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Abstract— Mental health problem is an increasingly common 
social issue leading to diseases such as depression, addiction, and 
heart attack. Facial expression is one of the most natural and 
universal signals for human beings to convey their emotional states 
and behavior intentions. Numerous studies have been conducted 
on automatic human emotion classification that can effectively 
establish the relationship between facial expression and mental 
health, while still suffer from intensive computation and low 
efficiency. Here, we present a memristive circuit design of 
Sequencer network for human emotion classification, which offers 
an environmentally friendly approach with low cost and easily 
deployable hardware. Specifically, a kind of eco-friendly 
memristor is fabricated using two-dimensional (2D) materials, and 
the corresponding testing performance is conducted to make sure 
its efficiency and stability. Then, the memristor-based Sequencer 
block, as a core component of Sequencer network, consisting of 
bidirectional long short-term memory (BiLSTM) circuit and some 
necessary function circuit modules is proposed. Based on this, the 
memristive Sequencer network can be achieved. Furthermore, the 
proposed memristive Sequencer network is applied for human 
emotion classification. The experimental results demonstrate that 
the proposed circuit has advantages in computational efficiency 
and cost, comparable to the main existing software-based methods. 

I. INTRODUCTION
Mental health problems are an important and pervasive 

public health issue leading to diseases such as depression, 
addiction, and heart attack, which can severely affect quality of 
life [1]. Early detection of mental health problems is 
particularly important, since unattended, they can be life-
threatening. Facial expression is one of the most natural and 
universal signals for human beings to convey their emotional 
states and behavior intentions [2]. Recently, advanced research 
on artificial intelligence and psychology technology, numerous 
studies have been conducted on automatic human emotion 
classification because of its can effectively establish the 
relationship between facial expression and mental health [3]. 
Among them, deep learning-based methods have achieved the 
state-of-the-art recognition accuracy and exceeded previous 
results in human emotion classification [4-6]. However, these 
methods based on von Neumann computer architecture still 
suffer from computationally challenging problems with 
unattainable energy efficiencies.  
In recent computer vision research, a large number of deep 

neural networks have been proposed to solve complex 
problems. Sequencer network, one of the most important 

models for machine vision, has achieved state of-the-art image 
classification performance [7]. However, the Sequencer 
network has many parameters and complex calculations, which 
requires computing systems with ‘big data’ transmission 
capabilities and large computing units [8]. The emerging of the 
memristor provides a new approach to realize the circuit 
implementation of Sequencer network, offering benefits in 
terms of good privacy, low cost, and easily deployable software. 
As the fourth basic circuit element, memristor was first 
proposed by L. O. Chua in 1971 [9] and was further associated 
with physical devices by R. Stanley Williams and his team from 
Hewlett-Packard Labs in 2008 [10]. With the development of 
memristor technology, this neuromorphic computing device has 
been proved effective in the fields of artificial intelligent and 
image processing. While memristor-based Sequencer network 
has not been developed due to the complex calculation process 
and data storage.   
In this work, we propose a full circuit implementation of 

memristive Sequencer network for human emotion 
classification. With such design concept and deep learning 
integration, the proposed network can realize human emotion 
classification for mental health monitoring. The main 
contributions are briefly summarized as below: 
1) The Ag-Au/MOSe2-doped Se/Au-Ag memristor with high

stability is prepared. It can serve as a promising candidate to 
emulate high-accuracy neuromorphic computing in human 
emotion classification. 
2) The circuit design of memristor-based Sequencer network

is proposed and validated by applying it to human emotion 
classification, which provides benefits in term of less 
computational overhead and time consumption. 

II. MEMRISTOR FABRICATION AND PERFORMANCE TESTING

A. Fabrication of Ag-Au/MoSe2-doped Se/Au-Ag Memristor
The Ag-Au/MOSe2-doped Se/Au-Ag memristor is fabricated

based on hydrothermal synthesis method and magnetron 
sputtering method, in which the former is used to fabricate 
MoSe2-doped Se microwires and the latter is used to prepare 
Ag-Au electrodes, with details as shown in Fig. 1.  
Step 1: 0.1moL Se powder and 0.1moL ammonium 

molybdate (NH4)6MO7O24·H2O are dissolved into 25mL 
deionized water, as labelled solution A. 
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Step 2: 0.05g surfactant (i.e., hexadecyl trimethyl 
ammonium bromide) is added to the solution A and 
continuously sonicated using a magnetic stirrer for 3 hours, as 
labelled solution B. 
Step 3: The solution B is transferred to a 25mL Teflon-lined 

container and heated at 227℃ for 48 hours in a muffle furnace. 
Step 4: After 3 times centrifugation operation, MoSe2-doped 

Se microwire is obtained from the heated solution B. 
Step 5: The Au electrode (space = 400μm, area = 2500μm2) 

on the Si/SiO2 substrate is fabricated by using magnetron 
sputtering method. 
Step 6: The MoSe2-doped Se microwire is picked out using a 

four-probe test system, the ends of the microwire are embedded 
in the Au electrode and covered with a layer of Ag adhesive to 
form the Ag-Au/ MoSe2-doped Se/Au-Ag memristor. 

Fig. 1. The fabrication flow of Ag-Au/MoSe2-doped Se/Au-Ag memristor 

B. Performance Testing
The performance testing of Ag-Au/ MoSe2-doped Se/Au-Ag

memristor is carried out through an electrochemical 
workstation CHI-600D. The electrical characteristics are 
measured with ± 3V scanning voltages scan rate of 0.05V/s, as 
shown in Fig. 2. 

Fig. 2 The performance testing of Ag-Au/ MoSe2-doped Se/Au-Ag (a) device-
to-device analysis; (b) cycle-to-cycle analysis 

From Fig. 2(a), the measured I–V curves obtained by 120 
memristors show a high degree of overlap, and the inset is a 
structural representation of the fabricated memristor. The 
testing results demonstrating that the Ag-Au/ MoSe2-doped 
Se/Au-Ag memristors have good device-to-device stability. 
The overall I–V curves are asymmetrical in the positive and 
negative voltage regions, indicating that the fabricated 
memristors exhibit electronic resistive switching memory 

(ERSM) behavior. Specifically, in the first stage, the 
memristors keep in the high resistance state (HRS) at beginning. 
As the scanning voltages increase from 0V to 3V, the devices 
currents are almost unchanged until the scanning voltages 
exceed 1.5V, the devices currents start to increase and reach a 
maximum at 3V, meaning that the “SET” process is completed; 
in second and third stages, the memristors remain in low 
resistance state (LRS) when the scanning voltages decrease 
from 3V to −3V; in fourth stage, the current gradually decreases 
as the scanning voltage changes from -3V to 0V. When the 
scanning voltage is higher than -1.5V, the memristor changes 
from LRS to HRS, meaning that the “RESET” process is 
completed.  
To investigate the stability of the memristor, the I–V curves 

for the 1st, 10th, 50th, 200th and 500th cycles are measured, and 
the inset is the resistance variation curve with the 0.5V reading 
voltage for 105 seconds. It can be seen that the high degree of 
overlap in I–V curves and the resistance ratio between the HRS 
and LRS can be maintained well, indicating the good stability 
of the fabricated memristor. 

III. CIRCUIT DESIGN OF MEMRISTIVE SEQUENCER NETWORK
According to [7], Visual Transformer (ViT) and its variants

based on self-attention module have been proved effective in 
many computers vision tasks. Several works have tried to 
replace the self-attention module with different other modules 
(e.g., the global filter) [11]. Following this trend, Sequencer 
network replaces the self-attention layer with BiLSTM, the 
specific structure of Sequencer network can be seen in Fig. 3: 

Fig. 3: The structure of Sequencer network 
From Fig. 3, the Sequencer network can be roughly divided 

into two parts, i.e., the Sequencer block and the other necessary 
function modules (e.g., the PW linear module). In particular, the 
BiLSTM cell is the key to realize the Sequencer block. Based 
on this, we illustrate the circuit design of Sequencer network 
from the “circuit design of BiLSTM cell”. 

A. Circuit design of BiLSTM cell
LSTM is a kind of recurrent neural networks (RNNs) for

modelling long-term dependencies of sequence without 
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worrying about the gradient vanishing and exploding issues. A 
standard LSTM cell has three gates, i.e., the input gate, the 
forget gate, and the output gate. Notably, the input gate it 
controls the storage of input xt, the forget gate ft decides which 
information to be discarded from the previous cell state ct-1, and 
the output gate ot controls the cell output ht from the current cell 
state ct. The mathematical expression of LSTM is given below: 

           (1) 

(2) 

where W (Wa, Wi, Wf, Wo), U (Ua, Ui, Uf, Uo), and b (ba, bi, bf, 
bo) are the weight, recurrent weight, and bias of LSTM, 
respectively. Symbol σ denotes the logistic sigmoid and ʘ is 
Hadamard product.  
A BiLSTM consists of two parallel LSTM layers: one takes 

the input in a forward direction (i.e., LSTMforward), while the 
other takes it in a backward direction (i.e., LSTMbackward). 
Specifically, we assume �⃗�  be the input series, and �⃖�  is the 
corresponding rearrangement of �⃗� in reverse order. Then, the 
outputs of these two LSTM layers can be written by: 

                               (3) 

We let the	ℎ&⃗ backward be the rearrangement of ℎ⃖&backward in the 
normal order, the final output of BiLSTM can be written by: 

(4) 

Based on Eqs. (1) ~ (4), the specific circuit design of 
BiLSTM is illustrated in Fig. 4.  

Fig. 4: The BiLSTM structure and its circuit design 

From Fig. 4, the fundamental component of BiLSTM 
structure is the standard LSTM, which means the LSTM circuit 
design and implementation are very important. Notably, the 
specific hardware implementation of LSTM can be separated 
into two components, i.e., the linear matrix operation circuit and 
the nonlinear activation circuit. 

B. Circuit Design of Sequencer Network
Notably, the Sequencer block is the core module of the

Sequencer network (need four Sequencer blocks). Based on the 
BiLSTM circuit module, the circuit design of Sequencer block 
is provided in Fig. 5: 

(a) 

(b)
Fig. 5: The circuit design of Sequencer block. (a) The schematic diagram. (b) 

The necessary function circuit modules.  

From Fig. 5(a), the Sequencer block circuit is composed by 
many necessary function circuit modules, including the layer 
MLP circuit module, the layer normalization circuit module, the 
summing circuit module, the BiLSTM circuit module 
(illustrated in Section III-A), and the ReLU circuit module. The 
corresponding circuit diagrams are provided in Fig. 5(b).  

Fig. 6: The circuit design of other necessary function modules

Furthermore, Fig. 6 provides the global average pooling 
(GAP) circuit module [12] and piece-wise (PW) linear circuit 
module. It is noted that the input and output signals of all these 
function circuit modules are voltages, which guarantees that all 
these modules can be connected in cascaded configuration. 
Based on this, the circuit design of Sequencer network can be 
obtained. 
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IV. APPLICATION IN HUMAN EMOTION CLASSIFICATION
For verification, the proposed memristive Sequencer

network can be applied to human emotion classification. The 
specific algorithm flow is provided in Fig. 7: 

Fig. 7: The pipeline of the human emotion classification

During the classification process, we use the FER-2013 
dataset and CK+ [3] dataset as the input images. Then, some 
necessary pre-processing operations (e.g., the data alignment, 
data augmentation, and data normalization) are carried out. 
Next, all the input images can be converted to the normalized 
voltage signals. These voltage signals are further injected to the 
memristive Sequencer network (execute training and testing). 
the output result can classify different human emotions (i.e., 
Anger, contempt, disgust, happiness, neutral, fear and so forth). 
Notably, the entire process can be divided into two parts, i.e., 
the feedforward computation and back propagation. the 
feedforward computation is carried out in the memristive 
Sequencer network, the back propagation (mainly referring to 
the weight updating) is performed on MATLAB 2018b. The 
results are provided in Table 1. 
Table 1: The initial results of human emotion classification 

Methods CK+ FER-2013 Mean time Accuracy Accuracy 
Our work 92.3% 72.3% 125.4 Sec 

Reference [4] 96.8% 75.2% 2013.7 Sec 
Reference [6] 96.7% 73.7% 2252.7 Sec 
Sequencer [7] 92.4% 72.5% 2335.9 Sec 
From Table 1, although the proposed system has an inferior 

performance (in accuracy) as compared with the soft-based 
methods, the difference can be accepted. Meanwhile, 
considering the speed advantage brought by the hardware 
implementation of Sequencer network, the proposed system has 
benefits in computational efficiency and cost (the minimum 
running time). 

V. CONCLUSIONS
In this work, we investigate the circuit design of memristive 

Sequencer network for human emotion classification. Firstly, a 
kind of eco-friendly memristor is fabricated using two-

dimensional (2D) materials, and the corresponding testing 
performance is conducted to make sure its efficiency and 
stability. Then, the memristor-based Sequencer block 
consisting of bidirectional long short-term memory (BiLSTM) 
circuit module, layer normalization circuit module, summing 
circuit module, and ReLU circuit module is proposed. Based on 
this, the circuit design of memristive Sequencer network can be 
achieved after combining some other necessary function circuit 
modules (i.e., the AGP circuit module and PW linear circuit 
module). Furthermore, the proposed memristive Sequencer 
network is applied for human emotion classification. The 
experimental results demonstrate that the proposed system has 
advantages in computational efficiency and cost, comparable to 
existing software-based methods. 
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