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Abstract: Although many countries prefer deregulated power markets as a means of containing
power costs, a monopoly may still exist. In this study, an agent-based bidding simulation framework
is proposed to detect whether there will be a monopoly in the power market. A security-constrained
unit commitment (SCUC) is conducted to clear the power market. Using the characteristics that the
agent can fully explore in a certain environment and the Q-learning algorithm, each power producer
in the power market is modeled as an agent, and the agent selects a quotation strategy that can
improve profits based on historical bidding information. The numerical results show that in a power
market with monopoly potential among the power producers, the profits of the power producers will
not converge, and the locational marginal price will eventually become unacceptable. Whereas, in
a power market without monopoly potential, power producers will maintain competition and the
market remains active and healthy.

Keywords: security-constrained unit commitment; power market; locational marginal price;
monopoly; Q-learning

1. Introduction

For many years, the power industry has been dominated by large utilities with the
authority to manage all generation, transmission, and distribution activities within their
operating scope [1]. Such utilities are known as vertically integrated. State-franchised
utility companies need a monopoly covering sales and control of the transmission network
in an area of operation to generate and transmit electricity in that area. When a residential
seller or an independent power producer (IPP) is geographically restricted, the utility is the
only buyer [2].

The market structure is slowly transitioning to a more competitive market, the so-
called deregulated power market (DPM), owing to a high demand growth coupled with an
inefficient system management [3,4]. A DPM encourages electricity suppliers to operate
competitively and consumers to choose a preferred power supplier. The United States
was the first country to implement electricity deregulation using independent system
operators (ISOs), such as ISO New England, NYISO in New York, and the PJM, a regional
transmission organization servicing the combined electricity markets of Pennsylvania, New
Jersey, and Maryland [5]. Europe is another region where electricity deregulation has
been deployed, and the addition of new competitiveness has weakened the traditional
monopoly of power utilities, which has had a positive impact on the electricity market [6,7].
Experience has shown that appropriate reform programs in the power sector invariably
improve efficiency in terms of cost, service quality, and reliability [8].
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In fact, a DPM allows competition among market participants when electricity is
traded, but this does not equate to competition. A monopoly reduces the competitive
advantage and the positive effects of a DPM. It reduces competition and may generate
unreasonable pricing, reducing both the efficiency of the power system and the interests
of consumers [9–11]. Market power is the main anti-competitive practice that may hinder
competition in the power sector, particularly in the power generation sector [12]. Market
power exists in a restructured power system when any single generation company exerts
an influence on market pricing or power supply. Market power can be defined as the
ability of a seller or a group of sellers to push prices above competitive levels, control
total output, or exclude competitors from the relevant market for an extended period of
time [12]. It reduces the competitiveness, quality, and impact of technological development.
For example, generators with a global market power can manipulate the marginal (spot
price) and the locational marginal price (LMP) due to transmission congestion, such as in
the Power Pool of England and Wales [13]. Therefore, when there is a monopoly in the
power market, the demand from consumers always requires the unit capacity of at least
one power producer. This means that the owner of the capacity can keep raising the price
or boundary cost to a very high level.

Monopoly recognition for monopoly behavior prevention has attracted attention
from researchers for over 10 years. Multiple models are created to recognize the exis-
tence of monopolies [14–16]. For example, Yen-Yu Lee et al. in [17] proposed an indi-
cator, the transmission-constrained residual supply index (TCRSI), and generalized the
RSI into meshed networks. However, their disadvantage is that they are not compre-
hensive enough and only consider unidirectional power flow. Another example is that
Peng Wang et al. in [18] define must-run generation (MRG) as the minimum capacity that
a generator must supply to the system load that takes into account generation and transmis-
sion constraints. They believe that when the generator has the potential for monopoly, its
MRG value will be greater than zero. These existing studies mainly recognize the ‘Must-Buy
Section’ as the existing condition of monopoly, and thus ‘Must-Buy Section’ recognition
is used as the function of monopoly recognition. Indeed, ‘Must-Buy Section’ is only a
potential condition for monopoly. The non-existence of the ‘Must-Buy Section’ does not
represent the absolute non-existence of monopoly behavior. Thus, a more exact method to
recognize the monopoly behavior is required.

In recent years, the demand for the public to understand market mechanisms and
how market participants are affected by their results has encouraged the use of simulation
models and tools. Some experience has demonstrated the sustainability and efficiency of
agent-based system technology in simulating the market behavior of the power market [19].
An agent-based system is a platform that provides agents with the ability to analyze the
negotiation context and allows players to automatically adjust their strategic bidding
behavior in the market [20,21].

At present, the combination of agent simulation systems and reinforcement learning
technology has become a popular research field for analyzing the behavior of market par-
ticipants in the power auction market [22–25]. In a study of the electricity market, Gong Li
and Jing Shi simulated the bidding behavior of suppliers in the electricity market using the
Roth Erev learning algorithm [22]. The simulation results show that improving the accuracy
of wind forecasts can help increase net revenue for wind power companies. Viehmann
et al. use a Q-learning algorithm to analyze the optimal bidding strategy of suppliers. The
results show that the prices rise with additional information about the supply-demand
ratio only when the number of participants is limited and there is a large asymmetry in
size [23]. Ye et al. used the deep Q-learning (DQL) algorithm to study the strategic bidding
behavior of producers in the power market [24]. Mohtavipour and Mehdi Jabbari Zideh
proposed an iterative collusive strategy search method to detect a collusive strategy in a
prisoner’s dilemma game in which there is collusive equilibrium. The results show that
market participants’ collusion in transmission-congested networks can provide them with
additional profit opportunities compared to uncongested networks [25]. Nevertheless,
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these studies did not consider whether there is a monopoly to reduce competition in the
power grid and did not study the behavior-strategy choices of agents further in the case of
a potential monopoly in the market.

In this study, we propose an agent-based bidding simulation framework for monopoly
identification in the electricity market. In this framework, each electricity producer in the
electricity market is modeled as an agent aiming to schedule a bidding strategy for more
benefit from electricity trading in power markets. The bidding strategy for each agent
is selected from a Q-learning strategy based on the effect of historical strategies, which
can be easily replaced by any other preferred strategies. With this framework, monopoly
behavior can be recognized by un-converging rising bid prices. If bidding price of all agents
converge into a stable range, it means that the monopoly behavior is removed. Unlike the
pure monopoly existing from adjustment functions from traditional ‘Must-Buy Section’
based methods, this framework can also provide a market equilibrium point with behaviors
from all agents. Moreover, the effect of behavioral-constraint policies (such as a price upper
boundary limit) can be easily simulated in this framework as well. The ‘Must-Buy Section’
based monopoly recognition model will not be able to obtain this result.

2. The Description of the Proposed Simulation Framework

The typical logic flow of power market trading is revealed below. In the power
market, the power generation companies and suppliers submit the quotation curve to the
ISO, which obtains the bidding results of each participating party through the scheduling
optimization algorithm. The ISO then calculates the LMPs and feeds the winning bid
results back to the corresponding power producers [26]. The power producers obtain
their winning bid results in the market and calculate their profit. By analyzing historical
bidding information and profits, the power producers constantly adjust their quotation
curve to obtain greater income in the next bidding round. In this context, the adjustment
strategies of different power producers are different, and when developing strategies, their
market information is not exactly the same. The profit of each power producer is not
only tied to its own bidding price, but it is also affected by what others offer. The power
producers’ decision-making must be based on the transaction model and algorithm of
the trading center (ISO) because a slight strategic change in any company can affect the
strategies and earnings of other companies. In a competitive power market, there is a
strong correlation between the behavior of different players in the market and their profits.
The interests of each participant also depend on the market behavior of other participants
in the decision-making process. Figure 1 shows the simulation framework approximating
the logic flow above.

Figure 1 shows the proposed agent-based bidding simulation framework. In this
framework, it is assumed that the demand is deterministic, power producers have indi-
vidual generators, and they all bid in the day-ahead market and aim to maximize their
profits by using the bidding strategies that best represent their expectations. The scheduling
model is an hour-by-hour scheduling optimization that schedules the power generation
capacity of power producers at different times of the day in the future. Before participating
in the nth bid, each power producer must submit its bid data to an ISO. The bidding data
include the unit’s quotation curve, generating capacity constraints, startup and shutdown
costs, and operating ramping constraints. After collecting the bidding data, the ISO starts
the economic dispatch algorithm of the security-constrained unit commitment (SCUC),
feeds back the unit output plan of each participating power producer, and calculates the
LMPs [26]. Each power producer can obtain the information about their own winning
capacity, which supports their bidding strategy in the next bidding iteration.
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Figure 1. The proposed simulation framework.

In the power market, power producers with monopoly behavior will gradually in-
crease their bidding price, owing to their monopoly capacity, thereby reducing the mar-
ket’s competitiveness. In addition, the agent can fully explore and continue to function
autonomously in an environment after being provided with pre-designed behaviors. There-
fore, to make the bidding strategies and decisions of power producers smarter, this study
assumes that each participating power producer has autonomy and is modeled as an agent
that can adjust its bidding strategy according to its own historical bidding information to
maximize its own profits.

2.1. The Power Market Framework
2.1.1. The Quote Curve

The unit data submitted by the participating power producers to the ISOs are called
bidding data, which indicate the relationship between the output and price of the units of
each power producer, as well as the constraints on the output of the units. Equation (1)
introduces the quote curve. {

Gi,t = AiP2
i,t + BiPi,t + Ci

F(Pi,t) = αi,t · Gi,t
. (1)

In Equation (1), Pi,t is the output of the ith unit at time period t; Ai, Bi and Ci are the
parameters of the generation cost of the ith unit; Gi,t is the generation cost of the ith unit at
time period t; αi,t is the bidding coefficient of the ith unit at time period t.

2.1.2. The SCUC Model

After receiving the bidding data from the power producers, the ISO obtains the output
plan of each unit through the scheduling optimization algorithm. The SCUC model includes
UC and transmission network security checks as the base case [27,28]. Equations (2)–(7)
reveal the SCUC model:

Min : Obj =
NG

∑
i=1

NT

∑
t=1

[Fi(Pi,t) · Ii,t + SUi,t + SDi,t]; (2)
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NG

∑
i=1

Pi,t = Dt + Losst; (3)

Pmin,i · Ii,t ≤ Pi,t ≤ Pmax,i · Ii,t; (4)
Pi,t − Pi,t−1 ≤ [1− Ii,t(1− Ii,t−1)] ·URi

+Ii,t(1− Ii,t−1) ·UPi
Pi,t−1 − Pi,t ≤ [1− Ii,t−1(1− Ii,t)] · DRi

+Ii,t−1(1− Ii,t) · DPi

; (5)

− PLmax ≤ SF× (KP× P− KD× D) ≤ PLmax. (6)

Equation (2) is the objective function of power system unit commitment. NG is the
number of generation units; NT is the number of time periods/day; Ii,t is the commitment
state of unit i at time period t (binary, 1 means at time period t unit i is on, and 0 means
unit i is off); SUi,t and SDi,t are the startup and shutdown costs of the ith unit at time
period t, respectively. Equation (3) reflects the constraints of the supply and the demand
balancing. Dt is the total load of the power grid at time t, and Losst is the transmission loss
of the power grid at time t. Equation (4) represents the constraint on the unit-generation
capacity boundary. Pmin and Pmax are the minimum and maximum capacities of the unit
reserves, respectively. Equation (5) represents the ramp rate limits of the units, where URi
and DRi are the ramp-up and ramp-down rates of the ith unit, respectively, and UPi and
DPi are the initial ramp-up and ramp-down rates of the ith unit, respectively. Equation (6)
represents the load flow boundary constraint [29]. SF is the shifting factor matrix, KP is the
unit correlation matrix, KD is the load correlation matrix, Dj,t is the size of the jth load at
time period t, and PLmax is the upper boundary for the backup power transmission in the
transmission line.

2.1.3. The LMP Calculation

The LMP is defined as the marginal cost of supplying the next increment of electrical
energy at a specific bus while considering generation and transmission constraints. The
electricity market cannot be uniformly cleared when there is congestion in the transmission
system. Instead, the market is cleared at the bus level, and the bus clearing price is called the
LMP. Physically, the LMP is the cost of supplying the next MW of load at a specific location
after considering the costs associated with generation, transmission, and losses [30]. That
is, the LMP is the sum of the generation marginal cost, transmission congestion cost, and
cost of supplying marginal losses, although the cost of losses is usually small. Equations (7)
and (8) reveal a typical solution model of the LMP.

F = Ci,tPi,t + λ
[
0− 1T(KP× Pi,t − KD× D− ∆L)

]
+πT [SF× (KP× Pi,t − KD× Di,t − ∆L)− PLmax]
+π−T [−PLmax − SF× (KP× Pi,t − KD× Di,t − ∆L)]
+µ−T

p (Pi,t − Pmax) + µ−T
p (Pmin − Pi,t)

(7)

LMPt =
∂F

∂∆L
. (8)

The LMP is determined based on the solution of the optimal power flow from the
SCUC. In Equation (7), Ci,t is the marginal generation cost of the ith unit at time period t,
∆L is a price-taking incremental bus load, λ is a Lagrange multiplier corresponding to the
demand constraint, πT and π−T are the Lagrange multipliers corresponding to the power
flow constraints, respectively, and µ−T

p and µT
p are the Lagrange multipliers corresponding

to the maximum and minimum generation constraints, respectively. According to the
definition of the LMP, it can be calculated using Equation (8).
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2.1.4. The Profit of Power Producers

After the SCUC scheduling optimization, the power producers can calculate their
profit based on the bidding result.

Proi,t = Ii,t · (αi,t − 1) · Gi,t. (9)

In Equation (9), Proi,t is the profit of the ith unit at time t. This value is passed to the
Q-learning model as an evaluation metric for the Q-learning model.

2.2. The Q-Learning-Based Modelling of Bidding Strategy Making

In the proposed framework, the section of bidding strategy-making is a critical part of
the entire simulation. This section actually approximates the market behavior of each power
producer, representing their decision-making process with historical bidding information.
In this section, the Q-learning-based model is selected as a typical decision-making process.
The reason is that the Q-learning-based model is a value-based reinforcement learning
algorithm. It finds the optimal action strategy by analyzing historical bidding behavior
and its effects. The profit and bidding coefficient of the nth bidding of the power producer
are input into the agent model. The sub-state bidding coefficient that is more beneficial to
itself is determined through the bidding strategy of the agent in the model and used for
the n+1th market bidding. Figure 2 introduces the Q-learning-based model for the bidding
strategy making module from Figure 1.
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2.2.1. An Overview of the Q-Learning Algorithm

Q-learning is a form of model-free reinforcement learning that works by learning an
action-value function that gives the expected result for taking a given action in a given
state, following a policy. It provides agents with the capacity to learn to act optimally
in Markovian domains by experiencing the consequences of their actions [31]. With the
application of the optimal Bellman operator, the state-action value can be obtained through
the value iteration in Equation (10).

NewQ(s, a) = Q(s, a)
+α[R + γ×maxQ′(s′, a′)−Q(s, a)].

(10)

Q-learning comprises the learning agent, environment, states, actions, and rewards. In
Equation (10), to implement Q-learning, consider s = [s1, s2, s3, . . . , sn] as a set of states
of the learning agent, a = [a1, a2, a3, . . . , am] as a set of actions that the learning agent can
execute, R as the reward or punishment resulting from executing an action a in state s, and
α as the learning rate, which is typically set between zero and one. If α is close to zero,
the previous knowledge learned becomes more important, whereas if it is close to one,
the newly acquired information becomes more relevant instantly. In other words, setting
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it to zero prevents the Q-table from being updated and therefore prevents any learning.
Setting α to a high value, such as 0.9, enables rapid learning. γ denotes the discount factor,
which is between zero and one. γ indicates the extent to which the agent’s decision-making
is influenced by future reward expectations. When γ is close to zero, only the current
reward is considered; as γ approaches one, the future reward is given more weight than
the immediate reward. Q(s, a) denotes the total cumulative reward gained by the learning
agent, and max Q′(s′, a′) is the maximum Q value of all possible actions a′ in the next new
state s′. Using Equation (10), an updated Q-table, which is shown in Figure 2, is produced.

2.2.2. Action Selection

Arbitrary states of Q-learning are uniquely determined by the bidding coefficients
and time (si,t = (αi,t, t)). The agent acts before the next bidding in the market; therefore,
the selection strategy is based on historical transaction information, including the data
corresponding to the current bidding coefficient and time.

The action taken by the agent is defined by one of three major choices in which the
agent decides to execute an action at a quotation below, equal to, or higher than the previous
transaction price in the market environment. In this study, the agents learn an action-value
function that provides the expected bidding price by selecting an action using an ε-greedy
policy approach in a given state. Figure 3 shows the concept of the ε-greedy policy. ε is
the exploration rate of Q-learning, which is generally set between 0 and 1. Every time an
agent chooses an action, a random number, rand, is generated for comparison with ε. When
rand < ε, the agent selects the action with the largest Q value in the corresponding state;
otherwise, it randomly selects any action. This ensures that Q-learning has a breakthrough
ability when it encounters a soft boundary.
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2.2.3. Reward Calculation and Update Q Value

After the agent determines an action, it changes from the current state to another
state, so the sub-state bidding coefficient can be obtained according to the current
bidding coefficient.

α′i,t =

{
αi,t + Am , αi,t < X

αi,t , αi,t ≥ X
(11)

In Equation (11), α′i,t is the sub-state bidding coefficient, Am is the value obtained by
performing the mth action, and X is the bidding price boundary of the power producer.

The update of the bidding coefficient is accompanied by an update to the quotation
curve of the power producer. The updated quotation curve is then sent to the electricity
market. After the market is cleared, the power producer can obtain a set of time-series
profit value data, which is the feedback value. Therefore, the reward of the environment,
Ri,t = Proi,t, and the Q value in any state is updated using the following Bellman equa-
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tion [32]. Based on this formula, the Q-table update for NT periods can be completed:

newQ(s, a) = Q(si,t, a)
+α[Ri,t + γ×maxQ(s′i,t, a′)−Q(si,t, a)]. (12)

2.2.4. The Simulation Execution Process

A full detailed procedure for simulating Q-learning agents for the proposed bidding
simulation framework is provided as follows:

Initialize Q value (Q(s,a)) for all state-action pairs.
Repeat (for each episode):

For each time step t:
Given state si,t, take action a based on ε-greedy policy.
Obtain reward Ri,t, and reach new state s′i,t.
Update Q(s,a) using Equation (12).

3. Numerical Study
3.1. Background

This paper selects a typical 9-bus system and a 33-bus system to verify the feasibility
of the proposed scheme. Figure 4 shows the structure of both systems.
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Each system contains 2 scenarios: one is a case with monopoly and the other is a
case without monopoly. The monopoly verification is rechecked by traditional methods in
Table 1.

Table 1. Scenarios introduction on both systems.

System Scenario Gen NO. TCRSI Result
X Value

MRG Result
X Value

9-Bus
SCN 1 Gen No. 2

0.7837580 85.848419
(Exist) (Exist)

SCN 2 Gen No. 2
1.008404 0

(Not Exist) (Not Exist)

33-Bus

SCN 1
Gen No. 1

0.844809 55.110000
(Exist) (Exist)

Gen No. 6
0.963207 14.398432
(Exist) (Exist)

SCN 2
Gen No. 1

1.142996 0
(Not Exist) (Not Exist)

Gen No. 6
1.110499 0

(Not Exist) (Not Exist)

In Table 2, Gen. NO. 2 stands for No. 2 power producer. The Gen of System exists
monopoly when the result value is less than one in TCRSI and more than zero in MGR. In
Table 2, the monopoly power producers in the 9-bus and 33-bus systems are listed, and
result values of the MRG and TCRSI of the power producers in two different scenarios are
also listed. The details of both systems are introduced in Appendix A.

Table 2. Q-learning related parameters.

Item Value Item Value

Action 1 −0.05 exploration rate 0.95

Action 2 0 learning rate 0.1

Action 3 0.05 discount factor 0.9

Table 2 introduces the Q-learning related parameters. Three actions are set by the
agent’s possible strategies, decreasing, maintaining, and increasing the value of the bidding
coefficient. The exploration rate is set to 0.95. The literature suggests that the discount
factor (γ) should be set to 0.1, and the learning rate parameter (α) is 0.9 [33].

In this section, two scenarios are selected for the case simulation analysis. In Scenario
1, there is a certain time when the maximum power generation capacity of the two power
producers cannot meet the load demand. In Scenario 2, the maximum power generation
capacity of any two power producers can meet the load demand at any time. The SCUC
problem is formulated using YALMIP in MATLAB and solved using GUROBI 9.5.1. The
agents in each scenario of the 9-Bus System and 33-Bus System executed 150,000 sets and
67,000 sets, respectively, and output simulation results every 24 h.

3.2. The Result Analysis of Both Systems

Figure 4 shows the result comparison between scenario 1 and 2 for the 9-bus system.
Figure 5 shows the result comparison between scenario 1 and 2 for the 33-bus system. The
following features can be revealed in the two comparisons above.

1. Power producers with low power generation costs have the greatest advantage during
the early stages of the simulation. They are in an environment where quotations are
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raised, profits are rapidly increasing, and they can occupy most of the market share dur-
ing the long-term simulation process. In the example of the 9-bus system in Figure 5a–d,
power producer 1 occupied a large market share in the long-term simulation process,
accounting for more than half of the total share. Its profit growth rate was faster than
that of other power generation companies at the initial stage, and the profit of power
producer 1 reached a higher level than that of the other power producers. In the example
of the 33-bus system in Figure 6a–d, compared with other power producers, power
producer 1 and 6 had lower costs, so their profits at the beginning of simulation grew
rapidly, and they occupied a certain share in the whole simulation process, accounting
for approximately one-third of the total shares, respectively.

2. Power producers with low power generation costs must find suitable bidding strategies
through long-term games with other power producers to bring profits to their companies.
As shown in Figures 5c,d and 6c,d, low-cost power producers, such as power producer 1 in
the 9-bus system and power producer 1 and 6 in the 33-bus system, have large fluctuations
in their profits in the long-term market simulation. If they cannot find an appropriate
bidding strategy, they may have small or even no bid winning volume, leading to lower
profits. Therefore, it is very important to find an appropriate bidding strategy.

3. The agent will always choose a strategy that is conducive to increasing interest. In
the simulation experiment of Scenario 1, when there is a structured monopoly in the
electricity market and the supply and demand balance of the power grid needs to
purchase power from a fixed electricity seller, the agent will continue to increase the
quotation during the simulation process, and the benefits will continue to increase.
Then, there will be other sellers in the market to increase their quotations, and the
income of each seller cannot converge, which makes the LMP continue to rise and
the market collapses. Thus, the owner of this capacity will keep increasing the price
or the claimed boundary cost to a very high level. There may be malicious bidding
by producers in the market to drive prices up. As shown in Figures 5e,f and 6e,f, the
average electricity price in Scenario 1 is much higher than that in Scenario 2, and the
electricity price in Scenario 1 shows a continuous upward trend.

4. In the simulation experiments of Scenario 2, any generation section of any power pro-
ducer can be replaced by other power producers. Before the optimal bidding strategy
is found, the electricity price in the electricity market increases. However, through
the strategy selection between the agents, the parties quickly reach convergence, the
market tends to be balanced, and it becomes a competitive electricity market. The
producers find the optimal quotation strategy in the market environment. As shown
in Figures 5f and 6f, the average electricity price in the power market shows a contin-
uous rising trend at the beginning of the simulation, with the 9-bus system increasing
approximately one sixth of the initial price and the 33-bus system increasing approxi-
mately one fifth of the initial price. Through the strategic choice among agents, all
parties reached a consensus quickly, and the market tended to be balanced, becoming
a highly competitive electricity market.

5. The successful rate of winning, assuming generation capacity, in the monopoly case is
higher than that in the case without monopoly. It can be revealed by the degree of
fluctuation in Figures 5a,b and 6a,b. Higher fluctuation in the market share indicates
that even competitors with small market power will still obtain chances to win higher
generation capacity, which represents a more fair environment in power market. In
other words, competition in the case without monopoly is much heavier.

6. The price fluctuation in the case with monopoly is smaller than in the case without
monopoly. As shown in Figures 5e,f and 6e,f, after a certain period of simulation,
the average price in the case without monopoly fluctuates sharply in a range due to
fierce competition among the power producers. The reason for this phenomenon is
that more heavy competition in the case without monopoly will lead to more risk in
the winning capacity. Thus, the power producers will need to decrease their prices
frequently when they face decreasing winning capacity.
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3.3. Result of Hidden Monopoly Recognition and Effect of Price Boundary

To verify the advantages of the proposed scheme compared to the traditional methods,
another case on a 6-bus system is selected for simulation. Figure 7 shows this 6-bus system,
and its data is in Appendix B. For this 6-bus system, traditional ‘Must-Buy Section’ based
models, such as TCRSI and MRG, recognize that there is no monopoly in it. However,
the simulation result in Figure 8a shows that the monopoly behavior exists when bidding
prices rise continuously. The reason for this interesting phenomenon is that the two power
plants naturally form a grouping monopoly. Indeed, the bid-winning rule of the power
market in the simulation performs similar to searching a minimum total cost solution with
constraints satisfied. Thus, the winning capacity of all generations actually depends on
the relative relationship among prices from generation plants rather than the absolute
value of the price. For example, if the two generation plants in the 6-bus system increase
10 USD/kWh simultaneously, the winning capacity of each plant will not change. Thus,
when both plants simultaneously increase their bidding price, they will find that their
winning capacities have not changed. This signal encourages them to keep increasing their
bidding prices and performs similarly to monopoly behavior. Though these two plants do
not communicate with each other, this phenomenon shows that they naturally perform
similar to a group with simultaneous behavior and form a kind of grouping monopoly.
This phenomenon will seldom happen in those cases where there are many competitors,
for behavior randomness makes it difficult for simultaneous behavior to occur. However,
in cases with small generation groups, such as the case here, the randomness is small, and
the probability of this grouping monopoly increases. Moreover, this situation cannot be
recognized by traditional ‘Must-Buy Section’ methods.
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Figure 7. The 6-Bus System used in the numerical study. (B stands for bus, L stands for load, and
G stands for generator).

To prevent this phenomenon, one possible way is to set up a price boundary as a
constraint to limit the monopoly behavior. The proposed framework can easily simulate
the result of the price boundary setting. Figure 8b shows the result of the effect of a
price boundary. Once the restrictions are imposed on the power producers, the bidding
coefficients of Power producer 1 and 2 cannot rise indefinitely. The bidding coefficient of
Power Producer 1 is stable at approximately 1.4, and that of Power Producer 2 is stable at
approximately 1.2.
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4. Conclusions

This study proposes an agent-based bidding simulation framework to recognize
monopolies in power markets. Using the proposed framework, the bidding behavior of
electricity producers may change. Changes in the LMP in long-term electricity markets can
be simulated to determine whether the electricity market is operating healthily. The results
of the numerical study on the proposed framework show that in a power market with
monopoly potential, the profit of the power producers does not converge, and the market
price becomes unacceptable. Whereas in a power market without monopoly potential,
power producers maintain competition, and the market remains active and healthy. For the
structural design of the electricity market, the proposed framework can become a tool for
market monitoring to detect the health of market operations.

Compared to traditional monopoly recognition methods, the largest advantages of the
proposed method include three points. The first point is that the proposed framework can
reveal the details of the market operation’s evolution quantitatively. It not only reveals the
existence of monopoly, but also shows the entire performance in the process of monopoly
under a given behavior model. The second point is that the proposed framework can be eas-
ily used in the simulation of different bidding strategy behaviors by modifying the behavior
module without making changes to the other modules, as well as to simulate different mar-
ket environments by only changing the power market scheme module. This feature enables
the proposed framework to be utilized widely in different power market analyses with low
cost in modelling and programming. The third point is that the proposed framework can
reveal more monopoly cases than traditional ‘Must-Buy Section’-based methods.

This method also contains limitations. The first limitation is that the entire simulation
will cost more computational time and resources than traditional parsing methods. Addi-
tionally, the cost of computational resources will significantly increase when they simulate.
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Appendix A

The specific parameters of Scenario 1 of the 9-bus system case are shown in Tables A1–A3.
Compared with Scenario 1, Scenario 2 changes the PLmax of line 7 from 150 MW to 220 MW,
no change in power producer parameters.

The specific parameters of Scenario 1 of the 33-bus system case are shown in Tables A4–A6.
Compared with Scenario 1, Scenario 2 of the 33-bus system changes the PLmax of line 1 and
line 2 from 150 MW to 250 MW, the PLmax of line 5, line 8, line 20, line 24, line 34, and line
36 from 100 MW to 150 MW, the PLmax of line 19 and line 20 from 150 MW to 200 MW, and
the PLmax of line 22 from 100 MW to 200 MW. No change in power producer parameters.

Table A1. Bus system.

Basic Load (MW)

L1 L2 L3 L4 L5 L6

Connected Bus B1 B3 B4 B6 B7 B9

1 h 24.81 52.24 47.00 106.99 58.40 41.34
2 h 24.01 50.56 45.48 103.54 56.52 40.01
3 h 23.54 49.56 44.58 101.50 55.41 39.22
4 h 23.44 49.35 44.39 101.06 55.17 39.05
5 h 23.91 50.34 45.29 103.09 56.28 39.84
6 h 25.35 53.36 48.01 109.28 59.66 42.23
7 h 28.32 59.63 53.65 122.13 66.67 47.19
8 h 31.49 66.29 59.64 135.77 74.12 52.46
9 h 32.19 67.76 60.96 138.78 75.76 53.63

10 h 32.58 68.59 61.71 140.47 76.68 54.28
11 h 32.47 68.36 61.50 139.99 76.42 54.10
12 h 31.81 66.98 60.26 137.18 74.89 53.01
13 h 31.73 66.81 60.11 136.83 74.70 52.88
14 h 31.64 66.62 59.93 136.44 74.48 52.72
15 h 31.32 65.94 59.32 135.05 73.72 52.19
16 h 31.82 67.00 60.28 137.22 74.91 53.02
17 h 33.23 69.96 62.94 143.27 78.21 55.36
18 h 35.50 74.74 67.24 153.07 83.56 59.15
19 h 35.13 73.96 66.54 151.47 82.69 58.53
20 h 34.27 72.15 64.91 147.76 80.66 57.10
21 h 33.02 69.51 62.53 142.36 77.71 55.01
22 h 31.30 65.89 59.28 134.94 73.66 52.14
23 h 28.60 60.21 54.17 123.32 67.32 47.65
24 h 25.69 54.09 48.66 110.77 60.47 42.80

Table A2. Bidding parameters of power producers in the 9-bus system.

Gmax
(MW)

Gmin
(MW)

Initial
Status Ramp Initial Bidding

Coefficient
A

($/MW2)
B

($/MW)
C
($)

Startup
Cost

Shutdown
Cost

G1 300 20 1 220 1.05 0.0004 13.7 174.3 180 0
G2 250 20 1 100 1.05 0.005 17.6 137.4 60 0
G3 250 20 1 100 1.05 0.005 18.2 131.2 60 0
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Table A3. Parameters of 9-bus system.

Item Impedance (Ω) PLmax (MW)

Lines_1 B1-B2 0.0576 100
Lines_2 B2-B3 0.092 180
Lines_3 B3-B4 0.17 120
Lines_4 B4-B5 0.0586 150
Lines_5 B5-B6 0.1008 160
Lines_6 B6-B7 0.072 140
Lines_7 B7-B8 0.0626 150
Lines_8 B8-B9 0.161 120
Lines_9 B9-B1 0.085 80
Lines_10 B9-B2 0.084 120
Lines_11 B7-B5 0.163 80

Table A4. Data of the base load in the 33-bus system.

Basic Load (MW)

L1 L2 L3 L4 L5 L6 L7

Connected Bus B5 B7 B11 B20 B24 B29 B33

1 h 71.99 49.61 99.95 92.76 83.44 113.60 87.04
2 h 69.67 48.01 96.73 89.77 80.75 109.94 84.23
3 h 68.29 47.06 94.82 88.00 79.16 107.77 82.57
4 h 68.01 46.86 94.42 87.62 78.82 107.31 82.22
5 h 69.37 47.80 96.32 89.39 80.40 109.47 83.87
6 h 73.54 50.68 102.10 94.75 85.23 116.04 88.91
7 h 82.18 56.63 114.10 105.89 95.25 129.68 99.36
8 h 91.36 62.96 126.84 117.72 105.89 144.17 110.45
9 h 93.39 64.35 129.66 120.33 108.24 147.37 112.94

10 h 94.53 65.14 131.24 121.80 109.56 149.16 114.28
11 h 94.20 64.92 130.79 121.38 109.19 148.65 113.89
12 h 92.31 63.61 128.16 118.94 106.99 145.66 111.60
13 h 92.08 63.45 127.84 118.64 106.72 145.30 111.32
14 h 91.81 63.27 127.47 118.30 106.41 144.88 111.00
15 h 90.88 62.62 126.17 117.09 105.33 143.40 109.87
16 h 92.34 63.63 128.20 118.97 107.02 145.70 111.63
17 h 96.41 66.44 133.86 124.23 111.74 152.14 116.56
18 h 103.01 70.98 143.01 132.72 119.39 162.54 124.53
19 h 101.99 70.24 141.52 131.33 118.14 160.84 123.23
20 h 99.43 68.52 138.05 128.11 115.24 156.90 120.21
21 h 95.79 66.01 133.00 123.43 111.03 151.16 115.81
22 h 90.80 62.57 126.07 117.00 105.24 143.29 109.78
23 h 82.98 57.18 115.21 106.92 96.18 130.95 100.32
24 h 74.54 51.37 103.49 96.04 86.39 117.62 90.12

Table A5. Bidding parameters of power producers in the 33-bus system.

Gmax
(MW)

Gmin
(MW)

Initial
Status Ramp Initial Bidding

Coefficient
A

($/MW2)
B

($/MW)
C
($)

Startup
Cost

Shutdown
Cost

G1 220 0 1 50 1.05 0.0004 15.5 176.9 180 0
G2 180 0 1 30 1.05 0.0045 18.1 168.4 180 0
G3 250 0 1 30 1.05 0.001 19.6 129.9 360 0
G4 150 0 1 25 1.05 0.005 17.6 137.4 60 0
G5 250 0 1 40 1.05 0.0047 20.2 130.6 60 0
G6 300 0 1 55 1.05 0.0026 17.2 137.8 60 0
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Table A6. Parameters of the 33-bus system.

Item Impedance (Ω) PLmax (MW)

Lines_1 B1-B2 0.0470 150
Lines_2 B2-B3 0.2511 150
Lines_3 B3-B4 0.1864 100
Lines_4 B4-B5 0.1941 100
Lines_5 B5-B6 0.7070 100
Lines_6 B6-B7 0.6188 100
Lines_7 B7-B8 0.2351 100
Lines_8 B8-B9 0.7400 100
Lines_9 B9-B10 0.7400 100

Lines_10 B10-B11 0.0650 100
Lines_11 B11-B12 0.1238 100
Lines_12 B12-B13 1.1550 100
Lines_13 B13-B14 0.7129 100
Lines_14 B14-B15 0.5260 100
Lines_15 B15-B16 0.5450 200
Lines_16 B16-B17 1.7210 200
Lines_17 B17-B18 0.5740 200
Lines_18 B1-B19 0.1565 150

Lines_19 B19-B20 1.3554 150
Lines_20 B20-B21 0.4784 100
Lines_21 B21-B22 0.9373 100
Lines_22 B3-B23 0.3083 100

Lines_23 B23-B24 0.7091 200
Lines_24 B24-B25 0.7011 100
Lines_25 B6-B26 0.1034 150

Lines_26 B26-B27 0.9337 200
Lines_27 B27-B28 0.1447 200
Lines_28 B28-B29 0.7006 200
Lines_29 B29-B30 0.2585 100
Lines_30 B30-B31 0.9630 100
Lines_31 B31-B32 0.3619 100
Lines_32 B32-B33 0.5362 100
Lines_33 B8-B21 0.6842 100
Lines_34 B9-B15 0.9524 100

Lines_35 B12-B22 0.8661 100
Lines_36 B25-B29 0.7216 100
Lines_37 B33-B18 0.5641 250

Appendix B

The parameters of the power producer and the line in the 6-bus system are the same,
but Scenario 1 does not add any price boundaries, and Scenario 2 sets the maximum bidding
coefficient for power producer 1 to 1.5.

Table A7. Data of the base load in the 6-bus system.

Basic Load (MW)

L1 L2 L3

Connected Bus B1 B3 B4

1 h 60.95 52.28 42.70
2 h 58.98 50.60 41.33
3 h 57.82 49.60 40.51
4 h 57.57 49.38 40.34
5 h 58.73 50.38 41.15
6 h 62.26 53.40 43.62
7 h 69.57 59.68 48.75
8 h 77.34 66.34 54.19
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Table A7. Cont.

Basic Load (MW)

L1 L2 L3

Connected Bus B1 B3 B4

9 h 79.06 67.82 55.10
10 h 80.02 68.64 56.07
11 h 79.75 68.41 55.88
12 h 78.15 67.03 54.76
13 h 77.95 66.86 54.62
14 h 77.72 66.67 54.46
15 h 76.93 65.99 53.90
16 h 78.17 67.05 54.77
17 h 81.62 70.01 57.19
18 h 87.20 74.80 61.10
19 h 86.29 74.02 60.46
20 h 84.17 72.20 58.98
21 h 81.10 69.56 56.82
22 h 76.87 65.94 53.86
23 h 70.25 60.26 49.22
24 h 63.10 54.13 44.22

Table A8. Bidding parameters of power producers in the 6-bus system.

Gmax
(MW)

Gmin
(MW)

Initial
Status Ramp Initial Bidding

Coefficient
A

($/MW2)
B

($/MW)
C
($)

Startup
Cost

Shutdown
Cost

G1 250 0 1 50 1.05 0.0004 13.5 176.9 180 0
G2 200 0 1 30 1.05 0.0006 16.9 146.4 60 0

Table A9. Parameters of the 6-bus system.

Item Impedance (Ω) PLmax (MW)

Lines_1 B1-B2 0.2304 80
Lines_2 B2-B3 0.0920 100
Lines_3 B3-B4 0.6802 80
Lines_4 B4-B5 0.1327 100
Lines_5 B5-B6 0.0567 100
Lines_6 B6-B1 0.1333 100
Lines_7 B6-B3 0.0626 100
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