.

To summarize, the proposed MAS model and the US2vec
algorithm have shown excellent superiority in solving the
influence maximization problem under the network with PULs.
Accurate and efficient solutions can be brought out for realistic
problems by combining the powerful simulation capacity of
MASs, the node classification and the link prediction of graph
embedding algorithms. Thus, in the future, our next study
direction is to apply novel graph embedding ideas (based on
the MAS model) to the realistic problem so as to look into
the structures of society or rules of human activities [25],[27],
[42], [52], [53]. It should be mentioned that the study for graph
embedding on the dynamic graph can be a new challenge for
MAS simulations on the graph evolution of the real network
[5], [54].
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