
Citation: Teyeb, A.; Salimi, M.; El

Masri, E.; Balachandran, W.; Gan,

T.-H. Analytical Simulation of the

Microbubble Collapsing in a Welding

Fusion Pool. Materials 2023, 16, 410.

https://doi.org/10.3390/

ma16010410

Academic Editors: Swarup Bag and

Christ Prakash Paul

Received: 1 December 2022

Revised: 27 December 2022

Accepted: 28 December 2022

Published: 1 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

materials

Article

Analytical Simulation of the Microbubble Collapsing in a
Welding Fusion Pool
Ahmed Teyeb 1,* , Mohamad Salimi 1, Evelyne El Masri 1, Wamadeva Balachandran 2 and Tat-Hean Gan 1,3,*

1 Brunel Innovation Centre, Brunel University London, Uxbridge UB8 3PH, UK
2 Department of Electronic and Electrical Engineering, Brunel University London, Uxbridge UB8 3PH, UK
3 TWI Ltd., Granta Park, Great Abignton, Cambridge CB 21 6AL, UK
* Correspondence: ahmed.teyeb@brunel.ac.uk (A.T.); tat-hean.gan@brunel.ac.uk (T.-H.G.)

Abstract: This paper explains the use of remote ultrasound vibration at the optimum position and
frequencies to vibrate plates under welding, with the aim of initiating cavitation in the molten
pool area. It has been shown in the literature that ultrasound cavitation changes microstructure
morphology and refines the grain of the weld. In practice, the plates are excited through narrow-band
high-power ultrasound transducers (HPUTs). Therefore, a theoretical investigation is carried out to
identify the plate-mode shapes due to the ultrasound vibration aligned with the frequency bandwidth
of HPUTs available in the marketplace. The effect of exciting the plate at different locations and
frequencies is studied to find the optimum position and frequencies to achieve the maximum pressure
at the area of the fusion zone. It was shown that applying the excitation from the side of the plate
produces an order of 103 higher vibration displacement amplitude, compared with excitation from
the corner. The forced vibration of cavitation and bursting time are studied to identify vibration
amplitude and the time required to generate and implode cavities, hence specifying the vibration-
assisted welding time. Thus, the proposed computational platform enables efficient multiparametric
analysis of cavitation, initiated by remote ultrasound excitation, in the molten pool under welding.

Keywords: vibration assisted welding; power ultrasonic; cavitation

1. Introduction

Most manufacturing processes, such as laser welding, additive manufacturing, and
casting, are essentially based on the phenomenon of total fusion of material, followed by
rapid solidification. The material’s structure in the final phase and its mechanical and
electrical properties strongly depend on the solidification phase [1,2]. This is especially
evident when the material consists of an alloy of metals or even a combination of two
dissimilar materials, such as in the case of lap joining (by laser welding) of specific con-
nectors to battery cells, for the manufacturing of battery packs for electric vehicles [3].
The difference in melting points between different types of metals leads to the coexistence
of liquid and solid phases and subsequently to the agglomeration of particles of similar
nature, which ideally should be dispersed homogeneously throughout the liquid phase
during solidification [4,5].

The presence of voids and gas, and the grain size variability, are phenomena frequently
observed that cause the final material’s properties to deteriorate, leading to problems such
as hot cracking and, subsequently, fragile connection [6]. Ultrasonic processing of molten
materials is the primary technique that helps to improve the microstructure by grain
refinement. The vibration can be transmitted to the molten pool in two ways: vibration of
the workpiece [7–9] or tool vibration [10–12]. Four mechanisms, cavitation, acoustic flow,
mechanical effect, and thermal effect, are produced in the fusion zone during ultrasonic
vibration. One of the remarkable applications of high-power ultrasound on molten metal
is the creation of cavitation in the melt. Acoustic cavitation is a powerful phenomenon
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promoting melt microheterogeneity and the main processes of degassing and fine filtration
in light alloys. The acoustic cavitation in the molten pool contributes to the fragmentation
and shaping of intermetallic compounds, which is the leading cause for the degradation
of the properties [13]. Four mechanisms are involved in acoustic cavitation: acoustic
streaming, microstreaming, microjets, and microstreams.

The associated phenomenon is described as follows. The cavitation bubble expands
and contracts in the molten pool until it is exposed to the high-pressure region from the
ultrasound wave and then implodes. The implosion of a bubble generates a high-pressure
acoustic wave called a shock wave and a local hot spot at a very high temperature. The other
mechanisms, such as acoustic streaming, microstreaming, microstreamers, and microjets,
are followed by the implosion of the cavitation [14].

The effect of vibration and waves on the creation of a cavitation bubble has been
presented in several studies [15,16]. The emission of the shock wave due to the collapse of a
cavitation bubble attached to a rigid wall was investigated by Brujan et al. [17]. Their results
indicated that a significant portion of the shock wave is dissipated within 100 µm from
the bubble wall. Ultrasound cavitation can burst under the compression of the ultrasound
wave sooner than they fill with dissolved gas in the melt. Typically, the bubble threshold
for collapsing increases as the frequency of ultrasound increases; 1.2 atm at 20 kHz, 1.8 atm
at 140 kHz, 3 atm at 1 MHz, and 5.8 atm at 5 MHz [15,16].

Several studies were carried out to characterise the effect of ultrasonic waves on inert
tungsten gas (TIG) welding [18–21]. It was shown by Sun et al. [18] that there is a 300% in-
crease in the penetration rate compared with conventional TIG welding. The increase in the
penetration results from increased arc push force via ultrasound, leading to the oscillation
in the plasma arc. Ultrasonic-assisted laser welding has been studied by several scholars,
for example, [22–26]. Finite element modelling and a laser Doppler vibrometer were used
to estimate the ultrasonic energy propagation on the workpiece by Tarasov et al. [26]. An
improvement in the microstructure, microhardness, and tensile strength of the 321 stainless
steel weld was reported when ultrasonic vibration is transmitted into the welding zone.
Lei et al. [25] reported that the weld porosity decreased from 4.3% to 0.9% with a reduction
in its average size. Teyeb et al. [27] showed experimentally that weld strength increased
by 26% when the laser welding was assisted by ultrasonic vibration. Deeper penetration
is reported by Woizeschke et al. [28] and Radel [29] when laser welding is assisted by
ultrasonic vibration, which is due to the heating effect of ultrasonic vibration.

The effect of using different ultrasound power on the porosity of a welding joint
is experimentally investigated by Yin et al. [30]. The results showed that appropriate
ultrasonic energy significantly increases the grain state of the weld. The tensile strength
of a welded joint increased by approximately 12% compared with conventional welding.
Increasing the ultrasonic power beyond the appropriate level can degrade the tensile
strength. As the ultrasound melt treatment before solidification notably affects refining and
solidification in light alloys, the welding can be called microcasting.

In this paper, the theoretical vibration of the plate coupled with cavitation vibration
in the molten area is presented. As the HPUTs available in the marketplace can excite
the plate in a region of narrow band frequency, a simulation study was carried out to
understand the wave propagation and modes in the structures at the desired frequencies.
An objective of this study is to find the optimum position to remotely vibrate the centre of
the plate with the maximum amplitude and hence generate ultrasound capitations in the
molten pool area. The cavitation phenomenon that occurs during the solidifying phase is
the origin of the microstructure improvements in the joints. Therefore, further theoretical
investigations were conducted to find the cavitation vibration at the molten pool area,
initiated and vibrated by the remote excitation of the plate. Such a theoretical investigation
can help to find the position, frequency, and time for vibration-assisted welding.
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2. Theoretical Modelling

This section provides theoretical explanations of the plate’s vibration under ultrasonic-
guided wave propagation and its interactions with the ultrasound cavitation in the fusion
zone. As shown in Figure 1, part of the ultrasound-guided wave travelling in the plate
leaks or refracts into the liquid. When the sound pressure of the UGW (ultrasonic-guided
waves) exceeds the cavitation threshold, several microbubbles are generated in the fluid
close to the solid–fluid boundary. As the ultrasound excites the plate, the microbubbles are
subjected to positive and negative pressure. They expand and contract under negative and
positive pressure, respectively [31,32].
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Figure 1. Leakage of the guided wave into the fluid. The water boils due to low local pressure, which
generates cavitation.

2.1. Ultrasonic Plate Vibration

Modelling of plate vibration has been studied extensively since 1787 [33]. Most of
the relevant background theory on the free and forced plate vibration can be found in
the reference work by Leisaa [34]. Owing to the presence of the higher order matrices,
the virtual approach is suggested by Sung et al. [35–37] in a series of studies, making it
computationally less expensive to estimate the response of the plate. In this study, the
theoretical modelling from Vlasov [38] is used to obtain the mode shapes of the plate at the
desired frequency region. Based on the principle of virtual work, the steady-state transverse
displacement, ξ(x, y) of a full clamped plate subjected to harmonic point excitation at
ξ(x′, y′) is:

ξ(x, y) = F0

∞

∑
m=1

∑∞
n=1

Ψmn(x, y)Ψmn(x′, y′)
B(I1 I2 + 2I3 I4 + I5 I2 − ρsω2 I2 I6)

(1)

where F0 is the force amplitude, B is the bending stiffness B = Eh3/12
(
1− v2), E is Young’s

modulus, v is the Poisson ratio, ρs is the plate density and ω is the angular frequency.
The eigenfunctions can express the shape function associated with the plate:

Ψmn(x, y) = ϑm(x)ζn(y). (2)

The ϑm and ζn parameters can be expressed by Bessel and Hankel functions, respectively:

ϑm(x) = J
(

Bmx

a

)
− J(βm)

H(βm)
H

βmx
a,

,ζn(y) = J
(

βny
b

)
− J(βm)

H(βm)
H
(

βny
b

)
, (3)

where: J(s) = cosh(s) − cos(s) and H(s) = sinh(s) − sin(s), and βn is the n-th root of
cosh(β)cos(β) = 0. The I parameter in the denominator of Equation (1) can be expressed by:

I1 =

a∫
0

ϑ
′′′
m ϑmdx, I2 =

b∫
0

ζ2
n dy, I3 =

a∫
0

ϑ
′′
mϑmdx, I4 =

a∫
0

ζ
′′
n ζndx, I5 =

b∫
0

ζ
′′′
n ζndy I6 =

a∫
0

ϑ2
mdx. (4)
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The natural frequency of the plate can be estimated using the eigenfunctions:

ωmn =

√
B
ρs

√
I1 I2 + 2I3 I4 + I5 I6

I2 I6
. (5)

A high-power ultrasound transducer (HPUT) can generate ultrasonic compressional
vibration at a narrow band frequency. It is advantageous to select the transducer to align
with the resonance frequency of the plate that can generate the high-pressure acoustic wave
in the fusion zone of the weld.

Figure 2 shows a 25 cm× 25 cm× 0.1 cm clamped aluminium alloy plate-mode shape
with alloy density ρs = 2800 kg/m3, Poisson ratio ν = 0.33 and Young modulus E = 72.5
GPa, subjected to unit force at the locations illustrated in Figure 3. Although in ultrasonic
melting treatment different frequency bandwidth are employed to excite the plate, in this
study the plate-mode shapes are plotted for the frequency 20 kHz, subjected to a unit force
at the locations illustrated in Figure 3.
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Figure 2. A clamped-plate vibration-mode shape subjected to unit force excitation at the (a) corner,
(b) side and (c) centre of the plate at 20 kHz. The excitation locations are illustrated in Figure 3.

As illustrated in Figure 2, at the excitation point the displacement reaches its maximum
value. Although using a vibration close to the tip of the laser head is preferable, it might not
be practical to be very close to the laser head due to the heating produced in the welding
zone area. Another approach is to use a fixed location for the ultrasound to vibrate the
fusion zone area remotely. As illustrated in Figure 2b,c when the plate is subjected to
excitation from the side, the displacement amplitude is an order of 103 higher compared to
the corner excitation.
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Ahmed et al. [27] used an ultrasound transducer at the side of a plate to transmit the
ultrasound vibration into the molten pool. In this study, the effect of a single transducer
on the plate displacement is plotted at the frequencies used by Teyeb et al. [27]: 19, 28 and
40 kHz. The excitation location is highlighted by a red arrow in Figure 3. For the excited
plates, shown in Figure 4, the one subjected to 40 kHz has a mode shape where the middle
of the plate has a minimum displacement amplitude compared with the other frequencies.
The maximum displacement is associated with the plated subjected to 20 kHz excitation.
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excitation location is highlighted by a red arrow in Figure 3.

2.2. Coupling of the Plate Vibration and the Fusion Area Pressure

To identify the pressure in the fusion zone, it is assumed that the vibration is applied to
a semicylinder. The relation between internal pressure coefficient Pf and the circumferential
displacement of a cylinder W can be expressed by [39]:

Pf =
−2Bs

1−
(

αs − α f

)2
W
a

, (6)

where Bs and a is the bulk modulus of the semifluid and the cylinder radius, respectively.
The αs = ksa and α f = k f a, where ks and k f are the axial wave number of the semifluid
dominated wave and the semifluid wavenumber respectively. The pressure within the
semifluid can be described by a Bessel function of order zero:

p = Pf J0(kr
sa), (7)

where the kr
s parameter is the radial wavenumber and is related to the semifluid wavenum-

ber k f by: (kr
s)

2 = k2
f − k2

s .
The pressure variation in the molten pool is plotted in Figure 5 using the displacement

value associated with the centre of the plate shown in Figure 4, assumed 10−11 (m). As
illustrated in Figure 5, the optimum frequencies for exciting the plate are approximately 20
and 28 kHz. Considering the results shown in Figures 4 and 5, it is recommended to use
either a 20 or 28 kHz transducer.
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2.3. Cavitation Dynamics

Cavitation is referred to the generation of cavities and the subsequent oscillation
behaviour due to exceeding the binding force between the melt molecules [40]. The
cavitation threshold in the melt is given by [41]:

PB = P0 − Pv +
2

3
√

3


(

2σ
R0

)3

P0 − Pv +
2σ
R0


1
2

, (8)

where P0 is the liquid static pressure, Pv is the vapour pressure in the cavitation and σ

is the surface tension coefficient of the melt. The R0 parameter is the initial radius of
the cavitation.

The relationships between the initial radius of cavitation and the sound field frequency
fr can be expressed by [42]:

fr =
1

2πR0

[
3γ
ρf

(
P0 +

2σ

R0

)
− 2σ

ρfR0

] 1
2
, (9)

where γ is the specific heat capacity of the fluid and ρf is the fluid density.
By assuming the physical parameters Pv = 2000 Pa, σ = 0.910 N/m, P0 = 0.101 MPa,

R0 = 10 µm, and actual cavitation threshold PB = 155,411 Pa, Equations (8) and (9) are
plotted in Figure 6. As seen in Figure 6, increasing the frequency gives a smaller cavity
but requires a higher pressure to initiate it. The required pressure to initiate cavitation is
100 times higher than the maximum value illustrated in Figure 5. Hence, using a mobile
transcoder close to the area where the welding operation is happening is recommended to
achieve the desired displacement level, as shown in Figure 2c.

The behaviour of cavities has been extensively studied and is covered in several
literature references [40,42,43]. In this study, the oscillation of a vapour-gas cavity in an
incompressible liquid is governed by the Nolting–Neppiras equation:

R
..
R +

3
2

.
R

2
+ 4µ

.
R
R
+

2σ

R
= (p 0 − Pv +

2σ

R0

)(
R0

R

)3
− p0 + pv + pA sin(ωt) (10)

where R,
.
R,

..
R are cavitation radius and its first and second derivative. The R0, σ and µ

terms are the initial radius of the cavity, the surface tension of the melt and the viscosity of
the melt. The p0, pv and pA parameters are ambient pressure, sound pressure and vapour
pressure, respectively.
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Figure 6. Changes to the cavitation (a) radius and (b) threshold pressure with respect to the excitation
frequency.

The pressure relapsed by imploding the cavitation is proportional to the acoustic
pressure of the melt. The higher the acoustic pressure of the melt, the higher the acoustic
wave released by the cavitation. The critical radius can be estimated by:

Pg + Pv − P0 =
2σ

R
, (11)

where Pg + Pv is the total pressure inside the bubble.
The pressure distribution around the ultrasound cavitation was studied by [43], and

the results indicated that the pressure reaches its maximum value at about 1.58 R from the
cavitation bubble. It is shown in [44] that the weld’s penetration and width increased when
pulsed ultrasound was employed.

Changes to the cavitation radius and the wall velocity are plotted in Figure 7, using
Equation (10). As seen from the plots, the ultrasound cavitation oscillation happens up
to approximately 100 milliseconds. The cavitation radius and the wall velocity can reach
approximately 0.004 mm and 30 m/s, respectively. The pressure distribution around the
cavitation bubble was studied in [43], and the results indicated that the pressure reaches
its maximum value at about 1.58 R from the cavitation bubble. Based on the results
shown in Figure 7a, the effect of the shock wave from each ultrasound cavitation would be
approximately 6.3× 10−3 mm in the molten pool area. Depending on the width and the
depth of the fusion zone, different cavitation numbers should be initiated to have ultrasonic
grain refining.
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3. Conclusions

This work aimed to investigate using remote-power ultrasonic vibration to improve
the laser welding process. Therefore, an efficient modelling approach combining the plate
vibration method and the cavitation oscillation method was employed to analyse the forced
vibration of cavitation in the welding pool. The proposed method provided an accurate
tool for selecting the excitation position on the plate and the frequency range required to
generate cavitation in the molten pool.

Time and frequency domain studies showed that for respective frequencies of 22,
32 and 40 kHz, the displacement reached at least a level of 0.1 pm, which can excite the
semifluid in the fusion zone and burst the microbubbles.

The duration of the solidifying phase should be around 0.1 s, which corresponds
to 200 cycles of ultrasound at 20 kHz. Theoretically, this is sufficient time to make the
bubbles expand and burst in the semifluid. Hence, grain refinement and better shaping of
intermetallic can be achieved.

Future study includes manufacturing laser-welded testing specimens under ultrasonic
vibration and evaluating improvements in microstructure based on welding times and
ultrasound power.
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