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ABSTRACT 

In this paper, a few experimental points were used to calibrate the throttle model, fuel 
injection model and semi-predictive combustion model of the engine system based on 
the D-optimal experimental design method. The results show that the number of cali
bration test points can be reduced by more than 90% on the premise of ensuring the 
accuracy of each sub-model. At the same time, a set of general calibration experiment 
design methods for each sub-model in the engine system is established by comparing 
the distribution of experimental points selected from each sub-model. 
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INTRODUCTION 

The increasing energy crisis and the continuous improvement of vehicle emission require
ments put forward higher requirements on engine thermal efficiency, fuel consumption 
and pollutant emission and other performance indicators. Engine calibration technology is 
one of the key technologies to improve engine performance, but the process of traditional 
calibration completely depends on the bench test, and the demand for test points is usu
ally thousands or more than tens of thousands, which requires a lot of experimental 
resources, and makes the calibration work cost is high and the cycle is long[1-2]. 

The workload of bench calibration can be effectively reduced by establishing a virtual 
engine model to replace the actual engine for model calibration. However, it is necessary 
to ensure that the model has a sufficiently high prediction accuracy before using a virtual 
engine to replace the actual engine for simulation calibration. The improvement of model 
accuracy depends on a large number of experimental data, which contradicts the purpose 
of reducing calibration workload by virtual engines. Therefore, how to establish a high-
precision engine model based on a small amount of experimental data is an important 
basis for realizing virtual calibration, reducing cost and shortening cycles. 

The objective of optimal experimental design is to obtain a combination of experimen
tal points that can maximize the information matrix. And there are many correspond
ing evaluation criteria, including Latin Hypercube Sampling, D-optimal, V- optimal and 
A-optimal, etc. To reduce the experimental points needed for model calibration, 
Anthony Gullitti et al. [3] used the intelligent experimental design system developed 
by IAV Company, based on the D-optimal experimental design method, and supple
mented by the V-optimal experimental design method and space-filling method, and 
finally completed the model building with a small amount of experimental data (269 
experimental points). The ROOT MEAN SQUARE ERROR of the model is less than 
2.5%, which has high accuracy. Tianhong Pan et al. [4] used the Latin Hypercube 

DOI: 10.1201/9781003219217-17 

303 

http://dx.doi.org/10.1201/9781003219217-17


Sampling algorithm to select only 650 experimental points from 4688381250 experi
mental points to build the model and the R2 (coefficient of determination: indicating 
the degree of overlap between the predicted value and the actual value) of the model 
was greater than 0.92, which could meet the research requirements. 

The above methods can not only ensure the accuracy of the model but also greatly reduce 
the experimental points required for the model establishment, which can reduce the cost 
and period of calibration. But  these methods  are only applicable to the specified engines, 
and the test points need to be re-selected for other engines, which makes their expansion 
ability poor. The D-optimal design method has advantages in the application of online cali
bration and is suitable for a wide range because of its simple calculation and a relatively 
low requirement on hardware computing capability[5]. In order to improve the universality 
of the experimental design scheme among different engines, a study on experimental 
design based on the D-optimal design method was carried out in this paper. A small 
number of experimental points were selected to calibrate the throttle model, fuel injection 
model and semi-predictive combustion model respectively. And a general experimental 
design method is established by analyzing the distribution of selected experimental 
points, which greatly reduces the requirement of the number of experimental points for 
model calibration, and is of great significance for the virtual calibration of engines. 

2 METHOD OF MODELLING 

2.1 Basic engine parameters 
This study is based on a 1.3L GDI (Gasoline Direct Injection) engine with turbochar
ging and dual VVT. The specific structural parameters are shown in Table 1. 

Through the sweep-point experiment, the experimental data of 2600 working points 
were obtained. The distribution is shown in Figure 1. 

Table 1. Basic parameters of the engine. 

Parameter Value 

Number of cylinders 4 

Number of stroke 4 

Bore/mm 76 

Stroke/mm 74 74 

Displacement/L 1.342 

Maximum compression ratio 10 

Injection method Direct injection 

Number of valves 4 

Intake mode VVT 

2.2 Throttle model 
The throttle can be regarded as a standard throttle valve, and the airflow through the 
throttle can be treated as a one-dimensional isentropic stable flow from the perspec
tive of fluid mechanics [6]. The calculation formula is as follows: 
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Where, Aeff represents the effective circulation area; ρis represents the upstream stagna
tion density; Uis represents the isentropic density of the throat outlet; CD represents the 
flow coefficient; AR represents the reference flow area; Pr represents the absolute pres
sure ratio (static pressure at the exit/total pressure at the entrance); R is the gas con
stant; T0 represents upstream stagnation temperature;γ is the adiabatic index. 

Figure 1. Distribution of 2600 experimental points. 

The flow coefficients of each throttle opening were calculated by a one-dimensional 
isentropic stable flow equation according to the experimental data obtained. Wang 
Zhuwei et al from the University of Shanghai for Science and Technology have studied 
the throttle flow coefficient and found that there is a certain variation rule between 
flow coefficient, throttle angle and pressure ratio[7]. Therefore, the relationship 
between them is also studied in this paper, as shown in Figure 2: 

Figure 2. Relationship between 
throttle flow coefficient and throttle 

opening and pressure ratio. 

Figure 3. Comparison of simulation 
results of throttle flow coefficient 

model. 
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It can be seen from Figure 2 that the throttle flow coefficient is in smooth plane 
distribution with the throttle opening and the pressure ratio, and it mainly 
increases with the increase of the throttle opening. Therefore, a throttle flow coef
ficient model based on pressure ratio correction is built in this paper, as shown in 
Equation (4): ( 

CD ¼ p0 þ p1θ þ p2pr þ p3θ
2 þ p4θpr þ p5θ

3 þ p6θ
2pr 

pim ð4Þ 
pr ¼ p up thr 

Where, CD is the throttle flow coefficient;θ is the throttle opening; pr is the ratio of the 
throttle rear-end pressure to the front end pressure;pim is the intake manifold pres-
sure;p up thr is the throttle front pressure. The accuracy of the model is shown in 
Figure 3 after the experimental data is brought into the model. 

As can be seen from Figure 3, R2 of the flow coefficient calculated by the model is 
0.993. This indicates that the established throttle flow coefficient model has high 
accuracy. 

2.3 Fuel injection model 
The accuracy of fuel injection mass measurement was ensured by receiving the signal 
of injection pulse width transmitted by the ECU. And the main characteristic of the 
injector is the injection flow characteristic, which expresses the relationship among 
rail pressure, injection pulse width and injection volume. 

The relationship between injection volume and injection pulse width under different 
rail pressures can be obtained through the analysis of engine injection data, as shown 
in Figure 4. It can be seen from Figure 4 that there is a linear relationship between 
injection volume and injection pulse width under fixed rail pressure. And the injection 
model is: 

Tinj ¼ kQf þ t ð5Þ 

Where, Tinj represents the injection pulse width, Qf represents the injection volume of 
a single cycle, k represents the slope, and t represents the intercept. 

Figure 4. Relationship between 
injection pulse width and injection 

volume. 

Figure 5. Relationship between slope 
and intercept and rail pressure. 

As the pressure P_rail changes, the slope K and the intercept T will also change. The 
changing relationship between slope k and intercept t with rail pressure is shown in 
Figure 5, and a good linear relationship between them is shown in Figure 5. And the 
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regression model of slope k and intercept t with rail pressure (injection flow coefficient 
model) is established: 

k ¼ m0 x P rail þ m1 ð6Þ 

t ¼ n0 x P rail þ n1 ð7Þ 

The model accuracy is shown in Figure 6 after the experimental data is brought into 
the model: 

Figure 6. Comparison of simulation results of injection pulse width. 

It can be seen from Figure 6 that the R2 of injection pulse width calculated by the model 
is 0.998, which indicates that the established injection model has high accuracy. 

2.4 Semi-predictive combustion model 
The Wiebe combustion model is usually chosen for combustion calculation when the vir

[8]tual engine is used instead of the real engine for simulation calculation . 
However, CA50 and CA10f90 are unknown before the experiment and cannot be directly 
used as the input of the combustion model. Therefore, the Wiebe combustion model 
alone cannot be used to predict the heat release rate of combustion under variable 
working conditions. In this research, a semi-predictive combustion model is estab
lished, which enables the virtual engine model to predict the values of CA50 and CA10f90 

under variable operating conditions, and it can predict the values of CA50 and CA10f90 

according to the operating conditions of the engine. The formula is shown as follows: 

a5 a72θ50 ¼ a0 þ a1λ
2 þ a2λ þ a3p þ a6θ

2 þ a8IVO þ a9RGF
2 ð8Þim þ a4pim þ spark þT2 RPM2 

CA10f90 ¼ b0 þ b1θ50 þ b2θ
2 

spark þ b4θspark þ b5p
2 b7 þ b8RGF

2 ð9Þ50 þ b3θ
2 

im þ b6λ
2 þ 

RPM2 

CA50 ¼ θ50 þ θspark ð10Þ 

Where, CA10f90 is the duration of the Wiebe combustion curve, CA50 is the Angle 
“anchoring” the Wiebe curve to TDC, λ is the excess air coefficient;pim is the intake 
manifold pressure (bar); T is the inlet air temperature (K);θspark is the ignition advance 
Angle; RPM is the engine speed (r/min); IVO is the opening phase of the intake valve; 
RGF is the residual exhaust gas rate in the cylinder. 

The model accuracy is shown in Figure 7 after the experimental data is brought into 
the model. It can be seen from Figure 7 that the R2 values of CA50 and CA10f90 calcu
lated by the combustion model are 0.96 and 0.87, respectively. Due to the complexity 
of the combustion model, it is difficult to make an accurate prediction of CA10f90. How
ever, this accuracy can meet the basic requirements of the combustion model, and 
there is still a large space to further improve the prediction accuracy of CA10f90. 
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Figure 7. Comparison of simulation results of the combustion model. 

3 SELECTION OF FEATURE SAMPLE POINTS 

3.1 D-optimal design method based on Bayesian Modification 
Experimental design refers to the rational arrangement of experiments and the use of 
fewer experimental points to obtain relatively ideal model calibration results, so as to 
reduce the calibration cycle and cost[9]. The experimental design methods include 
classical design method, space-filling design method and optimal design method. 
Among them, the optimal design method can properly establish the design criteria 
that can reflect the purpose of the experiment, and obtain the optimal design scheme 
to arrange the experiment, so as to save the experiment cost. The optimal design 
method is usually adopted if you have a deep understanding of the engine and the 
optimal model has been selected[10]. 

Regression models can generally be expressed as the following matrix [11]: 

y ¼ Xβþ 2  ð11Þ 

Where y is the output; β is the parameter to be estimated; X is the coefficient matrix. 
β ¼ XTX 

f1
XTThe least-square estimation of this model is ^ y, and XTX is required to be 

f1non-degenerate. Model of the covariance matrix of the cov β̂ ¼ σ2 XTX , and sigma 
error factors by experiment. The matrix M ¼XTX is the information matrix that con
tains the information of the model and the experimental points. 

D-optimal design refers to maximizing the determinant value of the information 
matrix (XTX), which is as follows: 

X�TX� ¼ max XTX ð12Þ 

In some cases, the sample points obtained according to the D-optimal design may 
have duplicate values, which not only wastes computational resources but also has no 
help to the fitting of model coefficients. Therefore, the Bayesian Modification (BM) 
method proposed by Dumouchel and Jones is adopted to add coefficient terms of 
higher-order at the end of the established regression model, which can effectively 
solve the problem of repeated points [12]. 

The process of D-optimal design based on Bayesian modification includes data stand
ardization, determination of candidate point matrix, selection of regression model, 
determination of experimental points, the establishment of information matrix and 
optimization design. In this study, it is programmed to quickly obtain the experimental 
design scheme according to the Fedorov algorithm, as shown in Figure 8. 
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Figure 8. Implementation flow of D-optimal design. 

3.2 Application of D-optimal in the throttle model 
The throttle flow coefficient model based on pressure ratio modification is experimen
tally designed according to the principle of D-optimal design. The input of the model is 
throttle opening θ and the ratio of throttle rear-end pressure to front end pressure pr , 
and the number of target samples selected is set as 20. The distribution of the final 
selected sample points is shown in Figure 9. 

It can be seen from Figure 9 that the sample points are mainly distributed on the edge 
of the interval composed of throttle opening and pressure ratio, and only one point is 
about the centre of the interval. According to the geometric feature analysis of the 
selected points, the points at the edge cover the whole interval and the points with 
sharp shape changes on the edge are called feature points. The overall shape of the 
surface is mainly affected by these feature points because the throttle flow coefficient, 
θ and pressure ratio pr are quadratic functions and the shape of the surface is smooth. 

Figure 9. Distribution of sample 
points in the throttle flow 

coefficient model. 

Figure 10. Comparison of experimental 
and predicted throttle flow coefficient 

results. 

The 20 selected sample points were substituted into the throttle flow coefficient model 
for solving, and the values of each coefficient in the model could be obtained, as 
shown in Table 2: 
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Table 2. Fitting results of throttle flow coefficient model coefficients. 

parameter value parameter value 

p0 6.90e-3 p4 5.10e-3 

p1 -6.20e-5 p5 5.50e-6 

p2 -1.37e-2 p6 -3.50e-4 

p3 14.00e-4 

Next, the prediction accuracy of the model is verified. The remaining non-pressurized 
conditions (throttle opening less than 90 degrees, about 1300 experimental points) 
were substituted into the model for testing, and the results were shown in Figure 10. 
It can be seen from Figure 10 that the predicted value of the throttle flow coefficient is 
basically consistent with the experimental value, and its R2 is 0.98. 

It can be seen that the throttle flow coefficient model based on the calibration of 20 
sample points can accurately predict the throttle flow coefficient under different throt
tle opening and pressure ratios under all non-pressurized conditions, which can 
achieve the purpose of using a small number of experimental points to calibrate the 
model. 

3.3 Application of D-optimal in the fuel injection model 
Similarly, the injection model is designed experimentally according to the principle of 
D-optimal design. The inputs of the model are injection pressure and injection 
volume, and the number of target samples selected is set as 16. The distribution of 
the final selected sample points is shown in Figure 11. 

The 16 selected experimental points were brought into the injection model to solve 
the parameters, and other experimental points were used to verify the accuracy. The 
model accuracy is shown in Figure 12: 

It can be seen from Figure 12 that the predicted value of injection pulse width is the 
same as the experimental value, and its R2 is 0.997. 

Figure 11. Distribution of sample 
points in the injection model. 

Figure 12. Comparison of experimental 
and predicted injection pulse width 

results. 
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3.4 Application of D-optimal in the semi-predictive combustion model 
Similarly, the semi-predictive combustion model is designed experimentally according 
to the principle of D-optimal design. And the number of target samples selected is set 
to 54. The selected experimental points are put into the model to solve the model 
parameters, and the model accuracy is shown in Figure 13: 

Figure 13. Comparison of the experimental and predicted values for CA50 and 
CA10f90 in the combustion model. 

It can be seen from Figure 13 that the predicted values of CA50 and CA10f90 in the com
bustion, model are basically consistent with the experimental values, and their R2 are 
0.94 and 0.85, respectively. 

4 GENERAL EXPERIMENTAL SCHEME 

4.1 Design of experimental scheme 
The above sample points are targeted at the engine in this study, which may not apply 
to engines of different types. In order to improve the expansion ability of the experi
mental design scheme, this paper summarizes a general experimental design scheme 
by analyzing the selection rules of experimental points under different models. 

This paper takes the throttle model as an example to study the general experimental 
scheme. In the throttle model, the experimental points selected based on the D-opti
mal method are mainly distributed on the edge of the interval composed of throttle 
opening θ and pressure ratio pr . This range is not the same for different engines. In 
this study, a universal experimental design scheme applicable to different engines is 
summarized to solve this problem by analyzing the distribution characteristics of 
selected experimental points and combining the feasibility of real bench experiment 
operation, as follows: 

(1) Turn off the turbocharger and set the throttle opening to the minimum allow
able opening θmin (such as 1 degree). When the engine speed is gradually 
increased from idle speed to the maximum allowable speed, the minimum and 
maximum values of the throttle gate rear pressure ratio are recorded, and 
these two values are recorded as feature points under the θmin opening degree. 

(2) A certain number of throttle opening points are selected evenly within the 
throttle opening range. And the selection points can be denser when the 
throttle opening is small, and sparser when the throttle opening is largely 
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based on the characteristics of the throttle. In this study, the throttle opening 
is adjusted to 3 degrees, 5 degrees, 7 degrees, 10 degrees, 15 degrees, 20 
degrees, 25 degrees, 30 degrees, 35 degrees and 40 degrees respectively, 
and the rotating speed is adjusted according to Step (1) to obtain the corres
ponding feature points under each opening. Besides, when the throttle open
ing is adjusted to 15 degrees and the ratio of the rear end of the throttle to 
the front end pressure is 0.7 by adjusting the engine speed, the working point 
is also the feature point. 

(3) The flow coefficients of all the above feature points were calculated and sub
stituted into the throttle flow characteristic model for a solution. 

(4) Verify the predictive ability of the model. In addition, several experiments 
were carried out (changing the throttle opening and the pressure ratio) to 
compare the throttle flow coefficient with the predicted value of the model. 

It indicates that the flow coefficient model has a high predictive ability and the experi
mental design scheme can be used for virtual calibration of the intake model if the 
error is small. On the contrary, these verification points can also be added as feature 
points, and steps (3) and (4) can be repeated until the verification results meet the 
accuracy requirements if the error is large. 

4.2 Verification of the experimental scheme 
Next, a 1.4L cylinder direct injection gasoline engine was used to test the versatility of 
the above experimental design. The engine previously obtained 600 test points 
through sweeping points. According to the above experimental design scheme, 20 
sample points were selected and substituted into the throttle flow characteristic model 
for the solution, and then the remaining 580 test points were used for verification. 

The validation results are shown in Figure 14. It can be seen that the shape of the the
oretical value and the predicted value of the flow coefficient is basically the same, and 
its R2 is 0.972. 

Figure 14. Comparison of experimental and predicted throttle flow coeffi
cient results. 

The above research shows that the experimental design of throttle flow characteristics 
is suitable for different gasoline engines, and accurate throttle flow characteristics can 
be obtained through a small number of test points calibration. 
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Similarly, according to the point selection rules of the fuel injection model and semi-
predictive combustion model, the accuracy of the 1.4L engine model was verified by 
a similar experimental design scheme, and their R2 are 0.99, 0.93 and 0.84, respectively. 

CONCLUSION 

In this study, the throttle model, fuel injection model and semi-predictive combustion 
model were established respectively through the correlation analysis among variables, 
and the key experimental points were selected for these three models through the 
experimental design method based on D- optimal. According to the distribution law of 
selected experimental points, the respective experimental schemes were designed, 
and their versatility was verified. Finally, the following conclusions were drawn: 

(1) The established throttle	 flow coefficient model, injection pulse width model 
and semi-predictive combustion model have high prediction accuracy and the 
R2 values of the model prediction results and the experimental results are 
0.993, 0.998, 0.96 and 0.87, respectively. 

(2) Based on the D-optimal experimental design method, 20, 16 and 54 experi
mental points were selected to identify the model parameters of the throttle 
model, fuel injection model and semi-predictive combustion model, and the 
R2 values of the models were 0.98, 0.997, 0.945 and 0.85 respectively, which 
can reduce the number of test points needed for calibration by more than 
90% while ensuring the accuracy of the model. 

(3) By analyzing the distribution of selected experimental points of each model, 
a general experimental scheme was designed and verified in another engine. 
The verification results show that the R2 values of the model can reach 0.972, 
0.99, 0.93 and 0.84 respectively when the number of experimental points is 
reduced by more than 90%, which proves the feasibility of the general experi
mental scheme. 
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