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Abstract— In the electroencephalography (EEG) based
cross-subject motor imagery (MI) classification task, the
device and subject problems can cause the time-related
data distribution shift problem. In a single-source to single-
target (STS) MI classification task, such a shift problem will
certainly provoke an increase in the overall data distribution
difference between the source and target domains, giving
rise to poor classification accuracy. In this paper, a novel
multi-subdomain adaptation method (MSDAN) is proposed
to solve the shift problem and improve the classification
accuracy of the traditional approaches. In the proposed
MSDAN, the adaptation losses in both class-related and
time-related subdomains (that are divided by different data
labels and session labels) are obtained by measuring the
distribution differences between the source and target sub-
domains. Then, the adaptation and classification losses in
the loss function of MSDAN are minimized concurrently.
To illustrate the application value of the proposed method,
our method is applied to solve the STS MI classification
task about data analysis with respect to the brain-computer
interface (BCI) competition III-IVa dataset. The resultant
experiment results demonstrate that compared with other
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well-known domain adaptation and deep learning methods,
the proposed method is capable of solving the time-related
data distribution problem at higher classification accuracy.

Index Terms— Electroencephalography classification,
motor imagery, multi-subdomain adaptation, single-source
to single-target, time-related distribution shift.

I. INTRODUCTION

NUMEROUS neurons are constantly creating bio-
electricity as the brain works in the human brain, which

can change the electrical potentials on the scalp surface,
which can change the electrical potentials on the human scalp
surface [7]. Brain-computer interface (BCI) devices can be
used to collect the electrical potentials change across time and
obtain Electroencephalography (EEG) [58]. EEG is an efficient
data acquisition method that is widely adopted in the field of
brain science [7], [58], where the analysis of EEG signals
is instrumental in understanding different brain activities [7],
[59]. For example, EEG can be used to test the concentration
level [30], evaluate sleep quality [68], and diagnose diseases
including seizures [1] and schizophrenia [48]. It should be
noted that the EEG-based motor imagery (MI) signal can be
used as commands to control external systems [5], and the
research on EEG-based MI classification has thus attracted
much attention in recent years.

In recent MI classification studies, cross-subject classifica-
tion has become one of the most popular directions where
the generalization ability (of the classification model) can be
enhanced by improving the cross-subject performance [56].
In cross-subject classification tasks, classical transfer learning
methods such as transfer component analysis [39] and joint
distribution adaptation [33] are widely applied in many sit-
uations. Recently, some new deep learning algorithms have
attracted much attention, such as graph convolutional [51] net-
works and federated learning [22]. Depending on the number
of subjects in the source and target domains, cross-subject
MI classification tasks can be divided into three categories:
multi-source to multi-target (MTM), multi-source to single-
target (MTS), and single-source to single-target (STS). In the
MTM MI classification task, the EEG data from several
subjects are pooled together for training and testing, where
the training set includes the labeled data from every subject.
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TABLE I
SUMMARY OF CROSS-SUBJECT MI CLASSIFICATION METHODS

In order to improve the model generalization in the MTM
MI classification task, the deep learning [13], [22], [42], [51],
[67] and global domain adaptation [38] methods have been
applied by researchers. In the MTS MI classification task,
the data from multiple source subjects are used for training,
and the data from a new target subject are used for testing. The
training data are fully labeled, and the test data have no label
or are partially labeled. In order to solve the MTS problem,
various approaches have been developed by researchers such
as deep learning [2], [17], [29], [40], [41], [60], global domain
adaptation [3], [12], [18], [24], [61], [65], and class-related
subdomain adaptation [66] methods. In the STS MI classifica-
tion task, only the data from a single source subject are used
for training, and the model is tested on a new target subject.
Global domain adaptation [44], [69] and class-related subdo-
main adaptation [16] have been introduced to improve classi-
fication performance. Some typical cross-subject MI classifi-
cation methods in these three categories are listed in Table I.

On one hand, it should be noted that so far, in comparison
with the MTM and MTS tasks, very little attention has been
paid to the STS MI classification task, where only the data of
a single source subject are available for training. Undoubtedly,
the shortage of training data could increase the difficulty
of model generalization. On the other hand, as shown in
Table I, the existing domain adaptation studies in the cross-
subject MI classification tasks have put their focus on the
global or class-related approaches, whereas the time-related
data distribution problem has not been investigated, not to
mention the case where the time-related subdomain adaptation
is also concerned.

The time-related data distribution shift problem is a com-
mon practical problem in EEG-related studies [4], [21], [23],
[64]. It has been shown in a recent study that the classi-
fication accuracies varied from 7% to 30% across different
experimental sessions for the same subject, and this indicates
the existence of a significant EEG data distribution shift
across time [43]. Moreover, it has been pointed out that the
classification accuracy of this study has dropped by 18.2%
when combining the data from two sessions together [43].
Another study showed that the classification accuracy dropped
by 52.76% when the model training on data from one session
was tested on data from another session [37]. Other previous
studies have also stated that the time-related distribution shift
problem is a critical factor and should be considered in the
EEG analysis [6], [26]. According to the literature review, the

time-related EEG data distribution shift can be associated with
the following two factors:

1) EEG device problems. In typical noninvasive EEG-based
MI experiments, electrodes on the scalp surface are used to
collect the signals from the human brain when subjects are
carrying out specific actions [36]. However, the connection
quality between electrodes and scalp surface changes over
time, and this dramatically affects the process of data col-
lection. Generally, there are two kinds of electrodes that are
frequently used in EEG signal collection devices: dry elec-
trodes and wet electrodes [57]. For dry electrodes, although the
experiment setup is convenient, the contact between electrodes
and scalp surface may become unstable over time which could
lead to the data distribution shift problem [47]. For wet elec-
trodes (e.g., saline electrodes), the evaporation of electrolytes
can decrease the connectivity between the electrodes and the
human scalp, leading to an increase in impedance and data
distribution shift over time [35]. As a result, the signal quality
changes across time, giving rise to the time-related EEG data
distribution shift problem.

2) Subject problems. The subject’s emotion may change over
the experiment, which would lead to the change of frontal
EEG activity related to the intensity [45]. Some studies have
shown that many emotional states can cause the change of
several frequency bands, such as the beta power band change
in the parietal lobe region [19], [45], [46]. Moreover, muscle
fatigue during a long-time experiment could contribute to the
activity changing of different hemispheres in beta and gamma
rhythms [52]. The past studies have also verified that different
observations of alpha and theta power are accompanied by
mental fatigue increasing [8], [9], [27]. Therefore, it can be
concluded that the emotion and fatigue changing of subjects in
experiments can lead to the time-related EEG data distribution
shift.

In general, the data distribution shift cannot be eliminated
in experiments due to the equipment problems and the phys-
iological state of human beings. Hence, there is an urgent
need to reduce the time-related data distribution difference by
improving the existing STS MI classification algorithm. To the
best of the authors’ knowledge, no previous work has focused
on the time-related data distribution shift problem and the
time-related subdomain adaptation in the STS MI classification
tasks.

To solve the problems mentioned above, a novel multi-
subdomain adaptation network (MSDAN) that combines both
class-related and time-related subdomain adaptations is pro-
posed in this paper. The main challenges in this study are:
1) both time-related and class-related subdomains are required
to be adapted concurrently, which brings the difficulty in
the loss function design for multi-objective optimization; and
2) the STS MI classification tasks have much less training data
from the source domain compared with the MTM and MTS
tasks, which increases the difficulty of model generalization.

Motivated by the above discussions, the main contributions
of this paper can be summarized in three aspects as follows:

1) A novel time-related EEG distribution shift problem in
the STS MI classification tasks is investigated in this
paper.
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2) A novel MSDAN method is introduced where the
multi-subdomain adaptation terms help to minimize both
time-related and class-related subdomain distribution dif-
ferences, and moreover, find a proper balance between
the adaptation and classification losses.

3) The proposed MSDAN method is successfully verified in
the analysis of the STS MI classification tasks for the
BCI competition III-IVa dataset, where the classification
accuracies are proved to be higher than other well-
known domain adaptation methods, and moreover, the
efficiency of the MI classification model building in BCI
applications is also improved based on the STS cross-
subject transfer.

The rest of this paper is presented as follows. The problem
of distribution shift in the EEG-based STS MI classification
task is described in Section II. The proposed method with
data preprocessing and MSDAN is presented in Section III.
In Section IV, the dataset and experiments used in this paper
are introduced, and the experimental results are analyzed in
detail. Finally, conclusions and discussions on relevant future
work are presented in Section V.

II. PROBLEM FORMULATION

To illustrate the time-related EEG data distribution shift,
Fig. 1 shows the changes in data samples with two classes
(c = 1 or 2) and two experimental sessions (τ = 1 or 2).
The green and blue samples represent data distributions in
different sessions. The red arrows represent the directions
of data distribution shifts between two sessions. Fig. 1(a)
shows the distribution shift of source domain data between
two sessions, and the cross and square symbols represent
different classes in the source domain. Fig. 1(b) shows the
distribution shift of target domain data between two sessions,
and the circle and triangle symbols represent different classes
in the target domain. Due to the EEG device and subject
problems, the data distribution of blue samples in the second
session can differ from green samples in the first session.
This time-related data distribution shift would increase the
original distribution difference between the source and tar-
get domains, eventually affecting the STS MI classification
task.

To further clarify the time-related EEG data distribution
shift problem in practical application, the brain topographies
of 22 components after independent component analysis (ICA)
are shown in Fig. 2. The EEG signals are obtained from the
same MI task of one subject at two different experimental
sessions. The deep red and deep blue regions represent the
high concentration power of positive and negative potential
in components. The light color regions represent the low
concentration power in components. The differences between
Fig. 2(a) and Fig. 2(b) represent the time-related EEG data
distribution shifts between two sessions in the same MI task.

From the illustrations of Fig. 1 and Fig. 2, it is shown that
the time-related distribution shift problems in EEG signals
could have a negative impact on cross-subject MI classification
performance. The problem formulation is shown as follows.
The original EEG signal measurement can be denoted as

Fig. 1. Illustration of time-related EEG data distribution shift.

Ŝ = {ŝi } that contains n samples:
ŝi = f̂i + v̂i , i ∈ n (1)

where f̂i represents the proper data of EEG signal, and v̂i is
the noise.

As the data distribution shifts over time, an example of
the actual EEG signal measurement S = {si }, which contains
distribution shifts, can be defined as:

si = γi f̂i + ωi + v̂i (2)

where ωi and γi represent the additive and multiplicative time-
related distribution shifts, respectively.

Both the source and target domain data have multiple
sessions in the STS MI classification tasks. The EEG signals
collected in different sessions may suffer from the illustrated
time-related distribution shifts ωi and γi . The time-related
distribution shifts would increase the overall distribution dif-
ference between the source and target domains and increase
the difficulty of the STS MI classification tasks. The problem
of EEG data with time-related distribution shifts in STS MI
classification tasks is investigated in this paper. A specific
method needs to be proposed to solve this time-related dis-
tribution shift problem.

III. METHODOLOGY

The structure of the proposed method is shown in Fig. 3.
EEG data are preprocessed by signal filtering and arti-
facts removal first, which can increase the signal-to-noise
ratio (SNR) and help improve the classification accuracy.
Then, data features are extracted from the preprocessed
data and classified with multi-subdomain adaptations by the
MSDAN. In MSDAN, a notable loss function is designed by
combining the classification loss and the subdomain adaptation
losses and later optimized during the training process.

A. EEG Data Preprocessing

The preprocessing is shown in the grey part of Fig. 3.
Preprocessing is essential due to redundant information in the
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Fig. 2. Component maps of EEG signals after ICA.

input EEG data, such as high-frequency noise and artifacts
generated by the body movement. In this study, the EEG data
preprocessing contains signal filtering and artifacts removal.
First, the EEG signals are bandpass filtered from 5 to 35 Hz by
finite impulse response (FIR) to focus on the wave band that
reflects the motor imagery. Second, EEG data are extracted
for each sample around cues, reducing the input data size
and speeding up the training process. Third, the ICA is
implemented to remove the artifact components so the SNR of
the data can be further improved. Last, the signals are bandpass
filtered and extracted again to refine the data further.

The FIR filter is adopted to obtain the signal in the desired
frequency range as shown in (3):

g(m) =
k−1∑
n=0

h(n)s(m − n) (3)

Fig. 3. Structure of the proposed method.

where s(m) is the input signal of time step m, g(m) is the
output signal after filtering, h(n) is the FIR filtering parameter,
and 0 < k < m.

ICA can be implemented to remove artifacts, including the
electromyography (EMG) caused by the muscle of head and
body, the electrocardiogram (ECG) caused by the heart, and
the electrooculogram (EOG) caused by the eyeballs, ocular
muscles, and eyelids. The signal matrix gica(m) after ICA
can be expressed by (4):

gica(m) = A · g(m) (4)

where A is the demixing matrix. Through ICA, the EEG
signal can be decomposed into μ independent components.
The decomposed matrix is gica(m) = [g1(m), · · · , gμ(m)].
The preprocessed data x are obtained after the removal of
artifact components from gica(m).

B. Multi-Subdomain Adaptation Method

The proposed MSDAN is shown in the yellow part of Fig. 3.
The network has 13 layers, and the detailed architecture is
shown in Table II. The green part of the network is inspired
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TABLE II
DETAILS OF THE NETWORK STRUCTURE

by EEGNet [25]. By features extraction and network training,
the classification results can be obtained by:

ŷs = F(xs) (5)

ŷt = F(xt ) (6)

where xs and xt are the preprocessed data of source and
target domains, F denotes the network mapping, and ŷs and ŷt

denote the predicted class labels of source and target domains,
respectively.

The core difference between the proposed method and other
methods is the design of the loss function. As illustrated in
the blue and orange parts of Fig. 3, the objective function
J of MSDAN consists of the classification loss lossclc and
the multi-subdomain adaptation loss lossadp. The objective
function of MSDAN is expressed as follows:

min J = lossclc + lossadp (7)

where lossclc denotes the classification loss measuring the
difference between the predicted class labels and actual class
labels of the source domain, and lossadp denotes the multi-
subdomain adaptation loss measuring the distribution differ-
ence across different subdomains.

The classification loss lossclc in (7) can be computed by:

lossclc = 1

ns

ns∑
i=1

J (ŷs(i), ys(i))

= − 1

ns

ns∑
i=1

C∑
c=1

�{ys(i)=c} log ŷs(i) (8)

where ns denotes the number of samples of the source domain,
ys denotes the actual class labels of the source domain, J (·, ·)
denotes the cross-entropy loss function, C denotes the number
of classes, and � is an indicator function which equals 1 if the
condition ys(i) = c (c ∈ C) is satisfied or 0 if not.

The domain adaptation loss lossadp of MSDAN, as shown
in the blue part of Fig. 3, has two parts: the class-related
distribution difference loss<c>

adp and time-related distribution
difference loss<τ>adp :

lossadp = λ<c>loss<c>
adp + λ<τ>loss<τ>adp

= λ<c>d̂(p<c>
s , p<c>

t )

+ λ<τ>d̂(p<τ>s , p<τ>t ) (9)

where <c> and <τ> denote the class-related and the time-
related subdomains, respectively; λ<c> and λ<τ> are the
positive scale factors; p<c>

s and p<τ>s represent the class-
related and time-related subdomain distributions of the source
domain data, respectively; p<c>

t and p<τ>t represent the
class-related and time-related subdomain distributions of the
target domain data, respectively; and d̂(·, ·) represents the
distribution difference between the source and target domains.
The scale factors λ<c> and λ<τ> can provide the trade-off
among classification loss, class-related adaptation loss, and
time-related adaptation loss. Therefore, the different focus of
optimization can be shown at different stages of the training
process.

The adaptation losses can be obtained with six inputs: actual
class labels of source domain ys , predicted class labels of
target domain ŷt , session labels of source domain ψs , session
labels of target domain ψt , and features zs and zt extracted
from the source and target domains, respectively. Features
zs and zt can be obtained before the linear layer. Session
labels can be obtained based on the data collection order.
Here, the maximum mean discrepancy (MMD) [70] is used
to measure the distribution difference between the source and
target subdomains. In this case, the class-related subdomain
difference d̂(p<c>

s , p<c>
t ) and time-related subdomain differ-

ence d̂(p<τ>s , p<τ>t ) in (9) can be computed by (10) and (11)
as follows:

d̂(p<c>
s , p<c>

t )

� E<c>�E<c>
s [φ(zs)] − E<c>

t [φ(zt )]�2H
= 1

C

C∑
c=1

�
ns∑

i=1

wc
s(i)φ(zs(i))−

nt∑
j=1

wc
t ( j )φ(zt ( j ))�2H

= 1

C

C∑
c=1

[
ns∑

i=1

ns∑
j=1

wc
s(i)w

c
s( j )k(zs(i), zs( j ))

+
nt∑

i=1

nt∑
j=1

wc
t (i)w

c
t ( j )k(zt (i), zt ( j ))

− 2
ns∑

i=1

nt∑
j=1

wc
s(i)w

c
t ( j )k(zs(i), zt ( j ))] (10)

d̂(p<τ>s , p<τ>t )

� E<τ>�E<τ>s [φ(zs)] − E<τ>t [φ(zt )]�2H
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= 1

T

T∑
τ=1

�
ns∑

i=1

wτs(i)φ(zs(i))−
nt∑

j=1

wτt ( j )φ(zt ( j ))�2H

= 1

T

T∑
τ=1

[
ns∑

i=1

ns∑
j=1

wτs(i)w
τ
s( j )k(zs(i), zs( j ))

+
nt∑

i=1

nt∑
j=1

wτt (i)w
τ
t ( j )k(zt (i), zt ( j ))

− 2
ns∑

i=1

nt∑
j=1

wτs(i)w
τ
t ( j )k(zs(i), zt ( j ))] (11)

where H represents the reproducing kernel Hilbert space
(RKHS) [49], E[·] denotes the expectation; φ(·) is the map-
ping function that maps original features to RKHS; k(zs , zt ) =
�φ(zs), φ(zt )� represents the inner product of φ(zs) and φ(zt );
T is the number of experimental sessions; ns and nt are
the number of samples from the source and target domains,
respectively; and wc

s(i), w
c
t ( j ), w

τ
s(i), and wτt ( j ) are the weights

denoting the probability that a sample belongs to a specific
subdomain.

The Gaussian kernel function k(zs, zt ) = e−�zs−zt�2/σ is
used in the kernel mean embeddings to estimate the MMD, and
the kernel bandwidth σ is set as the median squared distances
between the input instances [15]. The sum of the weights
satisfy

∑ns
i=1 w

c
s(i) = 1,

∑nt
j=1w

c
t ( j ) = 1,

∑ns
i=1 w

τ
s(i) = 1,

and
∑nt

j=1w
τ
t ( j ) = 1 with

wc
s(i) =

{
1
nc

s
, ys(i) = c

0, ys(i) �= c
(12)

wc
t ( j ) =

{
1
nc

t
, ŷt ( j ) = c

0, ŷt ( j ) �= c
(13)

wτs(i) =
{

1
nτs
, ψs(i) = τ

0, ψs(i) �= τ
(14)

wτt ( j ) =
{

1
nτt
, ψt ( j ) = τ

0, ψt ( j ) �= τ
(15)

where nc
s (nτs ) and nc

t (nτt ) are the number of samples
in the c-th (τ -th) class in the source and target domains,
respectively.

After the combination of classification loss lossclc and
adaptation loss lossadp, the objective function J is optimized
by the standard stochastic gradient (SGD) algorithm, and the
network’s parameter 	 is updated as follows:

	← 	− η∇	 (16)

where η is the learning rate optimized by the grid search. ∇	
can be computed by:

∇	 = ∂lossclc

∂	
+ ∂lossadp

∂	

= ∂lossclc

∂	
+ λ<c>

∂loss<c>
adp

∂	
+ λ<τ> ∂loss<τ>adp

∂	

= 1

nb

nb∑
i=1

∂ J (ŷs(i), ys(i))

∂	

+ λ<c> ∂E[d̂(p<c>
s , p<c>

t )]
∂	

+ λ<τ> ∂E[d̂(p<τ>s , p<τ>t )]
∂	

(17)

where nb denotes the batch size. Since the class-related and
time-related subdomains both have an important impact on
the classification task, the λ<c> and λ<τ> are set to the same
value in this paper.

The pseudocode of the proposed MSDAN is shown in
Algorithm 1:

Algorithm 1 MSDAN
Input:
Data of source domain: {(xs(i), ys(i), ψs(i))}ns

i=1
Data of target domain: {(xt ( j ), ψt ( j ))}nt

j=1
Output:
Data labels of target domain: {ŷt ( j )}nt

j=1

Initialize the network
for each epoch do

for each batch do
1. Extract features and obtain predicted data labels ŷs

and ŷt by (5)-(6);
2. Compute classification loss lossclc by (8);
3. Obtain the features zs and zt from the network;
4. Compute adaptation losses loss<c>

adp and loss<τ>adp
by (9), (10) and (11) with ys , ŷt , ψs , ψt , zs , and zt ;
5. Obtain the objective function J by combing lossclc

and lossadp;
6. Compute gradient ∇	 and update network parameters
	 by (16) and (17).

end for
Record the best classification result {ŷt ( j )}nt

j=1
end for
return Classification result {ŷt ( j )}nt

j=1

Now, the proposed method has been formulated for solving
the time-related data distribution shift problem in the STS MI
classification task, where 1) the EEG data are preprocessed
by the FIR filter and ICA; 2) the proposed MSDAN is
adopted for features extraction and classification; and 3) the
classification loss and two subdomain adaptation losses are
optimized concurrently. Note that the network parameters are
updated during the model training accordingly.

IV. EXPERIMENT AND RESULT ANALYSIS

In this section, in order to verify the performance of
the proposed method, experiments are conducted on an
open access MI dataset: brain-computer interface (BCI)
competition III-IVa dataset [11]. In the experiments, different
individual subjects are used as the source and target domains,
and the performance of the proposed method is compared with
that of some typical deep learning methods, global domain
adaptation methods, and subdomain adaptation methods. This
research has been approved by University Ethics Committee
of Xi’an Jiaotong-Liverpool University with proposal number
EXT20-01-07 on March 31 2020.
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Fig. 4. Comparison of algorithm performance.

A. Dataset Description

The EEG signals of the BCI competition III-IVa dataset
contain 118 channels which are measured at positions of
the extended international 10/20 system. Signals are sampled
at 100 Hz with a bandpass frequency filter that ranges from
0.05 to 200 Hz. The dataset includes signals from five healthy
subjects: aa, al, av, aw, and ay. For each subject, there
are 280 EEG data samples of two classes: class 1 for the right
hand MI and class 2 for the right foot MI. In the EEG signal
collection of the dataset, subjects should conduct one kind of
motor imagery after each visual cue. Then subjects can relax
for 1.75 to 2.25 seconds after 3.5 seconds of motor imagery.

The EEG data obtained from the BCI competition III-IVa
dataset were preprocessed in the following sequence: firstly,
the EEG signals were filtered from 5 to 35 Hz to focus on the
wave band reflecting the activity of motor imagery; secondly,
to reduce the input data size and speed up the training process,
data segments of 5 seconds containing most of motor imagery
information were extracted from each sample from 1 second
before cue to 3 seconds after cue; thirdly, the ICA was
implemented to remove the artifact components and improve
the SNR of the data; lastly, the data is band filtered from 8 to
30 Hz to focus on the core wave band of motor imagery.

B. Experiment Settings

Bidirectional cross-subject experiments are implemented for
every two of the five subjects in the dataset to test the
performance of the proposed MSDAN in solving EEG-based
STS MI classification tasks. In total, there are A2

5 = 20 STS
MI classification tasks in the experiment. For the proposed
MSDAN, the scale factors of the subdomain adaptation losses
λ<c> and λ<τ> are both updated from 0 to 1 through
a progressive procedure during the training process where
λ<c> = λ<τ> = 2/(1+ e−10∗ξ ) − 1 and ξ changes linearly
from 0 to 1. At the beginning of the training, the optimization
focused on classification loss. During the training, the adaption
loss was increased to consider the influence of distribution
differences more.

The proposed MSDAN is compared with the follow-
ing methods: transfer component analysis (TCA) [39], joint

distribution adaptation (JDA) [33], deep neural network with-
out domain adaptation (DNN), deep correlation alignment
(D_CORAL) [50], deep domain confusion (DDC) [54], deep
subdomain adaptation network (DDAN) [16], and subdomain
adaptation network (SDAN). The DNN is used as an ablation
study, where the loss function only contains the classification
loss. The D_CORAL and DDC contain the classification loss
and global deep domain adaptation loss in their functions.
The DDAN and SDAN are used as ablation studies containing
classification loss and class-related subdomain adaptation loss
in the loss function. The algorithms adopted for comparison
in this paper are introduced as follows:

1) TCA: a traditional global domain adaptation method
using MMD. The EEG features learned by DNN are used
as inputs, and the k-nearest neighbor method (KNN) is used
as the classifier.

2) JDA: a traditional class-related subdomain adaptation
method using MMD. The EEG features learned by DNN are
used as inputs, and KNN is used as the classifier.

3) DNN: a deep learning method modified from the pro-
posed MSDAN by removing the domain adaptation parts. Only
the classification loss is optimized in the loss function.

4) D_CORAL: a domain adaptation method that aligns the
second-order statistics of the source and target domains. The
scale factor λ is set to 100 to balance the classification and
domain adaptation losses.

5) DDC: a domain adaptation method that uses MMD to
minimize the global distribution difference between the source
and target domains. The scale factor λ is set as the same as
λ<c> in MSDAN.

6) DDAN: a subdomain adaptation method that uses MMD
to minimize the global domain difference and uses the center-
based discriminative feature learning method to maximize the
inter-class discrepancy of the source domain. The scale factor
of global domain adaptation loss λ1 is set as the same as λ<c>

in MSDAN. The scale factor of class-related subdomain loss
λ2 is set to 0.01 as recommended in [16].

7) SDAN: a subdomain adaptation method modified from the
proposed MSDAN by removing the time-related subdomain
adaptation part. The class-related subdomain adaptation loss is
combined with the classification loss in the objective function.
The scale factor of the class-related subdomain adaptation loss
λ<c> is set the same as λ<c> in MSDAN.

In all deep learning methods, the learning rate is optimized
by grid search and set to 0.001, the batch size is set to 32, and
the number of epochs is set to 400. The SGD is selected as the
optimizer. The L2 weight decay regularization is implemented
to prevent the model from over-fitting with a decay coefficient
of 0.01. The programming language adopted in this paper is
Python. All methods are implemented based on the Pytorch
framework. The hardware parameters are Intel Xeon CPU
E5-2678 v3, Nvidia GeForce Titan RTX GPU 24GB, and
64GB RAM.

C. Experiment Results and Discussion

The experiment results of the proposed method and other
comparison methods on the BCI competition III-IVa dataset
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TABLE III
EXPERIMENTAL RESULTS ON BCI COMPETITION III-IVA DATASET

are provided in Table III. The best classification accuracy of
each transfer task is shown in boldface. In most tasks, the
classification performance of the proposed MSDAN method
outperforms other methods. The overall performance results in
terms of classification accuracy and running time are shown
in Fig. 4.

From the experimental results, the following observations
can be obtained. The average accuracy of MSDAN is 82.61%
which increases by 4.18% and 2.36% compared with the class-
related subdomain adaptation methods DDAN and SDAN,
respectively. Such results imply that the time-related data
distribution problem needs to be considered, and the proposed
MSDAN is able to handle the concerned problem in the
STS MI classification task. Note that: 1) compared with
global domain adaptation methods D_CORAL and DDC,
the MSDAN method increases the classification accuracy
by 7.89% and 4.52%, respectively; 2) compared with the
DNN, the MSDAN method has an average increase in the
classification accuracy of 8.86%. These comparison results
indicate that the proposed MSDAN method can handle the
time-related distribution shift problem and improve the overall
classification accuracy.

As the proposed MSDAN is an end-to-end deep learning
method designed to handle the distribution shift problem,
it is possible to have minor outlier cases which the proposed
methods may not achieve the best result among all the other
method. In order to show the effectiveness of the proposed

MSDAN method, the pairwise two-tailed t-test [53] is adopted
to investigate whether the improvement of the proposed
MSDAN has statistical significance over other methods. As all
the significance levels between MSDAN and other methods in
the last row of Table III are lower than 0.05, the proposed
MSDAN method is significantly better than all the other
methods in this paper.

To visualize the effectiveness of the proposed method, the
data features extracted by DNN, D_CORAL, DDC, DDAN,
SDAN, and MSDAN in the aa → al MI classification task
are visualized by the t-SNE method [55]. TCA and JDA
methods are not included as the feature extractions are the
same as DNN. From the six subfigures in Fig. 5, the following
observations can be obtained:

1) In Fig. 5(a), the data feature distribution difference
between the two classes is not clear, showing the data
feature extraction ability of DNN is not satisfactory;

2) In Fig. 5(b) and 5(c), the classification boundaries are
more apparent than Fig. 5(a), showing the effectiveness of
domain adaptation in the classification task by D_CORAL
and DDC;

3) In Fig. 5(d) and 5(e), the classification boundaries are
sharper than Fig. 5(b) and 5(c), showing the effectiveness
of subdomain adaptation in the classification task by
DDAN and SDAN;

4) In Fig. 5(f), the data features extracted by the proposed
multi-subdomain adaptation method MSDAN achieve the
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Fig. 5. Visualizations of features extracted by different methods in aa→ al MI classification task.

most apparent classification boundary between different
classes.

Therefore, Fig. 5 illustrates that MSDAN can extract better
data features than all the other methods and the time-related
subdomain adaptation helps learn discriminative data features
in the EEG-based STS MI classification task.

V. CONCLUSION

In this paper, the time-related data distribution shift problem
has been investigated in the EEG-based STS cross-subject
MI classification task. As the data distribution shift increases
the difference between the source and target domains and
challenges the classification task, a novel MSDAN method
has been proposed to solve the time-related distribution shift
problem. The proposed method can minimize the classification
loss, class-related adaptation loss, and time-related adaptation
loss concurrently during the model training process. To illus-
trate the effectiveness of the proposed MSDAN method, STS
MI classification experiments have been conducted on the BCI
competition III-IVa dataset. The overall classification results
in every STS MI classification task of the experiments have
shown that the proposed method is capable of improving the
classification performance compared with other well-known
domain adaptation and deep learning methods. Based on
the statistical significance analysis, the performances of the
proposed MSDAN method have proven to be significantly
improved than that of all the other methods in STS cross-
subject MI classification. For the future works, the extension
of the MSDAN method in solving other EEG classification
problems such as the data fading and missing problems in the
EEG measurement is a possible future research direction [14],
[28], [31]. In addition, the MSDAN can also be updated
and generalized to solve the classification problems in other

BCI and biomedical applications, considering that time-related
data distribution shift is a common problem in physiological
signals [10], [20], [32], [34], [62], [63].
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