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A B S T R A C T   

The VECMA toolkit enables automated Verification, Validation and Uncertainty Quantification (VVUQ) for 
complex applications that can be deployed on emerging exascale platforms and provides support for software 
applications for any domain of interest. The toolkit has four main components including EasyVVUQ for VVUQ 
workflows, FabSim3 for automation and tool integration, MUSCLE3 for coupling multiscale models and QCG 
tools to execute application workflows on high performance computing (HPC). A more recent addition to the 
VECMAtk is EasySurrogate for various types of surrogate methods. In this paper, we present five tutorials from 
different application domains that apply these VECMAtk components to perform uncertainty quantification 
analysis, use surrogate models, couple multiscale models and execute sensitivity analysis on HPC. This paper 
aims to provide hands-on experience for practitioners aiming to test and contrast with their own applications.   

1. Introduction 

The computational models have become prevalent in describing and 
predicting the behaviour of real-world processes and systems. In many 
cases, the computational models are based on theories and/or mathe
matical equations to represent problems and produce simulation out
comes. However, the computation of the model and reality is subject to 
the uncertainty that emerges from various sources. We use Verification, 
Validation and Uncertainty Quantification (VVUQ) analysis to deter
mine and estimate uncertainty and their sources in the computational 
models. 

VVUQ analysis is crucial as verification determines how accurately 
the model solves the mathematical equations applied in the simulation, 

validation defines the degree to which the models accurately represent 
the real world, and uncertainty quantification (UQ) identifies how vari
ations in input parameters affect simulation results. Overall, VVUQ 
process provides the level of accuracy and reliability in any given model 
and obtained simulation results [1]. 

There are several tools available in the research area of VVUQ, which 
provide algorithms for parameter investigations, model calibration, 
optimisation and UQ analysis. In this paper, we solely focus on the 
VECMA toolkit (VECMAtk) that facilitates VVUQ techniques and pat
terns for verification and validation (V&V), sensitivity analysis (SA) and 
UQ in application to single and multiscale simulations [1]. 

VECMAtk has four main components, namely EasyVVUQ [2] that is 
used for simplifying the implementation and use of VVUQ workflows, in 
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particular parametric UQ and sensitivity analysis, FabSim3 [3] which 
helps to automate computational research activities, MUSCLE3 [4] 
supporting the coupling of multiscale applications, and the QCG tools [5] 
facilitating execution of applications using high performance computing 
(HPC) infrastructures. The integration of these components in VECMAtk 
aims to verify key aspects of the computational models, systematically 
validate obtained simulation outputs by comparing against observa
tional data, as well as decrease uncertainty efficiently and effectively in 
the simulations. It works conveniently on any platform from the desktop 
to petascale supercomputers. 

The EasyVVUQ component of VECMAtk simplifies the implementa
tion and execution of VVUQ workflows for new or existing applications 
[6,7]. It provides several methods for sensitivity analysis [8] using 
Stochastic Collocation (SC) and Polynomial Chaos Expansion (PCE) (see 
Wright [6] for explanation of these sampling techniques). Moreover, 
first-order, total-order and higher-order Sobol indices are available to 
analyse the breakdown of variance over different (combinations of) 
input parameters. The first- and higher-order indices can be considered 
as fractions of the total observed output variance that can be attributed 
to one or more input parameters respectively, as they sum to one. The 
total-order indices are measures of the combined effect (i.e. both first 
and higher order) of a single input (see [8] for more information). A 
further analysis tool, available in the case of SC and PCE method, is a 
cheap polynomial surrogate, which can be evaluated at unsampled lo
cations in the input space at minimal cost. Furthermore, an option to use 
Markov-Chain Monte Carlo (MCMC) [9] samplers for calibration-type 
problems is implemented. 

EasyVVUQ is especially beneficial for large sampling runs since it 
provides support for large scale execution of jobs. There is an optimised 
database running in the background that is capable of holding millions 
of records describing runs and their statuses. It also supports pausing 
and resuming of workflows and is fault tolerant (failed jobs can be 
investigated for the reasons of failure and resumed). 

Prior to initiating EasyVVUQ, some wrapper code is necessary. This 
takes the form of an Encoder and a Decoder. The Encoder is an element 
that takes input data in EasyVVUQ internal format and outputs an input 
file or files for the simulation. There are ready made classes that should 
cover most of the cases. For more complex situations, Jinja2 template 
language is supported. The Decoder is a parser that takes the output of 
the simulation and extracts the data relevant for the analysis stage. If the 
provided functionality is not sufficient, it is easy to extend the base 
decoder class and implement your own. 

EasyVVUQ divides VVUQ workflows into several distinct stages – 
sampling, execution and analysis. Execution is further divided into ac
tions that help wrap existing applications, create directory structures, 
copy input files, run the simulation and so on. We will quickly sum
marise a typical workflow from the viewpoint of the user:  

1. The sampling stage depends on the method of analysis that the user 
wants to employ for their problem. Supported methods currently 
include parametric UQ and sensitivity analysis using SC, PCE or 
simple Monte Carlo methods and Markov-Chain Monte Carlo. After 
the sampling stage, the database is populated with values in the in
ternal EasyVVUQ format that are then used to guide execution. 

2. EasyVVUQ supports multiple execution back-ends and aims to pro
vide access to heterogeneous computing resources. For example, we 
support Cloud computing via Kubernetes [10]. We also support 
execution on HPC resources via QCG PilotJob [11] or Dask [12] and 
in particular Dask JobQueue [13].  

3. The analysis stage is dependent on the sampling stage and an 
appropriate analysis code will be chosen depending on which 
sampler was used. In some cases, for example MCMC, where more 
complicated workflows are required, analysis has to be integrated 
with the sampling and execution stages in a cyclic workflow. 

The practicality of using EasyVVUQ is dependent upon the number of 

uncertain input parameters. The SC and PCE methods are subject to the 
so-called curse of dimensionality, meaning that the required number of 
code evaluations rise exponentially with the number of uncertain inputs. 
In practical terms, if one decides to use these methods, the input 
dimension should be less than 10. To postpone the curse of dimension
ality to higher dimensions, we have also implemented a dimension- 
adaptive version of the SC sampler, which we have applied to an 
epidemiological code with 19 uncertain inputs [14], although we have 
also tested the software up to 30 inputs. If the input dimension is much 
higher, e.g. ℴ(100) parameters, we recommend reducing the number of 
inputs if possible, using for instance expert knowledge. Only the (Quasi) 
Monte Carlo samplers will still function in such input spaces, but these 
suffer from a slower convergence rate. 

A more recent addition to the VECMAtk, currently in active devel
opment, is EasySurrogate. It is a toolkit for various types of surrogate 
methods, and is similar in design to EasyVVUQ, where the surrogate 
methods take the place of the samplers in EasyVVUQ. It contains, 
amongst others, methods that can be used to learn conditional proba
bility density functions from data. These could be used as a stochastic 
surrogate for the microscopic scales of a multiscale model. Section 4 
focuses on this type of surrogate method, with an application to a 
simplified atmospheric multiscale model. In addition, EasySurrogate 
contains a dimension reduction technique which can be used to 
compress the training data in the case where there is a massive differ
ence in the size of the state of the multiscale system, and the size of the 
quantities of interested which are computed from that state. The 
approach is described in detail here [15], and is currently implemented 
for spectral solvers. Future efforts include the addition of Gaussian 
Processes, and of neural-network based surrogates for forward uncer
tainty propagation with a high number of uncertain inputs. 

VECMAtk is a flexible software environment, which has documen
tation and tutorials to communicate information to stakeholders or end- 
users. The purpose of documentation is to describe architecture and 
functionalities, as well as to provide instructions on installation, testing 
and troubleshooting. While tutorials guide and teach existing and new 
users on how to perform VVUQ analysis using VECMAtk. All docu
mentation and tutorials are easily accessible, descriptive and illustrative 
with the VECMA applications ranging within various domains (see 
Groen et al. [1] for detailed descriptions of domain applications). 

In this paper, we present a number of tutorials pertaining the VEC
MAtk components in application to forced migration (Section 2), fusion 
energy (Section 3), climate (Section 4), biomedicine (Section 5) and 
urban air pollution (Section 6). Each application tutorial aims to explain 
and illustrate different components that perform SA and UQ analysis 
using EasyVVUQ, couple multiscale models using MUSCLE3 and execute 
large scale calculations (i.e. jobs) on Eagle supercomputer through the 
use of QCG tools. Importantly, these tutorials provide hands-on experi
ence for practitioners aiming to test and contrast with their own appli
cations. VECMAtk components are also available for all in an interactive 
mode (see https://github.com/vecma-project/VECMA-tutorials or 
https://jupyter.vecma.psnc.pl), which requires no installation re
quirements of components and can be considered as a portable training 
platform using Jupyter Notebooks. 

2. Application of FabSim3 and EasyVVUQ: forced human 
migration 

Forecasting forced human migration is crucial since global forced 
migration has reached record levels. It is also challenging as many 
forced population data sets are small and incomplete, and data sources 
have too little information. Yet, forced population predictions are 
essential to save forced migrants lives, to investigate the consequences 
of a nation closing its border for forced population, and to help complete 
incomplete data collections on forced population movements. Thus, we 
introduce the Flee agent-based migration code forecasting the distri
bution of incoming forced migration arrivals in conflicts [16]. 
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Manual routine tasks in simulations, such as construction, execution, 
analysis, and validation of various models, can be simplified using 
automation tools. For Flee application, we use the FabSim3 toolkit to 
simplify and accelerate activities [17], as well as automate several 
phases of Flee-based simulations. Specifically, we use the 
FabSim3-based plugin FabFlee to instantiate and execute multiple runs 
for different policy decisions, and to validate and visualize the obtained 
results against the existing data [18]. 

There are four different ways to execute multiscale migration sim
ulations in FabFlee: (1) Single-model execution, (2) Ensemble execution, 
(3) Replica execution, and (4) Coupled execution. Each method has its 
unique purpose. The single-model execution can be easily performed on 
a laptop and instantly provide an overview to users. The ensemble 
execution could be useful for those who run multiple simulation in
stances simultaneously with different inputs or configuration settings of 
a target simulation run. While the replica execution could be an inter
esting option for those who run simulations multiple times at once with 
identical inputs due to the uncertain nature of a code. The coupled ex
ecutions allow to couple macroscale and microscale (multiscale) models 
and conflict scenarios with the weather, telecommunication and other 
data sources. 

All FabFlee simulation tasks are callable from the terminal, adhere to 
the following structure shown in Fig. 1. Moreover, we present the list of 
available FabFlee tasks and their description in Table 1. 

2.1. Sensitivity analysis on input parameters of Flee 

Sensitivity analysis (SA) is a well-established approach to analyse the 
influence of changes in assumptions used in modelling and simulation 
research [19]. It helps to identify which input parameters or assump
tions have a higher impact or influence on the simulation output. SA 
results can be used to provide reliable parameters/assumption estimates 
for validation and model improvement. The SA process may involve 
investigation of the influence of changes in (a) model structure, or (b) 
input parameters. For this tutorial, we apply SA to the Flee algorithm 
and investigate which input parameters are pivotal in the simulation 
output. 

The Flee code is based on the algorithm assumptions for forced 
migration including several parameters defining the movement logic of 
forcibly displaced people (see Suleimenova et al. [20] for a more 
detailed description of the algorithm and input parameters). The list of 
input parameters defining forced migration simulation algorithm is 
described below and parameter ranges are illustrated in Table 2:  

• max_move_speed: Agents’ maximum movement speed in the 
simulation while traversing between locations with vehicles. 

• max_walk_speed: Agents’ maximum movement speed the simu
lation while travelling on foot between locations.  

• camp_move_chance: Probability of an agent moving from a camp 
location where an agent resides to another location.  

• conflict_move_chance: Probability of an agent moving from a 
conflict location where an agent resides to another location.  

• default_move_chance: Probability of an agent moving from 
other (default) location where an agent resides to another location.  

• camp_weight: The attractiveness value for camp locations making 
them twice as likely to be chosen as destination.  

• conflict_weight: The attractiveness value for conflict locations 
making them four times less likely to be chosen as destination. 

For forced migration sensitivity analysis, we use FabSim3 and 
EasyVVUQ components of VECMAtk, which provide an automated 
execution environment to achieve highly transparent and customised 
simulations by simplifying and accelerating key task activities. 

Step 1: Installation 

To perform this tutorial, the following software packages are 
required: (i) Flee code [21], (ii) FabSim3 toolkit [3], (iii) FabFlee plugin 
[22], and (iv) EasyVVUQ [2]. To install these application, simply follow 
the instruction below: 

Flee 
To clone the Flee code into your working directory, simply type: 
git clone https://github.com/djgroen/flee.git 

FabSim3 
To clone the FabSim3 toolkit, simply type: 
git clone https://github.com/djgroen/FabSim3.git 

To install all required python packages automatically and configure 
YML files, simply go to your FabSim3 directory and type: 

python3 configure_fabsim.py 

If you encounter an error or issue during the installation process, 
please see the Section known issues in the FabSim3 documentation. 

After installation and configuration process, the main FabSim3 
directory is added in your $PYTHONPATH and $PATH environment 
variable. You can find these changes on your bash profile (for Linux 
check /.bashrc, and for MacOS check /.bash_profile). 

Then, to make the fabsim command available in your system, 
restart the shell by opening a new terminal or just re-load your bash 
profile using the source command.

To make sure that installation is done correctly and the fabsim 
command available in your system, simply execute the following 
command: 

which fabsim 

<FabSim3_dir>/bin/fabsim 

It is important to confirm that <FabSim3_dir> is pointed to the 
FabSim3 directory in your local machine. 

FabFlee 
To install the FabFlee plugin, simply go to <FabSim3_dir> and 

type: 
fabsim localhost install_plugin:FabFlee 

The FabFlee plugin will appear in <FabSim3_dir>/plugins/ 
FabFlee. 

To use the Flee code library in FabFlee, we need to add the Flee 
location to the system PYTHONPATH. To add Flee, simply go to 
<FabSim3_dir>/plugins/FabFlee directory, and update the 
machines_FabFlee_user.yml file by adding the variable flee_
location under localhost section as shown below:

Fig. 1. FabFlee command line template.  
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EasyVVUQ 
EasyVVUQ is a Python library and build upon existing libraries, such 

as Chaospy, for statistical functionalities. To install EasyVVUQ, simply 
type: 

pip install easyvvuq 

There are several sampling methods for UQ analysis in EasyVVUQ, 
such as Stochastic Collocation, Polynomial Chaos Expansion, Monte 
Carlo and Markov-Chain Monte Carlo techniques. The easiest way to 
examine these methods is to follow Jupyter Notebooks provided in http 
s://mybinder.org/v2/gh/UCL-CCS/EasyVVUQ/dev?filepath=tutorials. 

Step 2: Parameter exploration 

To perform sensitivity analysis on input parameters of Flee, we 
mainly focus on two sampler examples, namely (a) SCSampler (Sto
chastic Collocation sampler) and (b) PCESampler (Polynomial Chaos 
Expansion sampler), that are available in EasyVVUQ. The configuration 
for SA can be set in flee_SA_config.yml located in <FabSim3_dir>/ 
plugin/FabFlee/SA directory. All required configurations for Fab
Flee SA, such as sampler name, varying input parameters, and the 
number of polynomial order, are loaded from flee_SA_config.yml file. 
To illustrate, we present an example of two config parameters below, 
namely (max_move_speed and max_walk_speed):

Step 3: Execution 

To execute sensitivity analysis on your local PC, using FabFlee, 
simply run: 

fabsim localhost flee_init_SA:<conflict_name>, 

simulation_period=<number>

In Table 3, we present several conflict scenarios available in forced 
migration application. Simply replace conflict_name and <number>
in simulation_period to execute and perform sensitivity analysis. 
To illustrate, simply run the following: 

fabsim localhost flee_init_SA:mali,simulation_period 

=300 

After the job has finished, the terminal becomes available again, and 
a message is printed indicating where the output data resides. Run the 
following command to copy back results from the localhost results 
directory (or remote machine): 

fabsim localhost fetch_results 

The results will then be in <FabSim3_dir>/results directory. 

Step 4: Results and analysis 

To analyse and plot the obtained results, simply type: 
fabsim localhost flee_analyse_SA:<conflict_name>

If you set sampler_name: SCSample in flee_SA_config.yml file, 
the target folder name will be flee_SA_SCSampler. All output results 
will be saved in <FabSim3_dir>/plugins/FabFlee/SA/flee_
SA_SCSampler. We will also find two figures automatically created 
from the obtained results. To illustrate, Fig. 2 is the first-order Sobol 
sensitivity indices for the selected parameter set in flee_SA_config. 
yml file and Fig. 3 is the mean and the standard deviation of total error 
over the simulation period. We observe that max_move_speed is highly 
sensitive input parameter and influential to the simulation output of 
Mali conflict compare to max_walk_speed parameter. 

2.2. The required resolution of certain model parameters 

Increasing the resolution (or polynomial order) results in a larger 
number of simulation runs, which may give us better estimation of 
sensitivity analysis on target parameters. However, in turn, it increases 
the final computational cost of executing the model. In case of the 

Table 1 
List of tasks commonly used in FabFlee.  

Table 2 
Defining an input parameter space for the uncertain parameters of the Flee 
simulation.  

Parameters Type Default value Uniform range 

max_move_speed float 420 km/day (100, 500) 
max_walk_speed float 35 km/day (10, 100) 
camp_move_chance float 0.001 (0.0, 0.1) 
conflict_move_chance float 1.0 (0.1, 1.0) 
default_move_chance float 0.3 (0.1, 1.0) 
camp_weight float 2.0 (1.0, 10.0) 
conflict_weight float 0.25 (0.1, 1.0)  

Table 3 
List of available conflict scenarios for sensitivity analysis.  

Conflict country Conflict name Simulation duration 

Mali mali 300 days 
Burundi burundi 396 days 
South Sudan ssudan 604 days 
Central African Republic car 820 days  
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migration application, we tested a set of certain parameters with 
different polynomial orders to evaluate the asymptotic behaviour in the 
quantities of interest (QoIs) upon increasing the resolution. The execu
tion time for runs varied due to the increasing number of polynomial 
order. Fig. 4 compares the Sobol indices per each resolution size of the 
uncertain parameters. As it can be observed, after a certain polynomial 
order, such as polynomial order of 7, the sensitivity of input parameters 
did not change significantly. This will be helpful for future analysis to 
reduce the computational cost and total execution of the analysis. 

3. Fusion tutorial 

Nuclear fusion powers the sun and the main goal of fusion research is 
to bring this down to earth. One of the approaches taken is to use 
magnetic fields to confine a sufficiently large plasma for long enough so 
that more energy is produced from the fusion of deuterium and tritium 
isotopes of hydrogen than is required to heat and confine the plasma. 
The main process determining the confinement time is the turbulent 
transport of particles and energy in the plasma. To gain a better un
derstanding of this, a fusion workflow (described in more detail in 
[23–26]) has been developed. To understand the role played by various 
sources of uncertainty, a number of workflows based on the above fusion 
workflow have been developed: 

1. a workflow without UQ involving 4 codes (equilibrium code, tur
bulence code, code for converting fluxes to transport coefficients and 
a transport code) coupled via MUSCLE. 

2. workflows applying EasyVVUQ to particular components (equilib
rium code, turbulence code, transport code).  

3. a workflow with UQ using EasyVVUQ involving 3 codes (equilibrium 
code, code for calculating transport coefficients (not using turbu
lence) and a transport code) directly coupled. 

While the ultimate goal is to apply the knowledge based in 3 above to 
doing UQ on 1, this would currently be too expensive (simple extrapo
lation would require approximately 35 million node hours) if the tech
nique used for 3 were to be directly applied to 1. Under current 
investigation is to see if information gained from 2 can be used to speed 
up the UQ for the 1 workflow. 

Building a tutorial around any of the above workflows is difficult 
because of code licensing issues and so a simpler model was created to 
explore some of the ideas underlying these workflows. In this, the 
toroidal plasma is replaced by a cylindrical model which simplifies the 
calculation of the equilibrium and associated metric coefficients. The 
turbulence code is replaced by a single uncertain number specifying the 
transport coefficient, and rather than solve for densities and electron 
and ion temperature equation, the density is fixed and only a single 
temperature equation is solved. 

3.1. Uncertainty quantification on the fusion research 

In this tutorial, we will use EasyVVUQ [7] to perform UQ [6] on an 
example taken from fusion research, which consists of 

• easyvvuq_fusion_tutorial.ipynb: Jupyter notebook con
taining the EasyVVUQ workflow.  

• fusion.template: template used by the EasyVVUQ to prepare the 
input files for the fusion program.  

• fusion_model.py: a python program that reads the input file 
prepared by EasyVVUQ (based on fusion.template) and then 
calls the actual fusion function. 

• fusion.py: a python program containing the function that per
forms the actual calculation using the fipy python package [27]. 

(While not really necessary to separate fusion_model.py and 
fusion.py, the latter has a life outside of this project and is therefore 

Fig. 2. The first-order Sobol indices for each of the uncertain parameters of 
Flee for the Mali conflict. 

Fig. 3. The mean and standard deviation of Flee output over the simula
tion period. 

Fig. 4. The first-order Sobol indices for each of the uncertain parameters of 
Flee for the Mali conflict with different resolution numbers. 
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separated.) 
The simplified fusion workflow maps the tokamak torus to a circular 

plasma (with a correction for ellipticity), see Fig. 5. 
The model solves for the temperature, T(ρ,t), across the cross-section 

of the cylinder, ρ), in the presence of a specified thermal diffusivity and 
sources: 

3
2

∂
∂t
(n(ρ, t)T(ρ, t)) = ∇ρ[n(ρ, t)χ(ρ, t)∇ρ(T(ρ, t))] + S(ρ, t)

with a boundary condition given by Tebc and an initial uniform tem
perature of 1000 eV; the quantities are n(ρ,t), the plasma density; χ(ρ,t), 
the thermal conductivity and S(ρ, t) the source. 

The geometry of the simulation is parameterised by the minor radius 
a0, major radius R0 and elongation E0 (while the geometry is solved in 
the cylindrical approximation, the actual radius used, a, is adjusted on 
the basis of a0 and E0). 

The density n(ρnorm) is given by 

bheight − bsol

2

(

mtanh
(

bpos − ρnorm

2bwidth
, bslope

)

+ 1
)

+ bsol  

where bheight is the density at the top of the pedestal; bsol is the density at 
the base of the pedestal; bpos is the position of the pedestal; bwidth is the 
pedestal width and the modified tanh function ([28] which cites [29]): 

mtanh(x, bslope) =
(1 + x⋅bslope)exp(x) − exp(− x)

exp(x) + exp(− x)

A typical density profile used in these simulations is shown in Fig. 6. The 
source is given by 

S(ρ, t) = α⋅exp

(

−

(
ρ/a − H0

Hw

)2
)

where α is chosen so that 
∫

S(ρ,t)dV = Qetot, the total heating power. In 
this application of the model we will be looking for the steady-state 
solution. 

The parameters that can be varied are given in Table 4, though we 
will restrict the variation to that shown in Table 5 (corresponding to the 
vary_5 case mentioned later, or the first and last entries in that table for 
the vary_2 case). 

Step 1: Installation 

The starting point for the fusion tutorial is the following Binder link: 
https://mybinder.org/v2/gh/UCL-CCS/EasyVVUQ/dev?filepath 

=tutorials. 
Once the Jupyter Notebook has started, click on 
easyvvuq_fusion_dask_tutorial.ipynb 

which should start the notebook. 

Step 2: Parameter exploration 

For this model, 13 parameters are available to be set. In the notebook 
a few selections have been made consisting of 2, 5 and 10 in addition to 
the complete set. These are identified as  

• vary_2, a minimal test case varying the heating power and the 
temperature boundary condition; 

Fig. 5. The actual tokamak geometry (here JET [https://www.euro-fusion. 
org/devices/jet/] on the left) is mapped to a cylinder (on the right) in the 
simple fusion workflow. 

Fig. 6. From top to bottom, a typical density profile and the profile of the 
electron temperature profile predicted by the simple fusion model indicating 
the range of possible values arising from a variation in the heating and 
boundary condition. 

Table 4 
Quantities that can be varied in the fusion example.  

Quantity. Min Max Default 

Qetot  1.0e6 50.0e6 2e6 
H0  0.00 1.0 0 
Hw  0.01 100.0 0.1 
Tebc  10.0 1000.0 100 
χ  0.01 100.0 1 
a0  0.2 10.0 1 
R0  0.5 20.0 3 
E0  1.0 10.0 1.5 
bpos  0.95 0.99 0.98 
bheight  3e19 10e19 6e19 
bsol  2e18 3e19 2e19 
bwidth  0.005 0.02 0.01 
bslope  0.0 0.05 0.01  
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• vary_5, a more interesting case varying the heating power source 
function (3 parameters), the transport coefficient and the tempera
ture boundary condition;  

• vary_10, adding in 5 quantities related to the density profile;  
• vary_all, the complete set. 

The number of cases required to be run for PCE scales as (1 + P)V where 
P is the requested PCE order and V the number of varying quantities. The 
fusion tutorial takes about 20 ms computational time per sample on a 
modern CPU. 

In this tutorial we will start with using vary_2 to get results quickly 
and then move to vary_5. We will also scan over a range of PCE orders 
and look at the convergence of the statistical quantities. 

Other parameters that can be changed are:  

• whether DASK [12] is used, and if so whether locally or using SLURM 
[30],  

• how many jobs to run in parallel 

Step 3: Execution 

For the initial tests, in the cell with the header 
# define varying quantities 

ensure that 
return vary_2 

which selects a minimal case to get results as rapidly as possible. 
Then also ensure that in the cell with the header 

# Calculate the polynomial chaos expansion for a range 

of orders 

that 
local = True 

(so that we do not use the SLURM queuing system) and that the loop 
is set to 

for pce_order in range(1, 2): 

then run the notebook (”Cell” tab, and then “Run All”). This should 
run one case with 4 samples in under 20 seconds. For a more interesting 
case, change to five varying parameters 

return vary_5 

and 
for pce_order in range(1, 5): 

and run again. This will take quite a bit longer (of order an hour on 
Binder). 

Unlike other examples, we are using “Dask” [12] to run the jobs. Two 
modes are possible for Dask: a local mode where local cores are used and 
a version using SLURM [30] to schedule jobs remotely (see https 
://slurm.schedmd.com/documentation.html for documentation). If 
you want to use the SLURM option, and you have SLURM as your local 
queuing system. then you will need to make changes to

to reflect the local QOS, mail address, time-limit, queue partition, 
number of cores, memory, etc. 

Some localisation is necessary in the latter case to specify SLURM job 
queue information, as well as to specify the number of jobs. 

Step 4: Results and analysis 

Typical output from the sensitivity analysis is shown in Fig. 6 where 
profiles of the electron density, ne, and electron temperature, Te, are 
plotted. Since no variations affected ne for this vary_5 case, only one 
line can be seen. The Te plot shows the mean, plus and minus one 
standard deviation, and the 10 and 90 percentiles. The range of Te be
tween 1 and 99 % is also shown. The percentiles are calculated using the 
chaospy [31] Perc routine which samples from a distribution built on 
the basis of a fit by PCE to the local Te as a function of the uncertain, 
varying parameters, performed independently for each position across 
the Te profile. 

The Sobol indices indicate (Fig. 7) that in the core (rho close to zero) 
the most important parameters are the width of the heating profile (Hw) 
followed by the transport coefficient (χ); at the mid-radius of the plasma, 
the transport coefficient (χ) is the most important parameter; and at the 
edge the boundary condition (Tebc) dominates. 

The convergence of the mean, standard deviation and Sobol first 
indices (Fig. 8) show a rapid convergence with PCE order indicating that 
for most purposes a PCE order of 3 should be sufficient for this problem. 

This tutorial has just touched on a few issues but other options 
including changing from Polynomial Chaos Expansion to Stochastic 
Collocation, or the use of sparse grids, have not been covered. 

4. Application of EasySurrogate: Lorenz 96 

Multiscale systems are comprised of processes which span over a 
wide range of spatial and/or temporal scales. A direct numerical simu
lation of these systems, which resolves all relevant scales, is typically not 
possible due to computational constraints. A common engineering op
tion is to decompose the solution into macroscopic and microscopic 
variables, after which a reduced model for the macroscopic variables is 
derived. The corresponding governing equations will be unclosed, 
meaning that they contain a so-called subgrid-scale term dependent 
upon microscopic variables. To close the system, the subgrid-scale term 
must be parameterized using macroscopic variables, in effect creating a 
surrogate model for the exact subgrid scale term. Classical approaches 
uses deterministic parameterizations, see e.g. [32]. Data-driven surro
gate models have more recently also become popular ([33], [34]), as 
well as a variety of machine-learning models ([35–37]). 

Let the multiscale dynamical system be represented by a set of 
coupled nonlinear ordinary differential equations (ODEs) for the time- 

Table 5 
Distribution of quantities actually varied.  

Quantity Distribution Range 

Qetot  Uniform (1.8e6, 2.2e6) 
H0  Uniform (0.0, 0.2) 
Hw  Uniform (0.1, 0.5) 
χ  Uniform (0.8, 1.2) 
Tebc  Uniform (80.0, 120.0)  

Fig. 7. Sobol first index describing the source of the variance in the profile of 
the electron temperature profile predicted by the simple fusion model. 
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dependent macroscopic variables x(t) and microscopic variables y(t): 

d
dt

x = f (x, r),
d
dt

y = g(x, y), r = r(y). (1)  

Here, r(y) is the subgrid scale term. Note that if we have a suitable 
surrogate r̃, we do not have to solve the equations of the expensive 
microscopic component: 

d
dt

x̃ = f (̃x, r̃), r̃ = r̃(x̃). (2)  

In this tutorial, we will focus on neural-network surrogates ̃r which are 
(i) stochastic, and (ii) have memory. Specifically, we will use the 
EasySurrogate toolkit to build a model for the time evolution of r by 
resampling training data from the distribution of ri+1 (r at time ti+1), 
conditional on the past states of x. That is, we sample from the condi
tional distribution 

r̃ ∼ ri+1 | xi, xi− 1,…, xi− I , (3)  

where I ∈ ℕ is the maximum considered lag. We note that we do not 
need to have an explicit expression for the conditional distribution of 
ri+1, we merely need to be able to sample from it. There are a variety of 
ways to do so, and we will focus here on so-called quantized softmax 
networks (QSNs). Essentially, we divide the domain of the ri+1 training 
data into B non-overlapping intervals, called ‘bins’. For each data point 
ri+1 we can find the unique bin with index ki+1 ∈ [1,…,K] in which it 
falls, and we can create a corresponding time-lagged feature vector 
Xi+1 := [xi, xi− 1,…, xi− I]

T . Now, all (Xi+1, ki+1) pairs form a classification 
data set, on which we train a feed-forward neural network, see Fig. 9. 

The network has softmax output layers, which predict discrete proba
bility mass functions (pmf) over the K bins. During prediction, we 
sample a bin index from this pmf, conditional on the time-lagged feature 
vector Xi+1. The prediction ̃ri+1 is obtained by randomly sampling from 
the ri+1 data inside the selected bin, see again Fig. 9. For more infor
mation behind this approach we refer to [38]. The authors discuss 
sampling from a more general conditional distribution than in Eq. (3), 
where also the past states of r are included. 

4.1. Lorenz 96 

Before giving instructions on how to create a QSN surrogate, let us 
briefly introduce the model on which we will test the approach. Spe
cifically, we will use the the well-known two-layer Lorenz 96 (L96) 
system, originally proposed by [39] as a toy model for the atmosphere. It 
consists of a set of K ODEs describing the evolution of the macroscopic 
variables xk, of which each ODE is coupled to J microscopic variables 
yj,k: 

dx(k)

d t
= x(k− 1)( x(k+1) − x(k− 2)) − x(k) − F + r(k)

r(k) :=
hx

J
∑L

j=1
y(j,k)

dy(j,k)

d t
=

1
ε
[
y(j+1,k)( y(j− 1,k) − y(j+2,k)) − y(j,k) + hyx(k)

]

(4)  

The macroscopic and microscopic variables x(k) and y(j,k) are considered 
variables on a circle of constant latitude, where the indices k = 1,…,K 
and j = 1,…, J denote the spatial location. Periodic boundary conditions 
are imposed, and we will use the following parameter settings: {J,K,F,hx,

hy,ε} = {18,20,10, − 2,1,0.5}. Note that the full system (equivalent to 
(1)), consists of K × J = 360 coupled ODEs. Once we have a surrogate 
for r(k), the reduced system (corresponding to (2)), consists of K = 18 
ODEs. 

There are five main steps for running this tutorial, namely (i) 
installation of EasySurrogate, (ii) running the full model to generate 
training data, (iii) training the QSN surrogate, (iv) running the macro
scopic model with the microscopic surrogate, and (v) post processing the 
results. 

Step 1: Installation 

As in the preceding sections, one option is to install via a Binder link, 
found in the README of https://github.com/wedeling/ 

Fig. 8. The convergence of the predicted mean and standard deviation (top) 
and Sobol first indices (bottom) with increasing order of the PCE expansion. 

Fig. 9. A schematic depicting the QSN training and prediction.  
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EasySurrogate. However, training the QSN network can be very slow 
in the Binder environment. We therefore recommend to install locally 
via: 

git clone https://github.com/wedeling/Easy

Surrogate.git 

cd EasySurrogate 

python3 setup.py install–user 
For both options, the Jupyter notebook containing the tutorial is 

found in tutorials_tutorial_paper_96_tutorial.ipynb. 
Finally, in case the install step fails, ‘pip install easysurrogate’ provides 
an alternate means of installation. 

Step 2: Generate training data 

We start by creating an EasySurrogate campaign object:

EasySurrogate has a similar design structure as EasyVVUQ, in the 
sense that we start with creating an overarching Campaign object as 
shown above. This object will handle the data frame (in HDF5 format), 
and we will assign a particular surrogate method to the campaign later 
on. For now, we will instantiate a L96 solver object via:

The main time loop, which simulates the full system (4), is given by:

By passing the dict snapshot to accumulate_data(), we are 
accumulating data of the macroscopic states and the corresponding 
subgrid scale term inside the Campaign object. Once the time integra
tion has finished, we can store all accumulated data to an HDF5 data 
frame via:

This will open a filedialog window to specify a storage location. 
Alternatively, by passing file_path as a keyword argument, the HDF5 
file is written directly to the specified file path. 

Step 3: Train a QSN surrogate 

The HDF5 data frame generated in step 2 is used as training data for a 
QSN surrogate ̃r, which we load the via:

Next, we will create a QSN surrogate object: 

Training the surrogate is done via:

When we specify a lags keyword, time-lagged features vectors as 
displayed in Fig. 9 will be created. Since we have specified range(1, 
10) for the X_n feature array, we are creating a surrogate with 9 lagged 
x vectors: r̃ ∼ ri+1 |xi, xi− 1, …, xi− 9. We are creating a ‘non-local’ QSN 
surrogate here, which takes entire x vectors as input. Since each x vector 
consists of K = 18 entries, we will have an input layer of 18 × 9 = 162 
neurons. Through n_bins=10, we are dividing the domain of each ri+1 
entry up into 10 non-overlapping, equidistant bins. As the ri+1 vectors in 
the target array also contains K entries, a QSN surrogate is created 
with K softmax layers, i.e. every spatial point k = 1,…,K, has its own 
pmf with n_bins=10 discrete probabilities. The output layer therefore 
has 18 × 10 = 180 neurons. For more detail on the QSN structure, and a 
discussion on local vs non-local surrogates, we refer to [38]. The 
remaining keywords, n_layers and n_neurons regulates the number 
of (hidden) layers and the number of neurons per hidden layer. The mini 
batch size used in the stochastic gradient descent (see e.g. [40]) is 
specified through batch_size. Finally, by setting test_frac=0.5 
train only on the first 50% of the training data, thus keeping the latter 
half separate as a test set. 

Just as a sampler is added to an EasyVVUQ campaign, a (trained) 
surrogate is added to an EasySurrogate campaign via the add_app 
subroutine:

The save_state saves both the campaign and the surrogate object 
to disk. Similar to store_accumulated_data, this is done via a file 
dialog window or a file_path argument. 

Step 4: Predict with a QSN surrogate 

Here, we will use the trained QSN surrogate as a source term in the 
macroscopic ODEs. This results is a small change in the main time loop:

The function call predict(X_n) returns a random sample from ̃r ∼
ri+1 | x̃i, x̃i− 1, …, x̃i− 9. Internally, the current macroscopic state X_n is 
appended to the feature vector, and the time-lagged history x̃i, x̃i− 1,…,

x̃i− 9 is automatically updated. To couple the surrogate to the macro
scopic solver, the L96 solver module is programmed such that when the 
argument r_n is passed, this vector is directly used as the subgrid-scale 
term, and therefore the microscopic ODEs are not solved. This solution 
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works well in the case of the L96 model. For more complex coupling 
situations we can use the Multiscale Coupling Library and Environment, 
see Section 5 or go to github.com/wedeling/EasySurrogate for a 
tutorial on coupling a micro-scale surrogate to a macroscopic reaction 
diffusion model. 

When the training completed, an initial time-lagged feature vector 
was created from the training data, and stored in the QSN surrogate 
object. In this example this is x8,x7,…,x0, which is consistent with the 
prediction of r9. For this reason we do not compute the QSN prediction 
r_n until we get to the 9-th time step. 

Finally, we note that there are other surrogate methods available in 
EasySurrogate, e.g. standard feed-forward neural networks or kernel- 
mixture networks [41]. These have the same design, so these will 
work without modification to the code above, which allows for easy 
comparison of surrogate method performance. 

Step 5: Post processing 

Each surrogate method has its own analysis class, in analogy to the 
different EasyVVUQ samplers. We create a QSN analysis object via:

Due to chaos, and the accumulation of error over time, we cannot 
expect to have path-wise exact trajectories, i.e. x(t) ∕= x̃(t) in general. 
Instead, we wish to create a surrogate such that the time-averaged sta
tistics of ̃x are a good approximation of the statistics of x. To estimate the 
probability density functions of x and x̃, we use:

The corresponding figure can be found in Fig. 10, which displays a 
good overlap between the reference (two-layer) model pdf from (4), and 
the pdf of the one-layer model with QSN surrogate ̃r. In a similar fashion 
we can use auto_correlation_function and cross_

correlation_function from the analysis object, to compute auto 
correlation functions, or the cross-correlation function between neigh
bouring points. Fig. 11 compares the auto correlations functions of x and 
x̃, as well as those from r and ̃r. 

Finally, let us note that we trained the surrogate completely offline, i. 
e. on data alone, whereas we predict in an online fashion, where the 
surrogate is coupled to a system of ODEs. Note that these two situations 
are not the same, as the online case is subject to two-way interaction 
between the surrogate and the physical (macroscopic) system. For the 
L96 case we obtained very good results with a surrogate that was trained 
offline. However, for more complex problems it might well be true that 

the introduction of such a surrogate eventually causes a bias in the 
statistics, or perhaps even results in an unstable system. We are currently 
investigating the use of a second, online learning phase (developed by 
[42]), where we retrain a neural network while it is part of the physical 
system. The idea here is that the surrogate should be trained to perform 
well within the modelling environment, rather than training it to just 
represent the data well. 

5. Application of MUSCLE3: the 3D in-stent restenosis (ISR3D) 

Another application that we consider in this article is the 3D in-stent 
restenosis model (ISR3D) [43,44]. ISR3D is a multiscale simulation that 
mimics the process of post-stenting growth of the neointima in the ar
tery. It consists of two submodels: an agent-based smooth muscle cell 
model (SMC) and a blood flow model using the Lattice Boltzmann 
method. The smooth muscle cell model takes in the computational ge
ometry of the vessel and corresponding stent after deployment, and 
starts the dynamics of restenosis. This submodel models cell growth, 
proliferation and death on the scale of an hour. The wall shear stress is 
one of the crucial factor influencing the prolification of smooth muscle 
cells as it decides the turnout of nitric oxide inhibition from endothelial 
cells. Therefore at each time step, the current computational geometry 
of the blood vessel is passed to the blood flow solver, Palabos [45] and 
wall shear stresses are fed back to the SMC model after the flow 
computation. There are three helper modules (referred as mapper in 
MUSCLE3) in between the SMC model and blood flow model assisting 
the transmission of data. They are voxelizer, distributor and collector. 
Fig. 12 shows the communication diagram between submodels and 
helper modules. 

MUSCLE31 [46] is a multiscale coupling library which can be used to 
connect multiple submodels together. A MUSCLE3 multiscale simulation 
consists of several programs which run simultaneously, passing 

Fig. 10. The pdfs of xk (left) and rk (right), for both the two-layer model (4) and 
the one-layer model with QSN surrogate. 

Fig. 11. The auto correlation function of xk (left) and rk (right), for both the 
two-layer model (4) and the one-layer model with QSN surrogate. 

Fig. 12. Communication scheme of the ISR3D model.  

1 https://github.com/multiscale/muscle3. 
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messages to each other either at the beginning or the end of a simulation, 
or on every iteration. Besides the submodels, a MUSCLE3 simulation 
contains helper modules which perform e.g. data conversion or load 
balancing. The structure and the parameters of a MUSCLE3 model are all 
described in one or more yMMSL2 files. These describe the structure of 
the multiscale model by listing the programs and the communication 
lines between them, as well as global and submodel-specific settings. We 
refer the reader to Appendix A for more details about how ISR3D uses 
MUSCLE3 to communicate. In this tutorial, we demonstrate how to 
perform an uncertainty quantification analysis on ISR3D with 
MUSCLE3. 

5.1. Uncertainty quantification analysis on ISR3D with MUSCLE3 

With the MUSCLE3 communication set up, we can perform a non- 
intrusive uncertainty quantification analysis of the ISR3D application. 
We present an uncertainty quantification analysis with a quasi Monte 
Carlo (qMC) method, and the details about generating the UQ instances 
and launching a SLURM job array with MUSCLE3 are demonstrated. We 
first start with the installation of ISR3D and MUSCLE3. Since the un
certainty quantification campaign described in this tutorial is compu
tationally expensive, it is recommended to use HPC resources for its 
execution. 

Step 1: Installation 

Installing ISR3D entails building MUSCLE3 including its C++ sup
port, and then ISR3D. Python 3.5 or later, CMake ver. 3.6.3 or later, a 
C++ compiler supporting C++14 (e.g. GCC 6 or later), and a compatible 
MPI library with C++ support (e.g. OpenMPI) must be available. The 
first step is to install the Python module for MUSCLE3: 

pip3 install muscle3 

Next, MUSCLE3’s C++ library needs to be downloaded, 
wget https://github.com/multiscale/ 

muscle3/archive/ 

0.4.0/muscle3-0.4.0.tar.gz 

unpacked, 
tar -xf muscle3-0.4.0.tar.gz 

and built. 
cd muscle3-0.4.0 

MUSCLE_ENABLE_MPI=1 make 

MUSCLE3 can then be installed, for example in ∼/muscle3: 
PREFIX=∼/muscle3 make install 

ISR3D can be obtained from GitHub: 
git clone https://github.com/ISR3D/ISR3D.git 

A build script for the current machine must then be made. For 
building locally, editing the existing build.linux.sh is easiest. In this 
file MUSCLE3_HOME must be set to the location where MUSCLE3 has 
been installed: 

cd ISR3D 

nano./build.linux.sh 

ISR3D can then be built by running the script: 
./build.linux.sh 

After the installation, one can find a sample generation script 
UQtutorial.py, a SLURM script job_array.sl and a postprocess
ing script postprocessing.py under the directory ISR3D/UQ/ in 
which all the codes of this UQ campaign are contained. To execute these 
scripts, we recommend you to create a new directory under ISR3D root 
directory with the name of the UQ campaign and copy the three scripts 
in, for instance: 

mkdir -p ISR3D/Result/UQcampaign 

cd ISR3D/Result/UQcampaign 

cp../../UQ/UQtutorial.py. 

cp../../UQ/job_array.sl. 

cp../../UQ/postprocessing.py. 

Step 2: Sample generation 

The ISR3D multiscale model simulates the tissue growth after 
stenting. We are interested in the influence of the four biological un
certain parameters on the neointimal growth of the restenosis process. 
The four parameters are the endothelium regeneration time, the 
threshold strain for smooth muscle cells bond breaking, the balloon 
extension area and the fenestration percentage in the internal elastic 
lamina. As mentioned before, these four uncertain parameters, like all 
the other inputs for the model are included in the ymmsl. To change the 
value of these uncertain parameters for each instance, we first read in 
the template ymmsl file with:

The ranges of uncertainty are given in Table 6 and are assumed to be 
uniformly distributed. We apply the quasi Monte Carlo method with 
Sobol sequence [47–49] to sample the instances for uncertainty quan
tification. In this tutorial, we demonstrate a UQ campaign with 128 
instances which requires approximately 500 core-hours for computation 
in total. The quasi Monte Carlo method and several other sampling 
strategies can be found in EasyVVUQ. Alternatively, one can generate 
the Sobol sequence via other existing libraries, i.e sobol-seq,3 SciPy [50], 
SobolEngine function in PyTorch [51]. To show a more flexible com
bination of the toolkits, we demonstrate the usage of an external library 
sobol-seq with MUSCLE3 in this uncertainty quantification campaign. A 
sample matrix A ∈ ℝN×D is formed with elements aij, where i ranges from 
1 to the number of samples N, and j ranges from 1 to the dimension of 
uncertain inputs D. This can be achieved by the code:

Note that the sample matrices generated by these toolkits are 
generally in a normalised range from 0 to 1, hence, an additional step is 
needed to adapt the normalised sample matrix to the application- 
specific one. This can be achieved by creating a python dictionary 
with a set of keys, ‘parameter_name’, ‘max’ and ‘min’ with corre
sponding ranges of the uncertain parameters. The details can be found in 
the UQtutorial.py. 

ISR3D simulation can be denoted as a function mapping the uncer
tain inputs to the QoI, which in this case is the lumen volume of the 
stented blood vessel yi = f(Ai∗), where Ai∗ = (ai1, ai2,…, aiD) are the 
uncertain input vector (one row of the sample matrix A) of a UQ 
instance. To analyse the uncertainty of the model, the probability den
sity distribution, as well as the mean E[y] ≈ 1

N
∑N

i=1f(Ai∗) and the variance 

Table 6 
Ranges of uncertain parameters of ISR3D model.  

Uncertain parameters Min Max Unit 

endothelium regeneration 10 20 day 
balloon extension 0.5 1.5 mm 
threshold strain 1.2 1.8 / 
percentage of fenestration 0 10 %  

2 https://github.com/multiscale/ymmsl-python. 3 https://pypi.org/project/sobol-seq/. 
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Var(y) ≈ 1
N
∑N

i=1f(Ai∗)
2
−

(

1
N
∑N

i=1f(Ai∗)

)2 

will be estimated. 

Once the samples of the qMC method have been generated, we can 
easily replace the value of the uncertain parameters with: settings 
[’Para_Name’]=Value and create a ymmsl input file for each UQ 
instance in a loop:

We generate an input file for each instance and save it in a directory 
named where notes the numbering of the instance. 

Except for the ymmsl input file, there are several other input files 
required by ISR3D. They are hosted on Zenodo.4 The tutorial script 
UQtutorial.py includes the code to download these input files and to 
broadcast them to each UQ instance directory. 

The sample generation described above is also included in the 
UQtutorial.py. The number of samples can be adjusted by editing the 
parameter, NumSample. To execute the sample generation, simply type: 

python3 UQtutorial.py 

Note that ISR3D is a computationally expensive application, espe
cially when we simulate the restenosis process at a realistic scale. The 
showcase we offer in this UQ tutorial is based on a tiny vessel. However, 
it still takes approximately 500 core hours to run 128 instances. To 
reduce the load, you can reduce the number of samples NumSample in 
UQtutorial.py and job_array.sl, but at a cost of the accuracy of 
uncertainty estimation. 

Step 3: Execution 

To execute the UQ campaign with a large number of instances, the 
SLURM job-array script job_array.sl is written. Within each job, the 
MUSCLE3 manager is launched via muscle_manager and followed by 
the submodel execution: 

muscle_manager./input.ymmsl 

ISR3D/build/smc –muscle-instance=smc & 
ISR3D/build/voxelizer –muscle-instance=voxelizer & 
ISR3D/build/distributor –muscle-instance=distribut 

or & 
ISR3D/build/collector –muscle-instance=collector & 
mpirun -n 16 ISR3D/build/flow –muscle-instance=flow 
where muscle-instance informs the MUSCLE manager which 

submodel defined in the ymmsl input file corresponds to this executable. 
The & means that all submodels are ran and communicate 
simultaneously. 

Before the submission of the SLURM script, some modifications are 
required to adapt the setting to your running machine/cluster. First, 
check your cluster’s configuration and set the correct partition name of 
your cluster. Second, adapt your own path to the MUSCLE3 C++ library 
and the way to activate the Python environment with the MUSCLE3 
Python library. Third, load the MPI module that was used for the 
installation. Fourth, set the directory for each submodel. Lastly, adapt 

the number of threads and the number of processes for OpenMP and 
MPI. Note that the ISR3D submodels from each sample are preferably 
executed on one node exclusively to avoid communication problems. We 
recommend you to set both the number of threads for OpenMP and the 
number of processes for MPI to be the number of cores in this node, since 
the execution of the SMC and the flow models alternates. To launch the 
SLURM job array, simply type: 

sbatch job_array.sl 

Step 4: Results and analysis 

After the computation, the data of QoI is recorded in a CSV file in the 
directory of each instance. The postprocessing.py script can help 
you collect the data and plot the probability density function as well as 
the mean and standard deviation of QoI over time: 

python3 postprocessing.py 

The figures are saved under the current directory. The probability 
density function of the vessel lumen volume at day 3, 6, 9, 12 and 15 
after stent deployment is demonstrated in Fig. 13. The mean and the 
standard deviation of ISR3D output on the vessel lumen volume over 
time is shown in Fig. 14. 

6. Execution of QCG tools: urban air pollution 

Constantly growing society condensing already dense, large cities, 
results in an increase of the contamination emission. And with the 
poorer air quality, citizens become more prone to hazardous pollutants, 
which in turn causes health problems including premature deaths. This 
is why studying air quality by the means of scientific simulations is 
important to understand how hazardous contamination can be lowered 
if not eliminated. 

Predicting air quality in urban areas is a challenging topic that re
quires a trade-off between the accuracy of results and acceptable time- 
to-solution. There are numerous models for predicting contamination 
transport and dispersion, ranging from fast, computationally cheap but 
not necessarily accurate, e.g. simple Gaussian models, to quite accurate 
simulations resolving difficulty of the flows around buildings, but 
computationally expensive, e.g. computational fluid dynamics simula
tions. UrbanAir [6] aims at the latter in terms of quality of the results, 
and at the former with respect to the computational expense. 

The quality of the results depends on the proper formulation of the 
model and the quality of input data. Modelling air quality requires an 
accurate emission database that contains emission rates for different 
pollutants and different types of sources, including line (attributed to 
road transportation) and area (attributed mainly to house heat appli
ances). UrbanAir is able to predict NO2/NOx, SO2 and two types of 

Fig. 13. The probability density function of the vessel lumen volume at day 3, 
6, 9, 12 and 15 after stent deployment. 4 https://doi.org/10.5281/zenodo.4603912. 
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particulate matter (also known as floating dust): PM2.5 for particles 
2.5 μm or less in diameter and PM10 for particles 10 μm or less in 
diameter. 

Considering prediction of NO2/NOx, attributed mainly to road 
transportation, initial information required for the simulation include a 
number of cars passing the street, ratio between gas and oil engines, fuel 
usage, the density of the fuel, NO2 index related to engine type, the ratio 
between hot and cold engine start, etc. While some of them can be 
estimated quite well, e.g. the number of cars or fuel density, some are 
like a puzzle, e.g. ratio between engine types or hod/cold engine start. 
To solve these shortcomings, the UrbanAir application uses uncertainty 
quantification analysis. 

In this section, we will demonstrate how to perform a demonstration 
assessment of air quality over one of the largest cities in Poland, Poznan, 
and perform a sensitivity analysis of the input parameters. We will also 
demonstrate how to use EasyVVUQ with QCG-PilotJob [1] in a working 
station/laptop environment, as well as on an HPC machine. 

6.1. Sensitivity analysis on input parameters of UrbanAir 

In the view of missing or incomplete emission data, sensitivity 
analysis plays a crucial role in deciding which input parameters have a 
higher impact on the simulation results, thus are required to be analysed 
for each run. In the assessment of air quality over complex urban areas, 
there a lot of input parameters which are not known or not well rec
ognised, and they differ with respect to analysed contamination. To 
understand which input parameters have a higher impact on simulation 
results, the sensitivity analysis (SA) approach is used. It allows for better 
estimation of the results, but also for a significant decrease in compu
tation power required to perform necessary calculations. 

In this tutorial NO2 concentration attributed to road transportation is 
considered. The uncertainty comes from unknown number of vehicles, 
ratio between gasoline and diesel engines, fuel usage, NO2 index related 
to type of engine, hot vs. cold engine start, etc. The input parameters 

required to predict air quality are described in the list below, while 
ranges are illustrated in Table 7:  

• no_of_cars: Number of cars passing within 1 hour.  
• gas_cars_ratio: Ratio between gasoline to diesel engines.  
• gas_usage: Gasoline usage per 100 km.  
• gas_density: Density of the gasoline fuel.  
• gas_no2_index: NO2 index related to gasoline engines.  
• oil_usage: Oil usage per 100 km.  
• oil_density: Density of the oil fuel.  
• oil_no2_index: NO2 index related to diesel engines. 

Step 1: Installation 

The UrbanAir application is run the most efficiently when prepared 
(i.e. compiled) for a specific architecture and for a given hardware re
sources setup (i.e. nodes and cores). For the sake of the tutorial, a gen
eral version has been prepared with a precompiled binary already 
installed. To ease testing of VECMAtk capabilities, a Singularity image 
has been provided. It allows running the application under different 
operating systems, whether it is a laptop, workstation or HPC machine. 
The installation process requires downloading Singularity environment, 
Singularity image and running on top of them to install VECMAtk com
ponents and tutorial specific files. 

Singularity environment 
To install Singularity environment, please visit https://github.com/h 

pcng/singularity/releases and proceed with the installation instruction 
for your operating system. The tutorial has been tested with version 3.7. 
The Singularity is beta supported in OSX operating system, therefore, it is 
highly recommended to switch to Windows or Linux environments. 
Otherwise, OSX users are encouraged to run Singularity via Vagrind, 
please visit https://singularity.lbl.gov/archive/docs/v2-4/install-mac 
for installation and usage instructions. Please pay attention during the 
Singularity installation to use the latest version (at least 3.7) instead of 
the one mentioned in the provided documentation (e.g. sylabs/singu
larity-3.7-centos-7-64): 

vagrant init sylabs/singularity-3.7-centos-7-64 

Singularity image 
To download the UrbanAir Singularity image, please visit: http 

s://zenodo.org/record/4620946 To run downloaded image, simply 
type: 

singularity shell PATH_TO_SINGULARITY_IMAGE 

You will be given access to shell inside the singularity image, and you 
are now able to install further required packages. 

VECMAtk components 
To install required VECMAtk components, we will use Python Virtual 

Environment. First, create a virtual environment dedicated to this 
tutorial, by typing in singularity shell: 

virtualenv $HOME/urbanair_env 

It will create the $HOME/urbanair_env directory under which all 
required packages should be placed. Make sure you activate your Python 
virtual environment before installing Python packages by typing: 

. $HOME/urbanair_env/bin/activate 

To install EasyVVUQ, QCG-PilotJob and EQI compontents from 
VECMAtk, and h5py, numpy, py-gnuplot for results analysis, that will be 
needed in this tutorial, just type: 

pip3 install easyvvuq qcg-pilotjob easyvvuq-qcgpj 

pip3 install h5py numpy py-gnuplot 

Tutorial files 
Next, download the UrbanAir tutorial files by typing: 
git clone https://github.com/mwkulczewski/urban

air_tutorial.git 

Fig. 14. The mean and standard deviation of ISR3D output on the vessel lumen 
volume over time. 

Table 7 
Defining a input parameter space for the uncertain parameters of the UrbanAir 
simulation.  

Parameters Type Default value Uniform range 

no_of_cars integer 600 (200, 1200) 
gas_cars_ratio float 0.72 (0.1, 0.9) 
gas_usage float 9.0 l/100 km (5.0, 12.0) 
gas_density float 0.75 (0.1, 0.9) 
gas_no2_index float 0.00855 (0.001, 0.012) 
oil_usage float 7.0 l/100 km (4.0, 12.0) 
oil_density float 0.07 (0.15, 0.95) 
oil_no2_index float 0.008 (0.001, 0.015)  
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The command will place tutorial files in $HOME/urban

air_tutorial directory. 

Step 2: Parameters exploration 

For this tutorial up to 8 input parameters can be sampled. In order to 
change their default, min or max values please navigate to the directory 
with downloaded tutorial and edit urbanair_pj_executor_SC.py 
accordingly. For example, to change the values of gas_usage parameter 
edit the following lines:

Step 3: Execution 

For the efficient execution of highly demanding and large-scale 
calculations on HPC machines, VECMAtk proposes the QCG-PilotJob 
tool. In order to enable easy usage of QCG-PilotJob from EasyVVUQ a 
dedicated EasyVVUQ-QCGPJ (EQI) library has been also provided [1]. 
Within this tutorial we make use of both EQI and QCG-PilotJob. 

The UrbanAir tutorial can be run on laptops, workstation or HPC 
cluster. In either case we assume that the Singularity image is used in a 
shell mode. Required input data for the application is located in the 
$HOME/urbanair_tutorial directory. Please navigate to that 
directory by typing: 

cd $HOME/urbanair_tutorial 

If you changed the directory of virtual Python environment or 
location of UrbanAir tutorial files, please edit easypj_config.sh to 
reflect modified paths:

UrbanAir is coupled to VECMAtk which allows not only for sensi
tivity analysis, but first of all for automatic creations of required en
sembles (samples), their execution and results collation. Assessing air 
quality in urban areas is computational expensive, that is why a user is 
able to select how many input parameters are to be sampled:

By default, just one input parameter – no_of_cars is sampled. To run 
the UrbanAir application with more parameters being sampled, e.g. first 
five, just type (in $HOME/urbanair_tutorial directory): 

python3.6 urbanair_pj_executor_SC.py 5 

The UrbanAir example uses 4 CPU cores by default, but more can be 
used to allow running more samples in parallel. In case more CPU cores 
are available, please type: 

python3.6 urbanair_pj_executor_SC.py 8 24 

In this case, all 8 input parameters will be sampled on 24 CPU cores, 
which means 6 samples will be analysed in parallel. In case less than four 
CPU cores are available, still you can run the UrbanAir demo. However 
please mind the UrbanAir is suited for larger runs – on a modern CPU, 
equipped with 4 cores, a single sample run would take several minutes 
up to half an hour. Thus expect that a very basic demo, sampling just one 
parameter, would last for less than an hour. 

Step 4: Results and analysis 

Each ensemble (sample) execution is proceeded with the simulation 
results post-processing before passing them to the VECMAtk analysis 
phase. The post-processing is done by prepare_hdf5.py Python 
script, which aims at extracting emission output data at 2 m height for 
the sensitivity analysis. If other height is preferable, please update the 
aforementioned script accordingly:

The UrbanAir application coupled to VECMAtk delivers sensitivity 
analysis of input parameters (sobols_analysis.csv), as well as emission 
concentration mean and standard deviation values for the whole domain 
at a given height (stats.csv). 

The example mean and standard deviation of the NO2 concentration 
for a given point in 2D space and for different heights are presented in 
Fig. 15. 

There is an examplary Python script to visualise NO2 concentrations 
at 2 m height. It iterates over all generated results and creates plot in 3D 
in 2m_no2_mean.png. If you want to analyse results from 24 runs, located 
e.g. under /tmp/urbanair_no2/runs just type: 

python3.6 analyze_hdf5.py 24 /tmp/urbanair_no2/runs 

In Table 8, we present the sensitivity analysis of 8 input parameters 
in descending order. 

Fig. 16 presents mean NO2 concentration at 2 m height. 

Fig. 15. Emissions of NO2 at different heights above a street-level from road 
transportation, with the mean (red line) and standard deviation (blue region) 
calculated using EasyVVUQ. (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.) 
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7. Conclusion 

We have presented a set of five tutorials that showcase how VEC
MAtk can help users to create and execute complex HPC workflows and 
to simplify verification, validation and uncertainty quantification ac
tivities for their applications. Each tutorial has been tested by users from 
other domains, and has been presented such that it can be performed 
using any HPC infrastructure with sufficient capacity. 

The tutorials cover five different application domains, and five 
different combinations of VECMAtk components, to showcase how 

VECMAtk can facilitate VVUQ for users, irrespective of their scientific 
domain, and how it can be re-used in a variety of ways. 

The VECMA toolkit is under continuous evolution, as several dozen 
of alpha users provide us with feedback on what to improve in terms of 
robustness, scalability and ease of use. The tutorials in this paper 
therefore serve as a snapshot of the current VECMAtk developments, and 
as useful examples which can be adapted to suit different purposes. 

Verification, validation, sensitivity analysis and uncertainty quanti
fication are essential for simulation results to become relevant outside 
their base field of research, and eventually suitable for practical 
decision-taking. With these tutorials we show that VVUQ techniques can 
be efficiently repurposed from one domain into another, and quickly 
adopted with clear benefits without the need to modify underlying 
source codes. In addition, the techniques provided here scale to larger 
problems: though an analysis on the local laptop is in many cases 
possible, most of the examples scale just as well to petascale and 
emerging exascale supercomputers. 
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Appendix A. Structure of the ISR3D model and communication with MUSCLE3 

The structure and the parameters of a MUSCLE3 model are described in one or more ymmsl (multiscale modeling and simulation language)5 files. 
ISR3D uses a single file which is located at ISR3D/cxa/input_stage4.ymmsl. This file contains a header describing its version, and two main 
sections: model and settings. The first section describes the structure of the multiscale model by listing the executables and the communications 
between them, while the second contains the parameters that are either shared by the whole simulation or passed to individual modules. 

We will focus on the model section first. The first line of this section gives the name to be used for the multiscale simulation by MUSCLE3, in this 
case name: isr3d. Next comes the subsection components: which lists all the executables involved. For ISR3D, they are:  

• smc, the submodel containing smooth muscle cells and other components of the vessel wall;  
• voxelizer, which takes the point cloud data from the smc and produces a voxel vessel wall where each tissue type is marked separately;  
• distributor that adapts the voxel geometry to be used for flow calculation and distributes it to the flow solver module and also to the collector module;  
• flow module that resolves the steady-state flow for the changing vessel geometry and passes the solution back to collector;  
• collector, which collects the data from the flow model and the other helper modules, and maps the flow solver output back onto the cells in the smc 

model. 

The section after that, conduits: lists the connections between the single-scale modules. The general syntax is 
source.sending_name: target.receiving_name 

This means the data is sent from source as sending_name, and received by target as receiving_name. The specifics such as the frequency of 
sending and receiving, and also the data format have to be described in the executables’ code itself. The communication scheme of ISR3D is shown in 
Fig. 12 and reflected in this section of the ymmsl file. 

Table 8 
The Sobol first index for 8 input parameters of the 
UrbanAir application.  

Parameters Sobol first index 

gas_no2_index 0.14294 
gas_density 0.13251 
oil_no2_index 0.11094 
oil_density 0.10523  

no_of_cars 0.0831 
gas_usage 0.0592 
oil_usage 0.0591  

gas_cars_ratio 0.00184  

Fig. 16. Mean emission of NO2 at 2 m height from road transportation.  

5 https://github.com/multiscale/ymmsl-python. 
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For example, the following conduit handles the sending of the voxel domain (a rectangular 3D grid of tissue type values) from voxelizer to 
distributor: 

voxelizer.domainOut1: distributor.domainIn 

On the side of voxelizer, the following code is called:

Initially, the results we want to send are stored in the aggregateDomain variable. To pass them to MUSCLE3, we construct an object of the 
MUSCLE3 type Data::grid, which we call aD_result. The arguments are: the raw data to be stored (aggregateDomain.data()), a list of grid 
sizes along each axis, which we receive here from the sphereVox object, and an optional list of axis labels. Naturally, sizeX⋅sizeY⋅sizeZ has to match 
the size of the data in the first argument. When the data object is formed, all that is left to do is to form a Message by combining the data with a 
timestamp t_cur and to send it, specifying the same sending name as in the configuration file, domainOut1. 

For each send operation, there has to be a receive operation in the other executable. The receiving code in the distributor is shown below:

The message is received by calling the MUSCLE3 function instance.receive with the receiving name specified in the configuration file. This 
produces a MUSCLE3 Message on the receiving side, from which it’s possible to obtain the timestamp, the shape (three sizes for the three axes 
specified on the sending side), and the size (the total number of elements in the grid). Since C++ does not have a standard multidimensional grid 
type, we convert the received data into a 1D array. 

To convert the MUSCLE3 grid to an std::vector, we have to assign the data directly by manipulating memory pointers (obtained by calling 

). 
For most non-grid message types direct memory manipulation is not required, and C++ types can be directly obtained. MUSCLE3 also has support 

for Python and Fortran languages. For more details on this, we refer the reader to the online MUSCLE3 documentation. 
The final section of the configuration file is the settings: section. The settings without a prefix are accessible to all modules, and the settings 

with a prefix are only accessible from the matching executable. 
As an example, smc.run_input_file: “test_vessel.dat” is only visible to the smc module. From there, it can be read into a variable by 

calling:

Here instance is the MUSCLE3-specific object assigned to the smc submodel. 
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