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Abstract: Research into solar absorption chillers despite their environmental benefits has been
limited to date to mainly larger systems whilst ignoring smaller building-scale units, which can
significantly benefit from the use of optimally designed, low concentrating, non-imaging optical
reflectors. A solar absorption chiller system designed to provide year-round space cooling for a
typical primary health care facility in Cairo, Egypt, was designed to match local ambient, solar, and
occupancy conditions, its performance simulated and then optimized to minimize auxiliary power
consumption using the TRNSYS18 software, TRNOPT. Different configurations of collector types,
array areas, storage sizes and collector slopes were used to determine the optimum specifications for
the system components. Non-concentrating Evacuated Tube Collectors (ETCs) were compared with
the same Evacuated Tube Collectors but integrated with external Compound Parabolic Concentrators
(CPCs) with a geometric concentration ratio of 1.5X for supplying thermal energy to the single-effect
absorption chiller investigated. This paper describes a user-friendly methodology developed for the
design of solar heat-powered absorption chillers for small buildings using TRNSYS18 employing the
Hookes–Jeeves algorithm within the TRNOPT function. Clear steps to avoid convergence problems
when using TRNSYS are articulated to make repeatability for different systems and locations more
straightforward. Collector array areas were varied from 30 m2 to 160 m2 and the size of the water-
based thermal storage from 1 m3 to 3 m3 to determine the configuration that can supply the maximum
solar fraction of the building’s cooling requirements for the lowest lifetime cost. The optimum solar
fraction for ETCs and CPCs was found to be 0.66 and 0.94, respectively. If the current air conditioning
demand is met through adoption of the CPC-based solar absorption systems this can potentially save
the emission of 3,966,247 tCO2 per annum.

Keywords: solar absorption chillers; Compound Parabolic Concentrator (CPC); health care centres;
solar thermal; TRNSYS

1. Introduction

Vapour absorption chillers (VACs) convert heat supplied from solar thermal collector
arrays into cooling, differing from vapour compression systems in that the electricity driven
compressor is replaced by a thermal energy run generator and an absorber. Annually, out
of the total electricity generated across the globe, 15% is used for space cooling of build-
ings mainly using vapour compression systems [1]. These systems use refrigerants such
as water or ammonia that are well-known to be more environmentally benign than the
chloro-fluoro-carbons and hydro-chlorofluorocarbons used in vapour compression cycles.
Even the newer refrigerants hitherto believed as benign are reported to also be environmen-
tally degrading [2], stressing the long-term risk associated with using vapour compression
systems even if one uses renewable electricity to run them. Absorption-based systems
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also benefit from the fact that there is an increase in cooling demands as solar radiation
levels increase, reducing the need for energy storage resulting in more cost-effective solar
energy systems. The adoption of solar VAC systems is crucial in reducing air pollution
for countries with a high annual solar resource such as Egypt, where the capital city Cairo
is subject to 2030 kWh/m2/year of global solar irradiance, urban air quality is low and
current reliance on fossil fuel inputs is high. Egypt has a population of almost 96 million
and since 2007 has suffered from an energy deficit; annual consumption of electricity has
more than doubled since 2000, and in 2017 consumption was 1.94 MWh/capita [3]. It
was reported that total electricity consumed in 2017 in Egypt was 159,343 GWh with air
conditioning consuming 5% of this [4]. The Grid Emission Factor (GEF) for Egypt in 2020
was measured as 0.533 tCO2/MWh [5].

In solar absorption systems, the cycle is primarily driven by thermal energy with
only a small quantity of mechanical energy required. A secondary fluid in addition to
the refrigerant, known as an absorbent, is needed to absorb refrigerant vapour, allowing
pressure increases using a pump rather than a compressor which requires a greater work
input. This means that low grade heat sources such as solar energy can be used to power the
system and with suitable thermal energy storage, such systems can provide both heating
and cooling for buildings. VAC systems require higher delivery temperatures compared
with domestic hot water or space heating so solar Evacuated Tube Collectors (ETCs) and
Compound Parabolic Concentrators (CPCs) are the best option.

A lot is known about ETCs which are commercially available. In 2020, 491.9 million m2 of
Evacuated Tube Collectors were in operation, globally producing 344 GWth [6]. Researchers
such as Winston [7], Rabl [8], and Singh and Eames [9] have been long investigating low
concentrating solar collectors such as CPCs; however, these designs are not readily available
commercially. Some prototype CPC systems have been tested and the results reported [10–13].
Specially designed CPC or similar collectors have been reported or under investigation
by several public funded projects such as NoNSToP [14] and InSET4KTI [15]. Previous
research [16,17] has shown CPCs are advantageous for installation onto buildings as these
are more compact. The CPC described by [12] had an efficiency of 60% at an operating
temperature of 100 ◦C.

Currently (2022) single, double, and triple effect VAC configurations are available
commercially. The number of effects in an absorption chiller is the number of times that
heat is reused to provide cooling, more effects increase COP, but require higher firing
temperatures and increased cycle complexity.

A review of previous research concerning the use of concentrating solar collectors
for driving absorption and adsorption cooling cycles was presented by [18]. Absorption
chillers were described and classified by [19] on the basis of firing method, working fluid
pair, and number of effects. An experimental investigation and lifecycle analysis of a
23 kW solar absorption cooling system driven by a 54 m2 array of external Compound
Parabolic Concentrators (CPCs) solar collectors located in California, USA was presented
by [10]. Mean collector daily efficiency and solar COP were reported as 37.5% and 0.374,
respectively. This research considered two system configurations: The first sized the solar
system based on the peak cooling load and the second using 50% of the peak load with
additional cooling provided by a conventional vapour compression system. It was reported
that the second configuration had a lower present worth cost over its projected lifespan
compared with configuration 1 and a full capacity conventional vapour compression
system in providing cooling. Xu and Wang [20] simulated the performance of a solar
system using a variable effect lithium bromide absorption chiller using the Transient
System Simulation Tool (TRNSYS) software; the mean chiller and solar COP were reported
as 0.88 and 0.35, respectively. The cooling capacity of the absorption chiller was 50 kW,
collector array area (AC) was 200 m2 and the hot water storage tank had a volume of 3 m3.
TRNSYS is a graphics-based software environment using FORTRAN 90 as the source code
to numerically model and integrate dynamic systems [21], particularly those powered from
variable renewable energy sources [22].
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Khan et al. [23] used TRNSYS to investigate a single-effect solar absorption cooling
system (298 kW cooling capacity) using the type 107 subroutine of a single-effect absorption
chiller which provided space cooling to an educational building in Islamabad, Pakistan,
drawing heat from flat plate or evacuated tube solar collectors. The system simulation
used simplifying assumptions ignoring energy losses from the pipework, had no cooling
tower, and did not consider the impact of the working fluid boiling or freezing. The authors
themselves stated that this would lead to artificially high predicted values. The energy
usage patterns used did not consider the building configuration nor the impacts of human
occupancy. This investigation artificially generated building energy demand profiles using
the TRNSYS subroutine type 682, the authors claimed that calculating realistic building
loads was too time consuming. The research presented here clearly shows that this is
not the case, providing a list of the information required to develop accurate simulations
including energy losses and using a cooling tower to improve the design process.

Ibrahim, et al. [24] undertook a parametric analysis of a double-effect solar absorption
chiller reference system with a solar collector area of 1350 m2 and cooling capacity 1163 kW
operating in Kuala Lumpur, Malaysia. A design tool was provided requiring a minimum
incident radiation level of 500 W/m2.

Published research has primarily focused on VACs serving large buildings using
assumed cooling loads. There is no research reporting the air conditioning of the smaller
health centres that provide primary medical care to billions around the world and are
critically important in the global fight against diseases such as COVID-19, Tuberculosis,
and Malaria. These health care centres often have no access to a stable power supply;
thus, this research describes an opportunity for the development of autonomous small
scale solar vapour absorption chillers for delivering, the indoor thermal comfort and air
quality conditions required. If the UN sustainability development goals of “no poverty”,
“good health and wellbeing”, “gender equality”, “affordable and clean energy”, “industry
innovation and infrastructure”, “reduced inequalities”, “sustainable cities and communi-
ties”, “responsible consumption and production”, and “climate action,” are to be met, it
is critical to deliver zero carbon health care centres in all parts of the globe. The biggest
energy load for these health care centres is the provision of space cooling [25]. The World
Health Organisation (WHO), in 2021 found that increased provision of primary health care
facilities to low- and middle-income countries has the potential to save 60 million lives by
2030. Currently, 930 million people globally face medical expenses equalling 10% of their
household income [26]. A survey of 50 sub-Saharan countries reported that currently there
are 98,745 health care centres [27]. Solar energy is the only renewable energy source that
can provide a truly zero carbon energy source for use in remote health care centres catering
to millions. Biofuel-based solutions such as that proposed by [28] providing heat at 121 ◦C
for an autoclave face several environmental and other social challenges.

Before TRNSYS simulations are executed, more detailed background information is
needed and described by the new research methodology proposed in this paper. This
research differs from previously reported studies as the annual energy demands for space
conditioning of a smaller building, i.e., a Primary Health Care Centre (PHCC) is modelled
using the multi zone building subroutine (type 56) in TRNSYS employing representative
occupancy patterns to provide a more accurate estimate of the cooling load required based
on specific local climatic conditions and building properties. This method can then be
readily adaptable for any geographic location enabling other TRNSYS users to more rapidly
develop their own building integrated absorption chilling models.

Published research on VACs has mainly focused on larger buildings using assumed
cooling loads. There is no research reporting the air conditioning requirements of the
smaller health centres that provide primary medical care to billions around the world and
are critically important in the global fight against diseases such as COVID-19, Tuberculosis,
and Malaria. These health care centres often have no access to a stable power supply;
thus, this research describes a procedure for developing more accurate simulations of
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autonomous small scale solar vapour absorption chillers for delivering minimum indoor
thermal comfort and air quality conditions.

This research differs from previously reported studies as the annual energy demands
for space conditioning of a smaller building, i.e., a Primary Health Care Centre (PHCC)
is modelled using the multi zone building subroutine (type 56) in TRNSYS employing
representative occupancy patterns to provide a more accurate estimate of the cooling load
required based on local climatic conditions and building properties. This method can be
readily adaptable for any geographic location enabling other TRNSYS users to more rapidly
develop their own building integrated solar driven vapour absorption chilling models.

This manuscript provides new information on the optimisation of CPC and ETC-based
solar thermal collector systems and storage tanks for driving a single-effect VAC under
the climatic conditions of Egypt. Information of how linearly focussing, non-imaging,
stationary systems operate for small-scale localised applications is needed by designers to
develop accurate computer simulations using the type 56 multi zone building subroutine,
for either new build or building retrofit applications to provide space cooling from solar
energy using TRNSYS. Solar technology design is determined by location and building-use
specific factors such as occupancy, building standards, and typical working hours; this
research lists the additional data required to account for local variations describing each step
of the proposed methodology. This would allow more rapid design of off grid PHCCs to
achieve energy autonomy helping preserve medicines or vaccinations, which are essential
health care products. Originally, an experimental prototype was to be installed in Cairo
for real life data collection, which could not happen due to the COVID-19 pandemic. To
overcome this seemingly insurmountable barrier, a building was designed in the virtual
environment of TRNSYS using local building standards, materials, and energy profiles
to make the simulation as accurate a representation as possible. This work shows that
a highly detailed model can be developed in a simple straightforward way by using
published data from scientific publications and technical manuals. Typical metrological
year (TMY) data provided in TRNSYS representing local weather conditions used to enable
a realistic and long-term technological performance and economic evaluation. By using
an appropriately modified type 56 subroutine, TRNSYS can simulate down to 1 s time
intervals the three-dimensional detailed interactions between the building elements (walls,
roof, floor, and windows), inclement weather, occupancy, and energy demand patterns.
TRNSYS optimisation tool (TRNOPT) was used to optimise the system components to
determine the most cost-effective design which provides the highest solar fraction of the
required cooling loads for the specified building.

2. Description of the Building and Local Climate

PHCCs provide a first level of health care service and priority health interventions for
low-income populations [29]. A building housing a three room PHCC was designed using
data collected from several sources [29–31]. Figure 1 shows the layout of the proposed
PHCC which has a reception, doctor’s surgery/treatment room, and a room for storing
vaccines or other medical supplies.

Cairo (Egypt) has a hot desert climate where peak temperatures in summer reach
39.2 ◦C and in winter fall to 2.7 ◦C. TRNSYS has a weather file for Cairo which provided
information on monthly solar radiation, ambient temperature, and can predict the likely
roof surface temperature of the PHCC for a complete year as shown in Figure 2. As per
CIBSE design recommendations a PHCC should have an internal temperature ranging
from 19 ◦C to 24 ◦C depending on what the rooms are used for [32]. Using 22 ◦C as a
standard indoor space temperature for the comfort of patients and staff, the PHCC in Cairo
requires heating and/or cooling as shown.
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Figure 1. Layout and geometric details of the PHCC studied.

Sustainability 2022, 14, x FOR PEER REVIEW 5 of 18 
 

 

Figure 1. Layout and geometric details of the PHCC studied. 

Cairo (Egypt) has a hot desert climate where peak temperatures in summer reach 

39.2 °C and in winter fall to 2.7 °C. TRNSYS has a weather file for Cairo which provided 

information on monthly solar radiation, ambient temperature, and can predict the likely 

roof surface temperature of the PHCC for a complete year as shown in Figure 2. As per 

CIBSE design recommendations a PHCC should have an internal temperature ranging 

from 19 °C to 24 °C depending on what the rooms are used for [32]. Using 22 °C as a 

standard indoor space temperature for the comfort of patients and staff, the PHCC in 

Cairo requires heating and/or cooling as shown. 

 

Figure 2. Total monthly average global solar irradiation, average ambient and roof surface temper-

atures of the modelled building in Cairo; adapted from the Metronome dataset available within 

TRNSYS. 

0

10

20

30

40

50

60

70

80

90

0

5

10

15

20

25

30

35

40

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

M
o
n

th
ly

 g
lo

b
al

 s
o
la

r 
ir

ra
d
ia

ti
o

n

(k
W

h
/m

2
)

M
o

n
th

ly
 a

v
er

ag
e 

te
m

p
er

at
u

re
 (

℃
)

Months

Global solar irradiation Ambient temperature

Figure 2. Total monthly average global solar irradiation, average ambient and roof surface temperatures
of the modelled building in Cairo; adapted from the Metronome dataset available within TRNSYS.

3. Methodology for Development

To investigate solar absorption cooling systems for PHCCs a building model in TRN-
build was developed and integrated in TRNSYS studio to calculate the buildings annual
and peak cooling demands. This was required to size the proposed solar VAC system. The
process followed, along with the system components used, are shown in Figure 3.
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3.1. Building Model Type 56

The building model was developed using the multizone building subroutine type
56 which can be readily modified in TRNbuild where the building details can be edited
to adopt specific building fabric characteristics and finally be integrated with other tech-
nologies within the TRNSYS studio. For the PHCC described by this research the building
materials and construction details were adopted from typical Egyptian building struc-
tures and occupancy patterns. These are described by the work of Radwan et al. [28] and
William et al. [30] and the values relevant to this investigation are shown in Appendix A
Tables A1 and A2.

The overall building heat loss coefficient (Ht) was calculated using Equations (1) and (2) [31].

Ht = ∑ A ∗ U (1)

where A is the area (m2) and U the thermal transmittance (W/m2K) of the building element.

Ht = A1U1 + A2U2 + A3U3 + A4U4 (2)

In Equation (2), subscripts 1, 2, 3, and 4 represent the external walls, windows, ground
floor, and roof, respectively. Using the data from Tables A1 and A2 in Appendix A, with
Equations (1) and (2), Ht was calculated as 768.7 W/K.

The type 56 module in TRNSYS can simulate differing rates of air leakages and venti-
lation in the building. The infiltration rates used in this study are shown in Appendix A,
Table A3.

The infiltration rate of the doctor’s room accounts for two persons in addition to
the doctor. TRNbuild calculates the heat gains/losses to the building from its occupants,
inclement weather, building material characteristics, and machinery during the simulation.
For the purposes of simulating occupancy, it was assumed that the PHCC was in operation
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6 days a week. The heat gains that influenced the building cooling load are detailed in
Appendix A Table A4.

Space Conditioning Demand for PHCC

The cooling/heating feature in TRNbuild allows the user to simulate a buildings
energy demand to maintain the required indoor temperature. CIBSE recommends the
temperature in health care centres is maintained between 19 ◦C and 24 ◦C depending on
the usage pattern [31]. To accommodate rooms with different purposes 22 ◦C was used
as the setpoint temperature to be maintained in the building in TRNbuild. Thus, in the
health care centre, the building cooling switches on when the room temperature exceeds
22 ◦C and switches off at 20 ◦C, a dead band of 2 ◦C was used to prevent hysteresis. All
simulations were carried out for one year using a one-minute time step. The parameters
selected from TRNbuild were used in to develop a solar driven VAC meeting the cooling
requirements of the PHCC.

Figure 4 shows the predicted monthly cooling and heating demand of the PHCC
estimated using the TRNSYS, the data used for this is shown in Appendix A Table A4.
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Figure 4. Monthly heating and cooling energy demand predicted for PHCC.

The energy demand is plotted with ambient temperature and surface temperature of
the roof of the PHCC, which was also predicted during the study. During the months of
December and January there was no cooling demand, February too was predicted to have
a negligible cooling demand. This can be confirmed with the positive heating demand in
the winter and spring seasons, i.e., from October to April. A significant cooling demand
existed from April to October with little demand existing even in the months of March
and November. The peak cooling demand of 11.6 kW for the PHCC investigated occurred
in July.

3.2. Solar Vapour Absorption Chiller Model

The solar absorption chiller system was then sized using the estimated cooling demand
of the PHCC described in Section 2 using the TRNbuild feature of TRNSYS for one year
under the climatic conditions of Cairo. A water-lithium bromide cycle-based chiller was
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used as previous research has reported that it is the most cost-effective cycle for solar
absorption chillers. Commercial small-scale absorption chillers are not very common,
the technical specifications for a commercially available lithium bromide single-effect
absorption chiller (35.2 kW) are shown in Appendix A Table A5. The COP of the absorption
chiller at its rated output was calculated as 0.674, the peak cooling demand of the building
was shown to be 11.6 kW in Section 2 implying that a system to meet this demand would
require a rating cooling capacity of at least 18 kW. The output of the absorption chiller
shown in Appendix A Table A5 was scaled to meet the cooling demand of the PHCC
building, an absorption chiller size of 20 kW was chosen to ensure a small safety margin
of just over 10%. The TRNSYS type 107 hot water-fired single-effect absorption chiller
was used. Table A6 in Appendix A shows the scaled values for chilled water, cooling
water, and hot water inputted to the model. Knowledge of these figures allowed the major
components of the system to be specified within the TRNSYS simulation.

Using the values from Appendix A in Table A6 the cooling coil (type 697), furnace
(type 700) for auxiliary power, and cooling tower (type 510) were sized. The hot water
storage tank volume (type 4), type of solar collector and area of collectors was varied as
part of this research. Hot water storage was varied from 1 m3 to 3 m3, collector type was
either ETC (type 71) or CPC (type 1245), collector area was varied from 20 m2 to 160 m2 for
ETC and 30 m2 to 80 m2 for CPC. The TRNSYS simulation diagram is shown in Figure 5.
The purpose of this was to determine the optimal area of solar collector needed in terms of
highest solar fraction and lowest economic cost.
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The other components used for this simulation were pumps (type 114), fans (type 112b),
pipework (type 31), air flow divertors (types 148a), Tee piece air flow mixer (type 148b), Tee
piece water flow mixer (type 11h), a temperature-controlled water flow divertor (type 11b),
and associated heating controls. To avoid issues with capacitance, pipework must be sized
to contain a sufficient volume of fluid over the timestep used in the simulation (1 minute).
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The annual energy supplied from the furnace, solar collector array and energy consumed
by the absorption chiller for cooling was calculated using the integrator function (type 24)
and print function (type 25). The solar fraction (SF), which represents the proportion of the
total cooling demand met through solar energy, was calculated using Equation (3).

SF =
solar energy supplied during cooling season

total cooling energy required
(3)

The total cost of solar cooling (CTC) was calculated from Equation (4).

CTC = Ac × Csc + CST × VST + L × QAX × CGE (4)

where Ac is the area of solar collector (m2), CSC the unit cost of the solar collector with
respect to aperture area (GBP/m2), CAE the unit cost of auxiliary energy (GBP/kWh), CST
the cost of hot water storage tank per unit volume (GBP/m3), VST the volume of hot water
storage (m3), L the assumed lifespan of the system (year), QAX the total annual auxiliary
energy required (kWh/year), and CGE the unit cost of grid electricity (GBP/kWh). Table 1
shows the values used for determining the cost of solar cooling over the system lifespan.

Table 1. Values used to calculate system lifespan costs.

Solar Collector Type Csc (GBP/m2) CST (GBP/m3) CGE (GBP/kWh) L (Year)

ETC 400 750 0.19 20

CPC 400 750 0.19 20

The aim of estimating the cost of generating solar energy was to determine what
solar fraction of the energy demand results in the lowest lifetime cost of the solar energy
systems investigated. This was carried out by first determining the optimum volume of the
hot water storage tank in terms of economic cost using Equation (4) following which the
maximum solar fraction that could be attained for the minimum cost was calculated.

4. Results and Analyses

From the methodology described in Section 3 the optimal configuration of a single-effect
hot water-fired lithium bromide-water VAC system was derived in terms of collector type,
hot water storage volume, collector area, lifetime cost, and annual solar fraction using the
results collected from TRNSYS simulations. The collector array for ETCs and CPCs was
varied from 10 m2 to 160 m2, and 30 m2 to 100 m2, respectively. The volume of hot water
storage was varied from 1 m3 to 3 m3 in steps of 0.5 m3.

4.1. Design of the Solar Collector and the Chiller System Components

The relationship between collector area, volume of energy storage, and solar fraction
for ETCs and CPCs is shown in Figures 6 and 7, respectively.

From Figures 6 and 7 the greatest influence on the annual solar fraction is the installed
area of collector. The volume of energy storage has minimal effect on the annual solar
fraction but does have an impact on the cost of solar energy over the system lifetime
The peak load on the system coincides with the peak supply of solar radiation which
explains why energy storage has a minimal effect on solar fraction supplied towards
cooling. Figures 8 and 9 show the relationship between installed collector area, volume of
energy storage, and lifetime system calculated cost for ETCs and CPCs, respectively.

Figures 8 and 9 clearly show that for both types of solar collectors an energy storage
volume of 3 m3 is the more cost-effective choice for collector array areas greater than 62 m2

and 37 m2 for ETCs- and CPCs-based VACs, respectively.
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Figure 6. Installed area of collector and predicted annual solar fraction for ETCs.
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Figure 9. Installed area of collector and lifetime system cost for CPCs.

4.2. Cost and Savings from Optimal Solar Collector Configurations Investigated

To determine the optimal configuration (maximum solar fraction and minimum life-
time cost) for an ETC and CPC collector array integrated with a 3 m3 hot water storage
tank the relationship between solar fraction and the lifetime cost was determined as shown
in Figure 10.
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Figure 10. Lifetime cost of solar energy system and solar fraction.

From Figure 10 the data shown for the solar fractions and the lifetime cost of the solar
energy systems was correlated using MS Excel. The derived second order polynomials
were used to predict the optimal solar fractions for ETCs and CPCs as 0.661 and 0.938,
respectively, these are shown in Equations (5) and (6), respectively.

CSC = 357910x2 − 473243x + 549658 (5)

CSC = 239066x2 − 448371x + 554770 (6)

Using the correlations between solar fraction and the lifetime costs of solar energy
shown in Equations (5) and (6) the cost of an optimised ETC and CPC VAC system was
calculated as 393,223 GBP, 344,539 GBP, respectively. The linear relationship between
collector area and solar fraction is shown in Figure 11.
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As observed in Figure 11 the required collector area for these optimal solar fractions
exhibits a strong positive linear correlation between area and solar fraction.

From Figure 11 the relationship derived between area and solar fraction can be corre-
lated with a certainty greater than 0.99 for both types of solar collectors. The area required
to meet the solar fractions for ETCs and CPCs was calculated using Equations (7) and (8),
respectively, where x is the area of collector, both of these were derived from the linear
correlations shown in Figure 11.

SFETC = 0.0051x + 0.0531 (7)

SFCPC = 0.0115x + 0.0154 (8)

For ETCs and CPCs the optimal area required was calculated using Equations (7) and (8)
as 119 m2 and 80 m2, respectively. It is seen in Appendix A from Table A5, in the months of
December, January, and February that there is a significant demand for heating energy. The
thermal output of the solar collectors can be used to meet this demand to further augment
the cost of the solar VAC system and increase the amount of CO2 emissions displaced. For
the PHCC investigated, CPC solar collectors with an optimal area of 80 m2 were predicted
to save 1756 GBP/year and reduce 4925 kgCO2/year.

The optimal system sizes for both ETC and CPC collector driven VAC systems were
then employed to make some deductions on the likely energy and carbon impact of
increased uptake of solar VAC systems in Egypt. The configuration, collector array area
(Ac), solar fraction (SF), annual useful energy output of the solar collector array (Qu),
lifetime costs, and lifetime savings of the optimal solar VAC system calculated from the
TRNSYS simulations are shown in Table 2.

Table 2. Array size and Houtputs for optimized solar cooling systems.

Solar Collector
Type

Ac
(m2)

SF
(%)

Qu
(kWh/Year)

Qu/m2

(kWh/Year/m2)
Lifetime Costs

(GBP)
Lifetime Savings

(GBP)

ETC 119 0.67 69,017 580 394,284 262,265

CPC 80 0.94 96,564 1207 344,127 366,944

The advantages of using CPC solar collectors to drive hot water-fired absorption
cooling systems compared with ETCs is clearly observed in Table 2. The optimal CPC-based
system requires an aperture area 32.7% lower than the ETC, has a solar fraction 26.6% higher,
generates 1.4 times more useful energy per annum, has a lifetime cost 14.5% lower and a
lifetime saving 28.5% higher than the optimal sized ETC-based system.

4.3. Carbon Reduction Impact of the Optimal System

Egypt has a GEF of 0.533 tCO2/MWh, and annually consumes 7967.2 GWh of electric-
ity for air conditioning within buildings [5]. From Table 2 each square meter of aperture
generates 1.21 MWh which results in a carbon saving of 0.645 tonnes so each similar sized
system installed could save 51.6 tonnes per annum.

4.4. Results Summary

These results clearly show how weather, building materials, occupancy patterns,
energy demand variations, and solar insolation affect the design specifications of the
solar absorption chillers for small scale buildings. This indicates the inaccuracies caused
by using the over simplifying assumptions described by previous studies. The effect
of three-dimensional building elements’ orientations and sizes, building materials and
the weather, as well as occupancy and energy demand patterns were determined and
presented. The optimum design features of the system components required for this
particular application were identified using the TRNOPT subroutine. The results are



Sustainability 2022, 14, 11549 14 of 17

presented using visual tools, figures, graphs, and tables. Table 3 summarises the difference
between this investigation with previous studies.

Table 3. Comparison of this investigation with previous studies.

Study Chiller Size
(kW)

Solar Collector
Area (m2) Mode of Study Solar Collector Type Climate Optimisation Technique

[10] 23 54 Experimental CPC Mediterranean/USA None used

[18] NA NA Review (theoretical)

Parabolic Trough
Collector, CPC, Parabolic

Dish Concentrator,
Linear Fresnel Reflector

NA None used

[20] 50 200
Artificial neural

network and TRNSYS
type12c

CPC Steady state Yes

[23] 298 2050/1650
Artificially simulated
cooling load (TRNSYS

type 686)
Flat Plate Collector, ETC Humid subtropical

climate/Pakistan Yes, graphical curve fitting

[24] 1163 1350
Simulation using

Engineering Equation
Solver

Parabolic Trough
Collector

Tropical/Kuala
Lumpur Malaysia

Yes, graphical curve
fitting/genetic algorithm

[32] 4 27 Experimental CPC Subtropical/Guangzhou
China None used

Current Study 35.2 119 (ETC) and
80 (CPC)

Simulation using
TRNSYS18 and

multizone building
type 56

ETC and CPC Desert/Helwan
Cairo Egypt

Yes, TRNOPT using
Hookes–jeeves Algorithm

5. Conclusions

The proposed building design methodology using TRNSYS 18 software was described
in more detail than the presently available published literature and training manuals.
The optimal aperture area for ETC and CPC-based systems used to cool a building in
Cairo, Egypt, was calculated using the TRNSYS simulation developed using the method
described by this research as 119 m2 and 80 m2, respectively. With an annual consumption
of 7967.2 GWh currently used for air conditioning in Egypt and presuming that 94%
(maximum SF of optimised CPC-based absorption chiller) of this can be met using solar
cooling, then 7441 GWh of grid electricity can be displaced, saving 3,966,247 tCO2/year. The
design technique described by this research is easily adaptable and modified by selecting
the appropriate weather file available in the TRNSYS database to design for countries with
a similar solar resource such as those in North Africa, the Middle East, sub-Saharan Africa,
South America, and South Asia.
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Appendix A

Table A1. Building materials and construction details employed.

Building Element Material Equivalent in TRNbuild Total Thickness
(m)

Total Area
(m2)

U Value
(W/m2K)—TRNbuild Data

External Walls 203 mm common brick + 13 mm
plaster gypsum 0.216 205 2.056

Roof

Concrete 180 mm + Cement mortar
20 mm + Mineral wool 20 mm +
Sand Gravel 50 mm + Gypsum

mortar 25 mm + Tile 30 mm

0.325 225 1.021

Floor 25 mm Stone + Insulation 76 mm +
Concrete 102 mm 0.203 225 0.497

Glazing type Single pane window (6 mm,
g-value 0.823) 0.006 1 5.69

Table A2. Air infiltration rates for each room.

Room Infiltration Type Litre/Hour

Doctor South 0.56

Reception North 0.5

Store North 0.5

Table A3. Gain types from human activities adapted from TRNbuild data.

Gain Type Name, Description, Category, and Mode Radiative (kJ/h) Convective (kJ/h) Absolute Humidity (kg/h) Room

Activity level IV (moderately active office work), 24
◦C room dry bulb temperature, person, absolute gain 156.6 113.4 0.081 Doctor

Activity level I (reclining), 22 ◦C room air
temperature, person, absolute gain 139.32 139.32 0.035 Doctor

Activity level IV (standing, medium activity), 22 ◦C
room air temperature, person, absolute gain 212.04 212.04 0.1288 Reception

Light_10 W/m2: Light source with heat flow 10
W/m2, 40% convective, electrical equipment, gain

related to reference floor area
21.6 14.4 0 Doctor, Reception, Store

SIA_2024_Dev_32 office: Area related equipment
heat gain 7.2 28.8 0 Doctor

SIA_2024_Occ_22reception: Area related heat and
moisture gain by people 25.2 25.2 0.016 Reception

Freezer: Freezer to store vaccine, absolute gain 0 1500 0 Store

Activity level IV (moderately active office work), 24
◦C room dry bulb temperature, person, absolute gain 156.6 113.4 0.081 Doctor

Activity level I (reclining), 22 ◦C room air
temperature, person, absolute gain 139.32 139.32 0.035 Doctor

Activity level IV (standing, medium activity), 22 ◦C
room air temperature, person, absolute gain 212.04 212.04 0.1288 Reception

Light_10 W/m2: Light source with heat flow 10
W/m2, 40% convective, electrical equipment, gain

related to reference floor area
21.6 14.4 0 Doctor, Reception, Store

SIA_2024_Dev_32 office: Area related equipment
heat gain 7.2 28.8 0 Doctor

SIA_2024_Occ_22reception: Area related heat and
moisture gain by people 25.2 25.2 0.016 Reception

Freezer: Freezer to store vaccine, absolute gain 0 1500 0 Store
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Table A4. Monthly cooling and heating demand for PHCC to maintain 22 ◦C.

Month Cooling Demand
(kWh)

Heating Demand
(kWh)

Monthly Global Solar Irradiation
(kWh/m2)

January 0 3723 42

February 8 2459 48

March 250 1433 69

April 1461 188 76

May 3241 16 79

June 4601 0 73

July 5123 0 77

August 4865 0 73

September 3593 0 63

October 2109 58 55

November 166 1039 46

December 0 3095 41

Table A5. Specifications of a typical 35.2 kW capacity commercial VAC.

Mass Flow
Rate (kg/s)

Inlet
Temperature (◦C)

Outlet
Temperature (◦C)

Energy
(kW)

Chilled water 1.667 12 7 34.82

Cooling water 7.222 32 35 90.52

Hot water 2.472 90 85 51.64

Table A6. Scaled technical specifications for a 20kW chiller.

Mass Flow Rate
(kg/s)

Inlet Temperature
(◦C)

Outlet Temperature
(◦C)

Output
(kW)

Chilled water 0.957 12 7 20.01

Cooling water 4.148 32 35 52.02

Hot water 1.420 90 85 29.68
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