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ABSTRACT 
 

Let f be the function which maps conformally a given doubly-               

connected domain onto a circular annulus. We consider the use of                          

two closely related methods for determining approximations to f of                             

the form 

fn (z) = z exp , 
⎪⎩

⎪
⎨
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⎭
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where  {u j }  i s  a  se t  o f  bas i s  func t ions . The  two methods  a re  

respec t ive ly  a  var ia t iona l  method ,  based  on  an  ex t remum proper ty  

of  the  func t ion  

H(z) = f′(z)/f(z) - 1/z, 
 

and an or thononnal izat ion method,  based on approximating the 

funct ion H by a  f ini te  Fourier  ser ies  sum. 

 

   The main purpose of  the paper  is  to consider the use of the two 

methods for  the mapping of  domains having sharp corners ,  where  

corner  s ingular i t ies  occur . We show, by means of  numerical  

examples ,  that  both methods are  capable  of  producing 

approximations of  high accuracy for  the mapping of  such "diff icul t"  

doubly-connected domains.  The essent ia l  requirement  for  this  is  that  

the  basis  set  {u j}  contains  s ingular  funct ions that  ref lect  the  

asymptot ic  behaviour  of  the   funct ion H in the neighbourhood of  

each "s ingular"  corner .  

 

 

Key words. Conformal mapping, doubly-connected domains, 

Bergman Kernel. 
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1. Introduction. 

     Le t  n  be  a  f in i t e  doub ly -connec ted  domain  wi th  boundary  

in  the  complex  z -p lane ,  where21 ΩΩΩ ∂∂=∂ U iΩ∂ ;  i  =  1 ,2 ,  a re  c losed  

Jo rdan  cu rves . We assume  tha t  iΩ∂  i  =  1 ,2 ,  a re  r e spec t ive ly  the   

i nne r  and  ou te r  componen t s  o f  Ω∂ ,  and  tha t  t he  o r ig in  0  l i e s  in  the  

"ho le"  o f  Ω ,  i . e .   In t (∈0 1Ω∂ ) .  

Le t   be  a  f ixed  po in t  i n  ζ ΩΩΩ ∂=− U  and  l e t  

w = f(z) ,      (1.1) 
 

be the function which maps conformally Ω  onto the circular annulus 
 

R = {w : r1 < |w| < r2},     (1.2) 
 
so  tha t   ;  i  =  1 ,  2 ,  co r re spond respec t ive ly to |w |  =  riΩ∂ i  ;  i  =  1 ,2 ,  

and      ζ)ζ(f = .     

 (1.3) 

As  i s  we l l  known,  th i s  mapp ing  ex i s t s  un ique ly  and  the  r a t io  o f  t he  

two  rad i i ,  i . e .  t he  number  

 

    M = r2/r1> 1,      (1.4) 
 

i s  the  so-cal led  conformal  modulus  of  Ω . This  number  determines  

complete ly  the  conformal  equivalence c lass  of  the  domain Ω .  

 

In  the  present  paper  we consider  the  use  of  two c losely  re la ted 

numerical  methods  for  determining approximat ions  to  f  of  the  form 

,)z(uaexpz)z(f
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    (1.5)                              

where  {uj.(z)}  is  an  appropriate  set  of  basis  functions.  The two methods        

are respectively a variational method (VM), based on an extremum 

property of the function 

                                    H(z) = f ′ (z)/f(z) - 1/z ,      
 (1.6)    
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and an orthonormalization method (ONM), based on approximating the function    

H by a finite Fourier series sum. The VM is described with full 
theoretical   details in Gaier [4], whilst the ONM emerges easily from the 

theory contained in [l], [4] and [10]. The two methods resemble respectively 

the well-known           Ritz and Bergman kernel methods for the mapping of a 

simply-connected domain onto the unit disc. In fact, the two numerical 
techniques of the present    paper can be regarded as generalizations, to the 
mapping of doubly connected domains, of the Ritz and Bergman kernel 
procedures studied recently in [11]. 

 

The general objectives of the present paper are as follows. To give    

a summary of the theoretical results on which the VM and the ONM are 

based, to describe the two numerical techniques and to present a number 

of illustrative numerical examples. However, our main purpose is to 

consider the use of the two methods for the mapping of domains 

involving sharp corners, where branch point singularities occur. For this 

reason, most of   the numerical examples considered in this paper concern 

the mapping of such difficult domains. 

 
The numerical results given in Section 5, as well as results of other 
numerical experiments not presented in this paper,  indicate that both 
the VM and the ONM are capable of producing approximations of high 
accuracy. More precisely, our results show that  high accuracy is 
achieved when the domain under consideration is 2n-fold symmetric, 
with n ≥ 2, provided that the basis set,  used for approximating the 
function H, contains singular functions that  reflect  the  asymptotic  

behaviour  of H in the neighbourhood of a corner where a singularity 
occurs. Such a basis can always be con-structed, in a manner 
similar to that used for constructing the basis for the Ritz and the 
Bergman kernel methods in [11], by introducing appropriat 
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singular functions into the set 
                                 

1j,}{z j
j −≠∞

−∞= .                (1.7) 
2. Prel iminary Resul ts  

We let L2 (Ω) be the Hilbert space of all square integrable 

func t ions  which  a re  ana ly t ic  and  possess  a  s ing le -va lued  indef in i te  

in tegra l  in  Ω ,  and  denote  the  inner  product  of  L 2  (Ω )  by  ( , ) ,  i . e .  

  

   .    (2.1) ∫∫=
Ω

_________

2121 dxdy(z)g(z)g),g,(g

 
We also let 
 

A (z)=log F(z)-log z,      (2.2) 
 

where f is the function(1.1) mapping Ω onto the circular annulus R. 

Then, the function A is analytic and single-valued in Ω, and its derivative 

H (z) = A′  (z),              (2.3) 
is  the  funct ion(1.6) . Clear ly ,  H(z)≠0,  zεΩ ,  unless  Ω  i s  i t se l f  

a  c i rcular  annulus  with i ts  centre  a t  the or igin.  

 
In order to present the results on which the VM is based we let 

 
   K(1) (ΩΩ={u(z):u∈L2(ΩΩ and (u, H)=1} 
    

K(0) (ΩΩ={v(z):v∈L2(ΩΩ and (v, H)=1}             (2.4) 
 
and, as in Gaier [4, p 245], we consider the following variational problem. 
 
Problem 2.1. To minimize 

dxdy,u(z)u
Ω

22

∫∫=                (2.5) 

over all u∈K(1)(Ω).   
The following results are proved in [4]: 

R 2.1 
R 2.2

Problem 2.1 has a unique solution u0.       The function H is related to the minimal function u0 by 

   H(z)=u0(z)/||u0||2.                 (2.6) 
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R 2 .3 The minimal  funct ion uo  i s  or thogonal  to  every  funct ion 

          (2.7) 
)((0)Kv0,v),0(u

)i.e.((0)Kv

Ω∈∀=

Ω∈

                                                
I t is of interest to note that the above results are all special   cases 

of standard results of the theory of Hilbert  spaces. This follows from the  

observation  that K ( 1 )
 (Ω)  and K ( 0 ) (Ω)  are  respectively  a  closed convex subset 

and a closed convex subspace of L 2  (Ω);  see e.g.  [13]. 

In  addi t ion to  R2.1  -  R2.3 ,  the  fol lowing two resul ts ,  which are  

proved in  [4 ,  p .250],  are  needed for  the  descr ipt ion of  both  the  VM and 

the  ONM. 

R 2 .4 For  each funct ion η L2 (Ω )which is  cont inuous  on  ∈ ∂∂=∂ U

                (2.8) dz, |z | log(z) ηΩiH), η ( ∫∂=
                                  

  

R 2.5

where H is defined by (2.2).  The modulus M = r2/r1 of Ω is related to the function H by 

/2ΠΩ 2||H||dz|z|log
z
1

i
1

logM
⎭
⎬
⎫

⎩
⎨
⎧

∫∂ −= .            (2.9) 

The result R.2.4 is established early after first expressing the inner 
product (η ,H) as  

   dz.A(z)η(z)Ω2i
1

)(η ∫∂=H, . 

This is done by means of the Green's formula 
 

dz,(z)2g(z)1gΩ2i
1

)2g,1(g ∫∂=                  (2.10) 

  
which is also needed for determining certain other inner products that occur 

in both the VM and the ONM. As is shown in Bergman [1, p.96], formula 

(2.10) is valid for any functions g1 and g2 which are analytic in Ω and 

continuous on .  The result  R.2.5 is  established, by integration by parts, after 
first applying (2.8) to the norm ||H||2 =(H,H); see [4, p.p.250-51] 

Ω∂
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for further details.  

 

        We point out that the assumptions concerning the continuity on 

 of the functions gΩ∂ 1 ,  g2 in (2.10) and  in (2.8) can be replaced by 

somewhat weaker requirements.  For example, i t  can be shown that both 

(2.8) and (2.10) are applicable to "singular" functions of the type 

considered in Section 4. 

η

3. The Numerical Methods 

As was previously remarked the VM is due to Gaier [4, p.249].   

The method emerges by seeking the solution of the finite-dimensional 

counterpart of Problem 2.1, and resembles closely the Ritz method for   

the mapping of simply-connected domains. For this reason the VM 

details given below are similar to those used for the description of 
the Ritz method in [11]. 

Let {nj(z)} be a complete set of L2(Ω) and denote by  and 

 the n¢-dimensional counterparts of  and 

)()1( Ωn

)()0( Ωn )()1( Ω ( ) )(0 Ω  

corresponding to the set {nj(z)}, i .e.  

   1},H),nand(jc,jnjc
n

1jn:(z)n{(ΩΩ(1)
nK =φ∈∑

=
=φφ= ¢

and 

   0},H),nand(ψjd,jnjd
n

1jnψ:(z)n{ψ(ΩΩ(0)
nK =∈∑

=
== ¢

 
Then, the conditions = 1 and )H,( nφ )H,( nψ  = 0 imply respectively that 

      (3.1) 
and 

      (3.2) 
where 

,....2,1j;)H,η(γ jj ==      (3.3) 



6. 
S i n c e  t h e  s e t  ( n j ( z ) }  i s  c o mp l e t e  a n d  H ( z ) ⊥≡  0 ,  i t  f o l l o w s  t h a t  n o t  a l l   

the  inner  products   a re  zero . In  fact ,  for  the  purposes  of  the  p r e s e n t  

p a p e r  w e  ma y  a s s u me  t h a t  

jγ

 ,0H),(ηγ 11 ≠=  

s o  t h a t  t h e  s e t   i s  n o n - e mp t y  f o r  a n y  n  ≥  1 .  )(K )1(
n Ω

The n-dimensional variational problem corresponding to P r o b l e m 

2 . 1  c a n  b e  s t a t e d  a s  f o l l o w s .  

P r o b l e m 3 . 1 T o  mi n i mi z e  

,dxdy|)z(||||| 2
n

2
n ∫∫Ω= φφ                     

 (3.4)                                              

over all  .   )(K )1(
nn Ω∈φ

The following results hold: 

R 3.1 Problem 3.1 has a unique solution . n

∧

φ

R 3.2 The minimal function  is completely characterized by the n

∧

φ
   property 

     .   
(3.5) 

)Ω(Kψ,0)ψ,( (0)
nnnn ∈∀=

∧

φ
 

R 3.3 The minimal function  converges almost uniformly in n

∧

φ
 . That  i s ,  f rom (2 .6) ,  0utoΩ

                       
 (3.6) 

,)H(z||||/z)( 2→

almost uniformly in Ω. (By almost uniform convergence we           

mean convergence in every compact subset of Ω.) 

nn

∧∧

φφ

      The results R 3.1 and R 3.2 are of course the finite dimensional 

counterparts of R 2.1 and R 2.3.  Like R 2.1 and R 2.3, they are       

par t icular  cases  of  s tandard resul ts  of  the  theory  of  Hi lber t  spaces .       

R 3 .3  is  a  d i rect  consequence of  the  fact  that  in  L2  (Ω )  convergence in  

the  norm impl ies  a lmost  uniform convergence,  and i t  i s  es tabl ished 

af ter  

f i rs t  showing that    

0||u|| 0n
lim
n =−φ

∧

∞→  
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Let 

      (3.7) ∑
=

=
n

1j
jjn (z),ηc(z)φ̂

be the minimal function solving Problem 3.1. Then, the coefficients  

cj satisfy (3.1) and, from R 3.2, they must be determined so that 

                                                                                  (3.8) Ω).(Kψ,0)ψ,ˆ( (0)
nnnn ∈∀=φ

Because of (3.2), it can be shown easily that any function 

                                        ),Ω(K(z)ηd)z(ψ (0)
nj

n

1j
jn ∈

⎭
⎬
⎫

⎩
⎨
⎧

= ∑
=

can be written in the form 

       ∑
=

−=
n

2j
1jj1j

1
n (z)},ηγ(z)η{γd

γ
1)z(ψ     (3.9) 

This implies that a necessary and sufficient condition for (3.8) to hold 

is that 

           n,....,3,2i;0)ηγηγ,ˆ( 1ii1n ===φ

or 

                             { }∑
=

==−
n

1j
j1ji1ji n,2,3,...,i;0c)η,(ηγ)η,(ηγ    (3.10) 

where the inner products  i = 1,2,...,n, are known by means of (2.8). ;γ i

The n-1 equations (3.10) together with the equation (3.1) constitute                

an n x n linear system for the determination of the n coefficients cj.                      

That is, the coefficients cj in (3.7) are determined by solving the linear 

System 

⎪
⎪
⎭

⎪
⎪
⎬

⎫

==−

=

∑

∑

=

=

n

1j
j1j,iii1

n

1j
jj

,.n.,2,3,.,i0;)}cη(ηγ)η,(ηγ{

1cγ
  (3.11)
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Then, because R 3. 3, 

 ,ˆ/)z(ˆz)(H
2

nnn φφ=  (3.12) 

g ives  t he  n th  VM  approx imat ion  t o  t he  func t ion  H(z )  =  A(z )  and  thus ,  

f rom (2.2),  

 { } ,Ωζ,(t)dtHexpz)z(f
z

ζ nn ∈= ∫  (3.13) 

is the nth VM approximation to the mapping function f. Also, from (2.9), 

.
⎭
⎬
⎫   π2/Hdzzlog

z
1

i
1expM 2

nΩn
⎩
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛ −= ∫∂

is the nth VM approximation to the modulus M of Ω. In fact, it can be 

easily verified that Mn gives an upper bound  to II. 

 In the ONM the approximation to the mapping function f is determined 

after first approximating the function H by a finite Fourier series sum. 

The method emerges easily from the theory contained in [10, p.373], [1,     

p.102] and [4, p.249]. 

Let  be a complete orthonormal set of  L)}z(n{ *
j 2(Ω). Then the function       

H has the Fourier series expansion 

  ∑       (3.15) 
∞

=

=
1j

*
jj (z),ηBH(z)

Where the Fourier coefficients 

  )nH,(B *
jj =

 = ,H),(n*
j  (3.16) 

are known by means of (2.8). The series (3.15) certainly converges in 

the norm of L2(Ω) and, as in the case of R 3.3, this norm convergence 

 implies almost uniform convergence in Ω. 

       Given a complete set {nj.(z)} of L2,(Ω), the results (3.15) and (3.16) 

suggest the following procedure for obtaining a numerical approximation to 

the mapping function f. The set , is orthonormalized by means n
1jj (z)}{n =

of the Gram-Schmidt process to give the orthonormal set  .)}z(n{ n
1j

*
j =
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The series (3.15) is then truncated after n terms to give the approximation 

 
⎪
⎭

⎪
⎬

⎫

==

= ∑
=

,n,...,2,1j:)H,n(β 

(z),nβ)z(H

*
nj

n

1j

*
jjn

                                                           (3.17) 

to the function H.. Finally, with this Hn, the equations (3.13) and (3.14)       

give respectively the nth ONM approximation to the mapping function f and 

to the modulus M of Ω. 

 

The ONM can also be deduced by considering the Bergman kernel function      

of Ω .  This is the unique reproducing kernel K (z;t), tЄΩ ,  of L2(Ω),  i .e.  

K satisfies the property 

  g(t) = (g, K),    g ЄL2 (Ω).                                                                                  (3.18) 

Because of the property (3.18), K has the Fourier series expansion 

                               (z),n(t)n)tz;(K *
j

1j
∑
∞

*
n                                                          (3.19) 

=

=

which, for the reasons explained above, converges almost uniformly in Ω. 

The connection between K and the ONM emerges by applying formula (2.8) to 

the inner product (K,H). Because of (3.18), this gives 
        dzzlogt)K(z,iH(t)

Ω∫∂=  

or 

 

       dzzlogt)K(z,
i
1H(t)

Ω∫∂=  

       ( ){ }∑ ∫
∞

=
∂

=
1j

Ω

*
j

*
j dzzlog(z)n(t)n

i
1  

           = ,Ωt,(t)nH),(n *
j

1j

*
j ∈∑

∞

=

 

which is the Fourier series (3.15) – (3.16) of H. The above can also be 
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deduced easily from the results of Bergman [l,p.l02]. 

 
We end this section by observing that Problem 2.1, with the 

function 
H def ined  by  (2 .3 ) ,  i s  a  spec ia l  case  o f  a  more  genera l  va r ia t iona l  
problem which is  considered ful ly  in  Gaier  [4 ,  Chap.  V].  More 
spec i f i ca l ly  the  resu l t s  R  2 .1  -  R  2 .3 ,  toge ther  wi th  the  
cor responding  f in i t e -d imens iona l  r esu l t s  o f  th i s  sec t ion ,  ho ld  fo r  
any  f in i t e ly -connec ted  domain  and  any  func t ion  H Є  L 2  (Ω )  such  
tha t  H(z )  ≠  0 ,  z  Є  Ω  .  An  interest ing example of  this  is  the  case 
where Ω  i s  s imply-connected and  H i s  t aken  to  be  the  Bergman  
kerne l  func t ion  o f  Ω .   In  th i s  case ,  the  resul ts  R 2.1 -  R 2.3 
const i tute  the so-cal led property  of  minimum area,  and  the  
va r ia t iona l  method  o f  the  p resen t  sec t ion  reduces  to  the  Ri tz  
method for the mapping of simply-connected domains. Other choices 
o f  H  lead  to  o the r  in te res t ing  resu l t s  concern ing  the  mapping  o f  
mul t ip ly -connec ted  domains ;  see  Ga ie r  [4 ;  Chap .  V]  fo r  fu r the r  
de ta i l s .  
 
4. Choice of Basis

A serious drawback of both the VM and the ONM is that severe 
loss of accuracy may occur during the computation, due to il l-
conditioning of the matrix in (3.11) or to numerical instability of the 
Gram-Schmidt process. For this reason, the success of the methods 
depends strongly on the rate of convergence of the approximating 
series, and this in turn depends on the choice of basis functions {nj z)}. 

 
An obvious choice of basis is the set 
             { } 1.j,z j

j −≠
∞

−∞=

(4.1) 
This set is complete in L2 (Ω) and provides a computationally convenient 
basis for both the VM and the ONM. Unfortunately, the situation 
regarding 
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the use of (4.1) is exactly the same as that observed in [9],  [11] and    

[12], in connection with the use of the set  for the mapping of ∞
=0j

j}z{

simply-connected domains by means of the Ritz and the Bergman kernel 

methods. That is ,  due to the presence of singularit ies of the function     

H in the complement of Ω, the convergence of the resulting approximating 

series is often extremely slow. Because of this,  the use of (4.1) does     

not  always  lead to  approximations  of  acceptable accuracy. In order  to 

overcome this difficulty, we adopt the procedure first  proposed in [9],     

in connection with the choice of basis for the Bergman kernel method.  

This involves the use of an "augmented basis", formed by introducing  

into the set (4.1) singular functions that reflect the main singular 

behaviour of H in compl ( ).  Ω

 

In [9],  [11] and [12], the augmented basis for the mapping of 

simply-connected domains is formed by considering two types of 

singularities of the mapping function. These are either poles which lie 

close to the boundary or branch point singularities on the boundary itself. 

For the problems considered in [9], [11] and [12], the dominant poles of the 

mapping function can be determined, by using the symmetry principle, 

whenever the boundary of the simply-connected domain consists of straight 

line segments and circular arcs. Unfortunately, in the case of doubly-

connected domains we do not know of a systematic way for determining the 

poles of f and the corresponding singularities of the function H, 

irrespective of the geometry of ∂Ω . For this reason, in the present paper 

we construct the augmented basis by considering only the branch point 

singularities of H. 

 

B r a n c h  p o i n t  s i n g u l a r i t i e s  a r e  c o r n e r  s i n g u l a r i t i e s .  T h e y  o c c u r ,  

when due to the presence of a corner at a point z j . Є  ∂Ω , the 
asymptotic expansion of the mapping function f in the neighbourhood 

of zj . involves 
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f ract ional  powers  of  (z  –  z j ) . The quest ion regarding the choice of  

sui table  basis  funct ions for  deal ing with  such s ingular i t ies  can be 

answered in  exact ly  the same way as  in  [9] ,  [11]  and [12] ,  by using   

the  resul ts  of  Lehman [8] . For  this  reason,  we s ta te  below the formulae 

which def ine the s ingular  funct ions,  wi thout  repeat ing the detai ls  of  

their  der ivat ion.  

 

Le t  par t  o f  the  boundary  ∂Ω  cons is t  o f  two ana ly t ic  a rcs  Г 1  and  

Г 2  which  meet  a t  a  po in t  z j .  and  form there a corner  of in te r ior  angle  

an ,  where  a  =  p /q  >  0  i s  a  f rac t ion reduced  to  i t s  lowes t  t e rms . (By 

in te r ior  angle  we  mean  in te r ior  to  the  domain  Ω . ) Then,  the  asympto t ic  

expansion of H involves terms which can be written in the form 

⎪⎩

⎪
⎨
⎧

∂∈−

∂∈−
=

−

−

)3.4(,Ωzif,)zz(

)2.4(,Ωsif,z/})z/1z/1{(
)z(η

2j
1r

j

jj
21r

j
rj  

Where 

              r = k + ℓ/a  ;  k = 0,1,2,..., 1 ≤ ℓ ≤  p.        (4.4) 

Thus,  i f  p  ≠  1  a  branch point  s ingular i ty  occurs  a t  z j .  For  this  reason,  

the augmented basis is formed by introducing into the set (4.1) the first  

few singular functions of the sequences (4.2) or (4.3),  corresponding to 

the first  few fractional values of r .  

 

We note that the singular functions defined by (4.3) are the same as 

those used in [9] and [11],  for dealing with the branch point singulari t ies 

of the interior mapping function for simply-connected domains. Similarly,  

the singular functions (4.2) are the same as those used in [12], in 

connection with the exterior  mapping problem for  simply-connected domains.  

This choice of singular functions ensures that the η r j  always have a single 

valued integral in Ω . We also note that a branch point singularity might 

occur at the point zj even when p = 1. This happens because the asymptotic
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expansion of f might involve logarithmic terms; see [8] and [11, Sect.  

4.2].  However, such logarithmic singularities are never very serious and, 

for this reason, we do not consider them in the present paper. Finally,    

we note that if  z j  Є  ∂Ω  and the arms Г1 ,  Г2  of the corner are straight l ines 

then the range (4.4) for the values of r in (4.3) may be replaced by 

                           r = ℓ/a ; ℓ = 1,2,3,..... ;   (4.5) 

see [9, Sect. 2.2] and [11, Sect. 4.2]. 

 

5. Computational Details and Numerical Examples. 

  Both the VM and ONM require the evaluation of inner products of the 

form (η r ,η s)  and (η ,H). These are needed for determining the coefficients 

of the linear system (3.11), for orthonormalizing the set {n j  (z)} by means 

of the Gram-Schmidt process, and for evaluating the Fourier coefficients 

in  (3 .17) . Using Green 's  formula (2 .10) ,  the  inner  products  (η r ,η s )  are  

expressed as 

  (z),η)(zμ,(z)μ)z(η
i2

1)η,η( sssΩ rsr == ∫∂    (5.1) 

and the integrals in (5.1) are then computed by Gaussian quadrature, in 

exactly the same way as  in  [9] ,  [11]  and [12] .  Similar ly ,  each inner  

product  (η ,H)  is computed by applying to the integral in (2.8) the Gaussian 

rule used for the evaluation of (5.1). When performing the quadrature care 

must be taken to deal with integrand singularities that occur when, due to 

the presence of a corner at z j ,  the basis set contains singular functions of 

the form (4.2) or (4.3). In the examples considered below, the arms of 

the  corners  a re  always straight line segments, and any intergrand singulari-

ties are removed, as explained in [9, Sect. 3], by choosing an appropriate 

parametric representation for ∂Ω ;   see also [11, Sect.  5] and [12, Sect.  3].  

 

In the VM, the complex linear system (3.11) is solved by using the NAG 

Library routine F04ADF, which is based on Crout's factorization method. 
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In the ONM, the orthonormalization is performed by means of the procedure 

used in [9], [11] and [12], in connection with the Bergman kernel method. 

This procedure is based on the standard Gram-Schmidt algorithm. 

 

 The approximation Mn to the modulus M of Ω  is computed from (3.14), 

by applying to the integral 

   ∫∂Ω dz,zlog
z
1

i
1  

the Gaussian rule  used for  the evaluat ion of  the inner  products  (η r ,η s )  

and (η ,H) .  

 

 An estimate of the maximum error in | fn(z) |  is  given by the quantity 

En,  which is determined as follows. In each example,  the fixed point ζ    

in (1.3) is  taken to be a convenient point on the outer boundary ∂Ω 2 .  

Thus,  in each case,  the outer radius of the annulus is  
  ,ζr2 =  (5.2) 

and r2/Mn gives an approximation to the inner radius r1  .  Hence, we may 

take the error estimate to be 
 },r)z(f,/Mr)(zfmax{E 22jn

max
jn21jn

max
jn −−=  (5 3) 

where {z1 j} and {z2 j} are two sets of "boundary test points" on ∂Ω 1  and 

∂Ω 2  respectively. We expect En  to be a reasonable error estimate, because 

our numerical experiments indicate strongly that,  in general,  the approxi-

mation Mn is much more accurate than |fn (z)|, zЄ∂Ω ; see e.g. the numerical 

results of Example 5.2. 

 

 In each example, the ONM results presented correspond to the approx- 

imation fNopt, where n = Nopt is the "optimum number" of basis functions 

which gives maximum accuracy in the sense explained in [9, Sect. 3]. That 

is, this number is determined by computing a sequence of approximations 
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{f n(z)}, where at each stage the number n of basis functions is increased  

by one. If at the (n+l)th stage the inequality 

 En - 1  < En,        (5.4) 

is  sa t isf ied  then  the  approximation  f  +o(z)  i s  computed. When  for  a  

cer ta in  value of  n ,  due to  numerical  ins tabi l i ty ,  (5 .4)  no longer  holds  

then we terminate  the process  and take n = Nopt .  Also,  in  order  to  

safeguard against slow convergence, we do as in [12] and after n = 19 

we begin to  compute the ra t ios  
                     ,....20,10M;Eq MIOM == +  

If, for some M,  than we terminate the process at n = 10 + M        5.0q M >

and write  .M10Nopt* +=

 

For the presentation of the results we adopt a format similar to 

that used in [11].  That is,  we denote the two methods respectively 

by VM/MB and 0NM/MB or VM/AB and 0NM/AB to indicate whether the "monomial  

basis" (4.1) or an "augmented basis" is used.  For each example we 

list  the singular functions, the boundary test points and the order of 

the Gaussian quadrature, which are used respectively for augmenting the 

set (4.1),  for determining the error estimate (5.3) and for computing 

the inner products.  As was previously remarked, if  the basis set 

contains singular functions of the form (4.2) or (4.3) then the resulting 

integrand singularities in the inner products are removed by using special 

parametric representations for ∂Ω . These representations are similar to 

those used in [9, Sect.  3]. For this reason, we do not list  them here. 

 

All computations were carried out on a CDC 7600 computer, using programs 

written in Fortran with single precision working.  Single length working 

on the CDC 7600 is between 13 and 14 significant figures.
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Example 5.1. Circle in square; Figure 5.1. 

  1}.aa,z:{z1}y1,x:y){(x,Ω <>∩<<=  

 

 
 

FIGURE 5.1 

 

Basis.  This example does not involve corner singularities. For this 

reason, we do not need to use an augmented basis.  

 

 Because the domain has eightfold symmetry about the origin the 

monomial basis set is taken to be 

   z       (5.5) ,.....3,2,1j;)1(k,j(2k 1j
j

1)j =−= ++

Quadrature. Gauss-Legendre  formula with 48 points along each quarter 

of the circle and each half side of the square. 

 

Boundary Test Points. Because of the symmetry, we only consider 

points 

on  AB and CD.  On AB the  poin ts  a re  def ined  by   .4/π)16/π(0τaez iτ ==
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On CD the points are equally spaced, in steps of 0.25, starting from C. 

Numerical Results. 

(i) a=0.2 

 

ONM/MB : Nopt = 20, E2 0 = 9.5xl0- 1 2 , M2 0 = 5.393 525 710 616. 

VN/MB :  E2 0 = 9.0x10- 1 2 ,                  * 

(i i) a = 0.4 

ONM/MB : Nopt = 22,E2 2 = 5.2x10- 1 2 ,  M2 2 = 2.696 724 431 230. 

VM/MB : E2 2 = 3.1xl0- 1 2  ,                  * 

(i i i) a = 0.8

ONM/MB : Nopt  = 28, E28 = 1.8xl0-10 , M28 = 1.342 990 365 599. 

VM/MB :  E28 = 7.0X10-11 ,                * 

(* In each case the VM approximation to M agrees with the ONM approxi-

mation to the number of figures quoted.) 

 

T h e  n u me r i c a l  r e s u l t s  o f  t h i s  e x a mp l e  i l l u s t r a t e  t h e  r e ma r k a b l e  

accuracy that can be achieved by the VM/MB and the ONM/MB, when the 

domain  under  cons idera t ion  i s  h igh ly  symmetr ic  and  does  no t  involve  

corner  s ingular i t i es .  

 

Accurate VM/MB approximations for the cases a = 0.4 and a = 0.8 

have also been obtained by Gaier . His  approximations to  M are  quoted 

to  seven  s ign i f i can t  f igures  in  [5 ] ,  and  agree  pe r fec t ly  wi th  the  

approximations l isted above. The approximation M2 2,  corresponding to 

the case a = 0.4, should also be compared with the value 2.696 725 given 

in  [11] . This  value is  obtained by a  method based on approximating 

the conformal map onto the unit disc, of the simply-connected domain 

bounded by the arc AB and the straight lines BD, DC and CA; see [11, 

Ex. 6.3] .
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Example 5.2. Square frame; Figure 5.2. 

Let 

                 .a}|y|,a|x|:y){(x,G a <<=  

Then 

                 ,)G(1compGΩ a1 I= with a < 1. 

 

FIGURE 5.2 

 

Augmented Basis. Because the domain has eightfold symmetry about the 

o r ig in ,  the  monomia l  bas i s  i s  t aken  to  be  the  se t  (5 .5 ) .  

 

L e t  z j  ;  j  =  1 , 2 , 3 , 4 ,  b e  r e s p e c t i v e l y  t h e  f o u r  c o r n e r s  o f  t h e  i n n e r  

square . Then,  the  s ingular  funct ions corresponding to  the branch po i n t  

s i n g u l a r i t i e s  a t  t h e  c o r n e r s  z j  ;  j  =  1 , 2 , 3 , 4  a r e  r e s p e c t i v e l y  t h e  

f u n c t i o n s   g i v e n  b y  ( 4 . 2 )  w i t h  ,4,3,2,1;)( =jzn jγ

                       r = k + 2 /3, k = 0,1,...., 1 ≤ l l ≤ 3.                                                              (5.6) l
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Because of the eightfold symmetry the function H(z) satisfies the property 

             H(z))H(ee /2i/2i =z

For  th i s  reason ,  for  each  va lue  of  r ,  the  four  func t ions  n r j ( z )  can  be  

combined into the single function 

                ,      ( 5 . 7 )  (z)ηe)z(η)z(η~ rj

4

2j

i
r1r ∑

=

+=

where the arguments = 2,3,4 are chosen so that j;jθ

             .                                                                           (5.8) )z()ze(e r
2/i

r
2/i η=η ΠΠ

It  is  important to observe that  the constants jθ  in (5-7) depend on the 

branches  used  for  def in ing  the  func t ions  )z(rjη .   For  th i s  reason ,  grea t  

care must be taken when constructing symmetric singular functions of the  

form (5 .7) .  

 

In this example the augmented basis is formed by introducing into the  

set  (5.5) the four singular functions (5.7) corresponding to the values 

r  =  2 /3 ,  4 /3 ,  5 /3 ,  7 /3 .  

Quadrature. Gauss-Legendre formula with 48 points along each side of the 

outer  square and each half  s ide of  the inner  square.   In  order  to  perform 

the  in te rg ra t ion  accura te ly ,  the  pa ramet r i c  r epresen ta t ion  o f  the  inner  

square is chosen to be that used in [12, Ex.3.2]. 

 

Boundary Test Points. Because of the symmetry,  we only consider poin t s  

on AB and CD. The points  are  equal ly  spaced,  in  s teps  of  0 .25,  s tar t ing 

f rom A and C respec t ive ly .  



20. 

 

Numerical Results. 

( i )  a  = 0 .2 

ONM/MB :   =  30 ,  Ept*No 3 0   =  1 .8xl0 - 2   ,  M 3 0  =  4 .575  2…….. .  

ONM/AB :  Nopt  =  24 ,  E 2 4   =  l . lx10 - 8      ,    M 2 4  = 4 .570 859 677 117.  

VM/AB   :    E 2 4  =   l . lx10 - 8     ,    M 2 4  =  4 .570  859 677 116.  

Exac t  va lue  of  M  =  4 .570  859 677 215.  

 

( i i )  a  =  0 .5  

ONM/MB :   =  30 ,  Ept*No 3 0  =  4 .3x10 - 2    ,  M 3 0   =    1 .856  9……. . . . . . . . . . . .  

ONM/AB  :  Nopt  =  24 ,  E 2 4  =  5 .0x10 - 8    ,  M 2 4   =    1 .847  709 011 217.  

VM/AB    :                 E 2 4  =   5 .0x10 - 8     ,  M 2 4   =    1 .847  709 011 216 .  

                              Exac t  va lue  of  M   =   1 .847  709 011 236.  

 

i i i )  a  =  0 .8

ONM/MB :   =  30 ,  Ept*No 3 0  =  5 .0x10 - 2    ,   M 3 0    =  1 .205  2  . . . . . . . . . . . . . . . . . ….  

ONM/AB :  Nopt   =  26 ,  E 2 6  =  3 .7xl0 - 7     ,   M 2 6    =  1 .201  452 809 479.  

VM/AB    :    E 2 6  =  4 .1xl0 - 7    ,   M 2 6    =  1 .201  452 809 478.  

Exac t  va lue  of  M = 1 .201 452 809 469.  

 

The  exac t  va lues  of  M,  l i s ted  above ,  were  computed  by  us ing  the  exac t  

formulae  of  Bowman [2]  and  [3 ,  p .104] .  

 

VM approximations to M have also been computed by Gaier and his 

s t u d e n t s  [ 6 ] ,  w h o  u s e d  a s  b a s i s  t h e  s e t  ( 5 . 5 )  a u g me n t e d  w i t h  t h e  s i n g l e  

s ingular  func t ion  

      1 /{z 1 1 / 3 (z 4  +  4a 4 ) 1 / 3 } .  

 

F o r  t h e  c a s e  a  =  0 . 5 ,  t h e i r  a p p r o x i ma t i o n  t o  M  i s  1 . 8 4 7  7 7 6 .   F o r  t h e  

same case,  by using an approximation to the conformal map of the quadric-

la teral  ABDC the method of  [11]  gives  the value 1.847 719;   see [11,  Ex.6.1] ,  
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Example 5.3. Rectangle in circle;  Figure 5.3.               

Let 

Gab = {(x,y) : |x| < a < 1,        |y| < b < 1} . 

Then 

Ω={z : |z| < 1}  comp1I )G( ab .  

 

 FIGURE  5.3 

 

Augmented Basis. When a = b, Ω has eightfold symmetry about the origin 

and, for this reason, the monomial basis is  taken to be the set  (5.5).  

 

       When a ≠ b, Ω has fourfold symmetry about O. Because of this, the 

func t i on  H  sa t i s f i e s  

H(z)z)H(ee ii =ππ ,  

a n d  t h e  mo n o mi a l  b a s i s  i s  t a k e n  t o  b e  t h e  s e t  

                                                      .1,2,3,...j;z,z 1)(2j =+±

( 5 . 9 )  

            Let zj ; j = 1,2,3,4, be respectively the corners A, B, C and D 

of the rectangle. Then, the singular functions corresponding to the 
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b ranch  po in t  s ingu la r i t i e s  a t  z ,  ;  j  =  1 ,2 ,3 ,4 ,  a re  r espec t ive ly  the  

func t ions  η r j ( z ) ;  j  =  1 ,2 ,3 ,4  def ined  by  (4 .2)  wi th  r  g iven  by  (5 .6) .  

 

       When a  =  b  then ,  for  each  va lue  of  r ,  the  four  func t ions  η r j ( z )  

can  be  combined  in to  a  s ing le  func t ion  of  the  form (5 .7)  -  (5 .8) .  

Similarly, because of the fourfold simmetry, when a ≠  b, for each value    

of r ,  the four functions η r j (z) can be combined into the two functions 

     1,2,j;(z)ηe(z)η(z)η 2jr,
iθ

rjrj =+= +
~                                     (5.10) 

where the arguments  θ j  ;  j  =  1 ,2 ,  are  chosen so that  

                   (z).ηz)(eηe jr
Πi

jr
iΠ ~~ =                                                                     (5.11) 

In this example we form the augmented basis, for the cases a = b and 

a ≠  b, by introducing respectively into the monomial sets (5.5) and (5 .9 )  

the four functions (5.7) and the eight functions (5.10) corresponding 

to  the  va lues  r  =  2 /3 ,  4 /3 ,  5 /3 ,  7 /3 .  

 

Quadrature. Gauss-Legendre formula with 48 points along each half side 

of  the  rectangle  and each quar ter  of  the  c i rc le . In order  to  perform 

the integration accurately the parametric representation of the rectangular 

boundary is chosen to be that used in [12, Ex.3.2].  

 

Boundary Test Points. Because of the symmetry we only consider points     

on the straight lines EB, BF and on the arc PQ. On EB and BF the points 

are  equal ly  spaced in  s teps  of  b/4  and a/4  respect ively. On PQ the 

points  are  def ined by .  2/π)8/π(0τ;e τi =

 

N u m e r i c a l  R e s u l t s .  

( i )   a  = b  = 0.5

0NM/MB :   = 30,  Et*Nop 3 0  = 5.1x10- 2  ,  M3 0  = 1.702 0. . . . . . . . .  

0NM/AB :  Nopt   = 24,  E2 4  =  7.0x10- 8  ,  M2 4   =  1 .691  564 902 59 

VM/AB   :            E2 4  = 7.0x10- 8  ,           *  
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       (ii) a = 0.4, b = 0.2 

ONM/AB :  Nopt  =  18 ,  E 1 8  =  5 .0x l0 - 6  ,  M 1 8  =  2 .849  771  072  .  

VM/AB :          E 1 8  =  5 .0x l0 - 6  ,          *  

 

( i i i )  a  =  0 .6 ,  b  =  0 .2  

ONM/AB :  Nopt  =  26 ,  E - 2 6  =  1 .4  10 - 5  ,  M 2 6  =  2 .133  835  1   .  

VM/AB   :                 E 2 6   =  1 .2  10 - 5   ,                 *  

 

( iv )   a  =  0 .8 ,  b  =  0 .2  

ONM/AB :  Nopt   =  22 ,  E 2 2  =  2 .3  10 - 4  ,  M 2 2  =  1 .626  912  4   .  

VM/AB   :      E 2 2  =  2 .3  10 - 4  ,   *  

 

(* In each case the VM/AB approximation to M agrees with the ONM/AB 

approximation to  the number  of  f igures  quoted.)  

 

Example  5 .4 . Tr iang le  in  t r i ang le ;  F igure  5 .4 .  

Let  Gh  denote  an equi la teral  t r iangle  of  height  h ,  or ientated so  

tha t  i t s  cen t ro id  i s  a t  the  o r ig in  and  one  o f  i t s  s ides  i s  pa ra l l e l  to  the  

rea l  ax i s .  

 

 

 F IGURE 5 .4
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Then ,  

Ω  =  G 3  ∩  compl  (G h ) ,  wi th  h  <  3 .  

 

Augmented Basis. Because the domain has sixfold symmetry about the 

o r ig in ,  the  monomia l  bas i s  i s  t aken  to  be  the  se t  

           Z ( 3 j - 1 )  ;  j  =  ±  1 ,  ±2 ,  ±3 ,  . . .  .                     (5 .12)  

 

      Let  z j  ;  j  =  1 ,2 ,3  be respect ively the corners  A,C,E of  the inner  

t r iangle . Then,  the  s ingular  funct ions corresponding to  the branch  

po in t  s ingu la r i t i e s  a t  z j  ;  j  =  1 ,2 ,3  a re  respec t ive ly  the  func t ions  

η r j ( z )  ;  j  =  1 ,2 ,3 ,  g iven  by  (4 .2 )  wi th  

  r  =  k  +  3 /5  ;    k  =  0 ,1 ,2 , . . .  ,     1  <   <  5  .  l l

Because of  the symmetry,  for  each value of  r ,  the  three funct ions 

η r j (z)  can be combined into the s ingle  funct ion 

         (z)ηe(z)η(z)η rj

3

2j

ji
r1r ∑

=

+= θ~  ,                        (5 .13)  

where  the  a rguments   ;  j  =2 ,3 ,  a re  chosen  so  tha t  jθ

    (z)z)(eηe r
i/32

r
/3i2 η~ππ = .        (5 .14)  

       In  th i s  example  the  augmented  bas i s  i s  formed by  in t roducing  in to  

t h e  s e t  ( 5 . 1 2 )  t h e  f o u r  f u n c t i o n s  ( 5 . 1 3 )  c o r r e s p o n d i n g  t o  t h e  v a l u e s   

r  =  3/5,  6/5,  8/5,  9/5.  

Quadrature. Gauss-Legendre formula with 48 points along each half  side 

of  the  inner  and  outer  t r iangles . In order  to  per form the  quadra ture  

accura te ly  the  paramet r ic  represen ta t ion  of  the  inner  t r iangle  i s  chosen  

to  be that used in [12, Ex. 3.3].  

 

Boundary  Tes t  Poin ts .  Eighteen  poin ts  d i s t r ibu ted  a long  the  ha l f  s ides  

BC,  CD of  the inner  t r iangle  and the corresponding half  s ides  of  the
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ou te r  t r i ang le .  

 

Numer ica l  Resu l t s .  

( i ) h =  2 .25

ONM/MB :   =  30 ,  Et*Nop 3 0  =  1 .3  10 - 1  ,  M 3 0  =  1 .227  0 . . . . . . .     

ONM/AB :   Nopt  =  18 ,  E 1 8  =  7 .8   10 - 5  ,  M 1 8  =  1 .208  168  761  .  

VM/AB   :                   E 1 8  =  7 .8   10 - 5  ,                   *     

( i i )  h  =  1 .50  

ONM/AB :  Nopt   =  22 ,  E 2 2  =  6 .8  10 - 7   ,  M 2 2  =  1 .657  038  875  .  

VM/AB   :     E 2 2  =  6 .8  10 - 7  ,  *  

( i i i )  h  =  0 .75  

ONM/AB :  Nopt  =   16 ,  E 1 6  =  7 .0  10 - 6   ,  M 1 6  =  3 .132  784  643  .  

VM/AB   :     E 1 6  =   7 .0  10 - 6   ,  *  

 

(* In each case the VM/AB approximation to M agrees with the ONM/AB 

approx imat ion  to  the  number  o f  f igures  quo ted . )  

 

Example  5 .5 . Cross  in  square ;  F igure  5 .5 .  

 
 

 
 

F IGURE  5 .5
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Let 

,a}|y|,b|x|:y){(x,b}|y|,a|x|:y){(x,Gab <<<<= U  (5.15) 

and 

    Gc  =  {(x,y) : |x| < c, |y| < c} . 

Then 
       comp1 IcGΩ = )G( ab  with a < c and b < c. 

Augmented Basis. Because the domain has eightfold symmetry about 

the  o r ig in ,  the  monomia l  se t  i s  t aken  to  be  the  se t  (5 .5 ) .  

 

L e t  z j  ;  j  =  1 , 2 , . . . , 8  b e  r e s p e c t i v e l y  t h e  c o r n e r s  A ,  C ,  E ,  G ,  

I ,  K,  M and P of  the cross  shaped region Ga b . Then the s ingular  

func t ions  cor respond ing  to  the  b ranch  po in t  s ingu la r i t i e s  a t  z j  ;  j  =  

1 ,2 , . . . , 8    a re  respec t ive ly  the  func t ions  η r j ( z )  ;  j  =  1 ,2 , . . . , 8 ,  

de f ined  by  (4 .2 )  with r  given by (5.6). Because of the symmetry,  for 

each value of r ,    the eight singular functions η r j (z) can be combined 

into the two func t ions  

            1,2,j;(z)ηe(z)η(z)η jr,2m

3

1m

i
rjrj

j2m =+= +
=
∑ +θ~    (5 .16)  

where,  as  in  (5 .7) ,  the  arguments  θ 2 m + j  are  chosen so that  
      1,2.j;(z)η~z)(eη~e rj

2i
rj

2i ==ππ  

In this example the augmented basis is formed by introducing in to  

the  set (5.5) the six singular functions (5.16) corresponding to the 

values       r  =  2 /3 ,  4 /3 ,  5 /3 .  

 
Quadrature. Gauss Legendre formula with 48 points along each of 
the  segments AB, BC, CD,.. . ,  QA, of the inner boundary, and each side 
of the  square . In order  to  perform the quadrature  accurately  the 
parametr ic  representation of the innder boundary is  chosen to be that  
used in [12, Ex .3 .5 ] .  
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Boundary Test  Points . Seventeen points  on the inner  boundary segment  

BCDEF and seventeen points  on the s ide RS of  the square .  

 

Numerical Results. The upper and lower bounds for the modulus M,  

l is ted below,  are  due to  Jauer  [7] ,  and were obtained by using a  f ini te-

element method. The comparison values M~  were computed, as in [11,   

Ex. 6.4], by using an approximation to the conformal map of the pentagonal 

domain bounded by the straight lines BR, RS, SD, DC and CB. 

 

(i)  a = 0.5, b = 1.2, c = 1.5

ONM/MB : Nopt = 14, E14 = 9.5x10-2 , M14 = 1.349 0 ..................... .... 

ONM/AB : Nopt =  21, E21 = 3.8xl0-5 , M21 = 1.331 473 449. 

VM/AB         :  E21   =  3.8x10-5    ,                           * 

Comparison value   :   M~  = 1.331 463. 

Bound   :  1.331  003 < M < 1.331 944. 

 

(ii)  a = 0.5, b = 1.0, c = 1.5 

ONM/AB : Nopt = 27, E27 = 8.3x10-6 , M27 = 1.566 289 179 . 

VM/AB   :  E27 = 8.3x10-6  ,               * 

Comparison value : M~  = 1.566 274. 

Bound : 1.565 602 < M < 1.566 978 . 

 

(iii) a = 0.2, b = 0.7, c = 1.2 

ONM/AB : Nopt = 25, E25 = 3.0x10-5 ,  M25 = 1.981 644 1 . 

VM/AB    :                 E25 =  2.8x10-5 ,                  * 

Comparison value  : M~  = 1.981 774. 

Bound  : 1.979 574 < M < 1.983 722. 
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 ( iv) a = 0.1,  b  = 0.8,  c  = 1.1 

ONM/AB :  Nopt  = 23,  E2 3  = 3.6 10- 4   ,   M2 3  = 1.747 492 5 .  

VM/AB   :                  E2 3  = 4.0 10- 4  ,                     *  

Comparison value :   M~  = 1.747 677.  

Bound :  1 .745 050 < M < 1.749 940 .  

(* In each case the VM/AB approximation to M agrees with the ONM/AB 

approximation to  the number of  f igures  quoted.)  

 

Example 5.6.    Circle  in  cross;   Figure 5.6  

 
 

 

FIGURE 5.6

As in  Example 5.5. ,  le t  Ga b  denote  the cross-shaped region def ined 

by (5.15) .   Then,  

     c}|z|:{zGΩ 3,1 >= .  I

 

Augmented Basis. Because the domain has eightfold symmetry about the 

o r ig in ,  the  monomia l  se t  i s  t aken  to  be  the  se t  (5 .5 ) .
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Le t  z j  ;  j  =  1 ,2 ,3 ,4 ,  be  respec t ive ly  the  corners  A,  B ,  C  and  D of  

the  outer  boundary . Then,  the  s ingular  func t ions  cor responding  to  the  

b r a n c h  p o i n t  s i n g u l a r i t i e s  a t  z j  ;  j  =  1 , 2 , 3 , 4 ,  a r e  r e s p e c t i v e l y  t h e  

func t ions  η r j ( z )  ;  j  =  1 ,2 ,3 ,4  g iven  by  (4 .3 )  wi th  

 r  =  2 l /3  ;  l  = 1 ,2 ,3 , . . .  .  

Because of  the symmetry,  for  each value of  r ,  the  four  funct ions η r j ( z )  

can be combined,  as  in  Examples  5 .2 and 5.3,  into a  s ingle  funct ion 

n~ r (z )  o f  the  fo rm (5 .7 )  -  (5 .8 ) . The  augmented  bas i s  i s  fo rmed  by  

in t roduc ing  in to  the  se t  (5 .5 )  the  four  func t ions  n~ r (z )  cor responding  

to  the  va lues  r  =  2 /3 ,  4 /3 ,  8 /3 ,  10 /3 .  

 

Quadrature. Gauss-Legendre formula with 48 points  a long each s ide o f  

the  ou te r  boundary  and  each  quar te r  o f  the  c i rc le .  

Boundary  Tes t  Poin ts . Thir teen  equal ly  spaced  poin ts  on  the  s t ra ight  

l ines  EF  and  FA of  the  ou te r  boundary ,  and  s ix  po in t s  on  the  c i rc le .  
The  tes t  po in ts  on  the  c i rc le  a re  def ined  by .  0(π(π/20)πτ;ceiτ =

Numer ica l  Resul t s .  

( i )   c  =  0 .8
ONM/MB :   =  30 ,  Et*Nop 3 0  =  6 .1x10 - 1  ,  M 3 0  =  2 .356  0 . . . . . . .  

ONM/AB :   Nopt  =  22 ,  E2 2  =  1 .5x10 - 5  ,  M 2 2  =  2 .246 094 81  .  

VM/AB   :                   E 2 2  =  1 .3xl0 - 5   ,                   *   

 

( i i )   c  =  0 .5  

ONM/AB :   Nopt  =  24 ,   E 2 4  =  7 .8x10 - 6  ,  M 2 4  =  3 .595 639 19  .  

VM/AB                       E2 4  = 8 .9x10 - 6  ,                   *  

 

( i i i )   c  =  0 .2  

ONM/AB :   Nopt  =  24 ,  E 2 4  =  8 .0xl0 - 6  ,   M 2 4  =  8 .989 209 95  .  

VM/AB   :                   E 2 k  = 8 .9x10 - 6  ,   *  
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(* In each case the VM/AB approximation agrees with the ONM/AB approxi-

m on to the number of figures quoted.) ati

 

6. Discussion

      The  resu l t s  of  Sec t ion  5 ,  as  wel l  as  resu l t s  of  o ther  numer ica l  

experiments not presented here, indicate that both the VM and the ONM 

are capable of computing approximations of high accuracy. In 

part icular ,  our  resul ts  show that  the two methods can produce accurate  

approximations for the mapping of difficult  domains,  involving sharp 

corners . The  essen t i a l  r equ i rement  fo r  th i s  i s  tha t  the  bas i s  se t  

contains  funct ions that  ref lect  the asymptot ic  behaviour  of  the funct ion 

H,  in the neighbourhood of a corner where a singularity occurs. Regarding 

computational efficiency, our experiments show that the two methods require 

approximately the same computational effort for producing approximations 

of comparable accuracy. 

 

The above remarks apply only to the mapping of domains with 2n-fold 

symmetry n ≥ 2, of the type considered in Section 5. For such symmetrical 

domains the number of basis functions used in the numerical process can be 

reduced considerably and, in general, the two methods are extremely accurate. 

Unfortunately, in the absence of 2n-fold symmetry, n ≥ 2, the performance      

of both the VM and the ONM is rather disappointing. If the domain involves 

"singular" corners then the use of functions of the form (4.2) or (4.3) 

always leads to some improvement in accuracy. However, if Ω is a non-

symmetrical domain then dealing with corner singularities alone is not 

sufficient for the methods to produce accurate approximations. The 

difficulty in this case might be due to the presence of poles of the 

function H in comp1 )Ω( . Unfortunately, as we remarked earlier, we do    

not know of a way for dealing with such singularities.  
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