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ABSTRACT 
 
 
 
 

F o r  ma t h e ma t i c a l  p r o g r a m mi n g  ( M P )  t o  h a v e  g r e a t e r  i m p a c t  a s  a   
d e c i s i o n  t o o l ,  M P  s o f t w a r e  s y s t e ms  m u s t  o f f e r  s u i t a b l e  s u p p o r t  i n  
t e r ms  o f  m o d e l  c o m m u n i c a t i o n  a n d  m o d e l l i ng  t e c h n i que s .  I n  t h i s   
p a p e r  mo d e l l i n g  t e c h n i q u e s  t h a t  a l l ow  log i ca l  r e s t r i c t i ons  t o  be  
m o d e l l e d  i n  i n t e g e r  p r o g r a m mi n g  t e r ms  a r e  d e s c r i b e d  a n d  t h e i r  
 i mp l i c a t i o n s  d i s c u s s e d .  I n  a d d i t i o n  i t  i s  d e mon s t r a t e d  t h a t  ma n y  
c l a s s e s  o f  n o n - l i n e a r i t i e s  wh i c h  a r e  n o t  v a r i a b l e  s e p a r a b l e  ma y  b e  
a f t e r  s u i t a b l e  a l g e b r a i c  ma n i p u l a t io n  p u t  i n  a  v a r i a b l e  s e p a r a b l e  
f o r m.  T h e  me t h o d s  o f  r e f o r m u l a t i n g  t h e  fu z z y  l i ne a r  p r o g r a m mi n g  
p r o b l e m a s  a  M a x - M i n  p r o b l e m i s  a l so  i n t roduced .  I t  i s  shown  tha t  
a n a l y s i s  o f  b o u n d s  p l a y s  a  k e y  r o l e  i n  t h e  f o l l o w i n g  f o u r  i mp o r t a n t  
c o n t e x t s :  m o d e l  r e d u c t i o n ,  r e f o r mu la t i o n  o f  l o g i c a l  r e s t r i c t i o n s  
a s  0 - 1  mi x e d  i n t e g e r  p r o g r a ms ,  r e f o r mu l a t i o n  o f  n o n l i n e a r  p r o g r a ms  
a s  va r i ab l e  s epa rab l e  p rog rams  and  r e fo r mu la t i on  o f  f uz z y  l i nea r  
p r o g r a ms .  I t  i s  o b s e r v e d  t h a t  a s  we l l  a s  i nco rpo ra t i ng  an   
i n t e r f a c e  b e t w e e n  t h e  mo d e l l e r  a n d  t he  o p t i mi s e r  t h e r e  i s  a  n e e d  t o  
ma k e  a v a i l a b l e  t o  t h e  mo d e l l e r  s o f t wa r e  f a c i l i t i e s  w h i c h  s u p p o r t  t h e  
m o d e l  r e f o r mu l a t i o n  t e c h n i q u e s  d e s c r i b e d  h e r e .  
 





 
 
1. Introduction and Background 
 
Modelling of mathematical programs and their computational solution are 
two salient activities in the exploitation of mathematical programming as 
a decision tool. Over the last thirty years or so substantial efforts 
have been devoted to the development of efficient algorithms for large 
scale applications. Efficient and robust computational algorithms are 
now well documented in the literature [1] Most major computer  
manufacturers such as IBM (MPSX) [2], CDC (APEX) [3], UNIVAC (FMPS) [4] or 
software houses specialising in this area such as SCICON  (SCICONIC)  [5], 
KETRON (MPSIII) [6], have developed mathematical programming systems for 
the solution of linear and integer programming problems. Despite the 
availabi1ity of such software the use of mathematical programming as a 
decision making tool has not had the impact expected by dedicated 
practitioners. One reason for this state of affairs is that the 
availability and scope of good modelling support software for mathematical 
programming has not kept pace with developments both in computational 
software and computer technology in general.  Various modelling systems 
such as MGRW [7], MAGEN [8], GAMMA III [9], MGG/RWG [10] DATAFORM [11], 
UIMP [12], GAMS [13] have been developed. Fourer [l  4] for instance has 
given a very good review which sets out the scene as it  stood by the end 
of 1979-80. Since then a number of other modelling systems have been 
reported LOGS [15], MAGIC [16], ULP [l7].  These systems and others are 
primarily designed to ease the task of communicating a mathematical 
programming model to a computer, of documenting the model, and of creating 
solution reports. 
 
Recently major issues covering the broad question of computer assisted 
m o d e l 1 i n g  h a v e  r e c e i v e d  c o n s i d e r a b l e  a t t e n t i o n .  F o r  i n s t a n c e  i n  
G r e e n b e r g  a n d    Maybee' s [18] volume discussions and debates covering model  
s t r u c t u r e ,  m o d e l  s i m p l i f i c a t i o n  a n d  s o l u t i o n  a n a l y s i s  a r e  p r e s e n t e d .  
P a l m e r  e t  a l  [19], [20] have discussed the design and the operational 
experience of an integrated model management system called PLATOFORM. 
Geoffrion [21] has put forward detailed analysis of the conceptual and 
theoretical aspects of data management and model structuring. For a 
brief review of recent developments the readers should refer to [22 ].  
We have designed and implemented an interactive modelling system: the 
design objectives of this computer assisted mathematical programming 
(modelling) system (CAMPS) are set out in [22] and [23]. Details of the 
supporting optimiser may be found in [24]. Within this integrated system 
it  is possible to construct,  solve, analyse and document linear 
programming problems. 
The modelling support discussed so far assumes that a model has already 
been conceived and a mathematic formulation using suitable symbols has 
been set out. These systems then serve to communicate the model to the 
computer based optimiser and to analyse the solution in re1ation to the 
original model. 
It  is wel1 known that reformulations of integer, and variable separable 
programming problems also require considerable insight and modeling 
skill .  Our experience with users of modelling support systems has 
convinced us that there is a great scope for providing automatic support 
for reformulating such nonlinear programming problems. The purpose  
this paper is to present a unified approach towards a range of such 
problems. Thus the methods described here can fit  naturally into most LP 
modelling support systems. 



2. 
 

The contents of this paper are organised as follows. In section 2 the LP 
is defined in a general form and this is mainly to introduce notation 
which is used in the rest of the paper. Analysis of bounds for linear 
forms is well known in the context of model reduction [25], [26]. Some 
of the bound analysis results which are pertinent to model reformulation 
a s  w e l l  a r e  p r e s e n t e d  i n  s e c t i o n  3 .  T h e  p r i n c i p l e s  a n d  m e t h o d s  
u n d e r l y i n g  t h e  reformulation technique are described in section 4. The 
main emphasis of this section is to show how logical statements (clausal 
forms) can always be restated as equivalent integer forms involving 0-1 
integer variables. Strategies for separating variables to represent a 
wide range of nonlinear programming problems are presented and discussed 
in section 5. Reformulation of fuzzy programming problem as a max-min LP 
problem and the relationship of this approach to IP reformulation methods 
are presented in section 6. The general scope and applicability of these 
reformulation methods are discussed in section 7. The contents of 
sections 3, 4, 5, 6 have been gathered from diverse and independent 
sources and as such do not contain new material .  However, this paper 
provides a general unification of otherwise independent methods. Thus in 
our analysis and automatic reformulation strategy we present a different 
focus on the underlying modelling principles and structure of these 
problems. 
 
2. Statement of the General LP Problem and Notation 

The notation introduced in this section is used in the rest of the 
paper. We state the general LP problem in the following form: 

- Subscripts and their ranges 

 i = 1 ,….m,   j = 1,…n. 

- Variables, constraints, and matrix coefficients: 

 x   : xj ,  j  =  l...n , r  : ri , i  = 1...m, d : dj , j  =  l,..n, 

 c : cj , j = l...n , b : b   , i = l...m, 

 A:aij ,, i = 1...m, j = l,..n. 

- Linear objective function and constraints: 

Max  [ ]∑
=

n

1j
jj ,xc

subject to ri:   i = l,...,m ,bρxa
n

1j
iijij∑

=

w h e r e   ρ i  i s  a n  ( i n ) e q u a l i t y  r e l a t i o n  o f  t h e  fo r m  "≤ "  ,  “≥”  o r  " = "  ,       ( 1 )  

and dj  :   ≤  xjl j  ≤  uj   ,  j  = l . . . ,n. 

where  may be  - ∞  or finite and  ujl j   may be  + ∞  or finite. 



 
3. 

 
3. Analys is of Bounds for Linear Forms 
 
3.1 Use of Analysis in Model Reduction 
 
Consider the restrictions r i  and dj  of the linear programming problem 
set out in (  and discussed in section 2. Express these as two sets (ا
R and D of Linear Form constraints and Structural constraints respectively. 
 

          R = {(x2 ,. . .x n) | i=1,….,m                                             (2) ∑
=

n

1j
iijij ,bpxa

                          
D = {(x2 ,…xn)| l j ≤ xj ≤ uj, j=1,…n}                           (3) 

 
It  is well known [25],[26], that by considering the constraints sets 
R and D logically and iteratively, in many real life problems one may 
deduce the following: 
 
(i) whether a constraint in set R is redundant, 

(ii) whether a constraint from set R may be removed and replaced by 

 a tighter bound in the set D, 

(iii) whether a bound in the set D is redundant. 

A l l  t h e s e  r e s u l t s  f o l l o w  f r o m  t h e  a na ly s i s  o f  t he  bounds  on  t he  l i nea r  
f o r ms .  
 
3.2 An Analysis of the Linear Form 

 Let 

              Fi =  i =1,…m,              (4) ∑
=

n

1j
jij ,xa

denote the ith 1inear form. 
 
In t roduce  two index se ts   P i ,   and   N i ,  (co lumn indices  of  the  pos i t ive  
and negat ive  coef f ic ients  of  the  row i )  such  tha t  
 
 Pi={j | aij >0} Ni={j | aij <0}, i =1,....m      (5) 
 
Let Li ≤ Fi ≤ Ui ,     i=1,…,m                    (6) 
deno te  t he  bounds  on  the  l inea r  fo rm F i ;  t hen  f rom the  de f in i t ion  o f  the  
s t ruc tu ra l  bounds  ( l j≤x j  ≤U j ) the  fo l lowing  i s  eas i ly  deduced ;  
 

                                           Ui = ∑∑
∈∈

+
ii Nj

jij
Pj

jij ,aua l     (7) 

                                            Li = ∑∑
∈∈

+
ii Nj

jij
Pj

jij .uaa l      (8 ) 



 
 

4. 
 
In any of the following cases, the ith Linear Form constraint is redundant 
and may be removed from the problem 
  
(a) ρi is "≤"  and Ui ≤ bi, 
 
(b) ρi is "≥"  and Li ≥ bi. 
 
For a full discussion of these aspects of reduction the reader  should 
refer to [25]. 
 
3.3 Examples 
 
 Example 1  A Redundant Constraint 
 
Let the constraint sets R and D be as defined below. 
 

                                            R={(x1,x2,x3) | x1 + 2x2 – x3 ≤ 11}            (9) 
  

                                D={(x1,x2,x3) | 0 ≤ x1 ≤ 1, 0≤ x2 ≤ 2, 0 ≤ x3 ≤ 4} 
 
The bounds on the linear form F1 may be deduced as 
 

L1 = -4 , U1 = 5. 
 

We have  U1 < b1 ,  hence the constraint is redundant.  
 

Example 2 Tightening of a Bound 
 

Let the constraints sets R and D be as defined below 
 

                     R = {(x1,x2,x3)  |  x1 + x2 - 2x3 = 2}      (10) 
 

D ={(x1, x2, x3) | 0 ≤  x1 ≤ 1, 0 ≤ x2 ≤2, 0 ≤ x3 ≤ 4} 
  
 
 
Since a13< 0 and ρ1 is "=” an improved bound on x3 is given by 
 

 x3 ≤ ( )
13

11

a
Ub −  

 
 
U1 = 4, b1 =2, a13 = -2, hence x3 ≤  1 is the new bound which may 
be now introduced in the set D. 



 

5. 

3.4 General Observations 
 
It  is pertinent at this stage to make the following observations 
concerning the bound analysis and its application in other contexts. 

(i) Li ,  may be -  or finite and U∞ i  may be + ∞  or finite. However, for 
 finite values of l j ,  uj ,  j  = 1 , . . . ,n, i t  follows from (7), (8) 
 that Li,ui  are finite. 
 
(ii) If the Linear Form constraints are connected by logical 
 restrictions then Li ,  Ui values as necessary may be employed to 
 (re)formulate these as 0-1 mixed integer programs. 
 
(iii) The derived bounds may be used in the improved reformulation and 
 partial solution of integer programs. 
 
(iv) It  is not well known and rarely discussed in the li terature that          

this analysis constitutes an essential part of any procedure for          
the reformulation of nonlinear, not variable separable functions,          
nto variable separable functions with arguments defined between          
upper and lover bounds. 

 
(v) In the reformulation of fuzzy programs as crisp max-min linear 
 programs the upper bound values Ui may be used to check the 
 consistency of the membership function. 
 
The consequences of these observations in relation to reformulation 
methods for integer, separable and fuzzy programming problems are 
discussed in the following sections. 
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4. Representation of Logical Restrictions and Related Techniques. 
 
4.1 Preliminary Considerations and Notation 
 
It  is well known that a large range of logical relationships connecting 
variables and constraint sets may be represented as integer or mixed 
integer programs .    We have not come across any one source text 
where the underlying principles have been presented in a unified framework. 
However, most of the basic principles may be found in [27], [3], [28]. 
 
Recently Jeroslow et al [29] have set out an exposition and also present 
experimental results which connect integer programming with propositional logic 
and theorem proving. They, for instance, consider three well known clausal forms 
conjunctive normal form, disjunctive normal form and Horn sentence. They then 
show how the equivalent integer forms may be constructed. Our interest, of 
course, is to interpret such theory and develop reformulation techniques for 
integer programming. 
 
In this section we first introduce the necessary notation. 
Let 
 ∆ i  i  = 1,2,. . .  denote logical variables which may take 
 va1ue. TRUE. or .FALSE., and 
 δ i  i  = 1,2,. . .      denote 0-1 integer variables. 
   Define the following conventions and symbols for logical operators. 
  

  δ i  takes the value 1, if  and only if ∆ i  is.  TRUE., 
           and 0, if and only if ∆ i  is .FALSE. 
  

V denotes inclusive .OR. 
   .

V  denotes exclusive .OR. 
 

& denotes .AND. 
   

≡ denotes equivalence...'if and only if ' 
 

---------------
.OR. ngRepresenti  

 
If the condition   ∆1 V∆2 V∆3 V∆4 is required to hold then this can be 
represented by the constraints 
  

                                                  δ1 +  δ2  + δ3 + δ4 ≥ 1.     (11) . . .
Similarly exclusive .OR. relations as in the requirement  ∆1 ∆V 2 ∆V 3 ∆V 4
can be represented by the constraint 

                                                               
                                                  δ1 + δ2 + δ3 + δ4 = 1.        (12) 

Let Y denote a logical variable and y the corresponding 0-1 variable 
and let these be related in the same way as ∆ i  and δ i  are related to each  
other. 
 
Then the condition : Y is .TRUE. if and only if ∆1V∆2V∆3  . . .  ∆k is .TRUE. 
(which is expressed as Y ≡  ∆1V∆2V∆3  . . .  ∆k),  can be represented by the 
constraint 

                                              -(k - 1) ≤ δ1 + δ2 +… δk –ky ≤ 0         (13) 



7. 
 
We note that (11) as set out above is an Integer form representation of the 
disjunctive normal form clause. 
 

--------------- 
.AND. ngRepresenti  

The logical condition 
                                                      Y ≡ (∆1 & ∆2 & ... & ∆k)                         (14) 

 
can be represented by the constraint 

 
0 ≤  δ1  +  δ2  + … δk – ky ≤  k - 1       (15) 

 

---------------- esAlternativ fold-p  

The general forms of the relations (11),(12) may be stated as 
 

                                                         δ1 + δ2 +… δk ≥ 1       (16) 
and   

 
δ1 + δ2 +… δk = 1 

 
which represent the inclusive and exclusive .OR. respectively of  k 
logical variables.   Now consider the relations 
  

δ1 + δ2 +… δk ≥ p 
and       (17) 

δ1 + δ2 +… δk = p 
 

where  p  is an integer and 1 ≤  p < k.  The relations in (17) represent the 
statement Mp or more alternatives hold at any time” and 
the statement "exactly   p  alternatives hold at any time". 
 
 
4.2    Logically Relating the Linear Form Constraints 
 
A  l i n e a r  f o r m  c o n s t r a i n t  i n v o l v i n g    n  v a r i a b l e s  r e p r e s e n t s  a  p o i n t  s e t 
i n  E n .  I f  a  n u m b e r  o f  t h e s e  a r e  s t a t e d  a n d  n e e d  t o  b e  s a t i s f i e d  t h e n 
t h e s e  i n v o k e  t h e  l o g i c a l  . A N D .  o p e r a t i o n .  
 
Thus for 
  

R1 = {(x1…xn) │  ∑
=

≤
n

1j
1j1j }bxa

           (18) 

     Rm = {(x1…xn) │  ∑
=

≤
n

1j
mjmj }bxa



8. 
 
Le t  P  deno te  the  p ropos i t ion  tha t  x∈R,  where  
 

R = { (x1…xn) │           (19) ...m}1i,bxa ij

n

1j
ij =≤∑

=

and let Pi  denote the proposition that 

 x ∈ Ri ,   i  = 1 . . .  m.  Then we note that 

 

P =  P1  &  P2  &  ... Pm         (20) 

  We observe that R, the intersection of R1,R2 …Rm ,  is convex as 
Ri ,  i  = 1 . . .  m are convex. 
 
However, to represent the logical .OR. relation of these propositions 
P1, P2,… Pm it  is necessary to consider the structural constraint set 
 

                        D = {(x1 …xn) | ℓj < xj < uj , j = 1,...,n}               (21 ) 
 
where some or all ℓ j ,u j  j  =1,.. .n are finite such that the 
bounds Ui , i  =l. . .m are finite. Also from the redundancy consideration it  is 
required that  bj  < Ui ,  i  =l, . . ,m. 
 
To represent the inclusive .OR. relation 
 

                                                      P1 V P2 V ... Pm                     (22) 
introduce the relations 
 

                = Bj

n

1j
ijxa∑

=
i (1-δi) ≤ bi ,  i = 1, ...,m,       (23) 

and                             (24) .1δ
m

1i
i∑

=

≥

 
where  Bi.   is a finite value such that for δ i  = 0 ,  Bi + bi  is greater than 
or equal to the upper bound of 
 

Fi = . j

n

1j
ijxa∑

=

 
Thus any finite value, for Bi such that 
 
 Bi + bi ≥ Ui   ,  i = 1,…m,        (25) 
 
leads to a valid formulation. The exclusive .OR. and the two forms of 
p-fold alternatives are similarly obtained with (24) replaced by 
(26), (27), or (28) respectively 
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                                                               (26) ∑
=

=
m

1i
i ,1δ

                                  (27) ∑
=

≥
m

1i
i ,pδ

                                  (28) ∑
=

=
m

1i
i .pδ

 
To illustrate these points,  consider the following example taken from 
[27]  and modified. 
 
 Let R1 = {(x1, x2) | x1 + x2 ≤ 4} 
 
  R2 = {(x1,x2) | -x1 + x2 ≤ 0}       (29) 
 
  R3 = {(x1,x2) | 3x1 – x2 ≤ 8} 
 
 
and let   D = {(x1 ,x2) |  0 ≤  x1 ≤  5,  0 ≤  x2 ≤  5} 

The proposition that  x  satisfies all  the constraints is implied in 
the LP formulation. Thus x ∈ S ,  where S is defined as 
 
S = R&D = R1 & R2 & R3  & D  and is shown in Diagram 1. 
 
 

Daigram 1. 
 
 
The three bounds on the linear forms may be computed as 

 
U1 = 10 ,   U2 = 5 ,   U3 = 15 
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A formulation which uses the logical .OR. as well as .AND. relations 
is now set out.   The proposition 

P1 v(P2 & P3) 
 
is equivalent to: "find  x which satisfies  R1 or  R2  and  R3". 
Introduce δ1  = 0,1  for  P1  and  δ2 =0,1  for  (P2& P3 ).   We need 
to define the restrictions to represent  T where  T = R1 V(R2 &R3). 
The equivalent mixed integer linear programming formulation may be 
stated as, 

 
x1 + x2  - 6(1- δ1) ≤ 4 , 

 
- x1 + x2 - 5(1- δ2) ≤ 0 , 

 
                                                         3 x1 - x2 - 7(1- δ2) ≤ 8 ,                       (30) 

 
δ1 + δ2 ≥1 

and 
δ1 , δ2 =0,1. 

The constraint  set .  T  in this case is as shown in Diagram 2. 
 
  
 

 
 
 

Diagram 2 . 

Because of the inclusive .OR,  relation the constraint set  T  which 
is constructed with a union operation and represented by the mixed integer 
formulation (30) is not a convex set.  
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5. Strategies for Separating Variables in  Non Linear Programming 
 Problems 
5.1 Linearization of Variable  Separable Programming Problems. 
 The problem 

 Max   ∑ f
=

n

1j
j (xj) 

 subject to   g∑
=

n

1j
ij (xj ) ≤bi ,  i = 1, . . . ,m ,     (31 ) 

is a general statement of the variable separable programming problem. In 
order to carry out piecewise linear approximations to the objective 
and the constraint  functions it  is necessary to make two further assumptions 
concerning this problem. 
 
(i) The functions  fj (xj)   ,  j  = 1, . . . , n      (32) 
  
 are all single valued. 
 
(ii) The arguments xj  ,  j   = 1, .  .  .  ,  n  of these functions have finite ranges 
 (ℓj ≤xj ≤uj ,  j  = 1, . . . , n). 
 
The construction  of piecewise 1inear approximations using weighting 
variables, convexity row, reference row and function row and the methods 
of solution are well discussed in [27], [30], [31] ,  [32] ,  [33]. 
 
5.2 An Analysis of Nonlinear Programming Test Problems 
 
It  has been claimed by proponents of the separable programming method of 
solving nonlinear programming problems that a large class of nonlinear 
(not variable separable) programming problems can be transformed into 
variable separable programming problems. In order to investigate the 
reality of this claim we have analysed the comprehensive collection of 
nonlinear programming test problems which have been put together in [34]. 
 
Consider the test problems in the format 

 
Maximise f (x1...,xn ) 

subject to   gi(x1...,xn ) ≤ bi   , i = 1 ,….,m1 
gi(x1...,xn ) = bi   ,  i = m1 +1 ,…., m   (33) 

and    ℓj ≤xj ≤uj      ,  j  = 1, . . . , n.  
 
The following types of objective functions  f(x)  and constraint 
functions  gi  (x)  are found in the set of problems. 
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Objective function types 

 

(i) Constant objective function  . . .   function code C. 

(ii) Linear objective function  . . .   function code L. 

(iii) Quadratic objective function . . .   function code Q. 

(iv) Sum of squares objective function . . .  function code S. 

(v) Generalized polynomial objective function . . .  function code P. 

This is of the form 

                            f(x) = a0 +       (34) ...xxxaxxaxa
n

1kj,i,
kjiijkj

n

1ji,
iij

n

1i
ii +++ ∑∑∑

===

It  may be observed that in geometric programming problem [35] 

a more general formis introduced which is called the signomial 

function and is expressed as 

 

f(x) =           (35) ∏∑
∈ j

d
i

Jj
j

ijxc

 

where J is used to label the terms appearing in the signomial function. 

In (34) ao ,ai  ,a i j  etc. and in (35) cj ,  di j  are given real values. 

(vi) General function . . .  function code G. 

 

Constraint types 

 

(i) No constraint    ….  code U 

 

(ii) Only upper and lower bounds on the 

Variables     …. code B 

 

(iii) Linear constraint functions  …. code L 

 

(iv) Quadratic constraint functions  …. code Q 
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(v) Generalized Polynomial constraint functions  . . .  code  P 

This is of the same form as (34) or (35). 

(vi) Generalized constraint functions   . . .  code G. 

The frequency distribution of the 115 test  problems is set out in Table 1. 

In [34] the problems are numbered from 1 to 119, however, there are no 

problems numbered 58 ,  82, 94 ,  115! 

 

 

                          
 

                       Objective Function Codes 
 

  
  C L Q S P G Row   

Sum  

 

 

 

 

 

 

 

 

 

 
 

 

 

 Table 1 

 Constraint U    

Function     1 1   5  2          B  9 

Codes   10    8  6          L 24 

1  7 18 2   9  1         Q 38 

  2   2  14  3          P 21 

        G 23   3   6    7  7 

 1 12 37 3 43 19 115 

Column 

Sum 
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5.3 Manipulation of Non-Linear Functions to Variable Separable Form. 
 
The principal motivation of deriving variable separable formulations of 
non-linear functions is that such formulations may be approximated using 
piecewise linear forms. Consequently a standard mathematical programming 
system (e.g. MPSX) can be used to solve these classes of non-linear 
programming problems. In order to apply a piecewise linear approximation 
it  is required that the variables of the separable formulation, which are 
derived from the original non-linear functions, be bounded. It  is there- 
fore necessary to apply a bound analysis to determine these bounds. In 
practical applications it  is possible to impose realistic bounds on any 
unconstrained variable which may appear in the problem. 

We note that McCormick and Jackson [36] have done considerable work on the 
(reformulation) factorization of highly complex nonlinear programming 
problems. They analytically derive the hessian and gradient of the 
'factored' forms and are interested in the sensitivity properties of the 
resulting nonlinear models. 

In this section we consider a few frequently occuring instances of nonlinearity 
(nonlinear terms as well as nonlinear forms) and briefly discuss methods of 
reformulating these. 

Product Term 
2 2A product term, X 1 X 2, may be replaced by (y  – y ) with the additional 1 2

2
1

2
1constraints y  = (x  + X ) and y  =  (x  – X ).  If  (ℓ  ≤  x  ≤  u ) then, 1 1 2 2 1 2 i i j

given finite ℓ  and u , finite bounds L  and U  may easily be derived i i i i
such that (L  ≤  y  ≤  U ) ,  i  = 1,2. i i i

By repeated application of this technique a variable separable formulation 
of a higher order product term may be obtained. 

Quadratic Function 

For a general quadratic function, φ  (x ,. . .x ) a more compact variable 1 n

separable formulation may be obtained. 

∑∑
= =

n

1i

n

1j
jiij xxq

2
1Let φ  (x ,...x1 n) =         (36) 

Replace  (xφ 1,...xn) by  ψ (y1,...yr) =  ∑
=

r

1k

2
kk yd

with the constraints 

y  =   k = 1….r      (37) ∑
=

n

kj
j

'
kj xqk

where r is the rank of the symmetric matrix Q = {qi j}. 
 
The coefficients q'k j  and d  can be determined by applying a standard method k
such as Gaussian reduction [36]. 
 
Given finite bounds ℓ  and u  on x , j  = 1,. . .n, finite bounds L  and U   i j j k k
on y , k = 1,. . .r ,  may be simply derived by considering the linear forms k
(37), thus enabling a piecewise linear approximation to be used. 
Ratio of Linear Forms 

Let H' =   h'∑
=

n

1j
  and  H" = ∑ h"

=

n

1j
 x  x  . j j j j
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The expression (H'/H") may be manipulated in the following way. 

 and introduce the constraint  ∑  =  
=

n

1j
j

' xh j ∑
=

n

1j
1j

'' .yxhReplace (H'/H") by y1

As discussed earlier a variable separable formulation may be obtained 
for the product terms of the constraint.  The finite bounds on X  , j  = 1,. . .n,  j
provide bounds on H' and H" such that L' ≤  H' ≤  U' and L" ≤  H" ≤  U" 
from which bounds on y  may be obtained.  If LП  > 0 or U" < 0, the bounds 1
on y  are finite and a piecewise linear formulation can be applied. 1

Power Forms - Constant Base 

Consider the term  where a > 0. 
2
21 xxa +

A variable separable formulation may be obtained by replacing  by y
2
21 xxa +

1

and introducing the constraint log y1 = (log a).   (x  + ). The bounds 2
2x1

L  and U  on y  can be derived from the bounds on x  and x . 1 1 1 1 2

Power Forms - Variable Base 

Consider the term . This term can be handled using the substitution 2x
1x

y  =  and introducing the constraints 2x
1x1

                                                           (38) 22xy
1 10y =

 
                                                                                 (39)                     2y

1 10x =

The constraint (38) can be handled using the techniques for product terms 
and constant base power forms discussed earlier.  For constraint (39) it  
i t  necessary that 0 <ℓ  ≤  x  ≤  u  from which the bounds on y  are easily 1 1 1 2
derived. 

The range of functions illustrated above show that the only problems that 
cannot be immediately formulated as variable separable lie in the class in 
which the objective or constraint code is G. However, most practical 
problems in this class can be transformed to a separable form without 
difficulty. To illustrate this point an example is set out below. 

 

5.4 An Example 
 
Consider the problem [38]. 
 
Maximise x  + 2x1 2 + x3 

20xe
x1

x
3

x

1

2 3 ≤+
+

subject to         x x1 2 +       (40) 

 
  + x   + x  ≤ 4       (41) x1 2 3

 
and   x1, x2, x  ≥0.        (42) 3
 
From restriction (41), (42) it  follows that 

 
0 ≤ x1, x , x  ≤  4       (43) 2 3

1

2

x1
x
+

Rewrite   = x4  or x  – x  – x2 4 1x  = 0     (44) 4
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 ≤  x  ≤u  where Now from (43) and (44)  ℓ4 4 4
 

       ℓ4 = 0 ,            u  = 4                                 (45) 4
 
The constraint (40) can be reexpressed as 

  
                      x x1 2 +x y4 1 +x3 ≤ 20                                        (46) 

 
and    y   =            (47) 3xe1

 
From (43) and (47) the following bounds are derived 
 

0 4e  = 1 ≤ y  ≤ e  = 54.598 1
 
 
Thus the given problem may be restated as 
Maximise x  + 2x1 2 + x3 
subject to x x1 2 +x y4 1 +x  ≤ 20 3

    x  -x  –x x  = 0        (48) 2 4 1 4

 y  - = 0 3xe1
 x  +x  +x  ≤ 4 1 2 3

  
and 0≤ x1, x ,x ,x  ≤ 4,  1.0 ≤y2 3 4 1 ≤54.598 

 
The product terms are thus re-expressed as 

2
6

2
541

2
4

2
314

2
2

2
121 zzxx,zzyx,zzxx −=−=−=  

 
which leads to the full separable programming formulation: 
Maximise   x  + 2x  + x1 2 3  
subject to 

2
1z -  + -   +  x2

2z 2
4z2

3z   ≤ 20 3

               x2  – x  -  +  =   0 2
5z 2

6z4

 -   = 0 3xe                               1
                     x   +  x1 2  +  x3  ≤  4 

2
1

2
1 x  + x  – z   = 0 1 2 1

2
1

2
1             x  - x  – z = 0 1 2 2                

2
1

2
1             x  + y  – z  = 0 4 1 3             

2
1

2
1              x  - y  – z = 0 4 1 4                  

2
1

2
1                x  +  – z  = 0 x1 5                  4

2
1

2
1              x  -  – z1 x 6         = 0 4

0≤ x1, x ,x ,x  ≤ 4,  1 ≤y2 3 4 1 ≤54.598 
zwith ℓ  ≤z  ≤u  as the easily derived bounds on the z.,  i  = 1,. . .6. i i i
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6. Reformulation of Fuzzy Decision Problems as Max-Min LP Problems 
 

6.1 Background to the Model 
 

Fuzzy set theory was first  introduced by Zadeh [39] and subsequently 
Bellman and Zadeh [40] discussed its application to decision problems. 
Later developments and applications of this approach are well  discussed in 
the text book by Didier and Dubois [41] .  In Fuzzy set theory an element 
x is defined to have a degree o£ membership of a given set say S. The 
degree of membership is denoted by a membership function μ  (x) which is 
defined over the range [o,u] where u is a positive real number. For u = l 
we have a normal fuzzy set,   μ  (x) ∈  [0,1].  In the usual set theoretic 
terms x belongs to S is equivelent to μ  (x) = 1 and μ  (x) = 0 
otherwise. 
 
The major contribution of the seminal paper by BelIman and Zadeh [40] was 
to establish the relationship between goals and constraints of a decision 
problem. In their words: 
 

"goals and the constraints constitute classes of alternatives whose 
boundaries are not sharply defined." They then proceed to explain 
that their modelling framework.. ." erases the differences between 
goals and constraints and makes it  possible to relate in a relatively 
simple way the concept of a decision to those of the goals and 
constraints of a decision process.. .   In short, a broad definition 
of the concept of decision may be states as: 
 

Decision = Confluence of Goals and Constraints". 
 

Fuzzy Programming as a decision model was mainly promoted by Zimmermann 
[42]. Its applications to media selection [43], and power systems 
planning [44] are two of many applications which have been reported. 
Dyson [45] considers the multicriteria decision problems, analyses it  
following the Max-Minapproach based on utility function and shows how the 
latter has the identical form to that of crisp equivalent formulation of 
the fuzzy LP. 
 

6.2 Statement and Reformulation of Fuzzy Linear Programs 
Consider the linear programming problem with 1,. . .k, objective (goal) 
functions and m  inexact (soft) restrictions defined as 

                                                             
=                                                                    Max Z  Cx       (49) 

 
subject to      Qx ~≤  d       (50) 

                  x  ≥ 0 
where d is an  m vector 

C is a k × n matrix 
Q  is an m × n matrix 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

k

i

z
z

zLet  denote the 'aspiration levels '  (that is the maximum these 

are expected to achieve) of these  k objectives. Define 

⎥
⎦

⎤
⎢
⎣

⎡
Q
C

⎥⎦
⎤

⎢⎣
⎡
d
z  a (k+m) vector.  A =   a (k+m) × (n) matrix, b = 

Let       μi (x) =fi  ( )     (51) ∑
=

n

1j
jijxa

denote the membership function of the ith goal or restriction, i=1 ,2. .  .k+m. 
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A typical membership function is illustrated in Diagram 3 

 
Diagram 3 

 
Thus we define 

( ) (

⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪

⎨

⎧

+>

+≤<
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=

≤

=

∑

∑
∑

∑

=

=

=

=

n

1j
iijij

n

1j
iijiji

i

n

1j
jjij

n

1j
ijij

i

.pbxaif0

pbxabif
P

bxa
1

bxaif1

xμ )     (52)  

 
If dμ  (x) denotes the membership function of the (optimal) decision set 
then following the usual (but much debated) approach of applying 'Min' 
as the intersection operator we have 

 
                                                            μD (x) = Min μ  (x)       (53) i

                                                                                     i 
Thus maximum satisfaction of constraints and targets are achieved by solving 
the equivalent Max-Min linear program, 
 
Max λ 

  + ∑ ,  i = 1...k+m,       (54) 
=

+≤
n

1j
iijij pbxasubject  to λpi

 x  ≥0,  j = 1 . . .n . j
 
We can make following observations for this model. 
 
(a) The multiple objective (or goal) model illustrates Zadeh and Bellman's 
principle (see section 6.1) rather well.  In case of single objective 
function we have k = 1 .  
 
(b) The fuzzy goals and constraints are alternative ways of introducing 
soft constraints in the model. 
 

 bounded, that is .   ℓ  ≤  x  ≤  u  as in (c) If we have the variables xj j j j
 as introduced in that section may be used to check section 3, then Ui

 + p  ≤  Uthe consistency of the fuzzy membership function. Clearly bi i i . 
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(d)  If we wish to construct models which involve crisp as well as 
fuzzy relations then reformulation methods of section 4 and section 6 
can be naturally put together. 

7. Discussions 

In this paper we make a case for integrating and automating a 
number of reformulation methods of mathematical programming. We also 
illustrate the key role played by bound analysis in these methods. 
Currently most modelling support systems only allow the user to create 
the underlying LP model. Here we show how this basic modelling tool 
can be naturally extended to incorporate reformulation support.  By 
introducing the facility of algebraic manipulation it  is possible to 
reduce the chore of manual reformulation of models. This aspect may 
prove to be particularly valuable for problem owners who are capable of 
describing their problems precisely but may not be experienced in 
reformulation techniques. Computer support in these areas offers 
increased scope and applicability of mathematical programming. 
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