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Abstract

Let X1,X2, . . . be independent identically distributed random points in a convex

polytopal domain A ⊂ Rd. Define the largest nearest neighbour link Ln to be the

smallest r such that every point of Xn := {X1, . . . ,Xn} has another such point within

distance r. We obtain a strong law of large numbers for Ln in the large-n limit.

A related threshold, the connectivity threshold Mn, is the smallest r such that the

random geometric graph G(Xn,r) is connected. We show that as n → ∞, almost

surely nLd
n/ log n tends to a limit that depends on the geometry of A, and nMd

n/ log n

tends to the same limit.

1 Introduction

This paper is primarily concerned with the connectivity threshold and largest nearest-

neighbour link for a random sample Xn of n points specified compact region A in a d-

dimensional Euclidean space.

The connectivity threshold, here denoted Mn, is defined to be the smallest r such that

the random geometric graph G(Xn,r) is connected. For any finite X ⊂ Rd the graph

G(X ,r) is defined to have vertex set X with edges between those pairs of vertices x,y
such that ‖x− y‖ ≤ r, where ‖ · ‖ is the Euclidean norm. More generally, for k ∈ N, the

k-connectivity threshold Mn,k is the smallest r such that G(Xn,r) is k-connected (see the

definition in Section 2).
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The largest nearest neighbour link, here denoted Ln, is defined to be the the smallest

r such that every vertex in G(Xn,r) has degree at least 1. More generally, for k ∈ N with

k < n, the largest k-nearest neighbour link Ln,k is the smallest r such that every vertex

in G(Xn,r) has degree at least k. These thresholds are random variables, because the

locations of the centres are random. We investigate their probabilistic behaviour as n

becomes large.

We shall derive strong laws of large numbers showing that that nLd
n,k/ logn converges

almost surely (as n → ∞) to a finite positive limit, and establishing the value of the limit.

Moreover we show that nMd
n,k/ logn converges to the same limit. These strong laws carry

over to more general cases where k may vary with n, and the distribution of points may

be non-uniform. We give results of this type for A a convex polytope.

Previous results of this type (both for Ln,k and for Mn,k) were obtained for A having a

smooth boundary, and for A a d-dimensional hypercube; see [5]. It is perhaps not obvious

from the earlier results, however, how the limiting constant depends on the geometry of

∂A, the topological boundary of A, for general polytopal A, which is quite subtle.

It turns out, for example, that when d = 3 and the points are uniformly distributed

over a polyhedron, the limiting behaviour of Ln is determined by the angle of the sharpest

edge if this angle is less than π/2. We believe (but do not formally prove here) that if

this angle exceeds π/2 then the point of Xn furthest from the rest of Xn is asymptotically

uniformly distributed over ∂A, but if this angle is less than π/2 the location of this point in

is asymptotically uniformly distributed over the union of those edges which are sharpest.

Our motivation for this study is twofold. First, understanding the connectivity thresh-

old in dimension two is vital in telecommunications, for example, in 5G wireless net-

work design, with the nodes of Xn representing mobile transceivers (see for example

[1]). Second, detecting connectivity is a fundamental step for detecting all other higher

dimensional topological features in modern topological data analysis (TDA), where the

dimension of the ambient space may be very high. See [2, 3] for discussion of issues

related to the one considered here, in relation to TDA. General motivation for considering

random geometric graphs is discussed in [5].

While our main results are presented (in Section 2) in the concrete setting of a poly-

topal sample in Rd , our proofs proceed via general lower and upper bounds (Propositions

3.2 and 3.6) that are presented in the more general setting of a random sample of points

in a metric space satisfying certain regularity conditions. This could be useful in pos-

sible future work dealing with similar problems for random samples in, for example, a

Riemannian manifold with boundary, a setting of importance in TDA.
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2 Statement of results

Throughout this paper, we work within the following mathematical framework. Let d ∈N.

Suppose we have the following ingredients:

• A finite compact convex polytope A ⊂ Rd (i.e., one with finitely many faces).

• A Borel probability measure µ on A with probability density function f .

• On a common probability space (S,F ,P), a sequence X1,X2, . . . of independent

identically distributed random d-vectors with common probability distribution µ ,

and also a unit rate Poisson counting process (Zt , t ≥ 0), independent of (X1,X2, . . .)
(so Zt is Poisson distributed with mean t for each t > 0).

For n ∈ N, t > 0, let Xn := {X1, . . . ,Xn}, and let Pt := {X1, . . . ,XZt
}. These are the

point processes that concern us here. Observe that Pt is a Poisson point process in Rd

with intensity measure tµ (see e.g. [4]).

For x ∈ Rd and r > 0 set B(x,r) := {y ∈ Rd : ‖y− x‖ ≤ r}. For r > 0, let A(r) := {x ∈
A : B(x,r)⊂ Ao}, the ‘r-interior’ of A.

For any point set X ⊂ Rd and any D ⊂ Rd we write X (D) for the number of points

of X in D, and we use below the convention inf(∅) :=+∞.

Given n,k ∈ N, and t ∈ (0,∞), define the largest k-nearest neighbour link Ln,k by

Ln,k := inf({r > 0 : Xn(B(x,r))≥ k+1 ∀x ∈ Xn}). (2.1)

Set Ln := Ln,1. Then Ln is the largest nearest-neighbour link.

We are chiefly interested in the asymptotic behaviour of Ln for large n. More generally,

we consider Ln,k where k may vary with n.

Let θd := πd/2/Γ(1+ d/2), the volume of the unit ball in Rd . Given x,y ∈ Rd , we

denote by [x,y] the line segment from x to y, that is, the convex hull of the set {x,y}.

Given m ∈ N and functions f : N∩ [m,∞)→ R and g : N∩ [m,∞)→ (0,∞), we write

f (n) = O(g(n)) as n → ∞, if limsupn→∞ | f (n)|/g(n) < ∞. We write f (n) = Ω(g(n))
as n → ∞ if liminfn→∞( f (n)/g(n)) > 0. Given s > 0 and functions f : (0,s) → R and

g : (0,s) → (0,∞), we write f (r) = O(g(r)) as r ↓ 0 if limsupr↓0 | f (r)|/g(r) < ∞. We

write f (r) = Ω(g(r)) as r ↓ 0, if liminfr↓0( f (r)/g(r))> 0.

Throughout this section, assume we are given a constant β ∈ [0,∞] and a sequence

k : N→ N with

lim
n→∞

(k(n)/ logn) = β ; lim
n→∞

(k(n)/n) = 0. (2.2)
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We make use of the following notation throughout:

f0 := ess infx∈A f (x); f1 := inf
x∈∂A

f (x); (2.3)

H(t) :=

{

1− t + t logt, if t > 0

1, if t = 0.
(2.4)

Observe that −H(·) is unimodal with a maximum value of 0 at t = 1. Given a ∈ [0,∞),
we define the function Ĥa : [0,∞)→ [a,∞) by

y = Ĥa(x)⇐⇒ yH(a/y) = x, y ≥ a,

with Ĥ0(0) := 0. Note that Ĥa(x) is increasing in x, and that Ĥ0(x) = x and Ĥa(0) = a.

Throughout this paper, the phrase ‘almost surely’ or ‘a.s.’ means ‘except on a set of

P-measure zero’. For n ∈ N, we use [n] to denote {1,2, . . . ,n}. We write f |A for the

restriction of f to A.

Let Φ(A) denote the set of all faces of the polytope A (of all dimensions up to d −1).

Also, let Φ∗(A) := Φ(A)∪{A}; it is sometimes useful for us to think of A itself as a face,

of dimension d.

Given a face ϕ ∈Φ∗(A), denote the dimension of this face by D(ϕ). Then 0≤D(ϕ)≤
d, and ϕ is a D(ϕ)-dimensional polytope embedded in Rd . Let ϕo denote the relative

interior of ϕ , and set ∂ϕ := ϕ \ϕo (if D(ϕ) = 0 we take ϕo := ϕ). If D(ϕ)< d then set

fϕ := infx∈ϕ f (x), and if ϕ = A then set fϕ := f0.

Then there is a cone Kϕ in Rd such that every x ∈ ϕo has a neighbourhood Ux such

that A∩Ux = (x+Kϕ)∩Ux. Define the angular volume ρϕ of ϕ to be the d-dimensional

Lebesgue measure of Kϕ ∩B(o,1).
For example, if ϕ = A then ρϕ = θd . If D(ϕ) = d −1 then ρϕ = θd/2. If D(ϕ) = 0

then ϕ = {v} for some vertex v ∈ ∂A, and ρϕ equals the volume of B(v,r)∩A, divided

by rd , for all sufficiently small r. If d = 2, D(ϕ) = 0 and ωϕ denotes the angle subtended

by A at the vertex ϕ , then ρϕ = ωϕ/2. If d = 3 and D(ϕ) = 1, and αϕ denotes the angle

subtended by A at the edge ϕ (which is the angle between the two boundary planes of A

meeting at ϕ), then ρϕ = 2αϕ/3.

Theorem 2.1. Suppose A is a compact convex finite polytope in Rd . Assume that f |A is

continuous at x for all x ∈ ∂A, and that f0 > 0. Assume k(·) satisfies (2.2). Then, almost

surely,

lim
n→∞

nLd
n,k(n)/k(n) = max

ϕ∈Φ∗(A)

(

1

fϕ ρϕ

)

if β = ∞; (2.5)

lim
n→∞

nLd
n,k(n)/ logn = max

ϕ∈Φ∗(A)

(

Ĥβ (D(ϕ)/d)

fϕ ρϕ

)

if β < ∞. (2.6)
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In the next three results, we spell out some special cases of Theorem 2.1.

Corollary 2.2. Suppose that d = 2, A is a convex polygon and f |A is continuous at x for

all x ∈ ∂A. Let V denote the set of vertices of A, and for v ∈ V let ωv denote the angle

subtended by A at vertex v. Assume (2.2) holds with β < ∞. Then, almost surely,

lim
n→∞

(

nL2
n,k(n)

logn

)

= max

(

Ĥβ (1)

π f0
,
2Ĥβ (1/2)

π f1
,max

v∈V

(

2β

ωv f (v)

)

)

. (2.7)

In particular, for any constant k ∈ N, limn→∞

(

nπL2
n,k

logn

)

= 1
f0
.

Corollary 2.3. Suppose d = 3 (so θd = 4π/3), A is a convex polyhedron and f |A is

continuous at x for all x ∈ ∂A. Let V denote the set of vertices of A, and E the set of edges

of A. For e ∈ E, let αe denote the angle subtended by A at edge e, and fe the infimum of f

over e. For v ∈ V let ρv denote the angular volume of vertex v. Suppose (2.2) holds with

β < ∞. Then, almost surely,

lim
n→∞

(

nL3
n,k(n)

logn

)

= max

(

Ĥβ (1)

θ3 f0
,
2Ĥβ (2/3)

θ3 f1
,

3Ĥβ (1/3)

2mine∈E(αe fe)
,max

v∈V

(

β

ρv f (v)

)

)

.

In particular, if β = 0 the above limit comes to max
(

3
4π f0

, 1
π f1

,maxe∈E

(

1
2αe fe

))

.

Corollary 2.4 ([5]). Suppose A = [0,1]d, and f |A is continuous at x for all x ∈ ∂A. For

1 ≤ j ≤ d let ∂ j denote the union of all (d − j)-dimensional faces of A, and let f j denote

the infimum of f over ∂ j. Assume (2.2) with β < ∞. Then

lim
n→∞

(

nLd
n,k(n)

logn

)

= max
0≤ j≤d

(

2 jĤβ (1− j/d)

θd f j

)

, a.s. (2.8)

It is perhaps worth spelling out what the preceding results mean in the special case

where β = 0 (for example, if k(n) is a constant) and also µ is the uniform distribu-

tion on A (i.e. f (x) ≡ f0 on A). In this case, the right hand side of (2.6) comes to

maxϕ∈Φ∗(A)
D(ϕ)

(d f0ρϕ )
. The limit in (2.7) comes to 1/(π f0), while the limit in Corollary

2.3 comes to f−1
0 max[1/π ,maxe(1/(2αe))].

So far we have only presented results for the largest k-nearest neighbor link. A closely

related threshold is the k-connectivity threshold defined by

Mn,k := inf{r > 0 : G(Xn,r) is k-connected},
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where a graph G of order n is said to be k-connected (k < n) if G cannot be disconnected

by the removal of at most k − 1 vertices. Set Mn,1 = Mn. Then Mn is the connectivity

threshold.

Notice that for all k,n with k < n we have

Ln,k ≤ Mn,k. (2.9)

Indeed, if r < Ln,k, then there exists i ∈ [n] such that degXi < k in G(Xn,r). Then the

removal of all vertices adjacent to Xi disconnects G(Xn,r), implying that r < Mn,k. This

proves the claim.

Our second main result shows that (Mn,k/Ln,k)→ 1 almost surely as n → ∞. For this

result we need d ≥ 2.

Theorem 2.5. Suppose d ≥ 2. Suppose A is a compact convex finite polytope in Rd .

Assume that f |A is continuous at x for all x ∈ ∂A, and that f0 > 0. Assume k(·) satisfies

(2.2) Then, almost surely,

lim
n→∞

nMd
n,k(n)/k(n) = max

ϕ∈Φ∗(A)

(

1

fϕρϕ

)

if β = ∞; (2.10)

lim
n→∞

nMd
n,k(n)/ logn = max

ϕ∈Φ∗(A)

(

Ĥβ (D(ϕ)/d)

fϕρϕ

)

if β < ∞. (2.11)

Remark 2.6. One can spell out consequences of Theorem 2.5 in dimensions d = 2,3 and

the case of [0,1]d with exactly the same statement as in Corollaries 2.2-2.4.

Remark 2.7. Theorems 2.1 and 2.5 extend earlier work found in [5] on the case where

A is the unit cube, to more general polytopal regions. The case where A has a smooth

boundary is also considered in [5] (in this case with also k(n) = const., the result was first

given in [6] for Ln,k and in [7] for Mn,k).

Remark 2.8. In [8], similar results are given for the k-coverage threshold Rn,k, which is

given by

Rn,k := inf{r > 0 : Xn(B(x,r))≥ k ∀x ∈ A} ; n,k ∈ N. (2.12)

Our results here, together with [8, Theorem 4.2], show that both Ln,k(n) and Mn,k(n) are

asymptotic to Rn,k(n) almost surely, as n → ∞.

3 Proofs

In this section we prove the results stated in Section 2. Throughout this section we are

assuming we are given a constant β ∈ [0,∞] and a sequence (k(n))n∈N satisfying (2.2).
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Recall that µ denotes the distribution of X1, and this has a density f with support A,

and that Ln,k is defined at (2.1). Recall that Ĥβ (x) is defined to be the y ≥ β such that

yH(β/y) = x, where H(·) was defined at (2.4).

For n ∈ N and p ∈ [0,1] let Bin(n, p) denote a binomial random variable with param-

eters n, p. Recall that H(·) was defined at (2.4), and Zt is a Poisson(t) variable for t > 0.

The proofs in this section rely heavily on the following lemma.

Lemma 3.1 (Chernoff bounds). Suppose n ∈ N, p ∈ (0,1), t > 0 and 0 ≤ k < n.

(a) If k ≥ np then P[Bin(n, p)≥ k]≤ exp(−npH(k/(np))).
(b) If k ≤ np then P[Bin(n, p)≤ k]≤ exp(−npH(k/(np))).
(c) If k ≥ e2np then P[Bin(n, p)≥ k]≤ exp(−(k/2) log(k/(np)))≤ e−k.

(d) If k < t then P[Zt ≤ k]≤ exp(−tH(k/t)).
(e) If k ∈ N then P[Zt = k]≥ (2πk)−1/2e−1/(12k) exp(−tH(k/t)).

Proof. See e.g. [5, Lemmas 1.1, 1.2 and 1.3].

3.1 A general lower bound

In this subsection we present an asymptotic lower bound on Ln,k(n), not requiring any

extra assumptions on A. In fact, A here can be any metric space endowed with a Borel

probability measure µ which satisfies the following for some ε ′ > 0 and some d > 0:

µ(B(x,r))≥ ε ′rd, ∀ r ∈ (0,1),x ∈ A. (3.1)

The definition of Ln,k at (2.1) carries over in an obvious way to this general setting.

Later, we shall derive the results stated in Section 2 by applying the results of this sub-

section to the different regions within A (namely interior, boundary, and lower-dimensional

faces).

Given r > 0,a > 0, define the ‘packing number’ ν(r,a) be the largest number m such

that there exists a collection of m disjoint closed balls of radius r centred on points of A,

each with µ-measure at most a.

Proposition 3.2 (General lower bound). Assume (3.1) with d,ε ′ > 0. Let a > 0,b ≥
0. Suppose ν(r,ard) = Ω(r−b) as r ↓ 0. Assume (2.2). Then almost surely, if β = ∞

then liminfn→∞

(

nLd
n,k(n)/k(n)

)

≥ 1/a. If β < ∞ then liminfn→∞

(

nLd
n,k(n)/ logn

)

≥

a−1Ĥβ (b/d), almost surely.

Proof. First suppose β = ∞. Let u ∈ (0,1/a). Set rn := (uk(n)/n)1/d
, n ∈ N. By

(2.2), rn → 0 as n → ∞. Then, given n sufficiently large, we have ν(rn,ard
n) > 0 so

we can find yn ∈ A such that µ(B(yn,rn)) ≤ ard
n , and hence nµ(B(yn,rn)) ≤ auk(n). If

7



k(n)≤ e2nµ(B(yn,rn)) (and hence nµ(B(yn,rn))≥ e−2k(n)), then since Xn(B(yn,rn)) is

binomial with parameters n and µ(B(yn,rn)), by Lemma 3.1(a) we have that

P[Xn(B(yn,rn))≥ k(n)] ≤ exp

(

−nµ(B(yn,rn))H

(

k(n)

nµ(B(yn,rn))

))

≤ exp
(

−e−2k(n)H
(

(au)−1
))

,

while if k(n)> e2nµ(B(yn,rn)) then by Lemma 3.1(c), P[Xn(B(yn,rn))≥ k(n)]≤ e−k(n).

Therefore P[Xn(B(yn,rn)) ≥ k(n)] is summable in n because k(n)/ logn → ∞ as n → ∞
by (2.2).

Let δ0 ∈ (0,1). By (3.1) µ(B(yn,δ0rn) ≥ ε ′δ d
0 uk(n)/n. Therefore by Lemma 3.1(b),

P[Xn(B(yn,δ0rn)) = 0]≤ exp(−ε ′δ d
0 uk(n)), which is summable in n.

Thus by the Borel-Cantelli lemma, almost surely event Fn := {Xn(B(yn,rn))< k(n)}∩
{Xn(B(yn,δ0rn)) > 0} occurs for all but finitely many n. But if Fn occurs then Ln,k(n) ≥

(1−δ0)rn so that nLd
n,k(n)/k(n)≥ (1−δ0)

du. This gives the result for β = ∞.

Now suppose instead that β < ∞. Suppose first that b = 0, so that Ĥβ (b/d) = β .

Assume that β > 0 (otherwise the result is trivial). Choose β ′ ∈ (0,β ). Let δ > 0 with

β ′ < β −2δ and with β ′H
(

β−2δ
β ′

)

> δ . This is possible because H(β/β ′)> 0 and H(·)

is continuous. For n ∈ N, set rn := ((β ′ logn)/(an))1/d. Also set k′(n) = ⌈(β −δ ) logn⌉,

and k′′(n) = ⌈(β −2δ ) logn⌉. By assumption ν(rn,ard
n) =Ω(1), so for all n large enough,

we can (and do) choose xn ∈A such that nµ(B(xn,rn))≤ nard
n = β ′ logn. Then by a simple

coupling, and Lemma 3.1(a),

P[Xn(B(xn,rn))≥ k′′(n)] ≤ P
[

Bin
(

n,(β ′ logn)/n)
)

≥ k′′(n)
]

≤ exp

(

−
(

β ′ logn
)

H

(

β −2δ

β ′

))

≤ n−δ .

Let δ ′ ∈ (0,1). By (3.1), for n large enough and all x ∈ A,

nµ(B(x,δ ′rn))≥ nε ′(δ ′rn)
d = ε ′(δ ′)d(β ′/a) logn

so that by Lemma 3.1(b), P[Xn(B(x,δ
′rn)) = 0]≤ n−ε ′(δ ′)dβ ′/a.

Now choose K ∈N such that δK > 1 and Kε ′(δ ′)dβ ′/a > 1. For n ∈N set z(n) := nK .

For all large enough n we have k′(z(n))≥ k′′(z(n+1)), so by the preceding estimates,

P[Xz(n+1)(B(xz(n+1),rz(n+1)))≥ k′(z(n))]

≤ P[Xz(n+1)(B(xz(n+1),rz(n+1)))≥ k′′(z(n+1))]≤ (n+1)−δK,

and since xz(n+1) ∈A, also P[Xz(n)(B(xz(n+1),δ
′rz(n)))= 0]≤ n−ε ′(δ ′)dβ ′K/a. Both of these

upper bounds are summable in n, so by the Borel-Cantelli lemma, almost surely for all

8



large enough n we have the event

{Xz(n+1)(B(xz(n+1),rz(n+1)))< k′(z(n))}∩{Xz(n)(B(xz(n+1),δ
′rz(n)))> 0}.

Suppose the above event occurs and suppose m ∈ N with z(n)≤ m ≤ z(n+1). Note that

rz(n+1)/rz(n) → 1 as n → ∞. Then, provided n is large enough,

Lm,k′(z(n)) ≥ rz(n+1)−δ ′rz(n) ≥ (1−δ ′)2rm,

and moreover k′(z(n))≤ k(m) so that Lm,k(m) ≥ (1−δ ′)2rm. Hence it is almost surely the

case that

liminf
m→∞

(mLd
m,k(m)/ logm)≥ (1−δ ′)2d liminf

m→∞
(mrd

m/ logm) = (1−δ ′)2da−1β ′,

and this yields the result for this case.

Now suppose instead that β < ∞ and b > 0. Let u ∈ (a−1β ,a−1Ĥβ (b/d)); note that

this implies uaH(β/(ua))< b/d. Choose ε > 0 such that (1+ε)uaH(β/(ua))< (b/d)−
9ε . Also let δ ′ ∈ (0,1).

For each n ∈ N set rn = (u(logn)/n)1/d . Let mn := ν(rn,ard
n), and choose xn,1, . . . ,

xn,mn
∈ A such that the balls B(xn,1,rn), . . . ,B(xn,mn

,rn) are pairwise disjoint and each have

µ-measure at most ard
n .

Set λ (n) := n+ n3/4 and λ−(n) := n− n3/4. For 1 ≤ i ≤ mn, if k(n) ≥ 1 then by a

simple coupling, and Lemma 3.1(e),

P[Pλ (n)(B(xn,i,rn))≤ k(n)]≥ P[Zλ (n)ard
n
≤ k(n)]

≥

(

e−1/(12k(n))

√

2πk(n)

)

exp

(

−λ (n)ard
nH

(

k(n)

λ (n)ard
n

))

.

Now λ (n)rd
n/ logn → u so by (2.2), k(n)/(λ (n)ard

n) → β/(ua) as n → ∞. Thus by the

continuity of H(·), provided n is large enough, for 1 ≤ i ≤ mn,

P[Pλ (n)(B(xn,i,rn))≤ k(n)]

≥

(

e−1/12

√

2π(β +1) logn

)

exp

(

−(1+ ε)auH

(

β

au

)

logn

)

.

Hence, by our choice of ε , there is a constant c > 0 such that for all large enough n and

all i ∈ [mn] we have

P[Pλ (n)(B(xn,i,rn))≤ k(n)]≥ c(logn)−1/2n9ε−b/d ≥ n8ε−b/d . (3.2)

Since xn,i ∈ A, by (3.1), for n large enough and 1 ≤ i ≤ mn we have µ(B(xn,i,δ
′rn)) ≥

ε ′(δ ′rn)
d (as well as µ(B(xn,i,rn)) ≤ ard

n). Thus, given the value of Pλ (n)(B(xn,i,rn)),

9



the value of Pλ−(n)(B(xn,i,δ
′rn)) is binomially distributed with probability parameter

bounded away from zero. Also max1≤i≤mn
E [Pλ (n)(B(xn,i,rn))] tends to infinity as n →

∞. Therefore there exists η > 0 such that for all large enough n, defining the event

En,i := {Pλ (n)(B(xn,i,rn))≤ k(n)}∩{Pλ−(n)(B(xn,i,δ
′rn)≥ 1},

we have for all large enough n that

inf
1≤i≤mn

P[En,i|Pλ (n)(B(xn,i,rn))≤ k(n)]≥ η.

Hence, setting En := ∪mn

i=1En,i, for all large enough n we have

P[Ec
n]≤ (1−ηn8ε−b/d)mn ≤ exp(−ηmnn8ε−b/d).

By assumption mn = ν(rn,ard
n) = Ω(r−b

n ) so that for large enough n we have mn ≥
n(b/d)−ε , and therefore P[Ec

n] is is summable in n.

By Lemma 3.1(d), and Taylor expansion of H(x) about x = 1 (see the print version

of [5, Lemma 1.4] for details; there may be a typo in the electronic version), for all n

large enough P[Zλ (n) < n]≤ exp(−1
9
n1/2). Similarly P[Zλ−(n) > n]≤ exp(−1

9
n1/2). If En

occurs, and Zλ−(n) ≤ n, and Zλ (n) ≥ n, then for some i ≤ mn there is at least one point

of Xn in B(xn,i,δ
′rn) and at most k(n) points of Xn in B(xn,i,rn), and hence Ln,k(n) >

(1−δ ′)rn. Hence by the union bound

P[Ln,k(n) ≤ rn(1−δ ′)]≤ P[Ec
n]+P[Zλ (n) < n]+P[Zλ−(n) > n],

which is summable in n by the preceding estimates. Therefore by the Borel-Cantelli

lemma,

P[liminf(nLd
n,k(n)/ logn)≥ u(1−δ ′)d] = 1, u < a−1Ĥβ (b/d),δ ′ ∈ (0,1),

so the result follows for this case too.

3.2 Proof of Theorem 2.1

In this subsection we assume, as in Theorem 2.1, that A is a compact convex finite poly-

tope in Rd . We also assume that the probability measure µ has density f with respect to

Lebesgue measure on Rd , and that f |A is continuous at x for all x ∈ ∂A, and that f0 > 0,

recalling from (2.3) that f0 := ess infx∈A f (x). Also we let k(n) satisfy (2.2) for some

β ∈ [0,∞]. Let Vol denote d-dimensional Lebesgue measure

Lemma 3.3. There exists ε ′ > 0 depending only on f0 and A, such that (3.1) holds.
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Proof. Let B0 be a (fixed) ball contained in A, and let b denote the radius of B0. For x ∈ A,

let Sx denote the convex hull of B0 ∪{x}. Then Sx ⊂ A since A is convex. If x /∈ B0, then

for r < b the set B(x,r)∩Sx is the intersection of B(x,r) with a cone having vertex x, and

since A is bounded the angular volume of this cone is bounded away from zero, uniformly

over x ∈ A \B0. Therefore r−dVol(B(x,r)∩ A) is bounded away from zero uniformly

over r ∈ (0,b) and x ∈ A \B0 (and hence over x ∈ A). Since we assume f0 > 0, (3.1)

follows.

Recall that ν(r,a) was defined just before Proposition 3.2. Recall that for each face

ϕ ∈ Φ∗(A) we denote the angular volume of A at ϕ by ρϕ , and set fϕ := infϕ f (·) (if

ϕ ∈ Φ(A)) or fϕ = f0 (if ϕ = A).

Lemma 3.4. Let ϕ ∈ Φ∗(A). Assume f |A is continuous at x for all x ∈ ϕ . Then, almost

surely:

liminf
n→∞

(

nLd
n,k(n)/k(n)

)

≥ (ρϕ fϕ)
−1 if β = ∞; (3.3)

liminf
n→∞

(

nLd
n,k(n)/ logn

)

≥ (ρϕ fϕ)
−1Ĥβ (D(ϕ)/d) if β < ∞. (3.4)

Proof. Let a > fϕ . Take x0 ∈ ϕ such that f (x0) < a. If D(ϕ) > 0, assume also that

x0 ∈ ϕo. By the assumed continuity of f |A at x0, for all small enough r > 0 we have

µ(B(x0,r)) ≤ aρϕrd , so that ν(r,aρϕrd) = Ω(1) as r ↓ 0. Hence, by Proposition 3.2

(taking b = 0), if β = ∞ then almost surely liminfn→∞ nLd
n,k(n)/k(n)≥ 1/(aρϕ), and (3.3)

follows.

If β < ∞ and if D(ϕ) = 0, then by Proposition 3.2 (with b = 0), almost surely

liminfn→∞(nLd
n,k(n)/ logn)≥ Ĥβ (0)/(aρϕ), and hence (3.4) in this case.

Now suppose β < ∞ and D(ϕ) > 0. Take δ > 0 such that f (x) < a for all x ∈
B(x0,2δ )∩A, and such that moreover B(x0,2δ )∩A = B(x0,2δ )∩ (x0 +Kϕ) (the cone

Kϕ was defined in Section 2). Then for all x ∈ B(x0,δ )∩ϕ and all r ∈ (0,δ ), we have

µ(B(x,r))≤ aρϕrd .

There is a constant c > 0 such that for small enough r > 0 we can find at least cr−D(ϕ)

points xi ∈ B(x0,δ )∩ϕ that are all at a distance more than 2r from each other, and there-

fore ν(r,aρϕrd) = Ω(r−D(ϕ)) as r ↓ 0. Thus by Proposition 3.2 we have

liminf
n→∞

(

nLd
n,k(n)/k(n)

)

≥ (aρϕ)
−1Ĥβ (D(ϕ)/d),

almost surely, and (3.4) follows.

If we assumed f |A to be continuous on all of A, we would not need the next lemma

because we could instead use Lemma 3.4 for ϕ = A as well as for lower-dimensional

faces. However, in Theorem 2.1 we make the weaker assumption that f |A is continuous

at x only for x ∈ ∂A. In this situation, we also require the following lemma to deal with

ϕ = A.

11



Lemma 3.5. It is the case that

P[liminf(nLd
n,k(n)/k(n))≥ 1/(θd f0)] = 1 if β = ∞; (3.5)

P[liminf
n→∞

(nLd
n,k(n)/ logn)≥ Ĥβ (1)/(θd f0)] = 1 if β < ∞. (3.6)

Proof. Let α > f0. Then by taking B = A in [8, Lemma 6.4],

liminf
r↓0

rdν(r,αθdrd)> 0. (3.7)

Set rn := (k(n)/(nθdα))1/d if β = ∞, and set rn := (Ĥβ (1)(logn)/(nθdα))1/d if β < ∞.

If β = ∞, then by (3.7) we can apply Proposition 3.2 (taking a = αθd and b = 0) to

deduce that liminfn→∞ nLd
n,k(n)/k(n)≥ (θdα)−1, almost surely, and (3.5) follows.

Suppose instead that β < ∞. By (3.7), ν(r,αθdrd) = Ω(r−d) as r ↓ 0. Hence by

Proposition 3.2, almost surely liminfn→∞

(

nLd
n,k(n)/ logn

)

≥ (αθd)
−1Ĥβ (1). The result

follows by letting α ↓ f0.

Proof of Theorem 2.1. First suppose β < ∞. It is clear from (2.1) and (2.12) that Ln,k ≤
Rn,k+1 for all n,k. Also by (2.2) we have (k(n)+1)/ logn → β as n → ∞. Therefore using

[8, Theorem 4.2] for the second inequality below, we obtain almost surely that

limsup
n→∞

(

nLd
n,k(n)

logn

)

≤ limsup
n→∞

(

nRd
n,k(n)+1

logn

)

≤ max
ϕ∈Φ∗(A)

(

Ĥβ (D(ϕ)/d)

fϕ ρϕ

)

. (3.8)

Alternatively, this upper bound could be derived using (2.9) and the asymptotic upper

bound on Mn that we shall derive in the next section for the proof of Theorem 2.5.

By Lemmas 3.5 and 3.4, we have a.s. that

liminf
n→∞

(

nLd
n,k(n)/ logn

)

≥ max
ϕ∈Φ∗(A)

(

Ĥβ (D(ϕ)/d)

fϕ ρϕ

)

, (3.9)

and combining this with (3.8) yields (2.6).

Now suppose β = ∞. In this case, again using the inequality Ln,k ≤ Rn,k+1 and [8,

Theorem 4.2], we obtain instead of (3.8) that a.s.

limsup
n→∞

(

nLd
n,k(n)/k(n)

)

≤ max
ϕ∈Φ∗(A)

(

1

fϕ ρϕ

)

. (3.10)

Also by Lemmas 3.5 and 3.4, instead of (3.9) we have a.s. that

liminf
n→∞

(

nLd
n,k(n)/k(n)

)

≥ max
ϕ∈Φ∗(A)

(

1

fϕ ρϕ

)

,

and combining this with (3.10) yields (2.5).
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3.3 A general upper bound

In this subsection we present an asymptotic upper bound for Mn,k(n). As we did for the

lower bound in Section 3.1, we shall give our result (Proposition 3.6 below) in a more

general setting; we assume that A is a general metric space endowed with two Borel mea-

sures µ and µ∗ (possibly the same measure, possibly not). Assume that µ is a probability

measure and that µ∗ is a doubling measure, meaning that there is a constant c∗ (called a

doubling constant for µ∗) such that µ∗(B(x,2r)) ≤ c∗µ∗(B(x,r)) for all x ∈ A and r > 0.

We shall require further conditions on A: an ordering condition (O), a condition on balls

(B), a topological condition (T) and a geometrical condition (G) as follows:

(O) There is a total ordering of the elements of A.

(B) For all x ∈ A and r > 0, the ball B(x,r) is connected.

(T) The space A is unicoherent (see [5, Section 9.1]), and also connected.

(G) There exists δ1 > 0, and K0 ∈ (1,∞), such that for all r < δ1 and any x ∈ A, the

number of components of A\B(x,r) is at most two, and if there are two components,

at least one of these components has diameter at most K0r.

Given D ⊂ A and r > 0, we write Dr for {y ∈ A : dist(y,D)≤ r}. Also, let κ(D,r) be the

r-covering number of D, that is, the minimal m ∈N such that D can be covered by m balls

centred in D with radius r.

As before, given µ we assume X1,X2, . . . to be independent µ-distributed random

elements of A with the k-connectivity threshold Mn,k defined to be the minimal r such that

G(Xn,r) is k-connected, with Xn := {X1, . . . ,Xn}.

Proposition 3.6 (General upper bound). Suppose that (A,µ,µ∗) are as described above

and A satisfies conditions (O), (B), (T), (G). Let ℓ ∈ N and let d > 0. For each j ∈ [ℓ]
let a j > 0,b j ≥ 0. Suppose that for each K ∈ N, there exists r0(K) > 0 such that for

all r ∈ (0,r0(K)), there is a partition {T ( j,K,r), j ∈ [ℓ]} of A with the following two

properties. Firstly for each fixed K ∈ N, j ∈ [ℓ], we have

κ(T ( j,K,r),r) = O(r−b j) as r ↓ 0, (3.11)

and secondly, for all K ∈ N, j ∈ [ℓ], r ∈ (0,r0(K)) and any G ⊂ A intersecting T ( j,K,r)
with diam(G)≤ Kr, we have

µ(Gr \G)≥ a jr
d . (3.12)

Assume (2.2). Then, almost surely,

limsup
n→∞

(

nMd
n,k(n)/k(n)

)

≤ max
j∈[ℓ]

(a−1
j ) if β = ∞;

limsup
n→∞

(

nMd
n,k(n)/ logn

)

≤ max
j∈[ℓ]

(a−1
j Ĥβ (b j/d)) if β < ∞.
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Later we shall use Proposition 3.6 in the case where A is a convex polytope in Rd to

prove Theorem 2.5, taking µ to be the measure with density f and taking µ∗ to be the

restriction of Lebesgue measure to A (in fact, if f is bounded above then we could take

µ∗ = µ instead). The sets in the partition each represent a region near to a particular face

ϕ ∈ Φ∗(A) (if ϕ = A the corresponding set in the partition is an interior region). In this

case, coefficients a j in the measure lower bound (3.12) depend heavily on the geometry

of the determining cone near a particular face.

As a first step towards proving Proposition 3.6, we spell out some useful consequences

of the measure doubling property. In this result (and again later) we use | · | to denote the

cardinality (number of elements) of a set.

Lemma 3.7. Let µ∗ be a doubling measure on the metric space A, with doubling constant

c∗. We have the following.

(i) For any ε ∈ (0,1), there exists ρ(ε) ∈ N such that κ(B(x,r),εr) ≤ ρ(ε) for all

x ∈ A,r ∈ (0,∞).
(ii) For all r ∈ (0,1) and all D ⊂ A, we can find L ⊂ D with |L | ≤ κ(D,r/5), such

that D ⊂ ∪x∈L B(x,r), and moreover the balls B(x,r/5), x ∈ L , are disjoint.

Proof. To prove (i), let x ∈ A,r > 0. By the Vitali covering lemma, we can find a set

U ⊂B(x,r) such that balls B(y,εr/5),y∈U are disjoint and that B(x,r)⊂∪y∈U B(y,εr).

Set ρ(ε) := ⌈c
⌈log2(15/ε)⌉
∗ ⌉. Then by using the doubling property of µ∗ repeatedly, we have

µ∗(B(y,3r))≤ ρ(ε)µ∗(B(y,r/5)) for all y∈A. Moreover B(x,2r)⊂B(y,3r) for all y∈U .

Also ∪y∈U B(y,εr/5)⊂ B(x,2r) and the union is disjoint. Thus

|U |µ∗(B(x,2r))≤ ∑
y∈U

µ∗(B(y,3r))≤ ρ(ε) ∑
y∈U

µ∗(B(y,εr/5))≤ ρ(ε)µ∗(B(x,2r)),

and therefore |U | ≤ ρ(ε); the claim about κ(B(x,r),εr) follows.

Now we prove (ii). Let L 0 ⊂ D with |L 0|= κ(D,r/5) and with B ⊂∪x∈L B(x,r/5).
By the Vitali covering lemma, we can find L ⊂ L 0 such that D ⊂ ∪x∈L B(x,r) and the

balls B(x,r/5),x ∈ L , are disjoint, and (ii) follows.

Given countable σ ⊂ A, r > 0 and k ∈ N, we say that σ is (r,k)-connected if the

geometric graph G(σ ,r) is k-connected. Assuming condition (B) holds, we see that σ is

(r,1) connected if and only if σr/2 is a connected subset of A.

Lemma 3.8 (Peierls argument). Assume (O). Let ℓ ∈ N, a ∈ [1,∞). Let r ∈ (0,1/a) and

n ∈ N. Let L ⊂ A with the property that |L ∩B(x,r)| ≤ ℓ for all x ∈ A, and let x0 ∈ Lr.

Then the number of (ar,1)-connected subsets of L containing x0 with cardinality n is at

most cn, where c depends only on ℓ, a and c∗.
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Proof. First we claim that |L ∩B(x,ar)| ≤ ℓρ(1/a) for all x ∈ A, where ρ(1/a) is as

given in Lemma 3.7-(i). Indeed, we can cover B(x,ar) by ρ(1/a) balls of radius r, and

each of these balls contains at most ℓ points of L .

There is a standard algorithm (of constructing a non-decreasing sequence of lists) for

counting the connected sets of Zd ; see [5, Lemma 9.3] for details of the algorithm.

The algorithm remains valid in this general setting, with the lexicographical ordering

replaced by the total ordering of A (using assumption (O)). This algorithm has to stop

at time n (cardinality of the set), and at each step the number of possibilities for the set

of the added elements is bounded by 2ℓρ(1/a) (all possible subsets of the set of points

of L within distance ar from a fixed point); hence the number of ar-connected sets of

cardinality n is at most 2ℓρ(1/a)n.

Preparing for a proof of Proposition 3.6, we recall a condition that is equivalent to

k-connectedness of a graph G. We say that non-empty sets U,W ⊂ V in a graph G with

vertex set V form a k-separating pair if (i) the subgraph of G induced by U is connected,

and likewise for W ; (ii) no element of U is adjacent to any element of W ; (iii) the number

of vertices of V \ (U ∪W ) lying adjacent to U ∪W is at most k. We say that U is a k-

separating set for G if (i) the subgraph of G induced by U is connected, and (ii) at most k

vertices of V \U lie adjacent to U . The relevance of these definitions is presented in the

following lemma.

Lemma 3.9. [5, Lemma 13.1] Let G be a graph with more than k+1 vertices. Then G is

either (k+1)-connected, or it has k separating pair, but not both.

By Lemma 3.9, to prove Proposition 3.6 it suffices to prove, for arbitrary u >
max j a−1

j Ĥβ (b j/d), the non-existence of (k(n)− 1)-separating pairs in G(Xn,rn) with

rn = (u logn/n)1/d , as n → ∞. Notice that, for any fixed K ∈ N, if (U,W ) is a (k− 1)-
separating pair, then either both U and W have diameter at least Krn, or one of them,

say U , is a (k− 1)-separating set of diameter at most Krn. Here by the diameter of a a

non-empty set U ⊂ A we mean the number diam(U) := supu,v∈U dist(u,v).
The goal is to prove that neither outcome is possible when n→∞. Let us first eliminate

the existence of a small separating set.

Lemma 3.10. Suppose the assumptions of Proposition 3.6 hold. If β = ∞, let u >
max j a−1

j and for n ∈ N, set rn = (uk(n)/n)1/d. If β < ∞, let u > max j∈[ℓ]a
−1
j Ĥβ (b j/d),

and for n ∈ N set rn = (u(logn)/n)1/d . For K ∈ N, let En(K,u) be the event that there

exists a (k(n)−1)-separating set for G(Xn,rn) of diameter at most Krn. Then, given any

K ∈ N, almost surely En(K,u) occurs for only finitely many n.

Proof. First assume β <∞. The condition on u implies that ua j > β and ua jH(β/(ua j))>
b j/d, for each j ∈ [ℓ]. Then we can and do choose β ′ > β and ε ∈ (0,1/4) such that for
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each j ∈ [ℓ], (1−3ε)dua j > β ′ and

(1−3ε)dua jH
( β ′

(1−3ε)dua j

)

>
b j

d
+ ε.

For n ∈ N define k′(n) = ⌈β ′ logn⌉.

Let K ∈N, and for r ∈ (0,r0(K)) let T ( j,K,r) be as in the assumptions of Proposition

3.6. For j ∈ [ℓ], we claim that κ(T ( j,K,rn),εrn/5) = O(r
−b j
n ) as n → ∞. Indeed,

κ(T ( j,K,rn),εrn/5)≤ κ(T ( j,K,rn),rn)sup
x∈A

κ(B(x,rn),εrn/5)≤ ρκ(T ( j,K,rn),rn),

where ρ = ρ(ε/5) is the constant in Lemma 3.7-(i). The claim follows from the assump-

tion (3.11).

Choose n0 ∈ N such that rn < r0(k) for all n ∈ N with n ≥ n0. By Lemma 3.7-(i), for

each j∈ [ℓ] and n∈Nwe can find a set L
j

n ⊂T ( j,K,rn), with |L
j

n | ≤ κ(T ( j,K,rn),εrn/5)=

O(r
−b j
n ), such that T ( j,K,rn) ⊂ ∪

x∈L
j

n
B(x,εrn) and that the balls B(x,rnε/5), x ∈ L

j
n ,

are disjoint. Set

Ln := ∪ℓ
i=1L

j
n . (3.13)

For n ≥ n0, j ∈ [ℓ] let T
j

n = {σ ⊂ Ln : diam(σ) ≤ 2Krn,σ ∩T ( j,K,rn) 6= ∅}. We

claim that the cardinality of T
j

n is O(|L
j

n |)=O(r
−b j
n ). Indeed, σ ∩T ( j,K,rn) 6=∅ means

σ ∩L
j

n 6=∅. Moreover, as explained below,

limsup
n→∞

sup
x∈Ln

|B(x,2Krn)∩Ln|< ∞, (3.14)

and diam(σ)≤ 2Krn. The claim about cardinality follows from this.

Now we show (3.14). By Lemma 3.7-(i), for n large and for all x ∈ A, we can cover

B(x,2Krn) by ρ(ε/(10K)) balls of radius rnε/5, and each of these balls contains at most

ℓ points of Ln.

For n ≥ n0 and σ ⊂ Ln, set

Dσ ,n := σ(1−2ε)rn
\σεrn

. (3.15)

Let J ∈ N with J > 1/ε . For m ∈ N, define z(m) := mJ . For σ ⊂ Lz(m), define

Fm(σ) = {Xz(m)(Dσ ,z(m))< k′(z(m))}.

Now let n ∈ N and choose m = m(n) such that z(m)≤ n < z(m+1). Assume z(m)≥
n0. Suppose that En(K,u) occurs and let U be a (k(n)− 1)-separating set of G(Xn,rn)
with diam(U)≤ Krn. We define its ‘pixel version’ σ(U) := Lz(m(n))∩Uεrz(m(n))

.
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Since σ(U) ⊂ A, there exists j ∈ [ℓ] such that σ(U)∩T ( j,K,rz(m(n))) 6= ∅. By our

choice of ε , provided n is large enough we have diam(σ(U)) ≤ 2Krz(m(n)). Therefore

σ(U) ∈ ∪
[ℓ]
j=1T

j

z(m(n))
.

Since U is (k(n)− 1)-separating for G(Xn,rn), we have Xn(Urn
\U) < k(n). We

claim that Xn(Dσ(U),z(m(n))) < k(n) provided n is large enough. Indeed, by the triangle

inequality σ(U)(1−2ε)rz(m(n))
⊂ U(1−ε)rz(m(n))

⊂ Urn
(for n large), while U ⊂ σ(U)εrz(n(m))

.

Thus Dσ(U),z(m(n)) ⊂Urn
\U , and the claim follows. Also, provided n is large enough, we

have k(n)≤ k′(z(m(n))). Thus we have the event inclusions

En(K,u)⊂ ∪ℓ
j=1 ∪σ∈T

j

z(m(n))
{Xn(Dσ ,z(m(n)))< k(n)}

⊂ ∪ℓ
j=1 ∪σ∈T

j

z(m(n))
Fm(n)(σ).

By (3.15), for any n ∈ N and σ ⊂ Ln we have Dσ ,n ⊃ (σεrn
)(1−3ε)rn

\σεrn
. Hence by

(3.12), for all large enough n and all σ ∈ ∪ j∈[ℓ]T
j

n we have µ(Dσ ,n)≥ a j(1−3ε)drd
n . A

simple coupling shows that, provided m is large, we have

P[∪ j∈[ℓ]∪σ∈T
j

z(m)
Fm(σ)] =

ℓ

∑
j=1

O(r
−b j

z(m)
)P[Bin(z(m),(1−3ε)da jr

d
z(m))< k′(z(m))].

By Lemma 3.1(b) and our choice of rn and ε , provided m is large, we have

P[∪ j∈[ℓ]∪σ∈T
j

z(m)
Fm(σ)]

= O(1)
ℓ

∑
j=1

exp
(

(b j/d) logz(m)− (1−3ε)dua jH
( β ′

(1−3ε)dua j

)

logz(m)
)

= O(m−Jε),

which is summable in m.

It follows from the Borel-Cantelli lemma that almost surely ∪ j∈[ℓ] ∪σ∈T
j

z(m)
Fm(σ)

occurs only for finitely many m which implies that En(K,u) occurs for only finitely many

n. This completes the proof of the case β < ∞.

Now assume β = ∞. For the rest of the proof assume also that ε ∈ (0,1) is such

that ua j(1− ε)d > 1 for all j ∈ [ℓ]. We do not have to go through the subsequence argu-

ment as before because the growth of k(n) is super-logarithmic. Now redefine Fn(σ) :=
{Xn(Dσ ,n) < k(n)}. If En(K,u) happens then we now redefine the pixel version of the

separating set U as

σ(U) := Ln ∩Uεrn
,

and enumerate the possible shapes σ of the pixel version. Thus we have

En(K,u)⊂ ∪ℓ
j=1 ∪σ∈T

j
n

Fn(σ).
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Using estimates of |T
j

n |, we have

P[En(K,u)] =
ℓ

∑
j=1

O(r
−b j
n )P[Bin(n,(1−3ε)da jr

d
n)< k(n)].

Noticing r−1
n = O(n1/d), and applying Lemma 3.1-(b) leads to

P[En(K,u)] = O(nb j/d)
ℓ

∑
j=1

exp
(

− (1−3ε)da juk(n)H
( k(n)

(1−3ε)da juk(n)

)

)

which is summable in n, and the claim follows by the Borel-Cantelli lemma.

The following lemma eliminates the existence of a (k(n)− 1)-separating pair with

both diameters larger than Krn.

Lemma 3.11. Let the assumptions of Proposition 3.6 hold. If β = ∞, let u > max j a−1
j

and for n ∈ N, set rn = (uk(n)/n)1/d. If β < ∞, let u > max j∈[ℓ]a
−1
j Ĥβ (b j/d), and for

n ∈N set rn = (u(logn)/n)1/d . For K ∈N let Hn(K,u) denote the event that there exists a

(k(n)−1)-separating pair (U,W ) in G(Xn,rn) such that min(diam(U),diam(W))≥Krn.

Then there exists K1 ∈ N such that almost surely Hn(K1,u) occurs for only finitely many

n.

Proof. Suppose Hn(K,u) holds. Then Urn/2 and Wrn/2 are disjoint and connected in A.

One of the components of A \Urn/2 contains W , denoted by W ′. Set U ′ = A \W ′. Then

U ⊂U ′, W ⊂W ′ and A =W ′∪U ′. Let ∂WU :=W ′∩U ′. Then ∂WU is connected by the

unicoherence of A. Moreover, any continuous path in A connecting U and W must pass

through ∂WU .

Recall δ1 and K0 in the assumption (G). We claim (and show in the next few para-

graphs) that

diam(∂WU)≥
1

2K0 +2
min(δ1/3,diam(W )/3,diam(U)/3). (3.16)

Suppose the opposite. Setting b= diam(∂WU), we can find x∈A such that ∂WU ⊂B(x,b),
and we can find X ∈U \B(x,b),Y ∈W \B(x,b). Since b < δ1/3, the number of compo-

nents of A \B(x,b) is at most two. There have to be two components because otherwise

X and Y can be connected by a path in A disjoint from ∂U , which is a contradiction.

Suppose that X lies in the component of A \ B(x,b) having diameter at most K0b,

denoted by QX , and Y lies in the other component, denoted by QY (if it is the other

way round we reverse the roles of X and Y in the rest of this argument). We claim that

there exists X ′ ∈ U such that dist(X ,X ′) > (2K0 + 2)b. If not, then for any X1,X2 ∈ U ,
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we have by triangle inequality that dist(X1,X2) ≤ 2(2K0 +2)b, yielding that diam(U)≤
2(2K0 +2)b, contradicting diam(U)> 3(2K0 +2)b by the negation of (3.16).

We claim that dist(X ,B(x,b))≤ K0b. To see this, using the assumed connectivity of

A, take a continuous path in A from X to Y . The first exit point of this path from QX lies

in B(x,b) (else it would not be an exit point from QX ) but also in the closure of QX , and

hence in B(X ,K0b). This yields the latest claim.

We show that X ′ and Y have to be in the same component of A \B(x,b). To this end,

notice first that X ′ cannot be in QX , because for any z ∈ QX ,

dist(X ,z)≤ K0b < (2K0+2)b.

Secondly, X ′ cannot be in B(x,b) either because for any z ∈ B(x,b), we have

dist(z,X)≤ dist(X ,B(x,b))+2b ≤ (K0 +2)b < (2K0 +2)b.

Therefore, X ′ has to be in QY , and we reach again to a contradiction that X ′ and Y can be

connected by a path in A disjoint from ∂U . We have thus proved (3.16).

Let ε ∈ (0,1/9) and let Ln be as defined at (3.13) (the ε does not have to be the same

as it was there). Recall that Ln has the covering property that for every x ∈ A we have

Ln ∩B(x,rnε) 6=∅ and the spacing property that |Ln ∩B(x,rnε/3)| ≤ ℓ for all such x.

Define DWU = {x ∈ Ln : B(x,εrn)∩ ∂WU 6= ∅}. Then by the covering property of

Ln, (DWU)εrn
is connected and covers ∂WU . That is, DWU , as a subset of the metric

space A, is (2εrn,1)-connected.

By (3.16) and the occurrence of Hn(K,u), we have

2εrn|DWU | ≥ diam(∂WU)≥ min(δ1/3,Krn/3)/(2K0+2)

Therefore, provided n is large, we have |DWU | ≥ K/(6ε(2K0+2)).
We claim that there is a constant c ∈ (0,∞), independent of n, such that for all q ∈ N,

if |DWU |= q then DWU can take at most O(r
−max(b j)
n cq) possible ’shapes’. Indeed, given

x0 ∈ Ln, set

Un,q(x0) := {σ ⊂ Ln : |σ |= q,σ is (2εrn,1)-connected,x0 ∈ σ}.

Then DWU ∈ ∪ j∈[ℓ] ∪x0∈T ( j,K,rn)∩Ln
Un,q(x0). By Lemma 3.8, we have |Un,q(x0)| ≤ cq

for some finite constant c. Recall from the proof of Lemma 3.10 that |T ( j,K,rn)∩Ln|=

O(r
−b j
n ). The claim follows.

For all n ∈ N, if x ∈ ∂WU then dist(x,U) = rn/2. Therefore by the triangle inequal-

ity, (DWU)εrn/5 ⊂ Ur, while U ∩ (DWU)εrn/5 = ∅; hence Xn ∩ (DWU)εrn/5 = ∅. This,

together with the the union bound, yields that

P[Hn(K,u)]≤ ∑
q≥K/(6ε(2K0+2))

∑
σ

P[Xn(σεrn/5)< k(n)], (3.17)
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where the second sum is over all possible shapes σ ⊂Ln of cardinality q that are (2εrn,1)-
connected. Since every point in A is covered at most ℓ times, by (3.12) (with G = {z}),

there exists ε1 ∈ (0,1) such that

µ(σεrn/5)≥ (1/ℓ) ∑
z∈σ

µ(B(z,εrn/5))≥ (q/ℓ)ε1(εrn/5)d.

Suppose β < ∞. Set ε2 := (ε1/ℓ)(ε/5)d. By (3.17) and Lemma 3.1(b), provided n is

large,

P[Hn(K,u)]≤ ∑
q≥K/(6ε(2K0+2))

O(r
−max(b j)
n cq)P[Bin(n,ε2qrd

n)< (β +1) logn]

= O(1) ∑
q≥K/(6ε(2K0+2))

cq exp
(

(max(b j)/d) logn− ε2quH
(β +1

ε2qu

)

logn
)

.

By the continuity of H(·) and the fact that H(0) = 1, there exists q0 > 16/(ε2u) such

that for any q > q0, we have H
(β+1

qε2u

)

> 1/2 and quε2 > 4max(b j)/d. Choosing K =

6ε(2K0 + 2)q0 so that q ≥ q0 in the sum, we see that the exponent of the exponential is

bounded above by

(max(b j)/d) logn−qε2(u/2) logn ≤−(quε2/4) logn.

Therefore, we have for n large that

P[Hn(K,u)] = O(1) ∑
q≥q0

cq exp(−qu(ε2/4) logn)

= O(1) ∑
q≥q0

exp(−qu(ε2/8) logn) = O(exp(−q0u(ε2/8) logn)) = O(n−2).

The result in this case follows by applying the Borel-Cantelli lemma.

If β = ∞, then by (3.17) and the estimates of | ∪ j ∪x0
Un,q(x0)| as previously, we have

P[Hn(K,u)]≤ ∑
q≥K/(6ε(2K0+2))

O(r
−max(b j)
n cq)P[Bin(n,(q/ℓ)ε1(εrn/5)d)< k(n)].

We have r
−max(b j)
n = O(nmax(b j)/d), and by Lemma 3.1-(b),

P[Hn(K,u)]≤ ∑
q≥K/(6ε(2K0+2))

cq exp
(

(max(b j)/d) logn−qε2uk(n)H(
k(n)

qε2uk(n)
)
)

.

As before, we can choose K = K1 (large) so that the H(·) term in every summand is

bounded from below by 1/2. By the super-logarithmic growth of k(n), we conclude that

P[Hn(K,u)] ≤ n−2 provided n is large, so that the Borel-Cantelli lemma gives the result

in this case too.
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Proof of Proposition 3.6. If β =∞ then let u>max j∈[ℓ](a
−1
j ) and set r(n) := u(k(n)/n)1/d.

If β < ∞ then let u > max j∈[ℓ](a
−1
j Ĥβ (b j/d)) and set rn := (u(logn)/n)1/d . By Lemmas

3.10 and 3.11, there exists K ∈ N such that almost surely, En(K,u)∪Hn(K,u) occurs for

at most finitely many n. By Lemma 3.9, if Mn,k > rn then En(K,u)∪Hn(K,u) occurs.

Therefore Mn,k(n) ≤ rn for all large enough n, almost surely, and the result follows.

3.4 Proof of Theorem 2.5

In this subsection we go back to the mathematical framework in Section 2; that is, we

make the assumptions in the statement of Theorem 2.5. In particular we return to assum-

ing A is a convex polytope in Rd with d ≥ 2, and the probability measure µ has a density

f . We shall check the conditions required in order to apply Proposition 3.6.

To check these conditions, we shall use the following lemma and notation.

Lemma 3.12. [8, Lemma 6.12] Suppose ϕ,ϕ ′ are faces of A with D(ϕ)> 0 and D(ϕ ′) =
d −1, and with ϕ \ϕ ′ 6=∅. Then ϕo ∩ϕ ′ =∅ and K(ϕ,ϕ ′)< ∞, where we set

K(ϕ,ϕ ′) := sup
x∈ϕo

dist(x,∂ϕ)

dist(x,ϕ ′)
. (3.18)

Now define

K(A) := max{K(ϕ,ϕ ′) : ϕ,ϕ ′ ∈ Φ(A),D(ϕ)> 0,D(ϕ ′) = d −1,ϕ \ϕ ′ 6=∅}. (3.19)

Then K(A)< ∞ since A is a finite polytope.

For j ∈ {0,1, . . . ,d} let Φ j(A) denote the collection of j-dimensional faces of A. For

any D ⊂ A and r > 0 set Dr = {x ∈ A : B(x,r)∩D 6=∅}.

Lemma 3.13. The restriction of Lebesgue measure to A has the doubling property. More-

over the conditions (O), (B), (T) and (G) are met.

Proof. First we verify the doubling property. By the proof of Lemma 3.3, there exists

b > 0 such that infx∈A,r∈(0,b] r
−dVol(B(x,r)∩A) > 0. Since Vol(B(x,2r)∩A) is at most

2dθdrd for r ≤ b, and is at most Vol(A) for all r, the doubling property follows.

Points of A can be ordered by using the lexicographic ordering inherited from Rd ,

thus (O). Since A is convex, for all x ∈ A and r > 0 the set B(x,r)∩A is convex and hence

connected, implying (B). All convex polytopes are simply connected, and therefore uni-

coherent [5, Lemma 9.1], hence (T). Condition (G) follows immediately from Proposition

3.14, which we prove below.

Proposition 3.14. Let A be a convex finite polytope in Rd . Let N(·) denote the number

of components of a set. There exists δ1 > 0 such that for any x ∈ A any r ∈ (0,δ1), we

have N(A\B(x,r))≤ 2. Moreover, in the case that N(A\B(x,r)) = 2, the diameter of the

smaller component is at most cr, where c is a constant depending only on A.
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Proof of Proposition 3.14. Write B for B(x,r). Our first observation is that if y ∈ A \B,

then there is at least one vertex v ∈ Φ0(A) such that the line segment [y,v] is contained

in A \B. Indeed, if this failed then for each v ∈ Φ0(A) there would exist a point u(v) ∈
[y,v]∩B. But then since A is convex, y would lie in the convex hull of {v : v ∈Φ0(A)}, and

therefore also in the convex hull of {u(v) : v ∈ Φ0(A)}. Indeed, there exist αv ≥ 0 with

∑v∈Φ0(A)αv = 1 such that y = ∑v∈Φ0(A)αvv, and there exists βv ∈ [0,1] such that u(v) =
βvy+(1−βv)v. Substituting v by u(v) and rearranging terms shows that y = ∑v α ′

vu(v)
with some nonnegative α ′

v and ∑v α ′
v = 1, thus the claim. But then since B is convex we

would have y ∈ B, a contradiction.

We refer to the one-dimensional faces ϕ ∈ Φ1(A) as edges of A. Our second observa-

tion is that if the number of edges of A that intersect B is at most 1, then A\B is connected.

Indeed, in this case, for any distinct v,v′ ∈ Φ0(A) there is a path along edges of A from v

to v′ that avoids B. For example, if v,v′ lie in the same two-dimensional face ϕ of A then

since B intersects at most one edge of the polygon ϕ , there is a path from v to v′ along the

edges of ϕ avoiding B. Therefore all v ∈ Φ0(A) lie in the same component of A \B, so

using the first observation we deduce that A\B is connected.

Recall the definition of K(A) at (3.19). Our third observation is that if dist(v,B) ≥
3rK(A) for all v ∈ Φ0(A) then A \B is connected. Indeed, suppose dist(v,B) ≥ 3rK(A)
for all v∈Φ0(A). Suppose ϕ,ϕ ′ are distinct edges of A with B∩ϕ 6=∅, and pick y∈B∩ϕ .

Then dist(y,∂ϕ)≥ 3rK(A) so that by (3.18), dist(y,ϕ ′)≥ 3rK(A)/K(ϕ,ϕ ′)≥ 3r. Hence

by the triangle inequality dist(B,ϕ ′)≥ 3r−2r = r, so that B∩ϕ ′ =∅. Hence B intersects

at most one edge of A, and by our second observation A\B is connected.

Suppose dist(v,B) ≤ 3rK(A) for some v ∈ Φ0(A). Provided r is small enough, this

cannot happen for more than one v ∈ Φ0(A). If u,u′ ∈ Φ0(A) \ {v}, then v /∈ [u,u′] so

dist(v, [u,u′])> 0. Therefore provided r is small enough, [u,u′]⊂ A\B. Thus provided r

is small enough, all vertices u ∈ Φ0(A)\{v} lie in the same component of A\B. If also v

lies in this component, then (by our first observation) A\B is connected.

Thus A\B is disconnected only if v lies in a different component of A\B than all the

other vertices. In that case, for y ∈ A\B, if [y,v]⊂ A\B then y is in the same component

as v; otherwise (by our first observation) y lies in the same component as all of the other

vertices, and thus A\B has exactly two components.

If A \B has two components, and y ∈ A \B with ‖y− v‖ > (3K(A)+ 2)r, then we

claim [y,v]∩B 6= ∅. Indeed, for each u ∈ Φ0(A) \ {v} the ray from v in the direction of

u passes through B. But then by an argument based on the convexity of both A and B,

the ray from v in the direction of y must also pass through B. Since dist(v,B) ≤ 3rK(A)
and diam(B) = 2r, this ray must pass through B at a distance at most (3K(A)+2)r from

v, i.e. before it reaches y, and the claim follows. Therefore y lies in the component of

A \B that does not contain v, and thus the component containing v has diameter at most

(3K(A)+2)r.
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To apply Proposition 3.6, we need to define a partition of A for each small r > 0, then

estimate the corresponding covering numbers and µ-measures in (3.12).

Taking into account a variety of boundary effects near ∂A, one should consider sepa-

rately regions near different faces of A. It is however not trivial to construct this partition

in such a way that we can obtain tight µ-measure estimates in (3.12). The matter is com-

plicated by the fact that the set G in (3.12) that intersects a region near ϕ is potentially

close to a lower dimensional face lying inside ∂ϕ . We can avoid the boundary complica-

tions by constructing inductively from regions near to the highest dimensional face to the

lowest, with increasing ’thickness’. The partition made of T (ϕ,r)’s defined below and

the left-over interior region is defined for this purpose.

Let (K j) j∈N be an increasing sequence with K1 = 1, and with K j+1 > (2K(A)+1)K j

for each j ∈ N. For instance, we could take K j = (2K(A)+2) j−1.

Now for each r > 0 and ϕ ∈ Φ(A), define the set

T (ϕ,r) := ϕrKd−D(ϕ)
\∪ϕ ′∈Φ(A):ϕ ′(ϕ(ϕ

′)rKd−D(ϕ ′)
,

where the T stands for ‘territory’. Also define T (A,r) := A \∪ϕ∈Φ(A)ϕrKd−D(ϕ)
For each

ϕ ∈ Φ∗(A), we have T (ϕ,r) 6= ∅ for all r sufficiently small. Hence, there exists r0 > 0

such that for all ϕ and all r < r0, T (ϕ,r) 6= ∅. Moreover, territories of distinct faces are

disjoint, as we show in the following lemma.

Lemma 3.15. There exists r0 > 0 such that for all r ∈ (0,r0), and any distinct ϕ,ϕ ′ ∈
Φ∗(A), it holds that T (ϕ,r)∩T (ϕ ′,r) = ∅. Moreover, if ϕ,ϕ ′ ∈ Φ(A) with ϕ \ϕ ′ 6= ∅,

and y ∈ T (ϕ,r), then B(y,r) does not intersect ϕ ′.

Proof. We can (and do) assume without loss of generality that ϕ \ϕ ′ 6=∅ and ϕ ′ \ϕ 6=∅.

Indeed, if ϕ ⊂ ϕ ′, then by construction T (ϕ ′,r)∩T (ϕ,r) =∅.

If ϕ is a vertex, then dist(ϕ,ϕ ′)> 0 so that T (ϕ,r)∩T (ϕ ′,r) =∅ for all r small. So

it suffices to consider the case where D(ϕ)> 0 and D(ϕ ′)> 0.

Let j := d−D(ϕ) and j′ := d −D(ϕ ′). We can and do assume j′ ≤ j ≤ d−1.

If there exists x ∈ T (ϕ,r)∩T (ϕ ′,r), then we can find z∈ ϕ,z′ ∈ ϕ ′ such that ‖x−z‖ ≤
rK j and ‖x− z′‖ ≤ rK j′ . Therefore dist(z,ϕ ′)≤ r(K j +K j′)≤ 2rK j.

On the other hand, since x ∈ T (ϕ,r), dist(x,∂ϕ) ≥ rK j+1, and so by the triangle in-

equality, rK j+1 − rK j ≤ dist(z,∂ϕ) ≤ K(A)dist(z,ϕ ′), where the last inequality comes

from (3.18). Combining the estimates leads to K j+1 ≤ (2K(A)+1)K j, which is a contra-

diction. The first claim follows.

Moving to the second claim, let ϕ,ϕ ′ ∈ Φ(A) with ϕ \ϕ ′ 6=∅. Suppose y ∈ ϕ ′
r. Set

Φ̃ := {ψ ∈ Φ(A) : ψ ( ϕ ′,y ∈ ψKD−d(ψ)
}.

If Φ̃ = ∅ then y ∈ T (ϕ ′,r). Otherwise, choose ψ ∈ Φ̃ of minimal dimension. Then

y ∈ T (ψ,r). Either way, y /∈ T (ϕ,r) by the first claim. Therefore T (ϕ,r)∩ϕ ′
r =∅.
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As a last ingredient for applying Proposition 3.6, for each J > 1 and r ∈ (0,1), we con-

struct a partition of A and show (3.12) for all G with diameter at most Jr. The coefficients

a j depend on the location of G in relation to faces of A.

Lemma 3.16. Let J ∈ N and ε > 0. Then the following hold:

(i) For each ϕ ∈ Φ(A) we have κ(T (ϕ,2Jr),r) = O(r−D(ϕ)) as r ↓ 0. Moreover we

have κ(A\∪ϕ∈Φ(A)T (ϕ,2Jr),r) = O(r−d) as r ↓ 0.

(ii) For all small r > 0 and any G ⊂ A with diam(G)≤ Jr, if it intersects T (ϕ,2Jr) for

some ϕ ∈ Φ∗(A), then

µ(Gr \G)≥ (1− ε) fϕρϕrd. (3.20)

Proof. Item (i) follows by the definition of T (ϕ,r). Indeed, ϕ is contained in a bounded

region within a D(ϕ)-dimensional affine space, and therefore can be covered by O(r−D(ϕ))
balls of radius r. If we then take balls of radius r(1+2JKd−D(ϕ)) with the same centres,

they will cover T (ϕ,2Jr), and one can then cover each of the larger balls with a fixed

number of balls of radius r.

For (ii), let G ⊂ A with diam(G)≤ Jr. Suppose first that G∩T (ϕ,2Jr) 6=∅ for some

ϕ ∈ Φ(A). Let x0 ∈ G∩T (ϕ,2Jr). Then Gr ⊂ B(x0,2Jr). By Lemma 3.15, we see that

B(x0,2Jr) does not intersect any ϕ ′ ∈ Φ(A) with ϕ \ϕ ′ 6=∅. It follows that

B(x0,2Jr)∩A = B(x0,2Jr)∩ (z0+Kϕ) (3.21)

where Kϕ is the cone determined by ϕ and z0 is the point of ϕ closest to x0.

Set D(x,r) := B(x,r)∩ (x+Kϕ). We claim that for any x ∈ G, we have D(x,r) ⊂
A. Indeed, given y ∈ D(x,r), we can write y = z0 +(x− z0)+ (y− x) =: z0 + θ1 + θ2.

Here θ1,θ2 ∈ Kϕ . By convexity and scale invariance of Kϕ , we have θ1 + θ2 ∈ Kϕ so

y ∈ z0 +Kϕ . Also ‖y− x0‖ ≤ ‖y− x‖+ ‖x− x0‖ ≤ 2Jr, and hence y ∈ A by (3.21), as

claimed.

It follows that (with ⊕ denoting Minkowski addition)

µ(Gr \G)≥ µ((G⊕D(o,r))\G)≥ Vol((G⊕D(o,r))\G) inf
x∈G⊕D(o,r)

f (x).

By the Brunn-Minkowski inequality [5, Section 5.3], we have Vol(G⊕D(o,r))≥Vol(G)+
Vol(D(o,r)) = Vol(G)+ρϕrd . The claim (3.20) follows by the continuity of f on ∂A.

As for the case ϕ = A, suppose now that G∩T (A,2Jr) 6=∅. Taking x ∈ G∩T (A,2Jr)
we have dist(x,∂A)≥ 2Jr, and hence dist(G,∂A)≥ 2Jr−Jr = Jr. Therefore Gr ⊂ A, so

by the Brunn-Minkowski inequality

µ(Gr \G)≥ f0Vol((G⊕B(o,r))\G)≥ f0θdrd .

In this case fϕ = f0 and ρϕ = θd , and the claim (3.20) follows in this case too, completing

the proof of (ii).
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Proof of Theorem 2.5. By (2.9), and Theorem 2.1, it suffices to prove the upper bound.

We shall do this by applying Proposition 3.6 in the situation of Theorem 2.5.

By Lemma 3.13, the restriction to A of Lebesgue measure has the doubling property,

and conditions (O), (B), (T) and (G) are satisfied

To apply Proposition 3.6, we need to define (for each K ∈ N and each r ∈ (0,r0(K)))
a finite partition {T ( j,K,r)}. For this we take the sets T (ϕ,2Kr),ϕ ∈ Φ∗(A). By Lemma

3.15, and the definition of T (A,r), for each K ∈ N there exists r0(K) > 0 such that for

r ∈ (0,r0(K)) the sets T (ϕ,2Kr), ϕ ∈ Φ∗(A), do indeed partition A.

For each ϕ ∈Φ∗(A), using Lemma 3.16-(i) we have the condition (3.11) in Proposition

3.6, where the constant denoted b j there is equal to D(ϕ). Also, using Lemma 3.16-(ii)

we have the condition (3.12) in proposition 3.6, where the constant denoted a j there is

equal to (1− ε) fϕρϕ .

Suppose β < ∞. By applying Proposition 3.6 in the manner described above we see

that for ε > 0, we have

limsup
n→∞

n(Mn,k(n))
d/ logn ≤ max

ϕ∈Φ∗(A)

(Ĥβ (D(ϕ)/d)

(1− ε) fϕρϕ

)

,

and the result follows. If β = ∞, using corresponding part of Proposition 3.6 gives the

result in this case too.
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