
Journal of Computational Science 53 (2021) 101402

Available online 7 June 2021
1877-7503/© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Tutorial applications for Verification, Validation and Uncertainty
Quantification using VECMA toolkit☆

Diana Suleimenova a,*, Hamid Arabnejad a, Wouter N. Edeling b, David Coster c, Onnie O. Luk c,
Jalal Lakhlili c, Vytautas Jancauskas d, Michal Kulczewski e, Lourens Veen f, Dongwei Ye g,
Pavel Zun g, Valeria Krzhizhanovskaya g, Alfons Hoekstra g, Daan Crommelin b,g,
Peter V. Coveney h, Derek Groen a,h

a Department of Computer Science, Brunel University London, London, UK
b Scientific Computing Group, Centrum Wiskunde & Informatica, Amsterdam, The Netherlands
c Max-Planck Institute for Plasma Physics, Garching, Munich, Germany
d Leibniz Supercomputing Centre, Garching, Germany
e Poznań Supercomputing and Networking Center, Poznań, Poland
f Netherlands eScience Center, Amsterdam, The Netherlands
g University of Amsterdam, Amsterdam, The Netherlands
h Centre for Computational Science, University College London, London, UK

A R T I C L E I N F O

Keywords:
Validation
Verification
Sensitivity analysis
Uncertainty quantification

A B S T R A C T

The VECMA toolkit enables automated Verification, Validation and Uncertainty Quantification (VVUQ) for
complex applications that can be deployed on emerging exascale platforms and provides support for software
applications for any domain of interest. The toolkit has four main components including EasyVVUQ for VVUQ
workflows, FabSim3 for automation and tool integration, MUSCLE3 for coupling multiscale models and QCG
tools to execute application workflows on high performance computing (HPC). A more recent addition to the
VECMAtk is EasySurrogate for various types of surrogate methods. In this paper, we present five tutorials from
different application domains that apply these VECMAtk components to perform uncertainty quantification
analysis, use surrogate models, couple multiscale models and execute sensitivity analysis on HPC. This paper
aims to provide hands-on experience for practitioners aiming to test and contrast with their own applications.

1. Introduction

The computational models have become prevalent in describing and
predicting the behaviour of real-world processes and systems. In many
cases, the computational models are based on theories and/or mathe
matical equations to represent problems and produce simulation out
comes. However, the computation of the model and reality is subject to
the uncertainty that emerges from various sources. We use Verification,
Validation and Uncertainty Quantification (VVUQ) analysis to deter
mine and estimate uncertainty and their sources in the computational
models.

VVUQ analysis is crucial as verification determines how accurately
the model solves the mathematical equations applied in the simulation,

validation defines the degree to which the models accurately represent
the real world, and uncertainty quantification (UQ) identifies how vari
ations in input parameters affect simulation results. Overall, VVUQ
process provides the level of accuracy and reliability in any given model
and obtained simulation results [1].

There are several tools available in the research area of VVUQ, which
provide algorithms for parameter investigations, model calibration,
optimisation and UQ analysis. In this paper, we solely focus on the
VECMA toolkit (VECMAtk) that facilitates VVUQ techniques and pat
terns for verification and validation (V&V), sensitivity analysis (SA) and
UQ in application to single and multiscale simulations [1].

VECMAtk has four main components, namely EasyVVUQ [2] that is
used for simplifying the implementation and use of VVUQ workflows, in

☆ This document is the results of the research project funded by the VECMA project, which has received funding from the European Union Horizon 2020 research
and innovation programme.

* Corresponding author.
E-mail address: diana.suleimenova@brunel.ac.uk (D. Suleimenova).

Contents lists available at ScienceDirect

Journal of Computational Science

journal homepage: www.elsevier.com/locate/jocs

https://doi.org/10.1016/j.jocs.2021.101402

http://VECMAtk
mailto:diana.suleimenova@brunel.ac.uk
www.sciencedirect.com/science/journal/18777503
https://www.elsevier.com/locate/jocs
https://doi.org/10.1016/j.jocs.2021.101402
https://doi.org/10.1016/j.jocs.2021.101402
https://doi.org/10.1016/j.jocs.2021.101402
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jocs.2021.101402&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Journal of Computational Science 53 (2021) 101402

2

particular parametric UQ and sensitivity analysis, FabSim3 [3] which
helps to automate computational research activities, MUSCLE3 [4]
supporting the coupling of multiscale applications, and the QCG tools [5]
facilitating execution of applications using high performance computing
(HPC) infrastructures. The integration of these components in VECMAtk
aims to verify key aspects of the computational models, systematically
validate obtained simulation outputs by comparing against observa
tional data, as well as decrease uncertainty efficiently and effectively in
the simulations. It works conveniently on any platform from the desktop
to petascale supercomputers.

The EasyVVUQ component of VECMAtk simplifies the implementa
tion and execution of VVUQ workflows for new or existing applications
[6,7]. It provides several methods for sensitivity analysis [8] using
Stochastic Collocation (SC) and Polynomial Chaos Expansion (PCE) (see
Wright [6] for explanation of these sampling techniques). Moreover,
first-order, total-order and higher-order Sobol indices are available to
analyse the breakdown of variance over different (combinations of)
input parameters. The first- and higher-order indices can be considered
as fractions of the total observed output variance that can be attributed
to one or more input parameters respectively, as they sum to one. The
total-order indices are measures of the combined effect (i.e. both first
and higher order) of a single input (see [8] for more information). A
further analysis tool, available in the case of SC and PCE method, is a
cheap polynomial surrogate, which can be evaluated at unsampled lo
cations in the input space at minimal cost. Furthermore, an option to use
Markov-Chain Monte Carlo (MCMC) [9] samplers for calibration-type
problems is implemented.

EasyVVUQ is especially beneficial for large sampling runs since it
provides support for large scale execution of jobs. There is an optimised
database running in the background that is capable of holding millions
of records describing runs and their statuses. It also supports pausing
and resuming of workflows and is fault tolerant (failed jobs can be
investigated for the reasons of failure and resumed).

Prior to initiating EasyVVUQ, some wrapper code is necessary. This
takes the form of an Encoder and a Decoder. The Encoder is an element
that takes input data in EasyVVUQ internal format and outputs an input
file or files for the simulation. There are ready made classes that should
cover most of the cases. For more complex situations, Jinja2 template
language is supported. The Decoder is a parser that takes the output of
the simulation and extracts the data relevant for the analysis stage. If the
provided functionality is not sufficient, it is easy to extend the base
decoder class and implement your own.

EasyVVUQ divides VVUQ workflows into several distinct stages –
sampling, execution and analysis. Execution is further divided into ac
tions that help wrap existing applications, create directory structures,
copy input files, run the simulation and so on. We will quickly sum
marise a typical workflow from the viewpoint of the user:

1. The sampling stage depends on the method of analysis that the user
wants to employ for their problem. Supported methods currently
include parametric UQ and sensitivity analysis using SC, PCE or
simple Monte Carlo methods and Markov-Chain Monte Carlo. After
the sampling stage, the database is populated with values in the in
ternal EasyVVUQ format that are then used to guide execution.

2. EasyVVUQ supports multiple execution back-ends and aims to pro
vide access to heterogeneous computing resources. For example, we
support Cloud computing via Kubernetes [10]. We also support
execution on HPC resources via QCG PilotJob [11] or Dask [12] and
in particular Dask JobQueue [13].

3. The analysis stage is dependent on the sampling stage and an
appropriate analysis code will be chosen depending on which
sampler was used. In some cases, for example MCMC, where more
complicated workflows are required, analysis has to be integrated
with the sampling and execution stages in a cyclic workflow.

The practicality of using EasyVVUQ is dependent upon the number of

uncertain input parameters. The SC and PCE methods are subject to the
so-called curse of dimensionality, meaning that the required number of
code evaluations rise exponentially with the number of uncertain inputs.
In practical terms, if one decides to use these methods, the input
dimension should be less than 10. To postpone the curse of dimension
ality to higher dimensions, we have also implemented a dimension-
adaptive version of the SC sampler, which we have applied to an
epidemiological code with 19 uncertain inputs [14], although we have
also tested the software up to 30 inputs. If the input dimension is much
higher, e.g. ℴ(100) parameters, we recommend reducing the number of
inputs if possible, using for instance expert knowledge. Only the (Quasi)
Monte Carlo samplers will still function in such input spaces, but these
suffer from a slower convergence rate.

A more recent addition to the VECMAtk, currently in active devel
opment, is EasySurrogate. It is a toolkit for various types of surrogate
methods, and is similar in design to EasyVVUQ, where the surrogate
methods take the place of the samplers in EasyVVUQ. It contains,
amongst others, methods that can be used to learn conditional proba
bility density functions from data. These could be used as a stochastic
surrogate for the microscopic scales of a multiscale model. Section 4
focuses on this type of surrogate method, with an application to a
simplified atmospheric multiscale model. In addition, EasySurrogate
contains a dimension reduction technique which can be used to
compress the training data in the case where there is a massive differ
ence in the size of the state of the multiscale system, and the size of the
quantities of interested which are computed from that state. The
approach is described in detail here [15], and is currently implemented
for spectral solvers. Future efforts include the addition of Gaussian
Processes, and of neural-network based surrogates for forward uncer
tainty propagation with a high number of uncertain inputs.

VECMAtk is a flexible software environment, which has documen
tation and tutorials to communicate information to stakeholders or end-
users. The purpose of documentation is to describe architecture and
functionalities, as well as to provide instructions on installation, testing
and troubleshooting. While tutorials guide and teach existing and new
users on how to perform VVUQ analysis using VECMAtk. All docu
mentation and tutorials are easily accessible, descriptive and illustrative
with the VECMA applications ranging within various domains (see
Groen et al. [1] for detailed descriptions of domain applications).

In this paper, we present a number of tutorials pertaining the VEC
MAtk components in application to forced migration (Section 2), fusion
energy (Section 3), climate (Section 4), biomedicine (Section 5) and
urban air pollution (Section 6). Each application tutorial aims to explain
and illustrate different components that perform SA and UQ analysis
using EasyVVUQ, couple multiscale models using MUSCLE3 and execute
large scale calculations (i.e. jobs) on Eagle supercomputer through the
use of QCG tools. Importantly, these tutorials provide hands-on experi
ence for practitioners aiming to test and contrast with their own appli
cations. VECMAtk components are also available for all in an interactive
mode (see https://github.com/vecma-project/VECMA-tutorials or
https://jupyter.vecma.psnc.pl), which requires no installation re
quirements of components and can be considered as a portable training
platform using Jupyter Notebooks.

2. Application of FabSim3 and EasyVVUQ: forced human
migration

Forecasting forced human migration is crucial since global forced
migration has reached record levels. It is also challenging as many
forced population data sets are small and incomplete, and data sources
have too little information. Yet, forced population predictions are
essential to save forced migrants lives, to investigate the consequences
of a nation closing its border for forced population, and to help complete
incomplete data collections on forced population movements. Thus, we
introduce the Flee agent-based migration code forecasting the distri
bution of incoming forced migration arrivals in conflicts [16].

D. Suleimenova et al.

https://github.com/vecma-project/VECMA-tutorials
https://jupyter.vecma.psnc.pl

Journal of Computational Science 53 (2021) 101402

3

Manual routine tasks in simulations, such as construction, execution,
analysis, and validation of various models, can be simplified using
automation tools. For Flee application, we use the FabSim3 toolkit to
simplify and accelerate activities [17], as well as automate several
phases of Flee-based simulations. Specifically, we use the
FabSim3-based plugin FabFlee to instantiate and execute multiple runs
for different policy decisions, and to validate and visualize the obtained
results against the existing data [18].

There are four different ways to execute multiscale migration sim
ulations in FabFlee: (1) Single-model execution, (2) Ensemble execution,
(3) Replica execution, and (4) Coupled execution. Each method has its
unique purpose. The single-model execution can be easily performed on
a laptop and instantly provide an overview to users. The ensemble
execution could be useful for those who run multiple simulation in
stances simultaneously with different inputs or configuration settings of
a target simulation run. While the replica execution could be an inter
esting option for those who run simulations multiple times at once with
identical inputs due to the uncertain nature of a code. The coupled ex
ecutions allow to couple macroscale and microscale (multiscale) models
and conflict scenarios with the weather, telecommunication and other
data sources.

All FabFlee simulation tasks are callable from the terminal, adhere to
the following structure shown in Fig. 1. Moreover, we present the list of
available FabFlee tasks and their description in Table 1.

2.1. Sensitivity analysis on input parameters of Flee

Sensitivity analysis (SA) is a well-established approach to analyse the
influence of changes in assumptions used in modelling and simulation
research [19]. It helps to identify which input parameters or assump
tions have a higher impact or influence on the simulation output. SA
results can be used to provide reliable parameters/assumption estimates
for validation and model improvement. The SA process may involve
investigation of the influence of changes in (a) model structure, or (b)
input parameters. For this tutorial, we apply SA to the Flee algorithm
and investigate which input parameters are pivotal in the simulation
output.

The Flee code is based on the algorithm assumptions for forced
migration including several parameters defining the movement logic of
forcibly displaced people (see Suleimenova et al. [20] for a more
detailed description of the algorithm and input parameters). The list of
input parameters defining forced migration simulation algorithm is
described below and parameter ranges are illustrated in Table 2:

• max_move_speed: Agents’ maximum movement speed in the
simulation while traversing between locations with vehicles.

• max_walk_speed: Agents’ maximum movement speed the simu
lation while travelling on foot between locations.

• camp_move_chance: Probability of an agent moving from a camp
location where an agent resides to another location.

• conflict_move_chance: Probability of an agent moving from a
conflict location where an agent resides to another location.

• default_move_chance: Probability of an agent moving from
other (default) location where an agent resides to another location.

• camp_weight: The attractiveness value for camp locations making
them twice as likely to be chosen as destination.

• conflict_weight: The attractiveness value for conflict locations
making them four times less likely to be chosen as destination.

For forced migration sensitivity analysis, we use FabSim3 and
EasyVVUQ components of VECMAtk, which provide an automated
execution environment to achieve highly transparent and customised
simulations by simplifying and accelerating key task activities.

Step 1: Installation

To perform this tutorial, the following software packages are
required: (i) Flee code [21], (ii) FabSim3 toolkit [3], (iii) FabFlee plugin
[22], and (iv) EasyVVUQ [2]. To install these application, simply follow
the instruction below:

Flee
To clone the Flee code into your working directory, simply type:
git clone https://github.com/djgroen/flee.git

FabSim3
To clone the FabSim3 toolkit, simply type:
git clone https://github.com/djgroen/FabSim3.git

To install all required python packages automatically and configure
YML files, simply go to your FabSim3 directory and type:

python3 configure_fabsim.py

If you encounter an error or issue during the installation process,
please see the Section known issues in the FabSim3 documentation.

After installation and configuration process, the main FabSim3
directory is added in your $PYTHONPATH and $PATH environment
variable. You can find these changes on your bash profile (for Linux
check /.bashrc, and for MacOS check /.bash_profile).

Then, to make the fabsim command available in your system,
restart the shell by opening a new terminal or just re-load your bash
profile using the source command.

To make sure that installation is done correctly and the fabsim
command available in your system, simply execute the following
command:

which fabsim

<FabSim3_dir>/bin/fabsim

It is important to confirm that <FabSim3_dir> is pointed to the
FabSim3 directory in your local machine.

FabFlee
To install the FabFlee plugin, simply go to <FabSim3_dir> and

type:
fabsim localhost install_plugin:FabFlee

The FabFlee plugin will appear in <FabSim3_dir>/plugins/
FabFlee.

To use the Flee code library in FabFlee, we need to add the Flee
location to the system PYTHONPATH. To add Flee, simply go to
<FabSim3_dir>/plugins/FabFlee directory, and update the
machines_FabFlee_user.yml file by adding the variable flee_
location under localhost section as shown below:

Fig. 1. FabFlee command line template.

D. Suleimenova et al.

http://known%20issues

Journal of Computational Science 53 (2021) 101402

4

EasyVVUQ
EasyVVUQ is a Python library and build upon existing libraries, such

as Chaospy, for statistical functionalities. To install EasyVVUQ, simply
type:

pip install easyvvuq

There are several sampling methods for UQ analysis in EasyVVUQ,
such as Stochastic Collocation, Polynomial Chaos Expansion, Monte
Carlo and Markov-Chain Monte Carlo techniques. The easiest way to
examine these methods is to follow Jupyter Notebooks provided in http
s://mybinder.org/v2/gh/UCL-CCS/EasyVVUQ/dev?filepath=tutorials.

Step 2: Parameter exploration

To perform sensitivity analysis on input parameters of Flee, we
mainly focus on two sampler examples, namely (a) SCSampler (Sto
chastic Collocation sampler) and (b) PCESampler (Polynomial Chaos
Expansion sampler), that are available in EasyVVUQ. The configuration
for SA can be set in flee_SA_config.yml located in <FabSim3_dir>/
plugin/FabFlee/SA directory. All required configurations for Fab
Flee SA, such as sampler name, varying input parameters, and the
number of polynomial order, are loaded from flee_SA_config.yml file.
To illustrate, we present an example of two config parameters below,
namely (max_move_speed and max_walk_speed):

Step 3: Execution

To execute sensitivity analysis on your local PC, using FabFlee,
simply run:

fabsim localhost flee_init_SA:<conflict_name>,

simulation_period=<number>

In Table 3, we present several conflict scenarios available in forced
migration application. Simply replace conflict_name and <number>
in simulation_period to execute and perform sensitivity analysis.
To illustrate, simply run the following:

fabsim localhost flee_init_SA:mali,simulation_period

=300

After the job has finished, the terminal becomes available again, and
a message is printed indicating where the output data resides. Run the
following command to copy back results from the localhost results
directory (or remote machine):

fabsim localhost fetch_results

The results will then be in <FabSim3_dir>/results directory.

Step 4: Results and analysis

To analyse and plot the obtained results, simply type:
fabsim localhost flee_analyse_SA:<conflict_name>

If you set sampler_name: SCSample in flee_SA_config.yml file,
the target folder name will be flee_SA_SCSampler. All output results
will be saved in <FabSim3_dir>/plugins/FabFlee/SA/flee_
SA_SCSampler. We will also find two figures automatically created
from the obtained results. To illustrate, Fig. 2 is the first-order Sobol
sensitivity indices for the selected parameter set in flee_SA_config.
yml file and Fig. 3 is the mean and the standard deviation of total error
over the simulation period. We observe that max_move_speed is highly
sensitive input parameter and influential to the simulation output of
Mali conflict compare to max_walk_speed parameter.

2.2. The required resolution of certain model parameters

Increasing the resolution (or polynomial order) results in a larger
number of simulation runs, which may give us better estimation of
sensitivity analysis on target parameters. However, in turn, it increases
the final computational cost of executing the model. In case of the

Table 1
List of tasks commonly used in FabFlee.

Table 2
Defining an input parameter space for the uncertain parameters of the Flee
simulation.

Parameters Type Default value Uniform range

max_move_speed float 420 km/day (100, 500)
max_walk_speed float 35 km/day (10, 100)
camp_move_chance float 0.001 (0.0, 0.1)
conflict_move_chance float 1.0 (0.1, 1.0)
default_move_chance float 0.3 (0.1, 1.0)
camp_weight float 2.0 (1.0, 10.0)
conflict_weight float 0.25 (0.1, 1.0)

Table 3
List of available conflict scenarios for sensitivity analysis.

Conflict country Conflict name Simulation duration

Mali mali 300 days
Burundi burundi 396 days
South Sudan ssudan 604 days
Central African Republic car 820 days

D. Suleimenova et al.

https://mybinder.org/v2/gh/UCL-CCS/EasyVVUQ/dev?filepath=tutorials
https://mybinder.org/v2/gh/UCL-CCS/EasyVVUQ/dev?filepath=tutorials
http://flee_SA_config.yml

Journal of Computational Science 53 (2021) 101402

5

migration application, we tested a set of certain parameters with
different polynomial orders to evaluate the asymptotic behaviour in the
quantities of interest (QoIs) upon increasing the resolution. The execu
tion time for runs varied due to the increasing number of polynomial
order. Fig. 4 compares the Sobol indices per each resolution size of the
uncertain parameters. As it can be observed, after a certain polynomial
order, such as polynomial order of 7, the sensitivity of input parameters
did not change significantly. This will be helpful for future analysis to
reduce the computational cost and total execution of the analysis.

3. Fusion tutorial

Nuclear fusion powers the sun and the main goal of fusion research is
to bring this down to earth. One of the approaches taken is to use
magnetic fields to confine a sufficiently large plasma for long enough so
that more energy is produced from the fusion of deuterium and tritium
isotopes of hydrogen than is required to heat and confine the plasma.
The main process determining the confinement time is the turbulent
transport of particles and energy in the plasma. To gain a better un
derstanding of this, a fusion workflow (described in more detail in
[23–26]) has been developed. To understand the role played by various
sources of uncertainty, a number of workflows based on the above fusion
workflow have been developed:

1. a workflow without UQ involving 4 codes (equilibrium code, tur
bulence code, code for converting fluxes to transport coefficients and
a transport code) coupled via MUSCLE.

2. workflows applying EasyVVUQ to particular components (equilib
rium code, turbulence code, transport code).

3. a workflow with UQ using EasyVVUQ involving 3 codes (equilibrium
code, code for calculating transport coefficients (not using turbu
lence) and a transport code) directly coupled.

While the ultimate goal is to apply the knowledge based in 3 above to
doing UQ on 1, this would currently be too expensive (simple extrapo
lation would require approximately 35 million node hours) if the tech
nique used for 3 were to be directly applied to 1. Under current
investigation is to see if information gained from 2 can be used to speed
up the UQ for the 1 workflow.

Building a tutorial around any of the above workflows is difficult
because of code licensing issues and so a simpler model was created to
explore some of the ideas underlying these workflows. In this, the
toroidal plasma is replaced by a cylindrical model which simplifies the
calculation of the equilibrium and associated metric coefficients. The
turbulence code is replaced by a single uncertain number specifying the
transport coefficient, and rather than solve for densities and electron
and ion temperature equation, the density is fixed and only a single
temperature equation is solved.

3.1. Uncertainty quantification on the fusion research

In this tutorial, we will use EasyVVUQ [7] to perform UQ [6] on an
example taken from fusion research, which consists of

• easyvvuq_fusion_tutorial.ipynb: Jupyter notebook con
taining the EasyVVUQ workflow.

• fusion.template: template used by the EasyVVUQ to prepare the
input files for the fusion program.

• fusion_model.py: a python program that reads the input file
prepared by EasyVVUQ (based on fusion.template) and then
calls the actual fusion function.

• fusion.py: a python program containing the function that per
forms the actual calculation using the fipy python package [27].

(While not really necessary to separate fusion_model.py and
fusion.py, the latter has a life outside of this project and is therefore

Fig. 2. The first-order Sobol indices for each of the uncertain parameters of
Flee for the Mali conflict.

Fig. 3. The mean and standard deviation of Flee output over the simula
tion period.

Fig. 4. The first-order Sobol indices for each of the uncertain parameters of
Flee for the Mali conflict with different resolution numbers.

D. Suleimenova et al.

Journal of Computational Science 53 (2021) 101402

6

separated.)
The simplified fusion workflow maps the tokamak torus to a circular

plasma (with a correction for ellipticity), see Fig. 5.
The model solves for the temperature, T(ρ,t), across the cross-section

of the cylinder, ρ), in the presence of a specified thermal diffusivity and
sources:

3
2

∂
∂t
(n(ρ, t)T(ρ, t)) = ∇ρ[n(ρ, t)χ(ρ, t)∇ρ(T(ρ, t))] + S(ρ, t)

with a boundary condition given by Tebc and an initial uniform tem
perature of 1000 eV; the quantities are n(ρ,t), the plasma density; χ(ρ,t),
the thermal conductivity and S(ρ, t) the source.

The geometry of the simulation is parameterised by the minor radius
a0, major radius R0 and elongation E0 (while the geometry is solved in
the cylindrical approximation, the actual radius used, a, is adjusted on
the basis of a0 and E0).

The density n(ρnorm) is given by

bheight − bsol

2

(

mtanh
(

bpos − ρnorm

2bwidth
, bslope

)

+ 1
)

+ bsol

where bheight is the density at the top of the pedestal; bsol is the density at
the base of the pedestal; bpos is the position of the pedestal; bwidth is the
pedestal width and the modified tanh function ([28] which cites [29]):

mtanh(x, bslope) =
(1 + x⋅bslope)exp(x) − exp(− x)

exp(x) + exp(− x)

A typical density profile used in these simulations is shown in Fig. 6. The
source is given by

S(ρ, t) = α⋅exp

(

−

(
ρ/a − H0

Hw

)2
)

where α is chosen so that
∫

S(ρ,t)dV = Qetot, the total heating power. In
this application of the model we will be looking for the steady-state
solution.

The parameters that can be varied are given in Table 4, though we
will restrict the variation to that shown in Table 5 (corresponding to the
vary_5 case mentioned later, or the first and last entries in that table for
the vary_2 case).

Step 1: Installation

The starting point for the fusion tutorial is the following Binder link:
https://mybinder.org/v2/gh/UCL-CCS/EasyVVUQ/dev?filepath

=tutorials.
Once the Jupyter Notebook has started, click on
easyvvuq_fusion_dask_tutorial.ipynb

which should start the notebook.

Step 2: Parameter exploration

For this model, 13 parameters are available to be set. In the notebook
a few selections have been made consisting of 2, 5 and 10 in addition to
the complete set. These are identified as

• vary_2, a minimal test case varying the heating power and the
temperature boundary condition;

Fig. 5. The actual tokamak geometry (here JET [https://www.euro-fusion.
org/devices/jet/] on the left) is mapped to a cylinder (on the right) in the
simple fusion workflow.

Fig. 6. From top to bottom, a typical density profile and the profile of the
electron temperature profile predicted by the simple fusion model indicating
the range of possible values arising from a variation in the heating and
boundary condition.

Table 4
Quantities that can be varied in the fusion example.

Quantity. Min Max Default

Qetot 1.0e6 50.0e6 2e6
H0 0.00 1.0 0
Hw 0.01 100.0 0.1
Tebc 10.0 1000.0 100
χ 0.01 100.0 1
a0 0.2 10.0 1
R0 0.5 20.0 3
E0 1.0 10.0 1.5
bpos 0.95 0.99 0.98
bheight 3e19 10e19 6e19
bsol 2e18 3e19 2e19
bwidth 0.005 0.02 0.01
bslope 0.0 0.05 0.01

D. Suleimenova et al.

https://mybinder.org/v2/gh/UCL-CCS/EasyVVUQ/dev?filepath=tutorials
https://mybinder.org/v2/gh/UCL-CCS/EasyVVUQ/dev?filepath=tutorials
https://www.euro-fusion.org/devices/jet/
https://www.euro-fusion.org/devices/jet/

Journal of Computational Science 53 (2021) 101402

7

• vary_5, a more interesting case varying the heating power source
function (3 parameters), the transport coefficient and the tempera
ture boundary condition;

• vary_10, adding in 5 quantities related to the density profile;
• vary_all, the complete set.

The number of cases required to be run for PCE scales as (1 + P)V where
P is the requested PCE order and V the number of varying quantities. The
fusion tutorial takes about 20 ms computational time per sample on a
modern CPU.

In this tutorial we will start with using vary_2 to get results quickly
and then move to vary_5. We will also scan over a range of PCE orders
and look at the convergence of the statistical quantities.

Other parameters that can be changed are:

• whether DASK [12] is used, and if so whether locally or using SLURM
[30],

• how many jobs to run in parallel

Step 3: Execution

For the initial tests, in the cell with the header
define varying quantities

ensure that
return vary_2

which selects a minimal case to get results as rapidly as possible.
Then also ensure that in the cell with the header

Calculate the polynomial chaos expansion for a range

of orders

that
local = True

(so that we do not use the SLURM queuing system) and that the loop
is set to

for pce_order in range(1, 2):

then run the notebook (”Cell” tab, and then “Run All”). This should
run one case with 4 samples in under 20 seconds. For a more interesting
case, change to five varying parameters

return vary_5

and
for pce_order in range(1, 5):

and run again. This will take quite a bit longer (of order an hour on
Binder).

Unlike other examples, we are using “Dask” [12] to run the jobs. Two
modes are possible for Dask: a local mode where local cores are used and
a version using SLURM [30] to schedule jobs remotely (see https
://slurm.schedmd.com/documentation.html for documentation). If
you want to use the SLURM option, and you have SLURM as your local
queuing system. then you will need to make changes to

to reflect the local QOS, mail address, time-limit, queue partition,
number of cores, memory, etc.

Some localisation is necessary in the latter case to specify SLURM job
queue information, as well as to specify the number of jobs.

Step 4: Results and analysis

Typical output from the sensitivity analysis is shown in Fig. 6 where
profiles of the electron density, ne, and electron temperature, Te, are
plotted. Since no variations affected ne for this vary_5 case, only one
line can be seen. The Te plot shows the mean, plus and minus one
standard deviation, and the 10 and 90 percentiles. The range of Te be
tween 1 and 99 % is also shown. The percentiles are calculated using the
chaospy [31] Perc routine which samples from a distribution built on
the basis of a fit by PCE to the local Te as a function of the uncertain,
varying parameters, performed independently for each position across
the Te profile.

The Sobol indices indicate (Fig. 7) that in the core (rho close to zero)
the most important parameters are the width of the heating profile (Hw)
followed by the transport coefficient (χ); at the mid-radius of the plasma,
the transport coefficient (χ) is the most important parameter; and at the
edge the boundary condition (Tebc) dominates.

The convergence of the mean, standard deviation and Sobol first
indices (Fig. 8) show a rapid convergence with PCE order indicating that
for most purposes a PCE order of 3 should be sufficient for this problem.

This tutorial has just touched on a few issues but other options
including changing from Polynomial Chaos Expansion to Stochastic
Collocation, or the use of sparse grids, have not been covered.

4. Application of EasySurrogate: Lorenz 96

Multiscale systems are comprised of processes which span over a
wide range of spatial and/or temporal scales. A direct numerical simu
lation of these systems, which resolves all relevant scales, is typically not
possible due to computational constraints. A common engineering op
tion is to decompose the solution into macroscopic and microscopic
variables, after which a reduced model for the macroscopic variables is
derived. The corresponding governing equations will be unclosed,
meaning that they contain a so-called subgrid-scale term dependent
upon microscopic variables. To close the system, the subgrid-scale term
must be parameterized using macroscopic variables, in effect creating a
surrogate model for the exact subgrid scale term. Classical approaches
uses deterministic parameterizations, see e.g. [32]. Data-driven surro
gate models have more recently also become popular ([33], [34]), as
well as a variety of machine-learning models ([35–37]).

Let the multiscale dynamical system be represented by a set of
coupled nonlinear ordinary differential equations (ODEs) for the time-

Table 5
Distribution of quantities actually varied.

Quantity Distribution Range

Qetot Uniform (1.8e6, 2.2e6)
H0 Uniform (0.0, 0.2)
Hw Uniform (0.1, 0.5)
χ Uniform (0.8, 1.2)
Tebc Uniform (80.0, 120.0)

Fig. 7. Sobol first index describing the source of the variance in the profile of
the electron temperature profile predicted by the simple fusion model.

D. Suleimenova et al.

https://slurm.schedmd.com/documentation.html
https://slurm.schedmd.com/documentation.html

Journal of Computational Science 53 (2021) 101402

8

dependent macroscopic variables x(t) and microscopic variables y(t):

d
dt

x = f (x, r),
d
dt

y = g(x, y), r = r(y). (1)

Here, r(y) is the subgrid scale term. Note that if we have a suitable
surrogate r̃, we do not have to solve the equations of the expensive
microscopic component:

d
dt

x̃ = f (̃x, r̃), r̃ = r̃(x̃). (2)

In this tutorial, we will focus on neural-network surrogates ̃r which are
(i) stochastic, and (ii) have memory. Specifically, we will use the
EasySurrogate toolkit to build a model for the time evolution of r by
resampling training data from the distribution of ri+1 (r at time ti+1),
conditional on the past states of x. That is, we sample from the condi
tional distribution

r̃ ∼ ri+1 | xi, xi− 1,…, xi− I , (3)

where I ∈ ℕ is the maximum considered lag. We note that we do not
need to have an explicit expression for the conditional distribution of
ri+1, we merely need to be able to sample from it. There are a variety of
ways to do so, and we will focus here on so-called quantized softmax
networks (QSNs). Essentially, we divide the domain of the ri+1 training
data into B non-overlapping intervals, called ‘bins’. For each data point
ri+1 we can find the unique bin with index ki+1 ∈ [1,…,K] in which it
falls, and we can create a corresponding time-lagged feature vector
Xi+1 := [xi, xi− 1,…, xi− I]

T . Now, all (Xi+1, ki+1) pairs form a classification
data set, on which we train a feed-forward neural network, see Fig. 9.

The network has softmax output layers, which predict discrete proba
bility mass functions (pmf) over the K bins. During prediction, we
sample a bin index from this pmf, conditional on the time-lagged feature
vector Xi+1. The prediction ̃ri+1 is obtained by randomly sampling from
the ri+1 data inside the selected bin, see again Fig. 9. For more infor
mation behind this approach we refer to [38]. The authors discuss
sampling from a more general conditional distribution than in Eq. (3),
where also the past states of r are included.

4.1. Lorenz 96

Before giving instructions on how to create a QSN surrogate, let us
briefly introduce the model on which we will test the approach. Spe
cifically, we will use the the well-known two-layer Lorenz 96 (L96)
system, originally proposed by [39] as a toy model for the atmosphere. It
consists of a set of K ODEs describing the evolution of the macroscopic
variables xk, of which each ODE is coupled to J microscopic variables
yj,k:

dx(k)

d t
= x(k− 1)(x(k+1) − x(k− 2)) − x(k) − F + r(k)

r(k) :=
hx

J
∑L

j=1
y(j,k)

dy(j,k)

d t
=

1
ε
[
y(j+1,k)(y(j− 1,k) − y(j+2,k)) − y(j,k) + hyx(k)

]

(4)

The macroscopic and microscopic variables x(k) and y(j,k) are considered
variables on a circle of constant latitude, where the indices k = 1,…,K
and j = 1,…, J denote the spatial location. Periodic boundary conditions
are imposed, and we will use the following parameter settings: {J,K,F,hx,

hy,ε} = {18,20,10, − 2,1,0.5}. Note that the full system (equivalent to
(1)), consists of K × J = 360 coupled ODEs. Once we have a surrogate
for r(k), the reduced system (corresponding to (2)), consists of K = 18
ODEs.

There are five main steps for running this tutorial, namely (i)
installation of EasySurrogate, (ii) running the full model to generate
training data, (iii) training the QSN surrogate, (iv) running the macro
scopic model with the microscopic surrogate, and (v) post processing the
results.

Step 1: Installation

As in the preceding sections, one option is to install via a Binder link,
found in the README of https://github.com/wedeling/

Fig. 8. The convergence of the predicted mean and standard deviation (top)
and Sobol first indices (bottom) with increasing order of the PCE expansion.

Fig. 9. A schematic depicting the QSN training and prediction.

D. Suleimenova et al.

Journal of Computational Science 53 (2021) 101402

9

EasySurrogate. However, training the QSN network can be very slow
in the Binder environment. We therefore recommend to install locally
via:

git clone https://github.com/wedeling/Easy

Surrogate.git

cd EasySurrogate

python3 setup.py install–user
For both options, the Jupyter notebook containing the tutorial is

found in tutorials_tutorial_paper_96_tutorial.ipynb.
Finally, in case the install step fails, ‘pip install easysurrogate’ provides
an alternate means of installation.

Step 2: Generate training data

We start by creating an EasySurrogate campaign object:

EasySurrogate has a similar design structure as EasyVVUQ, in the
sense that we start with creating an overarching Campaign object as
shown above. This object will handle the data frame (in HDF5 format),
and we will assign a particular surrogate method to the campaign later
on. For now, we will instantiate a L96 solver object via:

The main time loop, which simulates the full system (4), is given by:

By passing the dict snapshot to accumulate_data(), we are
accumulating data of the macroscopic states and the corresponding
subgrid scale term inside the Campaign object. Once the time integra
tion has finished, we can store all accumulated data to an HDF5 data
frame via:

This will open a filedialog window to specify a storage location.
Alternatively, by passing file_path as a keyword argument, the HDF5
file is written directly to the specified file path.

Step 3: Train a QSN surrogate

The HDF5 data frame generated in step 2 is used as training data for a
QSN surrogate ̃r, which we load the via:

Next, we will create a QSN surrogate object:

Training the surrogate is done via:

When we specify a lags keyword, time-lagged features vectors as
displayed in Fig. 9 will be created. Since we have specified range(1,
10) for the X_n feature array, we are creating a surrogate with 9 lagged
x vectors: r̃ ∼ ri+1 |xi, xi− 1, …, xi− 9. We are creating a ‘non-local’ QSN
surrogate here, which takes entire x vectors as input. Since each x vector
consists of K = 18 entries, we will have an input layer of 18 × 9 = 162
neurons. Through n_bins=10, we are dividing the domain of each ri+1
entry up into 10 non-overlapping, equidistant bins. As the ri+1 vectors in
the target array also contains K entries, a QSN surrogate is created
with K softmax layers, i.e. every spatial point k = 1,…,K, has its own
pmf with n_bins=10 discrete probabilities. The output layer therefore
has 18 × 10 = 180 neurons. For more detail on the QSN structure, and a
discussion on local vs non-local surrogates, we refer to [38]. The
remaining keywords, n_layers and n_neurons regulates the number
of (hidden) layers and the number of neurons per hidden layer. The mini
batch size used in the stochastic gradient descent (see e.g. [40]) is
specified through batch_size. Finally, by setting test_frac=0.5
train only on the first 50% of the training data, thus keeping the latter
half separate as a test set.

Just as a sampler is added to an EasyVVUQ campaign, a (trained)
surrogate is added to an EasySurrogate campaign via the add_app
subroutine:

The save_state saves both the campaign and the surrogate object
to disk. Similar to store_accumulated_data, this is done via a file
dialog window or a file_path argument.

Step 4: Predict with a QSN surrogate

Here, we will use the trained QSN surrogate as a source term in the
macroscopic ODEs. This results is a small change in the main time loop:

The function call predict(X_n) returns a random sample from ̃r ∼
ri+1 | x̃i, x̃i− 1, …, x̃i− 9. Internally, the current macroscopic state X_n is
appended to the feature vector, and the time-lagged history x̃i, x̃i− 1,…,

x̃i− 9 is automatically updated. To couple the surrogate to the macro
scopic solver, the L96 solver module is programmed such that when the
argument r_n is passed, this vector is directly used as the subgrid-scale
term, and therefore the microscopic ODEs are not solved. This solution

D. Suleimenova et al.

Journal of Computational Science 53 (2021) 101402

10

works well in the case of the L96 model. For more complex coupling
situations we can use the Multiscale Coupling Library and Environment,
see Section 5 or go to github.com/wedeling/EasySurrogate for a
tutorial on coupling a micro-scale surrogate to a macroscopic reaction
diffusion model.

When the training completed, an initial time-lagged feature vector
was created from the training data, and stored in the QSN surrogate
object. In this example this is x8,x7,…,x0, which is consistent with the
prediction of r9. For this reason we do not compute the QSN prediction
r_n until we get to the 9-th time step.

Finally, we note that there are other surrogate methods available in
EasySurrogate, e.g. standard feed-forward neural networks or kernel-
mixture networks [41]. These have the same design, so these will
work without modification to the code above, which allows for easy
comparison of surrogate method performance.

Step 5: Post processing

Each surrogate method has its own analysis class, in analogy to the
different EasyVVUQ samplers. We create a QSN analysis object via:

Due to chaos, and the accumulation of error over time, we cannot
expect to have path-wise exact trajectories, i.e. x(t) ∕= x̃(t) in general.
Instead, we wish to create a surrogate such that the time-averaged sta
tistics of ̃x are a good approximation of the statistics of x. To estimate the
probability density functions of x and x̃, we use:

The corresponding figure can be found in Fig. 10, which displays a
good overlap between the reference (two-layer) model pdf from (4), and
the pdf of the one-layer model with QSN surrogate ̃r. In a similar fashion
we can use auto_correlation_function and cross_

correlation_function from the analysis object, to compute auto
correlation functions, or the cross-correlation function between neigh
bouring points. Fig. 11 compares the auto correlations functions of x and
x̃, as well as those from r and ̃r.

Finally, let us note that we trained the surrogate completely offline, i.
e. on data alone, whereas we predict in an online fashion, where the
surrogate is coupled to a system of ODEs. Note that these two situations
are not the same, as the online case is subject to two-way interaction
between the surrogate and the physical (macroscopic) system. For the
L96 case we obtained very good results with a surrogate that was trained
offline. However, for more complex problems it might well be true that

the introduction of such a surrogate eventually causes a bias in the
statistics, or perhaps even results in an unstable system. We are currently
investigating the use of a second, online learning phase (developed by
[42]), where we retrain a neural network while it is part of the physical
system. The idea here is that the surrogate should be trained to perform
well within the modelling environment, rather than training it to just
represent the data well.

5. Application of MUSCLE3: the 3D in-stent restenosis (ISR3D)

Another application that we consider in this article is the 3D in-stent
restenosis model (ISR3D) [43,44]. ISR3D is a multiscale simulation that
mimics the process of post-stenting growth of the neointima in the ar
tery. It consists of two submodels: an agent-based smooth muscle cell
model (SMC) and a blood flow model using the Lattice Boltzmann
method. The smooth muscle cell model takes in the computational ge
ometry of the vessel and corresponding stent after deployment, and
starts the dynamics of restenosis. This submodel models cell growth,
proliferation and death on the scale of an hour. The wall shear stress is
one of the crucial factor influencing the prolification of smooth muscle
cells as it decides the turnout of nitric oxide inhibition from endothelial
cells. Therefore at each time step, the current computational geometry
of the blood vessel is passed to the blood flow solver, Palabos [45] and
wall shear stresses are fed back to the SMC model after the flow
computation. There are three helper modules (referred as mapper in
MUSCLE3) in between the SMC model and blood flow model assisting
the transmission of data. They are voxelizer, distributor and collector.
Fig. 12 shows the communication diagram between submodels and
helper modules.

MUSCLE31 [46] is a multiscale coupling library which can be used to
connect multiple submodels together. A MUSCLE3 multiscale simulation
consists of several programs which run simultaneously, passing

Fig. 10. The pdfs of xk (left) and rk (right), for both the two-layer model (4) and
the one-layer model with QSN surrogate.

Fig. 11. The auto correlation function of xk (left) and rk (right), for both the
two-layer model (4) and the one-layer model with QSN surrogate.

Fig. 12. Communication scheme of the ISR3D model.

1 https://github.com/multiscale/muscle3.

D. Suleimenova et al.

https://github.com/multiscale/muscle3

Journal of Computational Science 53 (2021) 101402

11

messages to each other either at the beginning or the end of a simulation,
or on every iteration. Besides the submodels, a MUSCLE3 simulation
contains helper modules which perform e.g. data conversion or load
balancing. The structure and the parameters of a MUSCLE3 model are all
described in one or more yMMSL2 files. These describe the structure of
the multiscale model by listing the programs and the communication
lines between them, as well as global and submodel-specific settings. We
refer the reader to Appendix A for more details about how ISR3D uses
MUSCLE3 to communicate. In this tutorial, we demonstrate how to
perform an uncertainty quantification analysis on ISR3D with
MUSCLE3.

5.1. Uncertainty quantification analysis on ISR3D with MUSCLE3

With the MUSCLE3 communication set up, we can perform a non-
intrusive uncertainty quantification analysis of the ISR3D application.
We present an uncertainty quantification analysis with a quasi Monte
Carlo (qMC) method, and the details about generating the UQ instances
and launching a SLURM job array with MUSCLE3 are demonstrated. We
first start with the installation of ISR3D and MUSCLE3. Since the un
certainty quantification campaign described in this tutorial is compu
tationally expensive, it is recommended to use HPC resources for its
execution.

Step 1: Installation

Installing ISR3D entails building MUSCLE3 including its C++ sup
port, and then ISR3D. Python 3.5 or later, CMake ver. 3.6.3 or later, a
C++ compiler supporting C++14 (e.g. GCC 6 or later), and a compatible
MPI library with C++ support (e.g. OpenMPI) must be available. The
first step is to install the Python module for MUSCLE3:

pip3 install muscle3

Next, MUSCLE3’s C++ library needs to be downloaded,
wget https://github.com/multiscale/

muscle3/archive/

0.4.0/muscle3-0.4.0.tar.gz

unpacked,
tar -xf muscle3-0.4.0.tar.gz

and built.
cd muscle3-0.4.0

MUSCLE_ENABLE_MPI=1 make

MUSCLE3 can then be installed, for example in ∼/muscle3:
PREFIX=∼/muscle3 make install

ISR3D can be obtained from GitHub:
git clone https://github.com/ISR3D/ISR3D.git

A build script for the current machine must then be made. For
building locally, editing the existing build.linux.sh is easiest. In this
file MUSCLE3_HOME must be set to the location where MUSCLE3 has
been installed:

cd ISR3D

nano./build.linux.sh

ISR3D can then be built by running the script:
./build.linux.sh

After the installation, one can find a sample generation script
UQtutorial.py, a SLURM script job_array.sl and a postprocess
ing script postprocessing.py under the directory ISR3D/UQ/ in
which all the codes of this UQ campaign are contained. To execute these
scripts, we recommend you to create a new directory under ISR3D root
directory with the name of the UQ campaign and copy the three scripts
in, for instance:

mkdir -p ISR3D/Result/UQcampaign

cd ISR3D/Result/UQcampaign

cp../../UQ/UQtutorial.py.

cp../../UQ/job_array.sl.

cp../../UQ/postprocessing.py.

Step 2: Sample generation

The ISR3D multiscale model simulates the tissue growth after
stenting. We are interested in the influence of the four biological un
certain parameters on the neointimal growth of the restenosis process.
The four parameters are the endothelium regeneration time, the
threshold strain for smooth muscle cells bond breaking, the balloon
extension area and the fenestration percentage in the internal elastic
lamina. As mentioned before, these four uncertain parameters, like all
the other inputs for the model are included in the ymmsl. To change the
value of these uncertain parameters for each instance, we first read in
the template ymmsl file with:

The ranges of uncertainty are given in Table 6 and are assumed to be
uniformly distributed. We apply the quasi Monte Carlo method with
Sobol sequence [47–49] to sample the instances for uncertainty quan
tification. In this tutorial, we demonstrate a UQ campaign with 128
instances which requires approximately 500 core-hours for computation
in total. The quasi Monte Carlo method and several other sampling
strategies can be found in EasyVVUQ. Alternatively, one can generate
the Sobol sequence via other existing libraries, i.e sobol-seq,3 SciPy [50],
SobolEngine function in PyTorch [51]. To show a more flexible com
bination of the toolkits, we demonstrate the usage of an external library
sobol-seq with MUSCLE3 in this uncertainty quantification campaign. A
sample matrix A ∈ ℝN×D is formed with elements aij, where i ranges from
1 to the number of samples N, and j ranges from 1 to the dimension of
uncertain inputs D. This can be achieved by the code:

Note that the sample matrices generated by these toolkits are
generally in a normalised range from 0 to 1, hence, an additional step is
needed to adapt the normalised sample matrix to the application-
specific one. This can be achieved by creating a python dictionary
with a set of keys, ‘parameter_name’, ‘max’ and ‘min’ with corre
sponding ranges of the uncertain parameters. The details can be found in
the UQtutorial.py.

ISR3D simulation can be denoted as a function mapping the uncer
tain inputs to the QoI, which in this case is the lumen volume of the
stented blood vessel yi = f(Ai∗), where Ai∗ = (ai1, ai2,…, aiD) are the
uncertain input vector (one row of the sample matrix A) of a UQ
instance. To analyse the uncertainty of the model, the probability den
sity distribution, as well as the mean E[y] ≈ 1

N
∑N

i=1f(Ai∗) and the variance

Table 6
Ranges of uncertain parameters of ISR3D model.

Uncertain parameters Min Max Unit

endothelium regeneration 10 20 day
balloon extension 0.5 1.5 mm
threshold strain 1.2 1.8 /
percentage of fenestration 0 10 %

2 https://github.com/multiscale/ymmsl-python. 3 https://pypi.org/project/sobol-seq/.

D. Suleimenova et al.

https://github.com/multiscale/ymmsl-python
https://pypi.org/project/sobol-seq/

Journal of Computational Science 53 (2021) 101402

12

Var(y) ≈ 1
N
∑N

i=1f(Ai∗)
2
−

(

1
N
∑N

i=1f(Ai∗)

)2

will be estimated.

Once the samples of the qMC method have been generated, we can
easily replace the value of the uncertain parameters with: settings
[’Para_Name’]=Value and create a ymmsl input file for each UQ
instance in a loop:

We generate an input file for each instance and save it in a directory
named where notes the numbering of the instance.

Except for the ymmsl input file, there are several other input files
required by ISR3D. They are hosted on Zenodo.4 The tutorial script
UQtutorial.py includes the code to download these input files and to
broadcast them to each UQ instance directory.

The sample generation described above is also included in the
UQtutorial.py. The number of samples can be adjusted by editing the
parameter, NumSample. To execute the sample generation, simply type:

python3 UQtutorial.py

Note that ISR3D is a computationally expensive application, espe
cially when we simulate the restenosis process at a realistic scale. The
showcase we offer in this UQ tutorial is based on a tiny vessel. However,
it still takes approximately 500 core hours to run 128 instances. To
reduce the load, you can reduce the number of samples NumSample in
UQtutorial.py and job_array.sl, but at a cost of the accuracy of
uncertainty estimation.

Step 3: Execution

To execute the UQ campaign with a large number of instances, the
SLURM job-array script job_array.sl is written. Within each job, the
MUSCLE3 manager is launched via muscle_manager and followed by
the submodel execution:

muscle_manager./input.ymmsl

ISR3D/build/smc –muscle-instance=smc &
ISR3D/build/voxelizer –muscle-instance=voxelizer &
ISR3D/build/distributor –muscle-instance=distribut

or &
ISR3D/build/collector –muscle-instance=collector &
mpirun -n 16 ISR3D/build/flow –muscle-instance=flow
where muscle-instance informs the MUSCLE manager which

submodel defined in the ymmsl input file corresponds to this executable.
The & means that all submodels are ran and communicate
simultaneously.

Before the submission of the SLURM script, some modifications are
required to adapt the setting to your running machine/cluster. First,
check your cluster’s configuration and set the correct partition name of
your cluster. Second, adapt your own path to the MUSCLE3 C++ library
and the way to activate the Python environment with the MUSCLE3
Python library. Third, load the MPI module that was used for the
installation. Fourth, set the directory for each submodel. Lastly, adapt

the number of threads and the number of processes for OpenMP and
MPI. Note that the ISR3D submodels from each sample are preferably
executed on one node exclusively to avoid communication problems. We
recommend you to set both the number of threads for OpenMP and the
number of processes for MPI to be the number of cores in this node, since
the execution of the SMC and the flow models alternates. To launch the
SLURM job array, simply type:

sbatch job_array.sl

Step 4: Results and analysis

After the computation, the data of QoI is recorded in a CSV file in the
directory of each instance. The postprocessing.py script can help
you collect the data and plot the probability density function as well as
the mean and standard deviation of QoI over time:

python3 postprocessing.py

The figures are saved under the current directory. The probability
density function of the vessel lumen volume at day 3, 6, 9, 12 and 15
after stent deployment is demonstrated in Fig. 13. The mean and the
standard deviation of ISR3D output on the vessel lumen volume over
time is shown in Fig. 14.

6. Execution of QCG tools: urban air pollution

Constantly growing society condensing already dense, large cities,
results in an increase of the contamination emission. And with the
poorer air quality, citizens become more prone to hazardous pollutants,
which in turn causes health problems including premature deaths. This
is why studying air quality by the means of scientific simulations is
important to understand how hazardous contamination can be lowered
if not eliminated.

Predicting air quality in urban areas is a challenging topic that re
quires a trade-off between the accuracy of results and acceptable time-
to-solution. There are numerous models for predicting contamination
transport and dispersion, ranging from fast, computationally cheap but
not necessarily accurate, e.g. simple Gaussian models, to quite accurate
simulations resolving difficulty of the flows around buildings, but
computationally expensive, e.g. computational fluid dynamics simula
tions. UrbanAir [6] aims at the latter in terms of quality of the results,
and at the former with respect to the computational expense.

The quality of the results depends on the proper formulation of the
model and the quality of input data. Modelling air quality requires an
accurate emission database that contains emission rates for different
pollutants and different types of sources, including line (attributed to
road transportation) and area (attributed mainly to house heat appli
ances). UrbanAir is able to predict NO2/NOx, SO2 and two types of

Fig. 13. The probability density function of the vessel lumen volume at day 3,
6, 9, 12 and 15 after stent deployment. 4 https://doi.org/10.5281/zenodo.4603912.

D. Suleimenova et al.

Journal of Computational Science 53 (2021) 101402

13

particulate matter (also known as floating dust): PM2.5 for particles
2.5 μm or less in diameter and PM10 for particles 10 μm or less in
diameter.

Considering prediction of NO2/NOx, attributed mainly to road
transportation, initial information required for the simulation include a
number of cars passing the street, ratio between gas and oil engines, fuel
usage, the density of the fuel, NO2 index related to engine type, the ratio
between hot and cold engine start, etc. While some of them can be
estimated quite well, e.g. the number of cars or fuel density, some are
like a puzzle, e.g. ratio between engine types or hod/cold engine start.
To solve these shortcomings, the UrbanAir application uses uncertainty
quantification analysis.

In this section, we will demonstrate how to perform a demonstration
assessment of air quality over one of the largest cities in Poland, Poznan,
and perform a sensitivity analysis of the input parameters. We will also
demonstrate how to use EasyVVUQ with QCG-PilotJob [1] in a working
station/laptop environment, as well as on an HPC machine.

6.1. Sensitivity analysis on input parameters of UrbanAir

In the view of missing or incomplete emission data, sensitivity
analysis plays a crucial role in deciding which input parameters have a
higher impact on the simulation results, thus are required to be analysed
for each run. In the assessment of air quality over complex urban areas,
there a lot of input parameters which are not known or not well rec
ognised, and they differ with respect to analysed contamination. To
understand which input parameters have a higher impact on simulation
results, the sensitivity analysis (SA) approach is used. It allows for better
estimation of the results, but also for a significant decrease in compu
tation power required to perform necessary calculations.

In this tutorial NO2 concentration attributed to road transportation is
considered. The uncertainty comes from unknown number of vehicles,
ratio between gasoline and diesel engines, fuel usage, NO2 index related
to type of engine, hot vs. cold engine start, etc. The input parameters

required to predict air quality are described in the list below, while
ranges are illustrated in Table 7:

• no_of_cars: Number of cars passing within 1 hour.
• gas_cars_ratio: Ratio between gasoline to diesel engines.
• gas_usage: Gasoline usage per 100 km.
• gas_density: Density of the gasoline fuel.
• gas_no2_index: NO2 index related to gasoline engines.
• oil_usage: Oil usage per 100 km.
• oil_density: Density of the oil fuel.
• oil_no2_index: NO2 index related to diesel engines.

Step 1: Installation

The UrbanAir application is run the most efficiently when prepared
(i.e. compiled) for a specific architecture and for a given hardware re
sources setup (i.e. nodes and cores). For the sake of the tutorial, a gen
eral version has been prepared with a precompiled binary already
installed. To ease testing of VECMAtk capabilities, a Singularity image
has been provided. It allows running the application under different
operating systems, whether it is a laptop, workstation or HPC machine.
The installation process requires downloading Singularity environment,
Singularity image and running on top of them to install VECMAtk com
ponents and tutorial specific files.

Singularity environment
To install Singularity environment, please visit https://github.com/h

pcng/singularity/releases and proceed with the installation instruction
for your operating system. The tutorial has been tested with version 3.7.
The Singularity is beta supported in OSX operating system, therefore, it is
highly recommended to switch to Windows or Linux environments.
Otherwise, OSX users are encouraged to run Singularity via Vagrind,
please visit https://singularity.lbl.gov/archive/docs/v2-4/install-mac
for installation and usage instructions. Please pay attention during the
Singularity installation to use the latest version (at least 3.7) instead of
the one mentioned in the provided documentation (e.g. sylabs/singu
larity-3.7-centos-7-64):

vagrant init sylabs/singularity-3.7-centos-7-64

Singularity image
To download the UrbanAir Singularity image, please visit: http

s://zenodo.org/record/4620946 To run downloaded image, simply
type:

singularity shell PATH_TO_SINGULARITY_IMAGE

You will be given access to shell inside the singularity image, and you
are now able to install further required packages.

VECMAtk components
To install required VECMAtk components, we will use Python Virtual

Environment. First, create a virtual environment dedicated to this
tutorial, by typing in singularity shell:

virtualenv $HOME/urbanair_env

It will create the $HOME/urbanair_env directory under which all
required packages should be placed. Make sure you activate your Python
virtual environment before installing Python packages by typing:

. $HOME/urbanair_env/bin/activate

To install EasyVVUQ, QCG-PilotJob and EQI compontents from
VECMAtk, and h5py, numpy, py-gnuplot for results analysis, that will be
needed in this tutorial, just type:

pip3 install easyvvuq qcg-pilotjob easyvvuq-qcgpj

pip3 install h5py numpy py-gnuplot

Tutorial files
Next, download the UrbanAir tutorial files by typing:
git clone https://github.com/mwkulczewski/urban

air_tutorial.git

Fig. 14. The mean and standard deviation of ISR3D output on the vessel lumen
volume over time.

Table 7
Defining a input parameter space for the uncertain parameters of the UrbanAir
simulation.

Parameters Type Default value Uniform range

no_of_cars integer 600 (200, 1200)
gas_cars_ratio float 0.72 (0.1, 0.9)
gas_usage float 9.0 l/100 km (5.0, 12.0)
gas_density float 0.75 (0.1, 0.9)
gas_no2_index float 0.00855 (0.001, 0.012)
oil_usage float 7.0 l/100 km (4.0, 12.0)
oil_density float 0.07 (0.15, 0.95)
oil_no2_index float 0.008 (0.001, 0.015)

D. Suleimenova et al.

https://github.com/hpcng/singularity/releases
https://github.com/hpcng/singularity/releases
https://singularity.lbl.gov/archive/docs/v2-4/install-mac
https://zenodo.org/record/4620946
https://zenodo.org/record/4620946

Journal of Computational Science 53 (2021) 101402

14

The command will place tutorial files in $HOME/urban

air_tutorial directory.

Step 2: Parameters exploration

For this tutorial up to 8 input parameters can be sampled. In order to
change their default, min or max values please navigate to the directory
with downloaded tutorial and edit urbanair_pj_executor_SC.py
accordingly. For example, to change the values of gas_usage parameter
edit the following lines:

Step 3: Execution

For the efficient execution of highly demanding and large-scale
calculations on HPC machines, VECMAtk proposes the QCG-PilotJob
tool. In order to enable easy usage of QCG-PilotJob from EasyVVUQ a
dedicated EasyVVUQ-QCGPJ (EQI) library has been also provided [1].
Within this tutorial we make use of both EQI and QCG-PilotJob.

The UrbanAir tutorial can be run on laptops, workstation or HPC
cluster. In either case we assume that the Singularity image is used in a
shell mode. Required input data for the application is located in the
$HOME/urbanair_tutorial directory. Please navigate to that
directory by typing:

cd $HOME/urbanair_tutorial

If you changed the directory of virtual Python environment or
location of UrbanAir tutorial files, please edit easypj_config.sh to
reflect modified paths:

UrbanAir is coupled to VECMAtk which allows not only for sensi
tivity analysis, but first of all for automatic creations of required en
sembles (samples), their execution and results collation. Assessing air
quality in urban areas is computational expensive, that is why a user is
able to select how many input parameters are to be sampled:

By default, just one input parameter – no_of_cars is sampled. To run
the UrbanAir application with more parameters being sampled, e.g. first
five, just type (in $HOME/urbanair_tutorial directory):

python3.6 urbanair_pj_executor_SC.py 5

The UrbanAir example uses 4 CPU cores by default, but more can be
used to allow running more samples in parallel. In case more CPU cores
are available, please type:

python3.6 urbanair_pj_executor_SC.py 8 24

In this case, all 8 input parameters will be sampled on 24 CPU cores,
which means 6 samples will be analysed in parallel. In case less than four
CPU cores are available, still you can run the UrbanAir demo. However
please mind the UrbanAir is suited for larger runs – on a modern CPU,
equipped with 4 cores, a single sample run would take several minutes
up to half an hour. Thus expect that a very basic demo, sampling just one
parameter, would last for less than an hour.

Step 4: Results and analysis

Each ensemble (sample) execution is proceeded with the simulation
results post-processing before passing them to the VECMAtk analysis
phase. The post-processing is done by prepare_hdf5.py Python
script, which aims at extracting emission output data at 2 m height for
the sensitivity analysis. If other height is preferable, please update the
aforementioned script accordingly:

The UrbanAir application coupled to VECMAtk delivers sensitivity
analysis of input parameters (sobols_analysis.csv), as well as emission
concentration mean and standard deviation values for the whole domain
at a given height (stats.csv).

The example mean and standard deviation of the NO2 concentration
for a given point in 2D space and for different heights are presented in
Fig. 15.

There is an examplary Python script to visualise NO2 concentrations
at 2 m height. It iterates over all generated results and creates plot in 3D
in 2m_no2_mean.png. If you want to analyse results from 24 runs, located
e.g. under /tmp/urbanair_no2/runs just type:

python3.6 analyze_hdf5.py 24 /tmp/urbanair_no2/runs

In Table 8, we present the sensitivity analysis of 8 input parameters
in descending order.

Fig. 16 presents mean NO2 concentration at 2 m height.

Fig. 15. Emissions of NO2 at different heights above a street-level from road
transportation, with the mean (red line) and standard deviation (blue region)
calculated using EasyVVUQ. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

D. Suleimenova et al.

Journal of Computational Science 53 (2021) 101402

15

7. Conclusion

We have presented a set of five tutorials that showcase how VEC
MAtk can help users to create and execute complex HPC workflows and
to simplify verification, validation and uncertainty quantification ac
tivities for their applications. Each tutorial has been tested by users from
other domains, and has been presented such that it can be performed
using any HPC infrastructure with sufficient capacity.

The tutorials cover five different application domains, and five
different combinations of VECMAtk components, to showcase how

VECMAtk can facilitate VVUQ for users, irrespective of their scientific
domain, and how it can be re-used in a variety of ways.

The VECMA toolkit is under continuous evolution, as several dozen
of alpha users provide us with feedback on what to improve in terms of
robustness, scalability and ease of use. The tutorials in this paper
therefore serve as a snapshot of the current VECMAtk developments, and
as useful examples which can be adapted to suit different purposes.

Verification, validation, sensitivity analysis and uncertainty quanti
fication are essential for simulation results to become relevant outside
their base field of research, and eventually suitable for practical
decision-taking. With these tutorials we show that VVUQ techniques can
be efficiently repurposed from one domain into another, and quickly
adopted with clear benefits without the need to modify underlying
source codes. In addition, the techniques provided here scale to larger
problems: though an analysis on the local laptop is in many cases
possible, most of the examples scale just as well to petascale and
emerging exascale supercomputers.

Declaration of interests

None.

Declaration of Competing Interest

The authors report no declarations of interest.

Acknowledgements

This work was supported by the VECMA project, which has received
funding from the European Union Horizon 2020 research and innova
tion programme under grant agreement No. 800925. The development
of MUSCLE3 and its respective description was supported by the
Netherlands eScience Center and NWO under the e-MUSC project. The
development of ISR3D was supported by the InSilc project and the In
Silico World (ISW) project (European Union Horizon 2020 research and
innovation programme grant agreements #777119 and #101016503
respectively). The calculations were performed in the Poznan Super
computing and Networking Center.

Appendix A. Structure of the ISR3D model and communication with MUSCLE3

The structure and the parameters of a MUSCLE3 model are described in one or more ymmsl (multiscale modeling and simulation language)5 files.
ISR3D uses a single file which is located at ISR3D/cxa/input_stage4.ymmsl. This file contains a header describing its version, and two main
sections: model and settings. The first section describes the structure of the multiscale model by listing the executables and the communications
between them, while the second contains the parameters that are either shared by the whole simulation or passed to individual modules.

We will focus on the model section first. The first line of this section gives the name to be used for the multiscale simulation by MUSCLE3, in this
case name: isr3d. Next comes the subsection components: which lists all the executables involved. For ISR3D, they are:

• smc, the submodel containing smooth muscle cells and other components of the vessel wall;
• voxelizer, which takes the point cloud data from the smc and produces a voxel vessel wall where each tissue type is marked separately;
• distributor that adapts the voxel geometry to be used for flow calculation and distributes it to the flow solver module and also to the collector module;
• flow module that resolves the steady-state flow for the changing vessel geometry and passes the solution back to collector;
• collector, which collects the data from the flow model and the other helper modules, and maps the flow solver output back onto the cells in the smc

model.

The section after that, conduits: lists the connections between the single-scale modules. The general syntax is
source.sending_name: target.receiving_name

This means the data is sent from source as sending_name, and received by target as receiving_name. The specifics such as the frequency of
sending and receiving, and also the data format have to be described in the executables’ code itself. The communication scheme of ISR3D is shown in
Fig. 12 and reflected in this section of the ymmsl file.

Table 8
The Sobol first index for 8 input parameters of the
UrbanAir application.

Parameters Sobol first index

gas_no2_index 0.14294
gas_density 0.13251
oil_no2_index 0.11094
oil_density 0.10523

no_of_cars 0.0831
gas_usage 0.0592
oil_usage 0.0591

gas_cars_ratio 0.00184

Fig. 16. Mean emission of NO2 at 2 m height from road transportation.

5 https://github.com/multiscale/ymmsl-python.

D. Suleimenova et al.

https://github.com/multiscale/ymmsl-python

Journal of Computational Science 53 (2021) 101402

16

For example, the following conduit handles the sending of the voxel domain (a rectangular 3D grid of tissue type values) from voxelizer to
distributor:

voxelizer.domainOut1: distributor.domainIn

On the side of voxelizer, the following code is called:

Initially, the results we want to send are stored in the aggregateDomain variable. To pass them to MUSCLE3, we construct an object of the
MUSCLE3 type Data::grid, which we call aD_result. The arguments are: the raw data to be stored (aggregateDomain.data()), a list of grid
sizes along each axis, which we receive here from the sphereVox object, and an optional list of axis labels. Naturally, sizeX⋅sizeY⋅sizeZ has to match
the size of the data in the first argument. When the data object is formed, all that is left to do is to form a Message by combining the data with a
timestamp t_cur and to send it, specifying the same sending name as in the configuration file, domainOut1.

For each send operation, there has to be a receive operation in the other executable. The receiving code in the distributor is shown below:

The message is received by calling the MUSCLE3 function instance.receive with the receiving name specified in the configuration file. This
produces a MUSCLE3 Message on the receiving side, from which it’s possible to obtain the timestamp, the shape (three sizes for the three axes
specified on the sending side), and the size (the total number of elements in the grid). Since C++ does not have a standard multidimensional grid
type, we convert the received data into a 1D array.

To convert the MUSCLE3 grid to an std::vector, we have to assign the data directly by manipulating memory pointers (obtained by calling

).
For most non-grid message types direct memory manipulation is not required, and C++ types can be directly obtained. MUSCLE3 also has support

for Python and Fortran languages. For more details on this, we refer the reader to the online MUSCLE3 documentation.
The final section of the configuration file is the settings: section. The settings without a prefix are accessible to all modules, and the settings

with a prefix are only accessible from the matching executable.
As an example, smc.run_input_file: “test_vessel.dat” is only visible to the smc module. From there, it can be read into a variable by

calling:

Here instance is the MUSCLE3-specific object assigned to the smc submodel.

References

[1] D. Groen, H. Arabnejad, V. Jancauskas, W.N. Edeling, F. Jansson, R.A. Richardson,
J. Lakhlili, L. Veen, B. Bosak, P. Kopta, D.W. Wright, N. Monnier, P. Karlshoefer,
D. Suleimenova, R. Sinclair, M. Vassaux, A. Nikishova, M. Bieniek, O.O. Luk,
M. Kulczewski, E. Raffin, D. Crommelin, O. Hoenen, T. Coster, VECMAtk: a scalable
verification, validation and uncertainty quantification toolkit for scientific
simulations, Phil. Trans. R. Soc. A. 379 (2021), 20200221, https://doi.org/
10.1098/rsta.2020.0221.

[2] V. Jancauskas, J. Lakhlili, R.A. Richardson, D.W. Wright, EasyVVUQ: Verification,
validation and uncertainty quantification for HPC simulations, 2021. https://gith
ub.com/UCL-CCS/EasyVVUQ.

[3] D. Groen, H. Arabnejad, R. Richardson, R. Sinclair, M. Vassaux, V. Jancauskas,
N. Monnier, P. Karlshoefer, P.V. Coveney, FabSim3: an automation toolkit for
complex aimulation tasks, 2021. https://github.com/djgroen/FabSim3.

[4] V. Lourens, MUSCLE3: The Multiscale Coupling Library and Environment, 2021.
https://github.com/multiscale/muscle3.

[5] QCG: Quality in Cloud and Grid, 2021. https://apps.man.poznan.pl/trac/qcg.
[6] D.W. Wright, R.A. Richardson, W. Edeling, J. Lakhlili, R.C. Sinclair, V. Jancauskas,

D. Suleimenova, B. Bosak, M. Kulczewski, T. Piontek, P. Kopta, I. Chirca,

H. Arabnejad, O.O. Luk, O. Hoenen, J. Weglarz, D. Crommelin, D. Groen, P.
V. Coveney, Building confidence in simulation: applications of EasyVVUQ, Adv.
Theory Simul. 3 (8) (2020) 1900246, https://doi.org/10.1002/adts.201900246.
ISSN: 2513-0390, 2513-0390.

[7] R.A. Richardson, D.W. Wright, W. Edeling, V. Jancauskas, J. Lakhlili, P.V. Coveney,
EasyVVUQ: a library for verification, validation and uncertainty quantification in
high performance computing, J. Open Res. Softw. 8 (2020) 11, https://doi.org/
10.5334/jors.303. ISSN: 2049-9647.

[8] A. Saltelli, M. Ratto, T. Andres, F. Campolongo, J. Cariboni, D. Gatelli, M. Saisana,
S. Tarantola, Global Sensitivity Analysis: The Primer, John Wiley & Sons, 2008.

[9] C. Robert, G. Casella, Monte Carlo Statistical Methods, Springer Science & Business
Media, 2013.

[10] Cloud Native Computing Foundation, Kubernetes, 2021. https://kubernetes.io.
[11] Poznan Supercomputing and Networking Center, QCG-PilotJob, 2021. https://gith

ub.com/vecma-project/QCG-PilotJob.
[12] Dask Development Team, Dask: Library for Dynamic Task Scheduling, 2016.

https://dask.org.
[13] Dask Community, Dask JobQueue, 2021. https://jobqueue.dask.org/en/latest.
[14] W. Edeling, H. Arabnejad, R. Sinclair, D. Suleimenova, K. Gopalakrishnan,

B. Bosak, D. Groen, I. Mahmood, D. Crommelin, P.V. Coveney, The impact of

D. Suleimenova et al.

https://doi.org/10.1098/rsta.2020.0221
https://doi.org/10.1098/rsta.2020.0221
https://github.com/UCL-CCS/EasyVVUQ
https://github.com/UCL-CCS/EasyVVUQ
https://github.com/djgroen/FabSim3
https://github.com/multiscale/muscle3
https://apps.man.poznan.pl/trac/qcg
https://doi.org/10.1002/adts.201900246
https://doi.org/10.5334/jors.303
https://doi.org/10.5334/jors.303
http://refhub.elsevier.com/S1877-7503(21)00089-2/sbref0040
http://refhub.elsevier.com/S1877-7503(21)00089-2/sbref0040
http://refhub.elsevier.com/S1877-7503(21)00089-2/sbref0045
http://refhub.elsevier.com/S1877-7503(21)00089-2/sbref0045
https://kubernetes.io
https://github.com/vecma-project/QCG-PilotJob
https://github.com/vecma-project/QCG-PilotJob
https://dask.org
https://jobqueue.dask.org/en/latest
http://refhub.elsevier.com/S1877-7503(21)00089-2/sbref0070
http://refhub.elsevier.com/S1877-7503(21)00089-2/sbref0070

Journal of Computational Science 53 (2021) 101402

17

uncertainty on predictions of the CovidSim epidemiological code, Nat. Comput.
Sci. 1 (2) (2021) 128–135.

[15] W. Edeling, D. Crommelin, Reducing data-driven dynamical subgrid scale models
by physical constraints, Comput. Fluids 201 (2020) 104470.

[16] D. Suleimenova, D. Bell, D. Groen, A generalized simulation development approach
for predicting refugee destinations, Sci. Rep. 7 (1) (2017) 1–13, https://doi.org/
10.1038/s41598-017-13828-9.

[17] D. Groen, A.P. Bhati, J. Suter, J. Hetherington, S.J. Zasada, P.V. Coveney, Fabsim:
facilitating computational research through automation on large-scale and
distributed e-infrastructures, Comput. Phys. Commun. 270 (2016) 375–385,
https://doi.org/10.1016/j.cpc.2016.05.020.

[18] D. Suleimenova, D. Groen, How policy decisions affect refugee journeys in South
Sudan: a study using automated ensemble simulations, J. Artif. Soc. Soc. Simul. 23
(1) (2020), https://doi.org/10.18564/jasss.4193.

[19] R. Tomović, Sensitivity Analysis of Dynamic Systems, McGraw-Hill, 1963.
[20] D. Suleimenova, H. Arabnejad, W.N. Edeling, D. Groen, Sensitivity-driven

simulation development: a case study in forced migration, Phil. Trans. R. Soc. A.
379 (2021), 20200077, https://doi.org/10.1098/rsta.2020.0077.

[21] D. Groen, D. Suleimenova, A. Jahani, H. Arabnejad, FabSim3, 2021. https://gith
ub.com/djgroen/flee.

[22] D. Groen, D. Suleimenova, A. Jahani, H. Arabnejad, FabFlee, 2021. https://github.
com/djgroen/FabFlee.

[23] O. Hoenen, L. Fazendeiro, B.D. Scott, J. Borgdorff, A.G. Hoekstra, P. Strand, D.
P. Coster, Designing and running turbulence transport simulations using a
distributed multiscale computing approach, Europhysics Conference Abstracts, vol.
37D, Espoo, Finland (2013). ISBN: 2-914771-84-3. http://ocs.ciemat.es/EPS2013P
AP/pdf/P4.155.pdf.00005.

[24] O.O. Luk, O. Hoenen, A. Bottino, B.D. Scott, D.P. Coster, ComPat framework for
multiscale simulations applied to fusion plasmas, Comput. Phys. Commun. 239
(June) (2019) 126–133, https://doi.org/10.1016/j.cpc.2018.12.021. ISSN:
00104655.

[25] O.O. Luk, O. Hoenen, O. Perks, K. Brabazon, T. Piontek, P. Kopta, B. Bosak,
A. Bottino, B.D. Scott, D.P. Coster, Application of the extreme scaling computing
pattern on multiscale fusion plasma modelling, Philos. Trans. R. Soc. A 377 (2142)
(2019), https://doi.org/10.1098/rsta.2018.0152. ISSN: 1364-503X,1471-2962.

[26] J. Lakhlili, O. Hoenen, O.O. Luk, D.P. Coster, Uncertainty quantification for
multiscale fusion plasma simulations with VECMA toolkit, in:
V. Krzhizhanovskaya, G. Závodszky, M.H. Lees, J.J. Dongarra, P.M.A. Sloot,
S. Brissos, J. Teixeira (Eds.), Computational Science – ICCS 2020, Springer
International Publishing, Cham, 2020, pp. 719–730, https://doi.org/10.1007/978-
3-030-50436-6_53. ISBN: 978-3-030-50436-6.

[27] J.E. Guyer, D. Wheeler, J.A. Warren, FiPy: partial differential equations with
Python, Comput. Sci. Eng. 11 (3) (2009) 6–15, https://doi.org/10.1109/
MCSE.2009.52. ISSN: 1521-9615.

[28] E. Stefanikova, M. Peterka, P. Bohm, P. Bilkova, M. Aftanas, M. Sos, J. Urban,
M. Hron, R. Panek, Fitting of the Thomson scattering density and temperature
profiles on the COMPASS tokamak, Rev. Sci. Instrum. 87 (11) (2016) 11E536,
https://doi.org/10.1063/1.4961554. ISSN: 0034-6748, 1089-7623.

[29] R.J. Groebner, T.N. Carlstrom, Critical edge parameters for H-mode transition in
DIII-D, Plasma Phys. Control. Fusion 40 (5) (1998) 673–677, https://doi.org/
10.1088/0741-3335/40/5/021. ISSN: 0741-3335, 1361-6587.

[30] A.B. Yoo, M.A. Jette, M. Grondona, SLURM: Simple Linux utility for resource
management, in: Dror Feitelson, Larry Rudolph, Uwe Schwiegelshohn (Eds.), Job
Scheduling Strategies for Parallel Processing, Springer Berlin Heidelberg, Berlin,
Heidelberg, 2003, pp. 44–60, https://doi.org/10.1007/10968987_3. ISBN: 978-3-
540-39727-4.

[31] Jonathan Feinberg, Hans Petter Langtangen, Chaospy: an open source tool for
designing methods of uncertainty quantification, J. Comput. Sci. 11 (November)
(2015) 46–57, https://doi.org/10.1016/j.jocs.2015.08.008. ISSN: 18777503.

[32] G. Pavliotis, A. Stuart, Multiscale Methods: Averaging and Homogenization,
Springer Science & Business Media, 2008.

[33] D. Crommelin, E. Vanden-Eijnden, Subgrid-scale parameterization with
conditional Markov chains, J. Atmos. Sci. 65 (8) (2008) 2661–2675, https://doi.
org/10.1175/2008JAS2566.1.

[34] F. Lu, K.K. Lin, A.J. Chorin, Data-based stochastic model reduction for the
Kuramoto-Sivashinsky equation, Physica D 340 (2017) 46–57, https://doi.org/
10.1016/j.physd.2016.09.007.

[35] R. Maulik, O. San, A. Rasheed, P. Vedula, Subgrid modelling for two-dimensional
turbulence using neural networks, J. Fluid Mech. 858 (2019) 122–144. https://
arxiv.org/pdf/1808.02983.pdf.

[36] T. Bolton, L. Zanna, Applications of deep learning to ocean data inference and
subgrid parameterization, J. Adv. Model. Earth Syst. 11 (1) (2019) 376–399,
https://doi.org/10.1029/2018MS001472.

[37] D.J. Gagne, H.M. Christensen, A.C. Subramanian, A.H. Monahan, Machine learning
for stochastic parameterization: generative adversarial networks in the Lorenz’96
model, J. Adv. Model. Earth Syst. 12 (3) (2020), https://doi.org/10.1029/
2019MS001896.

[38] D. Crommelin, W. Edeling, Resampling with Neural Networks for Stochastic
Parameterization in Multiscale Systems, 2021.

[39] Lorenz, Predictability: a problem partly solved. Proc. Seminar on Predictability,
vol. 1 (1996).

[40] C.C. Aggarwal, Neural Networks and Deep Learning, Springer, 2018.
[41] L. Ambrogioni, U. Güçlü, M.A.J. van Gerven, E. Maris, The Kernel Mixture

Network: A Nonparametric Method for Conditional Density Estimation of
Continuous Random Variables, 2017 arXiv preprint is available at https://arxiv.
org/abs/1705.07111.

[42] S. Rasp, Coupled online learning as a way to tackle instabilities and biases in neural
network parameterizations: general algorithms and Lorenz’96 case study (v1.0),
Geosci. Model Dev. 13 (5) (2020) 2185–2196, https://doi.org/10.5194/gmd-13-
2185-2020.

[43] P.S. Zun, T. Anikina, A. Svitenkov, A.G. Hoekstra, A comparison of fully-coupled
3D In-Stent Restenosis Simulations to In-Vivo data, Front. Physiol. 8 (2017) 284,
https://doi.org/10.3389/fphys.2017.00284. ISSN 1664-042X.

[44] P.S. Zun, A.J. Narracott, C. Chiastra, J. Gunn, A.G. Hoekstra, Location-specific
comparison between a 3D In-Stent Restenosis model and micro-CT and histology
data from porcine In Vivo experiments, Cardiovasc. Eng. Technol. 10 (Dec(4)
(2019) 568–582, https://doi.org/10.1007/s13239-019-00431-4. ISSN 1869-408X.

[45] J. Latt, O. Malaspinas, D. Kontaxakis, A. Parmigiani, D. Lagrava, F. Brogi, M.
B. Belgacem, Y. Thorimbert, S. Leclaire, S. Li, F. Marson, J. Lemus, C. Kotsalos,
R. Conradin, C. Coreixas, R. Petkantchin, F. Raynaud, J. Beny, B. Chopard, Palabos:
parallel lattice Boltzmann solver, Comput. Math. Appl. 81 (2021) 334–350,
https://doi.org/10.1016/j.camwa.2020.03.022. ISSN: 0898-1221. Development
and Application of Open-source Software for Problems with Numerical PDEs.

[46] L.E. Veen, A.G. Hoekstra, Easing multiscale model design and coupling with
MUSCLE3, in: Valeria V. Krzhizhanovskaya, Gábor Závodszky, Michael H. Lees,
Jack J. Dongarra, Peter M.A. Sloot, Sérgio Brissos, João Teixeira (Eds.),
Computational Science – ICCS 2020, Springer International Publishing, Cham,
2020, pp. 425–438, https://doi.org/10.1007/978-3-030-50433-5_33. ISBN: 978-3-
030-50433-5.

[47] I.M. Sobol, Quasi-Monte Carlo methods, Prog. Nucl. Energy 24 (1) (1990) 55–61,
https://doi.org/10.1016/0149-1970(90)90022-W. ISSN: 0149-1970. Monte Carlo
Methods for Neutrons and Photon Transport Calculations.

[48] P. Bratley, B.L. Fox, Algorithm 659: implementing Sobol’s quasirandom sequence
generator, ACM Trans. Math. Softw. 14 (1) (1988) 88–100, https://doi.org/
10.1145/42288.214372. ISSN: 0098-3500.

[49] A. Saltelli, P. Annoni, I. Azzini, F. Campolongo, M. Ratto, S. Tarantola, Variance
based sensitivity analysis of model output. Design and estimator for the total
sensitivity index, Comput. Phys. Commun. 181 (2) (2010) 259–270, https://doi.
org/10.1016/j.cpc.2009.09.018. ISSN: 0010-4655.

[50] P. Virtanen, R. Gommers, T.E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau,
E. Burovski, P. Peterson, W. Weckesser, J. Bright, S.J. van der Walt, M. Brett,
J. Wilson, K.J. Millman, N. Mayorov, A.R.J. Nelson, E. Jones, R. Kern, E. Larson, C.
J. Carey, İ. Polat, Y. Feng, E.W. Moore, J. VanderPlas, D. Laxalde, J. Perktold,
R. Cimrman, I. Henriksen, E.A. Quintero, C.R. Harris, A.M. Archibald, A.H. Ribeiro,
F. Pedregosa, P. van Mulbregt, SciPy 1.0 Contributors, SciPy 1.0: fundamental
algorithms for scientific computing in Python, Nat. Methods 17 (2020) 261–272,
https://doi.org/10.1038/s41592-019-0686-2.

[51] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison,
A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, S. Chintala, PyTorch: An
imperative style, high-performance deep learning library, in: H. Wallach,
H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, R. Garnett (Eds.), Advances
in Neural Information Processing Systems 32, Curran Associates, Inc., 2019,
pp. 8024–8035. http://papers.neurips.cc/paper/9015-pytorch-an-imperative-
style-high-performance-deep-learning-library.pdf.

Diana Suleimenova is a Research Fellow in Multiscale Migra
tion Prediction for the Verified Exascale Computing for Mul
tiscale Applications (VECMA) project funded by the European
Union Horizon 2020 research and innovation programme. Her
research concentrates on verification, validation and uncer
tainty quantification of multiscale applications deployed on
emerging exascale platforms. She received her PhD from Bru
nel University London, where her research focused on quanti
tative data analysis of forced displacement and the
development of an automated agent-based modelling tech
nique to predict the distribution of incoming refugees across
neighbouring camps. Diana has published journal articles and

conference papers in agent-based modelling, simulation of refugee journeys, multiscale
modelling and simulation automation. Her email address is diana.suleimenova@brunel.
ac.uk.

Hamid Arabnejad is Post-Doctoral researcher at Brunel Uni
versity London, UK. He earned his PhD in 2016 from the Fac
ulty of Engineering of the University of Porto (FEUP). He
participated in numerous European H2020 projects. He also
has more than 6 years experience in HPC systems, and appli
cation design and implementation. His research interests
include distributed and parallel Computing, cloud computing,
high performance computing, compilers, and agent-based
simulation. His email address is hamid.arabnejad@brunel.ac.
uk.

D. Suleimenova et al.

http://refhub.elsevier.com/S1877-7503(21)00089-2/sbref0070
http://refhub.elsevier.com/S1877-7503(21)00089-2/sbref0070
http://refhub.elsevier.com/S1877-7503(21)00089-2/sbref0075
http://refhub.elsevier.com/S1877-7503(21)00089-2/sbref0075
https://doi.org/10.1038/s41598-017-13828-9
https://doi.org/10.1038/s41598-017-13828-9
https://doi.org/10.1016/j.cpc.2016.05.020
https://doi.org/10.18564/jasss.4193
http://refhub.elsevier.com/S1877-7503(21)00089-2/sbref0095
https://doi.org/10.1098/rsta.2020.0077
https://github.com/djgroen/flee
https://github.com/djgroen/flee
https://github.com/djgroen/FabFlee
https://github.com/djgroen/FabFlee
http://ocs.ciemat.es/EPS2013PAP/pdf/P4.155.pdf.00005
http://ocs.ciemat.es/EPS2013PAP/pdf/P4.155.pdf.00005
https://doi.org/10.1016/j.cpc.2018.12.021
https://doi.org/10.1098/rsta.2018.0152
https://doi.org/10.1007/978-3-030-50436-6_53
https://doi.org/10.1007/978-3-030-50436-6_53
https://doi.org/10.1109/MCSE.2009.52
https://doi.org/10.1109/MCSE.2009.52
https://doi.org/10.1063/1.4961554
https://doi.org/10.1088/0741-3335/40/5/021
https://doi.org/10.1088/0741-3335/40/5/021
https://doi.org/10.1007/10968987_3
https://doi.org/10.1016/j.jocs.2015.08.008
http://refhub.elsevier.com/S1877-7503(21)00089-2/sbref0160
http://refhub.elsevier.com/S1877-7503(21)00089-2/sbref0160
https://doi.org/10.1175/2008JAS2566.1
https://doi.org/10.1175/2008JAS2566.1
https://doi.org/10.1016/j.physd.2016.09.007
https://doi.org/10.1016/j.physd.2016.09.007
https://arxiv.org/pdf/1808.02983.pdf
https://arxiv.org/pdf/1808.02983.pdf
https://doi.org/10.1029/2018MS001472
https://doi.org/10.1029/2019MS001896
https://doi.org/10.1029/2019MS001896
http://refhub.elsevier.com/S1877-7503(21)00089-2/sbref0190
http://refhub.elsevier.com/S1877-7503(21)00089-2/sbref0190
http://refhub.elsevier.com/S1877-7503(21)00089-2/sbref0195
http://refhub.elsevier.com/S1877-7503(21)00089-2/sbref0195
http://refhub.elsevier.com/S1877-7503(21)00089-2/sbref0200
https://arxiv.org/abs/1705.07111
https://arxiv.org/abs/1705.07111
https://doi.org/10.5194/gmd-13-2185-2020
https://doi.org/10.5194/gmd-13-2185-2020
https://doi.org/10.3389/fphys.2017.00284
https://doi.org/10.1007/s13239-019-00431-4
https://doi.org/10.1016/j.camwa.2020.03.022
https://doi.org/10.1007/978-3-030-50433-5_33
https://doi.org/10.1016/0149-1970(90)90022-W
https://doi.org/10.1145/42288.214372
https://doi.org/10.1145/42288.214372
https://doi.org/10.1016/j.cpc.2009.09.018
https://doi.org/10.1016/j.cpc.2009.09.018
https://doi.org/10.1038/s41592-019-0686-2
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

Journal of Computational Science 53 (2021) 101402

18

Wouter Edeling is a researcher at CWI Amsterdam, and has a
background in Uncertainty Quantification applied to turbu
lence models. He received a joint PhD in 2015 between Arts et
Métiers ParisTech and Delft University of Technology, and held
a post-doc position at Stanford University. His current interests
lie at the intersection of Uncertainty Quantification, Machine
Learning and Scientific Computing, and his email address is
Wouter.Edeling@CWI.nl.

David Coster has been active in the field of magnetized plasma
physics for over 35 years with over 200 published papers as
author or co-author. His PhD from Princeton University dates
from 1993, and since then he has been employed by the Max
Planck Institute for Plasma Physics. His email address is david.
coster@ipp.mpg.de.

Onnie O. Luk is a postdoctoral researcher at the Numerical
Methods for Plasma Physics division of the Max-Planck-
Institute for Plasma Physics at Garching. She is a member of
the Verified Exascale Computing for Multiscale Applications
(VECMA) project, and past member of the Computing Patterns
for High Performance Multiscale Computing (ComPat) project,
both of which are funded by the European Union’s Horizon
2020 research and innovation programme. Her current
research topics include exploration of time bridging methods
between turbulence and transport models in a component-
based multiscale fusion plasma workflow and validation of
the simulation results. She received her Ph.D. from the

University of California at Irvine, where she conducted her research on the role of
convective cell in nonlinear interaction of kinetic Alfvén waves. Her email address is
onnie.luk@ipp.mpg.de.

Jalal Lakhlili is a computational scientist in Post-doc at Max-
Planck Institute for Plasma Physics in Munich, Germany. Has
a PhD in Applied Mathematics from Toulon University, France,
and an engineer degree in Computer Science from Grenoble
INP, France. Has worked in EU research projects EoCoE and
VECMA. Main research areas are numerical simulations with
applications in HPC, including algorithmics, numerical anal
ysis, uncertainty quantification and statistics. His email address
is jalal.lakhlili@ipp.mpg.de.

Dr. Vytautas Jancauskas got his PhD from Vilnius University in
2016. The subject of the thesis was evaluating the performance of
multi-objective optimisation methods. He worked as a lecturer
and assistant lecturer for more than 3 years. Supervised under
graduate computer networks course at the Faculty of Mathe
matics and Informatics at Vilnius University. Taught computer
architecture, operating systems design and C programming. He
has worked in EU funded projects, such as ComPat and VECMA.
He was one of the lead developers of the EasyVVUQ framework.
Main research interests lie in the intersection of computer sci
ence, software engineering and various statistical and optimiza
tion methods. His email address is jancauskas@lrz.de.

Michal Kulczewski is a senior specialist at Poznan Super
computing and Networking Center. His research interests
include mainly numerical weather prediction, modeling air
quality in urban environments, code optimization, program
ming multi- and many-core computing systems, advanced in-
situ data analysis and visualization. He has actively contrib
uted to many EU and national projects for the past 16 years. His
email address is michal.kulczewski@man.poznan.pl.

Lourens Veen is a Senior eScience Research Engineer at the
Netherlands eScience Center. As an engineer, his background is
originally in databases and information system architecture,
including geographical information systems, and more recently
he has worked in High Performance Computing and
networking. As a scientist, his skills are in modelling, multi
scale models, model coupling, parameter optimization and
Uncertainty Quantification, with applications in biogeography,
molecular simulation and computational biophysics. His email
address is l.veen@esciencecenter.nl.

Dongwei Ye is a PhD candidate in the Computational Science
Lab at the University of Amsterdam. He is working on surrogate
modelling, uncertainty quantification and computational
biophysics as part of Verified Exascale Computing for Multi
scale Applications (VECMA) project funded by the European
Union Horizon 2020 research and innovation programme. His
email address is: d.ye@uva.nl.

Pavel Zun is a postdoctoral researcher at the University of
Amsterdam (UvA). He received his PhD in 2019, and has since
then worked on the InSilc (In-silico trials for drug-eluting BVS
design, development and evaluation) project at Erasmus Med
ical Center, and on the VECMA project at UvA. His research
interests are in multiscale modelling of the cardiovascular
system, and in agent-based tissue models. His email is p.
zun@uva.nl.

Dr. Valeria Krzhizhanovskaya is an editor-in-chief of the Journal
of Computational Science, working in the University of Amster
dam and leading the development of algorithms and formalisms
in the VECMA project. Valeria is an expert in computational sci
ence with 25 years of experience in simulation of multiscale
complex systems, data-driven modelling, high-performance par
allel and distributed computing. Valeria has published over 150
scientific papers and edited many volumes of journal special is
sues and conference proceedings. She is a co-organizer of the
annual International Conference on Computational Science and
thematic workshops on Multiscale Modelling and Simulation.
Her email address is v.krzhizhanovskaya@uva.nl.

D. Suleimenova et al.

http://mailto:david.coster@ipp.mpg.de
http://mailto:david.coster@ipp.mpg.de

Journal of Computational Science 53 (2021) 101402

19

Prof. dr. ir. Alfons G. Hoekstra is full professor of Computa
tional Science and Engineering at the University of Amsterdam.
He is also the director of the Informatics Institute at that uni
versity. His research focuses on multiscale modelling, action
able simulations, and high performance computing. His
research is driven forward by and applied in the biomedical
domain. His main interests are currently in multiscale model
ling of hemodynamics with applications in cardiovascular
diseases, and in the development and accreditation of in-silico
trials. His email address is a.g.hoekstra@uva.nl.

Daan Crommelin leads the Scientific Computing group at CWI,
Amsterdam, and has a part-time position as full professor in
numerical analysis and dynamical systems at the University of
Amsterdam. He received his PhD from Utrecht University and
was a postdoc at the Courant Institute of Mathematical Sci
ences of New York University. His research is focused on
complex dynamical systems and their uncertainties, and in
cludes topics such as stochastic modeling for multiscale sys
tems, uncertainty quantification, rare event simulation, data-
driven modeling, and applications in climate science and en
ergy systems. His email address is Daan.Crommelin@cwi.nl.

Prof Peter V. Coveney holds a chair in Physical Chemistry and
is an Honorary Professor in Computer Science at University
College London (UCL). He is a Professor in Applied High Per
formance Computing at the University of Amsterdam (UvA),
and Professor Adjunct at Yale University School of Medicine
(USA). He is Director of the Centre for Computational Science
(CCS) at UCL. Coveney is active in a broad area of interdisci
plinary research including condensed matter physics and
chemistry, materials science, as well as life and medical sci
ences in all of which high performance computing plays a
major role. His email address is p.v.coveney@ucl.ac.uk.

Derek Groen is a Senior Lecturer in Computer Science at Bru
nel. He received his PhD in 2010 from the University of
Amsterdam, and was a PDRA at UCL for five years prior to
joining Brunel as Lecturer. He has published 35 journal articles
in diverse journals, worked on collaborative software and HPC
projects for 16 years and currently leads the development of
tools, such as VECMAtk, FabSim3, the Flee migration model
ling code and the Flu And Coronavirus Simulator. He has direct
application experience in turbulence, blood flow, materials and
migration modelling and simulation, among other areas. His
email address is derek.groen@brunel.ac.uk.

D. Suleimenova et al.

	Tutorial applications for Verification, Validation and Uncertainty Quantification using VECMA toolkit
	1 Introduction
	2 Application of FabSim3 and EasyVVUQ: forced human migration
	2.1 Sensitivity analysis on input parameters of Flee
	Step 1: Installation
	Flee
	FabSim3
	FabFlee
	EasyVVUQ

	Step 2: Parameter exploration
	Step 3: Execution
	Step 4: Results and analysis
	2.2 The required resolution of certain model parameters

	3 Fusion tutorial
	3.1 Uncertainty quantification on the fusion research
	Step 1: Installation
	Step 2: Parameter exploration
	Step 3: Execution
	Step 4: Results and analysis

	4 Application of EasySurrogate: Lorenz 96
	4.1 Lorenz 96
	Step 1: Installation
	Step 2: Generate training data
	Step 3: Train a QSN surrogate
	Step 4: Predict with a QSN surrogate
	Step 5: Post processing

	5 Application of MUSCLE3: the 3D in-stent restenosis (ISR3D)
	5.1 Uncertainty quantification analysis on ISR3D with MUSCLE3
	Step 1: Installation
	Step 2: Sample generation
	Step 3: Execution
	Step 4: Results and analysis

	6 Execution of QCG tools: urban air pollution
	6.1 Sensitivity analysis on input parameters of UrbanAir
	Step 1: Installation
	Singularity environment
	Singularity image
	VECMAtk components
	Tutorial files

	Step 2: Parameters exploration
	Step 3: Execution
	Step 4: Results and analysis

	7 Conclusion
	Declaration of interests
	Declaration of Competing Interest
	Acknowledgements
	Appendix A. Structure of the ISR3D model and communication with MUSCLE3
	References

