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ABSTRACT

Let f be the function which maps conformally a given doubly-
connected domain onto a circular annulus. We consider the wuse of
two closely related methods for determining approximations to f of

the form
fu (z) =z exp {z ajuj(z)},
j-1

where {u;} is a set of basis functions. The two methods are
respectively a variational method, based on an extremum property
of the function

H(z) = (2)/f(z) - 1/z,

and an orthononnalization method, based on approximating the

function H by a finite Fourier series sum.

The main purpose of the paper is to consider the use of the two
methods for the mapping of domains having sharp corners, where
corner singularities occur. We show, by means of numerical
examples, that both methods are capable of producing
approximations of high accuracy for the mapping of such "difficult"
doubly-connected domains. The essential requirement for this is that
the basis set {u;} contains singular functions that reflect the
asymptotic behaviour of the function H in the neighbourhood of

each "singular" corner.

Key words. Conformal mapping, doubly-connected domains,

Bergman Kernel.






1. Introduction.

Let n be a finite doubly-connected domain with boundary
0Q=0Q,U0oQ, in the complex z-plane, wheredQ  ; i = 1,2, are closed
Jordan curves. We assume that 0Q, i = 1,2, are respectively the
inner and outer components of 0 , and that the origin 0 lies in the
"hole" of Q, i.e. 0 Int(0Q ).

Let { be a fixed point in Q@ =QUJQ and let

w = 1(z), (1.1)
be the function which maps conformally € onto the circular annulus

R={w:r <|w|<n}, (1.2)

so that 0Q, ;1 =1, 2, correspond respectively to |w| =1;;1=1,2,
and f(6)=C.

(1.3)
As is well known, this mapping exists uniquely and the ratio of the

two radii, i.e. the number

M=r2/r1> 1, (14)

is the so-called conformal modulus of Q. This number determines

completely the conformal equivalence class of the domain Q.

In the present paper we consider the use of two closely related

numerical methods for determining approximations to f of the form

f (z)=z exp {Zn:aj uj(z)} , (1.5)

where {u;.(z)} is an appropriate set of basis functions. The two methods
are respectively a variational method (VM), based on an extremum
property of the function

H(z) = ' (2)/f(2z) - 1/z,
(1.6)



and an orthonormalization method (ONM), based on approximating the function
H by a finite Fourier series sum. The VM is described with full
theoretical details in Gaier [4], whilst the ONM emerges easily from the
theory contained in [1], [4] and [10]. The two methods resemble respectively
the well-known Ritz and Bergman kernel methods for the mapping of a
simply-connected domain onto the unit disc. In fact, the two numerical
techniques of the present paper can be regarded as generalizations, to the
mapping of doubly connected domains, of the Ritz and Bergman kernel

procedures studied recently in [11].

The general objectives of the present paper are as follows. To give
a summary of the theoretical results on which the VM and the ONM are
based, to describe the two numerical techniques and to present a number
of illustrative numerical examples. However, our main purpose is to
consider the use of the two methods for the mapping of domains
involving sharp corners, where branch point singularities occur. For this
reason, most of thenumerical examples considered in this paper concern

the mapping of such difficult domains.

The numerical results given in Section 5, as well as results of other
numerical experiments not presented in this paper, indicate that both
the VM and the ONM are capable of producing approximations of high
accuracy. More precisely, our results show that high accuracy is
achieved when the domain under consideration is 2n-fold symmetric,
with n > 2, provided that the basis set, used for approximating the
function H, contains singular functions that reflect the asymptotic
behaviour of H in the neighbourhood of a corner where a singularity
occurs. Such a basis can always be con-structed, in a manner
similar to that used for constructing the basis for the Ritz and the
Bergman kernel methods in [11], by introducing appropriat



singular functions into the set

{zj}j"?w , j# —1. (1.7)
2. Preliminary Results

We let L, () be the Hilbert space of all square integrable
functions which are analytic and possess a single-valued indefinite

integral in Q, and denote the inner product of L, (Q) by (,), i.e.

(2,,8:)= || /() g.(2) dxdy. 2.1

We also let
A (z)=log F(z)-log z, (2.2)

where f is the function(1.1) mapping Q onto the circular annulus R.
Then, the function A is analytic and single-valued in Q, and its derivative

H(z)= A’ (2), 2.3)
is the function(1.6). Clearly, H(z)#0, zeQ, unless Q is itself

a circular annulus with its centre at the origin.

In order to present the results on which the VM is based we let
K" (QO={u(z):ue L,(QQ and (u, H=1}
K (QO={v(z):ve L,(QQ and (v, H)=1} (2.4)
and, as in Gaier [4, p 245], we consider the following variational problem.

Problem 2.1. To minimize
||u||2 = ”Q|u(z)|2dxdy, (2.5)
over all ue KV(Q).
The following results are proved in [4]:

R2.1 Problem 2.1 has a unique solution u,.
R2.2 The function H is related to the minimal function uy by

H(z)=uo(2)/| uo|I* (2.6)



R 2.3 The minimal function u, is orthogonal to every function

ve KO (Qjie. @.7)
(Wy.v =0, Vve K @ ()

It is of interest to note that the above results are all special cases
of standard results of the theory of Hilbert spaces. This follows from the
observation that K" (Q)and K (Q) are respectively a closed convex subset
and a closed convex subspace of L, (Q); see e.g. [13].

In addition to R2.1 - R2.3, the following two results, which are
proved in [4, p.250], are needed for the description of both the VM and
the ONM.

R 2.4 For each function neLlL,(Q)which is continuous on ¢ =0 Ué
(n.H) =ifgo n@ log |z|dz, (2.8)

where H is defined by (2.2).
2.5  The modulus M =ry/r; of Q is related to the function H by

1 1
logM = {—f@g —log |z |dz— || H | 2}/21'[ ) (2.9)
i z

The result R.2.4 is established early after first expressing the inner
product (n,H) as

1 -
(m,H) = Zfag n(z) A(z) dz. .

This is done by means of the Green's formula

1 -
(g1-85) Zzbﬂ g,(2) g, (2)dz, (2.10)

which is also needed for determining certain other inner products that occur

in both the VM and the ONM. As is shown in Bergman [1, p.96], formula

(2.10) is valid for any functions g, and g, which are analytic in Q and

continuous on 0Q. The result R.2.5 is established, by integration by parts, after
first applying (2.8) to the norm |[H||*=(H,H); see [4, p.p.250-51]



for further details.

We point out that the assumptions concerning the continuity on

0Q of the functions g;, g> in (2.10) and n in (2.8) can be replaced by

somewhat weaker requirements. For example, it can be shown that both
(2.8) and (2.10) are applicable to "singular" functions of the type
considered in Section 4.

3. The Numerical Methods

As was previously remarked the VM is due to Gaier [4, p.249].
The method emerges by seeking the solution of the finite-dimensional
counterpart of Problem 2.1, and resembles closely the Ritz method for
the mapping of simply-connected domains. For this reason the VM
details given below are similar to those used for the description of

the Ritz method in [11].
Let {nj(z)} be a complete set of L,(Q) and denote by "(Q) and

©(Q) the n¢-dimensional counterparts of (Q) and (0)(9)
corresponding to the set {nj(z)}, i.e.

Kgl)(ng (o (@) 0y = jil Cin ¢ et and(¢pp,,H) =1},
and

0 n
Kg )(QQ: vn@:yy = Zl djnj’dj €€ and(y,H) = 0},
J:

Then, the conditions (¢,,H)=1 and (y,,H) = 0 imply respectively that
(3.1)

(3.2)

and

where
Y, =(;,H); j=12,.... (3.3)



6.
Since the set (nj(z)} is complete and H(z) £ 0, it follows that not all

the inner products y; are zero. In fact, for the purposes of the present

paper we may assume that
v =M, H)#0,
so that the set K”(Q) is non-empty for any n > 1.
The n-dimensional variational problem corresponding to Problem

2.1 can be stated as follows.

Problem 3.1 To minimize
16, 17=[[ 14, dxdy,
(3.4

over all ¢, e K" (Q).

The following results hold:

R 3.1 Problem 3.1 has a unique solution ¢, .

R 3.2 The minimal function ¢, is completely characterized by the
property

(.v,) =0, Yy, e K® (Q).
(3.5)

R 3.3 The minimal function ¢, 6 converges almost uniformly in
Qtou,. That is, from (2.6),

4.1, |~ H) ,
(3.6)

almost uniformly in Q. (By almost uniform convergence we

mean convergence in every compact subset of Q.)

The results R 3.1 and R 3.2 are of course the finite dimensional
counterparts of R 2.1 and R 2.3. Like R 2.1 and R 2.3, they are
particular cases of standard results of the theory of Hilbert spaces.
R 3.3 is a direct consequence of the fact that in L, (Q) convergence in
the norm implies almost uniform convergence, and it is established
after

first showing that

I "
m
[1¢,—u, [[=0

n—oo



Bu(2)=Y e (@), &%)

be the minimal function solving Problem 3.1. Then, the coefficients
c; satisfy (3.1) and, from R 3.2, they must be determined so that

(4,:v,)=0, Yy, eKP(Q. (3.8)
Because of (3.2), it can be shown easily that any function

V. ()= {Z djnJ-(z)} K@),

can be written in the form

V@)=~ d fyn,@ -1, @) (3.9)

1 j=2
This implies that a necessary and sufficient condition for (3.8) to hold
is that
(@,, Y, =vm,) =0;i=23,..,n
) =7, 0npn)fey = 051=2.3,.0m, (3.10)
j=1
where the inner products y, ; i =1,2,...,n, are known by means of (2.8).
The n-1 equations (3.10) together with the equation (3.1) constitute
an n x n linear system for the determination of the n coefficients c;
That is, the coefficients ¢; in (3.7) are determined by solving the linear

System

RTINS
j=I1

2{71 M) —v(n)ic; =0;1=23,.,,,.n

J=1

(3.11)



Then, because R 3. 3,

~

¢n

gives the nth VM approximation to the function H(z) = A(z) and thus,
from (2.2),

2
s

H,(z)=¢,(2)/ (3.12)

f (z) =2z exp {LZHn(t)dt} (eQ, (3.13)

is the nth VM approximation to the mapping function f.  Also, from (2.9),

M, = exp{(%j@gélog|z|dz - ||Hn ||2 j / 2%}.

is the nth VM approximation to the modulus M of Q. In fact, it can be
easily verified that M,, gives an upper bound to II.

In the ONM the approximation to the mapping function f is determined
after first approximating the function H by a finite Fourier series sum.
The method emerges easily from the theory contained in [10, p.373], [1,
p.102] and [4, p.249].

Let {nj(z)} be a complete orthonormal set of L,(Q). Then the function

H has the Fourier series expansion

H(z) =Y Bm;(2), (3.15)
j=1
Where the Fourier coefficients
B, =(H,n;)
:(nj,H), (3.16)

are known by means of (2.8). The series (3.15) certainly converges in
the norm of L,(Q) and, as in the case of R 3.3, this norm convergence

implies almost uniform convergence in €.

Given a complete set {n;.(z)} of L,,(£2), the results (3.15) and (3.16)
suggest the following procedure for obtaining a numerical approximation to
the mapping function f.  The set {n;(2)}}, , is orthonormalized by means

of the Gram-Schmidt process to give the orthonormal set {nj(z)}‘;:l.



The series (3.15) is then truncated after n terms to give the approximation

H, ()= B, 12 -

B = (n,,H):j=12,..n,

to the function H.. Finally, with this H,, the equations (3.13) and (3.14)
give respectively the nth ONM approximation to the mapping function fand
to the modulus M of Q.

The ONM can also be deduced by considering the Bergman kernel function
of Q. This is the unique reproducing kernel K (z;t),t€Q, of L,(Q), i.e.
K satisfies the property

gv=(gK), g€L(Q). (3.18)
Because of the property (3.18), K has the Fourier series expansion
K(z;t)=Y n; (1) n}(2), (3.19)
j=1

which, for the reasons explained above, converges almost uniformly in Q.
The connection between K and the ONM emerges by applying formula (2.8) to

the inner product (K,H). Because of (3.18), this gives
H(t) =i LQ K(z, t)loglz|dz

or

1 [ —
H(t) = ;LQ K(z, tlog|z|dz

“1 S bl oo

=2 H ) L teQ
<

which is the Fourier series (3.15) — (3.16) of H. The above can also be
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deduced easily from the results of Bergman [1,p.102].

We end this section by observing that Problem 2.1, with the
function
H defined by (2.3), is a special case of a more general variational
problem which is considered fully in Gaier [4, Chap. V]. More
specifically the results R 2.1 - R 2.3, together with the
corresponding finite-dimensional results of this section, hold for
any finitely-connected domain and any function H € L, (Q) such
that H(z) # 0, z € Q . An interesting example of this is the case
where Q is simply-connected and H is taken to be the Bergman
kernel function of Q. In this case, the results R 2.1 - R 2.3
constitute the so-called property of minimum area, and the
variational method of the present section reduces to the Ritz
method for the mapping of simply-connected domains. Other choices
of H lead to other interesting results concerning the mapping of
multiply-connected domains; see Gaier [4; Chap. V] for further

details.

4. Choice of Basis
A serious drawback of both the VM and the ONM is that severe

loss of accuracy may occur during the computation, due to ill-

conditioning of the matrix in (3.11) or to numerical instability of the
Gram-Schmidt process. For this reason, the success of the methods
depends strongly on the rate of convergence of the approximating
series, and this in turn depends on the choice of basis functions {n; z)}.

An obvious choice of basis is the set
{zj};i_m , Jj#—L.
(4.1)
This set is complete in L, () and provides a computationally convenient
basis for both the VM and the ONM. Unfortunately, the situation

regarding
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the use of (4.1) is exactly the same as that observed in [9], [11] and

[12], in connection with the use of the set {Zj}j":0 for the mapping of

simply-connected domains by means of the Ritz and the Bergman kernel
methods. That is, due to the presence of singularities of the function
H in the complement of Q, the convergence of the resulting approximating
series is often extremely slow. Because of this, the use of (4.1) does
not always lead to approximations of acceptable accuracy. In orderto
overcome this difficulty, we adopt the procedure first proposed in [9],
in connection with the choice of basis for the Bergman kernel method.
This involves the use of an "augmented basis", formed by introducing
into the set (4.1) singular functions that reflect the main singular

behaviour of H in compl (Q).

In [9], [11] and [12], the augmented basis for the mapping of
simply-connected domains is formed by considering two types of
singularities of the mapping function. These are either poles which lie
close to the boundary or branch point singularities on the boundary itself.
For the problems considered in [9], [11] and [12], the dominant poles of the
mapping function can be determined, by using the symmetry principle,
whenever the boundary of the simply-connected domain consists of straight
line segments and circular arcs. Unfortunately, in the case of doubly-
connected domains we do not know of asystematic way for determining the
poles of f and the corresponding singularities of the function H,
irrespective of the geometry of 0Q. For this reason, in the present paper
we construct the augmented basis by considering only the branch point

singularities of H.

Branch point singularities are corner singularities. They occur,
when due to the presence of a corner at a point z;. € 0Q, the
asymptotic expansion of the mapping function f in the neighbourhood

of z;. involves
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fractional powers of (z — z;). The question regarding the choice of
suitable basis functions for dealing with such singularities can be
answered in exactly the same way as in [9], [11] and [12], by using

the results of Lehman [8]. For this reason, we state below the formulae
which define the singular functions, without repeating the details of

their derivation.

Let part of the boundary 0Q consist of two analytic arcs I'; and
I'> which meet at a point z; and form there a corner of interior angle
an, where a = p/q > 0 is a fraction reduced to its lowest terms. (By
interior angle we mean interior to the domain Q.) Then, the asymptotic

expansion of H involves terms which can be written in the form

() = {(l/z—l/zj)r"l}/zz,if s; €0Q;, (4.2)
! (z-z)"", if z, €0Q,, (4.3)

Where
r=k+4{/a; k=0,1,2,..,1 <0< p. 44)

Thus, if p # 1 a branch point singularity occurs at z;. For this reason,
the augmented basis is formed by introducing into the set (4.1) the first
few singular functions of the sequences (4.2) or (4.3), corresponding to

the first few fractional values of r.

We note that the singular functions defined by (4.3) are the same as
those used in [9] and [11], for dealing with the branch point singularities
of the interior mapping function for simply-connected domains. Similarly,
the singular functions (4.2) are the same as those used in [12], in
connection with the exterior mapping problem for simply-connected domains.
This choice of singular functions ensures that the n,; always have a single
valued integral in Q. We also note that a branch point singularity might

occur at the point z; even when p = 1. This happens because the asymptotic
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expansion of f might involve logarithmic terms; see [8] and [11, Sect.

4.2]. However, such logarithmic singularities are never very serious and,

for this reason, we do not consider them in the present paper. Finally,

we note that if z; € 0Q and the arms I'y, I', of the corner are straight lines

then the range (4.4) for the values of r in (4.3) may be replaced by
r=4t/a;L=1,2,3,..... ; (4.5)

see [9, Sect. 2.2] and [11, Sect. 4.2].

5.  Computational Details and Numerical Examples.

Both the VM and ONM require the evaluation of inner products of the
form (n:,ms) and (n,H). These are needed for determining the coefficients
of the linear system (3.11), for orthonormalizing the set {n; (z)} by means
of the Gram-Schmidt process, and for evaluating the Fourier coefficients
in (3.17). Using Green's formula (2.10), the inner products (n:,ns) are

expressed as

)= [ @@, 1@ =1.0) (5.1)

and the integrals in (5.1) are then computed by Gaussian quadrature, in
exactly the same way as in [9], [11] and [12]. Similarly, each inner
product (n,H) is computed by applying to the integral in (2.8) the Gaussian
rule used for the evaluation of (5.1). When performing the quadrature care
must be taken to deal with integrand singularities that occur when, due to
the presence of a corner at z;, the basis set contains singular functions of
the form (4.2) or (4.3). In the examples considered below, the arms of
the corners are always straight line segments, and any intergrand singulari-
ties are removed, as explained in [9, Sect. 3], by choosing an appropriate

parametric representation for 0Q; see also [11, Sect. 5] and [12, Sect. 3].

In the VM, the complex linear system (3.11) is solved by using the NAG

Library routine FO4ADF, which is based on Crout's factorization method.
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In the ONM, the orthonormalization is performed by means of the procedure
used in [9], [11] and [12], in connection with the Bergman kernel method.

This procedure is based on the standard Gram-Schmidt algorithm.

The approximation M, to the modulus M of Q is computed from (3.14),
by applying to the integral
lj llog|z|dz,

L P

177
the Gaussian rule used for the evaluation of the inner products (n:,ns)

and (n,H).

An estimate of the maximum error in |[f,(z)| is given by the quantity
E., which is determined as follows. In each example, the fixed point {
in (1.3) is taken to be a convenient point on the outer boundary 0Q,.
Thus, in each case, the outer radius of the annulus is

g, (5.2)

and r,/M, gives an approximation to the inner radius r; . Hence, we may

r, =

take the error estimate to be

f (zu)\ —5,/M, ~g}, (5 3)

b

_ max
E, = max{;

max
J

f, (sz)

where {z;;} and {z»;} are two sets of "boundary test points" on 0Q; and
0Q, respectively. We expect E, to be a reasonable error estimate, because
our numerical experiments indicate strongly that, in general, the approxi-
mation M, is much more accurate than |f, (z)|, zEOQ; see e.g. the numerical

results of Example 5.2.

In each example, the ONM results presented correspond to the approx-
imation fxopt, Where n = Nopt is the "optimum number" of basis functions
which gives maximum accuracy in the sense explained in [9, Sect. 3]. That

is, this number is determined by computing a sequence of approximations
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{f w(z)}, where at each stage the number n of basis functions is increased
by one. If at the (n+l)th stage the inequality

En.1 < En, (5.4)
is satisfied then the approximation f 10(z) is computed. When for a
certain value of n, due to numerical instability, (5.4) no longer holds
then we terminate the process and take n = Nopt. Also, in order to
safeguard against slow convergence, we do as in [12] and after n = 19
we begin to compute the ratios

qu =Eo.ns M =10,20,....

If, for some M, q,, > 0.5 than we terminate the process atn =10+ M

and write ngt: 10+ M.

For the presentation of the results we adopt a format similar to
that used in [11]. That is, we denote the two methods respectively
by VM/MB and ONM/MB or VM/AB and ONM/AB to indicate whether the "monomial
basis" (4.1) or an "augmented basis" is used. For each example we
list the singular functions, the boundary test points and the order of
the Gaussian quadrature, which are used respectively for augmenting the
set (4.1), for determining the error estimate (5.3) and for computing
the inner products. As was previously remarked, if the basis set
contains singular functions of the form (4.2) or (4.3) then the resulting
integrand singularities in the inner products are removed by using special
parametric representations for 0Q2. These representations are similar to

those used in [9, Sect. 3]. For this reason, we do not list them here.

All computations were carried out on a CDC 7600 computer, using programs
written in Fortran with single precision working. Single length working

on the CDC 7600 is between 13 and 14 significant figures.
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Example 5.1. Circle in square; Figure 5.1.
Q={(xy):[x|<1,

y|<1}m{z:|z|>a, a<l}.

T SEPR S

FIGURE 5.1

Basis. This example does not involve corner singularities. For this

reason, we do not need to use an augmented basis.

Because the domain has eightfold symmetry about the origin the

monomial basis set is taken to be
2 k= (=DM j=1,2,3,..... (5.5)

Quadrature. Gauss-Legendre formula with 48 points along each quarter

of the circle and each half side of the square.

Boundary Test Points. Because of the symmetry, we only consider

points

on AB and CD. On AB the points are defined by z=ae"™ 1=0(n/16)n/4.
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On CD the points are equally spaced, in steps of 0.25, starting from C.

Numerical Results.

(i) a=0.2

ONM/MB : Nopt = 20, E;p = 9.5x107'% |, My = 5.393 525 710 616.

VN/MB : Ezo = 9.0x107% *

(ii) a=0.4
ONM/MB : Nopt = 22,E;, = 5.2x107'% |, My, = 2.696 724 431 230.
VM/MB : Ey = 3.1x107'%, *

(iii) a=10.8
ONM/MB : Nopt = 28, Epg = 1.8x107'" |, My = 1.342 990 365 599.
VM/MB : Ess = 7.0X107'", *

(* In each case the VM approximation to M agrees with the ONM approxi-

mation to the number of figures quoted.)

The numerical results of this example illustrate the remarkable
accuracy that can be achieved by the VM/MB and the ONM/MB, when the
domain under consideration is highly symmetric and does not involve

corner singularities.

Accurate VM/MB approximations for the cases a = 0.4 and a = 0.8
have also been obtained by Gaier. His approximations to M are quoted
to seven significant figures in [5], and agree perfectly with the
approximations listed above. The approximation Mj,, corresponding to
the case a = 0.4, should also be compared with the value 2.696 725 given
in [11]. This value is obtained by a method based on approximating
the conformal map onto the unit disc, of the simply-connected domain
bounded by the arc AB and the straight lines BD, DC and CA; see [11,
Ex. 6.3].
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Example 5.2. Square frame; Figure 5.2.
Let

G, ={xy) @ [x[<a,|y]|<a}.
Then

Q =G, compl (Ea) ,witha<1.

b4
n
+— D
B
OAC R
FIGURE 5.2

Augmented Basis. Because the domain has eightfold symmetry about the

origin, the monomial basis is taken to be the set (5.5).

Let z;;j=1,2,3,4, be respectively the four corners of the inner
square. Then, the singular functions corresponding to the branch point
singularities at the corners z; ; j = 1,2,3,4 are respectively the

functions n ;(z); j=1234, given by (4.2) with
r=k+2/¢/3, k=0,1,.,1</1<3. (5.6)
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Because of the eightfold symmetry the function H(z) satisfies the property
ei /ZH(ei /ZZ) — H(Z)
For this reason, for each value of r, the four functions n;j(z) can be

combined into the single function
@ = @+ Y @) (5.7)
.
where the arguments Gj ; J= 2,3,4 are chosen so that
e’ . (e""?z) =n.(2). (5.8)
It is important to observe that the constants 6; in (5-7) depend on the

branches used for defining the functions n,(z). For this reason, great

care must be taken when constructing symmetric singular functions of the

form (5.7).

In this example the augmented basis is formed by introducing into the
set (5.5) the four singular functions (5.7) corresponding to the values
r=2/3,4/3,5/3, 7/3.

Quadrature. Gauss-Legendre formula with 48 points along each side of the
outer square and each half side of the inner square. In order to perform
the intergration accurately, the parametric representation of the inner

square is chosen to be that used in [12, Ex.3.2].

Boundary Test Points. Because of the symmetry, we only consider points

on AB and CD. The points are equally spaced, in steps of 0.25, starting

from A and C respectively.
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Numerical Results.

(i) a=10.2
ONM/MB : N&pt = 30, E5o = 1.8x10% , Mso=4.5752.........
ONM/AB : Nopt = 24, Eyy = L.1x10® | Mas = 4.570 859 677 117.
VM/AB Exs = LIx10% |, May =4.570 859 677 116.

Exact value of M = 4.570 859 677 215.

11) a = 0.5
ONM/MB : N&pt = 30, E50 = 4.3x10% ,Miso = 1.856 9.vrrvvvvrnnin...
ONM/AB : Nopt =24, E;4 = 5.0x10% |, Myy, = 1.847 709 011 217.
VM/AB Eys = 5.0x10°% | May = 1.847 709 011 216.
Exact value of M = 1.847 709 011 236.
iii) a=10.8

ONM/MB : N&pt = 30, E3o = 5.0x1072 , Msp =1.2052 .cooovvirnvinninn....

ONM/AB : Nopt =26, Ej6 = 3.7x1077 |, Mjys = 1.201 452 809 479.

VM/AB Eyo = 4.1x1077 |, Mys = 1.201 452 809 478.
Exact value of M = 1.201 452 809 469.

The exact values of M, listed above, were computed by using the exact

formulae of Bowman [2] and [3, p.104].

VM approximations to M have also been computed by Gaier and his
students [6], who used as basis the set (5.5) augmented with the single

singular function

1/{2"13 (2% + 42913y

For the case a = 0.5, their approximation to M is 1.847 776. For the
same case, by using an approximation to the conformal map of the quadric-

lateral ABDC the method of [11] gives the value 1.847 719; see [11, Ex.6.1],
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Example 5.3. Rectangle in circle; Figure 5.3.

Let

G = {(xy) : x| <a<l1, |y|<b<l}.
Then
Q={z:]z| <1} N compl(Gav).

[}
i
i
1
1
:
1

1
1
i
0

FIGURE 5.3

Augmented Basis. When a = b, Q has eightfold symmetry about the origin

and, for this reason, the monomial basis is taken to be the set (5.5).

When a # b, Q has fourfold symmetry about O. Because of this, the
function H satisfies
e'"H(e""z2)=H(2),
and the monomial basis is taken to be the set
z,z7® - §=1,2,3,....
(5.9)
Let zj ; j = 1,2,3,4, be respectively the corners A, B, C and D

of the rectangle. Then, the singular functions corresponding to the



22.

branch point singularities at z, ; j = 1,2,3,4, are respectively the

functions n,j(z); j = 1,2,3,4 defined by (4.2) with r given by (5.6).

When a = b then, for each value of r, the four functions n,j(z)
can be combined into a single function of the form (5.7) - (5.8).
Similarly, because of the fourfold simmetry, when a # b, for each value

of r, the four functions nj(z) can be combined into the two functions
A.y(z) = n4(z) + e’n, ,(2) ;7 = 1,2, (5.10)
where the arguments 0; ; j = 1,2, are chosen so that
einﬁrj(einz) = T,(z). (5.11)
In this example we form the augmented basis, for the cases a = b and
a # b, by introducing respectively into the monomial sets (5.5) and (5.9)

the four functions (5.7) and the eight functions (5.10) corresponding
to the values r = 2/3, 4/3, 5/3, 7/3.

Quadrature. Gauss-Legendre formula with 48 points along each half side
of the rectangle and each quarter of the circle. In order to perform
the integration accurately the parametric representation of the rectangular

boundary is chosen to be that used in [12, Ex.3.2].

Boundary Test Points. Because of the symmetry we only consider points
on the straight lines EB, BF and on the arc PQ. On EB and BF the points
are equally spaced in steps of b/4 and a/4 respectively. On PQ the

points are defined by e ; 1=0(n/8)m/2.

Numerical Results.

(i) a=b=0.5
ONM/MB : Nopt = 30, Ezo = 5.1x107%, M3o = 1.702 0.........

ONM/AB : Nopt =24, Eyy = 7.0x10™* , Mys = 1.691 564 902 59
VM/AB : E,s = 7.0x107°% *
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(i) a=04, b=02
ONM/AB : Nopt = 18, E;5 = 5.0x10°°, M5 = 2.849 771 072 .
VM/AB : Eis = 5.0x10°°, *

(iii) a=0.6.b=10.2
ONM/AB : Nopt =26, E.2¢ = 1.4 107, Mys = 2.133 835 1
VM/AB Ese = 1.2 107 *

(iv) a=0.8,b=0.2
ONM/AB : Nopt =22, E;; =2.3 10", May = 1.626 912 4
VM/AB Eb, =2.3 1074, *

(* In each case the VM/AB approximation to M agrees with the ONM/AB

approximation to the number of figures quoted.)

Example 5.4. Triangle in triangle; Figure 5.4.

Let Gy denote an equilateral triangle of height h, orientated so
that its centroid is at the origin and one of its sides is parallel to the

real axis.

FIGURE 5.4
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Then,

Q = Gs N compl (Gy), with h < 3.

Augmented Basis. Because the domain has sixfold symmetry about the

origin, the monomial basis is taken to be the set

ZGID = 42 43, .. 5.12
j

Let zj ; j = 1,2,3 be respectively the corners A,C,E of the inner
triangle. Then, the singular functions corresponding to the branch
point singularities at z; ; j = 1,2,3 are respectively the functions
n:(z) 5 =1,2,3, given by (4.2) with

r=k+3/¢/5; k=0,1,2,..., 1</¢<5.
Because of the symmetry, for each value of r, the three functions

N:i(z) can be combined into the single function

~

3
A.(z) =n,(z) + Y e¥n (z), (5.13)
=2

where the arguments 6, ; j =2,3, are chosen so that
™ (e z)=1_(z2). (5.14)
In this example the augmented basis is formed by introducing into
the set (5.12) the four functions (5.13) corresponding to the values
r = 3/5, 6/5, 8/5, 9/5.
Quadrature. Gauss-Legendre formula with 48 points along each half side
of the inner and outer triangles. In order to perform the quadrature

accurately the parametric representation of the inner triangle is chosen

to be that used in [12, Ex. 3.3].

Boundary Test Points. Eighteen points distributed along the half sides

BC, CD of the inner triangle and the corresponding half sides of the
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outer triangle.

Numerical Results.

(i) h=2.25

ONM/MB : Nopt = 30, E3o = 1.3 107", M3o = 1.227 0.......
ONM/AB : Nopt =18, E;s=7.8 107, Mg = 1.208 168 761 .

VM/AB Eis=7.8 107, *

(ii) h = 1.50
ONM/AB : Nopt =22, E;; = 6.8 1077 , My, = 1.657 038 875 .
VM/AB Ey», = 6.8 107, *

(iii) h = 0.75
ONM/AB : Nopt = 16, E;g=7.0 10°° , M, = 3.132 784 643 .
VM/AB Eig= 7.010° , *

(* In each case the VM/AB approximation to M agrees with the ONM/AB

approximation to the number of figures quoted.)

Example 5.5. Cross in square; Figure 5.5.

e
i S
6__F E
i
I H E D C
) e B 1R > x
K L Q A
M N p

FIGURE 5.5
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Let
G, =1 (x,y):Ixl<a,lyl<blU{(x,y) : Ix|<b,|yl<a}, (5.15)
and
Ge = {(xy): x| <c, |yl <c}.
Then

Q=G_[) compl (Gas) Witha<candb <c.

Augmented Basis. Because the domain has eightfold symmetry about

the origin, the monomial set is taken to be the set (5.5).

Letz;;j=1,2,....,8 be respectively the corners A, C, E, G,
I, K, M and P of the cross shaped region G,,. Then the singular
functions corresponding to the branch point singularities at z; ; j =
1,2,...,8 are respectively the functions n.i(z) ; j = 1,2,...,8,
defined by (4.2) with r given by (5.6). Because of the symmetry, for
each value of r, the eight singular functions n;j(z) can be combined

into the two functions

3
f,(z) = n4(z) + De

m=1

i6

omt5 nr'2m+j(z) ; J=1,2, (5.16)

where, as in (5.7), the arguments 0;,,+; are chosen so that
eiiz/Zﬁrj (eilr/ZZ) — ﬁrj (Z) ; J — 1,2'

In this example the augmented basis is formed by introducing into

the set (5.5) the six singular functions (5.16) corresponding to the
values r=2/3,4/3, 5/3.

Quadrature. Gauss Legendre formula with 48 points along each of
the segments AB, BC, CD,..., QA, of the inner boundary, and each side
of the square. In order to perform the quadrature accurately the
parametric representation of the innder boundary is chosen to be that
used in [12, Ex.3.5].
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Boundary Test Points. Seventeen points on the inner boundary segment

BCDEF and seventeen points on the side RS of the square.

Numerical Results. The upper and lower bounds for the modulus M,

listed below, are due to Jauer [7], and were obtained by using a finite-

~

element method. The comparison values M were computed, as in [11,
Ex. 6.4], by using an approximation to the conformal map of the pentagonal

domain bounded by the straight lines BR, RS, SD, DC and CB.

(i) a=05.b=12.¢c=1.5

ONM/MB : Nopt = 14, Ej4=9.5x107% , M4 =1.349 0 ...c0oovvvvieeen. ...
ONM/AB : Nopt = 21, E;; = 3.8x107 , My, = 1.331 473 449.

VM/AB Ey = 3.8x10° *

Comparison value : M =1.331463.
Bound : 1.331 003 <M < 1.331 944.

(ii) a=0.5,b=1.0,c=1.5
ONM/AB : Nopt = 27, E;7 = 8.3x10°° , M7 = 1.566 289 179 .
VM/AB : E,;=8.3x10° | *

~

Comparison value : M = 1.566 274.
Bound : 1.565 602 <M < 1.566 978 .

(iii)a=02.b=0.7.¢c=1.2
ONM/AB : Nopt = 25, Ezs = 3.0x107° , Mys = 1.981 644 1 .
VM/AB Eys = 2.8x107° ¢

Comparison value : M =1.981 774.
Bound :1.979 574 <M < 1.983 722.




28.

(iv) a=0.1,b=0.8,c=1.1
ONM/AB : Nopt =23, E;3 =3.6 107" |, My = 1.747 492 5 .
VM/AB : Er; = 4.0 1074, *

~

Comparison value : M =1.747 677.

Bound : 1.745 050 <M < 1.749 940 .
(* In each case the VM/AB approximation to M agrees with the ONM/AB

approximation to the number of figures quoted.)

Example 5.6. Circle in cross; Figure 5.6

¥

n

|

!

1

:

1
B ! A F

------------ E---- =
C D
FIGURE 5.6

As in Example 5.5., let G, denote the cross-shaped region defined
by (5.15). Then,

Q :G3'1ﬂ {z: |z| > c}.

Augmented Basis.

Because the domain has eightfold symmetry about the

origin, the monomial set is taken to be the set (5.5).
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Let z; ;j =1,2,3,4, be respectively the corners A, B, C and D of
the outer boundary. Then, the singular functions corresponding to the
branch point singularities at z; ; j = 1,2,3,4, are respectively the
functions n;j(z) ; j = 1,2,3,4 given by (4.3) with

r=21/3 ;1=1,2,3,... .

Because of the symmetry, for each value of r, the four functions n;(z)
can be combined, as in Examples 5.2 and 5.3, into a single function
N.(z) of the form (5.7) - (5.8). The augmented basis is formed by
introducing into the set (5.5) the four functions N.(z) corresponding

to the values r = 2/3, 4/3, 8/3, 10/3.

Quadrature. Gauss-Legendre formula with 48 points along each side of
the outer boundary and each quarter of the circle.

Boundary Test Points. Thirteen equally spaced points on the straight

lines EF and FA of the outer boundary, and six points on the circle.

The test points on the circle are defined by. ce™; T1=0(n(n/20)n

Numerical Results.

(i) ¢=0.8
ONM/MB : Nopgt = 30, E;o = 6.1x107" , M3 = 2.356 0.......

ONM/AB : Nopt =22, Es; = 1.5x107° , My, = 2.246 094 81 .

VM/AB E,p = 1.3x107° ¢

(ii) ¢ =0.5
ONM/AB : Nopt =24, Eyy=7.8x10°, Mys = 3.595 639 19 .
VM/AB E,s = 8.9x10°° , *

(iii) ¢ =0.2

ONM/AB : Nopt =24, E,y = 8.0x10°°, M,s = 8.989 209 95 .
VM/AB Es = 8.9x10°% , *
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(* In each case the VM/AB approximation agrees with the ONM/AB approxi-

mation to the number of figures quoted.)

6. Discussion

The results of Section 5, as well as results of other numerical
experiments not presented here, indicate that both the VM and the ONM
are capable of computing approximations of high accuracy. In
particular, our results show that the two methods can produce accurate
approximations for the mapping of difficult domains, involving sharp
corners. The essential requirement for this is that the basis set
contains functions that reflect the asymptotic behaviour of the function
H, in the neighbourhood of a corner where a singularity occurs.  Regarding
computational efficiency, our experiments show that the two methods require
approximately the same computational effort for producing approximations

of comparable accuracy.

The above remarks apply only to the mapping of domains with 2n-fold
symmetry n > 2, of the type considered in Section 5.  For such symmetrical
domains the number of basis functions used in the numerical process can be
reduced considerably and, in general, the two methods are extremely accurate.
Unfortunately, in the absence of 2n-fold symmetry, n > 2, the performance
of both the VM and the ONM is rather disappointing. If the domain involves
"singular" corners then the use of functions of the form (4.2) or (4.3)
always leads to some improvement in accuracy. However, if Q is a non-
symmetrical domain then dealing with corner singularities alone is not
sufficient for the methods to produce accurate approximations. The
difficulty in this case might be due to the presence of poles of the

function H in compl Q). Unfortunately, as we remarked earlier, we do

not know of a way for dealing with such singularities.
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