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Abstract 

We present a 3-staged method for automated learning of the spatial density function of the mass of 
all gravitating matter in a real galaxy, for which, data exist on the observable phase space coordinates 
of a sample of resident galactic particles that trace the galactic gravitational potential. We learn this 
gravitational mass density function, by embedding it in the domain of the probability density function 
( pdf ) of the phase space vector variable, where we learn this pdf as well, given the data. We generate 
values of each sought function, at a design value of its input, to learn vectorised versions of each 
function; this creates the training data, using which we undertake supervised learning of each function, 
to thereafter undertake predictions and forecasting of the functional value, at test inputs. We assume 
that the phase space that a kinematic data set is sampled from, is isotropic, and we quantify the relative 
violation of this assumption, in a given data set. Illustration of the method is made to the real elliptical 
galaxy NGC4649. The purpose of this learning is to produce a data-driven protocol that allows for 
computation of dark matter content in any example real galaxy, without relying on system- specific 
astronomical details, while undertaking objective quantification of support in the data for undertaken 
model assumptions. 
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. Introduction 

The mass distribution of all gravitating matter in an external galaxy, is a coveted system
roperty in astronomy and cosmology. The density function of the mass of gravitational
atter in the galaxy - i.e. of luminous as well as dark galactic matter - if learnt or estimated,
ill permit computation of the spatial distribution of dark matter in the galaxy. Ubiquity
f the shape of the total gravitational mass density function continues to be questioned [1–
] , while agreement exists on the importance of galactic mass distribution in constraining
alaxy formation [1,4–6] , and evolution [7,8] . Computation of the spatial distribution of dark
atter in a galaxy, will indeed need to include astronomical models of the link between

uminous galactic matter, and photometric information obtained from such matter in the galaxy.
his is however more easily accomplished than the learning (or estimation) of the total, or
ravitational mass density function of elliptical galaxies - which is relatively more difficult in
lliptical galaxies than in disky galaxies. The latter systems being rotationally supported, the
otational velocity measurements of their resident particles, taken at different galactocentric
adii, offer an estimate of the gravitational mass enclosed within the given radius [9] . For
lliptical galaxies, no reliable universal parametric model exists to link light and total (or
ravitational) mass, thereby compromising the ambition of learning gravitational mass density
sing only photometric information. It follows, that in an elliptical galaxy, it is in general
est to avoid reliance on such a link when attempting learning or estimation of the total (or
ravitational) mass density function. 

In this paper, we focus on the learning of gravitational mass distribution of elliptical galax-
es, without resorting to astronomical details of individual galaxies, except for observations
f the observable phase space variables of a sample of resolved galactic particles that trace
he galactic gravitational field - and hence are referred to as tracers. Thus, our methodol-
gy offers a black- boxed protocol in which data comprising such observations is input for a
iven galaxy, and the protocol outputs the cumulative (with galactocentric radius) gravitational
ass in this galaxy, (along with its phase space probability distribution), under an assumption

n the symmetry of the galactic phase space, where the validity of this assumption for the
onsidered galaxy, is also quantified. 

Almost all galactic mass modelling exercises that employ tracer kinematic data, resort to
he Jeans Equation formalism. Within this framework, the galaxy is treated as autonomous and
amiltonian. Adherence of the temporal evolution of the probability density function ( pdf )
f the galactic phase space vector to the Collisionless Boltzmann Equation (CBE) is used,
o formulate a deterministic link between moments (and spatial derivatives of moments) of
his pdf and the gravitational potential [10] . Such a link is useful, considering that one of the
nputs in Jeans Equation, is the variance of the line-of-sight (LOS) component of the velocity
ector - which is observed at some locations in the galaxy - and the gravitational potential
unction that is the desired output in this exercise. However, tacitly imposing an arbitrarily-
hosen correlation structure on a sample of observations - sparsely sampled typically - is not
 reliable way of learning the spatial distribution of a moment. Indeed, a persisting difficulty
ith conventional estimation of galactic mass distribution is the approximating of an unknown

patially-varying function with a discrete sample of pairs of the input variable of this function,
nd the corresponding, widely-uncertain value of the output variable. This problem is further
ompounded by seeking spatial derivatives of such an approximated ǣfunction ǥ. While the
resence of such a sample can in principle allow for supervised learning of the sought function,
he large error on the output variable will only learn the function (treated as random), as
1636 
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ighly uncertain, thereby offering meaningless spatial derivatives. Here by ǣmeaningless ǥ,
e imply error bars so large, that the value of the derivative is rendered uninformative. This
roblem with the estimation of total galactic mass distribution, plagues both the usage of
racer kinematics (i.e. observations of phase space coordinates of individual galactic particles)
n Jeans Equation formalisms, as well as observations of temperature of hot gas, modelled
nder assumed hydrostatic equilibrium [11,12] . Imposing a smoothness by hand, on such
approximated ǥ functions, will naturally need to be justified; else the function is rendered
d hoc and the learnt/estimated mass distribution of the galaxy then stands compromised. 

Additionally, given the observational limitations that typify this domain, data does not
xist on everything other than the sought output, i.e. the galactic gravitational potential. This
ncludes data on the parametrisation of anisotropy of the galactic phase space. Indeed, one

ajor idiosyncratic difficulty with the Jeans Equation formalism, is the absence of information
n how deviant the galactic phase space pdf is, from invariance to rotation, i.e. from phase
pace isotropy. This then triggers the need for specification of values of such deviation from
hase space isotropy in a galaxy. Such values are fundamentally ad hoc , since it is the
ack of information on the anisotropy parametrisation that motivates the need for its manual
pecification. The resulting galactic gravitational mass is then rendered arbitrary. Then from
he above, it appears that an automated route to mass modelling would be one that: avoids
omputing spatial derivatives of functions that are learnt (or worse, approximated) as highly-
ncertain; permits quantification of anisotropy of the galactic phase space; eschews reliance
n photometric observations. In this paper, we advance a 3-staged protocol that undertakes
he learning of the gravitational mass density function of a galaxy, while also learning the
hase space pdf of the galaxy, using available noisy measurements on a small sample of
he 3 observable components of the 6-dimensional phase space vector, treating the galaxy as
utonomous and Hamiltonian [13] , while assuming that within the spatial extent of the galaxy
hat we offer the density functions for, the galactic potential is central [14] , and the galactic
hase space pdf is an isotropic function of location and momentum vectors [15] . At the same
ime, we quantify how this assumption of isotropy is supported in the data, by computing a
arametrisation of the departure of the system from this assumption, given the available data.

We do not possess training data on the 2 functions that we desire to learn, namely the
ravitational mass density function and the phase space pdf . This would then negate the
ndertaking of supervised learning of these functions, it would seem. However, in the 1st-Stage
f our work, we will generate such originally-absent training data, by discretising the relevant
ange of the domain variable relevant to each function, and learning the vectorised version
f each function, given the data. This effectively offers the functional value over each design
artition of the relevant range of values of the domain variable, i.e. offers that originally-
bsent training data on the gravitational mass density and phase space pdf . In the 2nd-Stage,
e will implement these produced training sets, to learn each function, by modelling them

s random realisations from an adequately chosen stochastic process, allowing for predictions
nd forecasting of values of the functions. Ultimately in the 3rd-Stage, we will check the
ssumption of isotropy in the data, and compute how anisotropic the galaxy is, given a data
et. We will illustrate our 3-staged method on the data available on an observed sample
f Planetary nebulae (PNe) and another sample of Globular Clusters (GCs), for the galaxy
GC4649. These empirical data sets on the 2 types of tracers in this galaxy, was shared with
s by Dr. Kristin Woodley. Kinematics of GCs in this galaxy have been employed by [16–18] ,
hile kinematic information of PNe in this galaxy has been employed by Teodorescu et al.

19] . The data on GCs that we employ here, is a subsample of the bigger sample used by
1637 
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ther authors. Indeed, while we advocate our 3-staged protocol for the objective and automated
ass modelling of a sample of galaxies, using kinematic information on tracer samples, it is

rucially important to note that any other information - either as data or priors - if available to
he astronomer for an individual galaxy in this sample, can definitely be incorporated within
his framework that is Bayesian by nature. All through, inference is carried out using different

arkov Chain Monte Carlo (MCMC) algorithms [20] . 

. Method 

The system is treated as autonomous, implying that the probability density function
 pdf ) of the phase space vector W does not bear an explicit dependence on time. Here
 = (X 1 , X 2 , X 3 , V 1 , V 2 , V 3 ) 

T , where the location of a galactic particle is X = (X 1 , X 2 , X 3 ) 
T ,

nd its velocity vector is V = (V 1 , V 2 , V 3 ) 
T . In this system, we discuss dynamics per unit

ass of a galactic particle, such that the state of any particle is specified by its veloc-
ty, along with its location. Let the phase space vector W ∈ W ⊆ R 

6 , i.e. W is the phase
pace of the galaxy. Thus in this autonomous system, the phase space pdf is denoted
f W 

(x 1 (t ) , x 2 (t ) , x 3 (t ) , v 1 (t ) , v 2 (t ) , v 3 (t )) , though we will often drop the time-dependence of
hase space coordinates from our notation, for brevity’s sake. We express the location and
elocity vectors in the basis { e 1 , e 2 , e 3 } such that the line-of-sight is along e 3 , implying that
 1 and X 2 are the location coordinates in the plane of the sky; these location coordinates
re observable. The component V 3 of the velocity vector is the speed with which the parti-
le is moving along the line-of-sight; this is the third observable. Thus, X 3 , V 1 , V 2 cannot be
bserved. 

The system gravitational potential at location X is denoted �(X 1 , X 2 , X 3 ) ; again, the lack
f explicit time-dependence in the potential, owes to the autonomous nature of the system.
ur treatment of this dynamical system having reached a stationary state maybe circumspect,
ut with observations available only at a snapshot - rather than online - we need to assume
o much, in order to undertake any tractable analysis. 

The system is also treated as Hamiltonian [14] ; this is motivated by the collisionless nature
f galaxies. Then as the system moves along a trajectory in phase space, the flow of phase
s conserved, i.e. 

df W 

(x 1 (t ) , x 2 (t ) , x 3 (t ) , v 1 (t ) , v 2 (t ) , v 3 (t )) 

dt 
= 0, 

.e., the Collisionless Boltzmann Equation (CBE) holds [9] . 
A corollary of the phase space pdf abiding by CBE is that f W 

(·) can be recast as a
unction of integrals of motion [9,21] , such as I 1 , . . . , I n , where I k : W −→ R in general, with
 (I k ) /d t = 0, for k = 1 , . . . , n. Then it follows that phase space trajectories that are allowed
n W , have to lie at the intersection of n such sub-volumes of W within which the phase space
oordinates abide by the constraints that d(I 1 (x 1 , . . . , v 3 ) /dt = 0, . . . , d(I n (x 1 , . . . , v 3 ) /dt =
. In other words, phase space trajectories in W have n constraints imposed on them, confining
hem to 6 − n degrees of freedom; recall that W ⊆ R 

6 . Then to be allowed even 1 degree of
reedom, n ≤ 5 . 

We recall that one such integral of motion is the energy of any galactic particle. Energy
s given partly by the kinetic energy of the particle, and partly by its potential energy. As
e perform the analysis per unit mass, the total energy per unit mass is the sum of half the
1638 
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quared (Euclidean) norm of the velocity vector, and the gravitational potential at the location
f the particle, in this galaxy. 

We assume the galaxy to be spherically symmetric. Thus, the gravitational potential is
entral, i.e. a function of the components of the location vector, via its explicit dependence

n galactocentric radius R := 

√ 

X 

2 
1 + X 

2 
2 + X 

2 
3 , i.e. its notation is updated from above as �(R) .

hen under spherical symmetry, Poisson Equation links the gravitational mass density ρ(R)

o the potential as: 

1 

R 

2 

d 

dR 

(
R 

2 d�(R) 

dR 

)
= −4πGρ(R) , 

here G is the known Newton’s Gravitational constant. Assuming the potential to be central
s perhaps not a bad assumption, as long as we attempt our learning only at locations that are
t most “moderately” distant from the centre of the galaxy. This is indeed not verifiable given
he observations that offer values of X 1 and X 2 , (along with V 3 ). One possible suggestion for
 limit on the spatial extent under consideration, could be the smaller between the maximal
alactocentric radius r max that observations are available to, and a benchmark photometrically-
elevant radius, such a 5 times the effective radius ( r e f f ). We use this convention and consider
nly results obtained within such a galactocentric radius 

 gal = min [ r max , 5 r e f f ] . 

Let us suggest that f W 

(·) is recast as the one and only integral of motion of energy 

 (X 1 , X 2 , X 3 , V 1 , V 2 , V 3 ) := �(R) + 

V 

2 

2 

, 

here 

 := 

√ 

V 

2 
1 + V 

2 
2 + V 

2 
3 ; R := 

√ 

X 

2 
1 + X 

2 
2 + X 

2 
3 . 

hen it implies that f W 

(X 1 , X 2 , X 3 , V 1 , V 2 , V 3 ) = f W 

( ε(X 1 , X 2 , X 3 , V 1 , V 2 , V 3 )) ≡ f W 

(�(R) +
 

2 / 2) . 

efinition 2.1. A function of the 2 vectors X ∈ X ⊆ R 

3 and V ∈ V ⊆ R 

3 is isotropic, if the
unction is invariant to rotation Q X and rotation Q V , for any 3 × 3 -dimensional orthogonal
atrix Q . 
It follows that function f W 

(R, V ) is an isotropic function of X and V , for R =
 

X 

2 
1 + X 

2 
2 + X 

2 
3 ;V = 

√ 

V 

2 
1 + V 

2 
2 + V 

2 
3 , since 

 = ‖ X ‖ := 

√ 

X 

T X = 

√ 

(Q X ) T (Q X ) , 

iven that for orthogonal matrix Q ∈ R 

3 ×3 , Q 

T Q = I ; similarly for V = ‖ V ‖ . Here ‖ · ‖
enotes Euclidean norm. 

So the phase space pdf , if recast as a function of the sole integral of motion, energy, is
n isotropic function of location and velocity, i.e. f W 

( ε) ≡ f W 

(�(R) + V 

2 / 2) is an isotropic
unction of X and V . 

emark 2.1. We model the phase space pdf as a function of energy of the considered galactic
article. So in our model, the phase space distribution of the system is isotropic. 
1639 
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.1. 1st-stage: generating originally-absent training sets 

Our aim here is to learn the phase space pdf f W 

( ε) and the gravitational mass density
unction ρ(R) . 

To undertake the supervised learning of ρ(R) , one needs a training data set comprising
airs of design values of radius R, and the gravitational mass density computed at this design
adius. We do not possess such a training set apriori. Any such training set built from a
imulated model of the galaxy is irrelevant since it is the essential lack of information about
he galaxy under consideration, that motivated our pursuit of the galactic gravitational mass
ensity function and the phase space pdf . In other words, we do not have information about
hese pursued functions ρ(R) and f W 

( ε). In lieu of such information, any constructed model
f the gravitational mass density of the galaxy - constructed with the aim of simulating values
f this function at design radii - is rendered arbitrary, i.e. irrelevant to the galaxy at hand.
imilarly, we state that there exists no information-driven model of the phase space pdf of the
onsidered galaxy; if information exists to constrain such a model pdf , we would not need to
mbark upon our learning exercise. 

.1.1. Information available; priors 
It may however be that we possess information on some properties of these system func-

ions, that we would like to input towards the learning of these functions, at design inputs.
uch information comprises 

• Non-negativity of both the phase space pdf and the gravitational mass density function,
at all energy and radius. 
• Monotone non-increasing nature of ρ(R) with increasing values of R. This is motivated

by the gravitationally bound nature of the system, assumed spherically symmetric. Then
under the central (gravitational) potential �(R) we expect matter at radius R = r to be
more tightly packed than matter at R = r / , for r < r / . 
• The phase space pdf integrates to 1, over all energy values. 

We will incorporate each of these known pieces of information on properties of the 2
ought functions via the inference that we will undertake. 

Additionally, it may be possible that for a galaxy under consideration, priors exist on
he shape of either, or both, of the sought functions. However, in our approach we advocate
aution over priors motivated by astronomical theory, parameters of which are then fed generic
alues. We state this, backed by apprehension about a high level of diversity in a sample of
alaxies observed within any observational programme; galactic properties are expected to be
ensitive to the effect of the highly multivariate internal and external evolutionary influences
 inclusive of non-linear dynamical effects - on the evolution of individual galaxies. This is
articularly true for the phase space pdf , which does not need to follow any global parametric
hape, and indeed, may violate the assumed isotropy that we model the pdf to abide by.
iven that a galaxy is composed of multiple, dynamically interacting - in fact, differentially

orrelated - components, implies that the phase space pdf may not be a single or monolithic
unction of the integrals of motion, but may manifest different functional forms within distinct
ub-volumes of the galactic phase space. There is no pressing motivation for the phase space
df to be globally Normal or skewed-Normal in energy. In light of this discussion, we will
1640 
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mpose only weak priors on the sought gravitational mass density function ρ(R) , and the
hase space pdf f W 

( ε). 

.1.2. Embedding ρ(R) in domain of pdf f W 

( ε) 
As seen above, expressing the phase space pdf as a function of energy, allows for the grav-

tational potential to be embedded in the support of the pdf , such that, the gravitational mass
ensity ρ(R) - which is deterministically computable, given �(R) - is effectively embedded
n the support of the pdf . To summarise, 

f W 

( X 1 , X 2 , X 3 , V 1 , V 2 , V 3 ) = f W 

( ε ) ≡ f W 

(�(R) + V 

2 / 2) 

mplies that the phase space pdf is 

f W 

( ε ) ≡ f W 

(�(R) , V ) ≡ f W 

(ρ(R) , V ) . 

Let the data available for the galaxy under consideration, comprise N data values of the
bservables X 1 , X 2 , V 3 of one type of galactic particles, where the noise on V 3 is also observed,
ith noise on X 1 and X 2 observations negligible, compared to the noise on V 3 . In fact, the
oise s i on the i-th observation v (i) 3 of V 3 , is modelled as the standard deviation of the error
ensity for V 3 observations, where we model this error density to be a Normal with a zero
ean. Thus, the error on the observed value v (i) 3 is εi ∼ N (0, s 2 i ) . We denote this available

inematic data of the N data particles of a given type, as D = { (x (i) 1 , x (i) 2 , v (i) 3 , s i ) } N data 
i=1 . 

Now, assuming the N data data points in D to be independent, likelihood of the model - of
he sought gravitational mass density and phase space pdf - given the data D , is expressed
s the product of values of the probability density function g U 

(·) of the observable U :=
(X 1 , X 2 , V 3 ) 

T , (given the model mass density and phase space pdf ), computed at each of the
ata points in D . In other words, in the absence of measurement noise, likelihood is 

 (ρ(·) , f W 

(·) | D ) = 

N data ∏ 

i=1 

g U 

(x (i) 1 , x (i) 2 , v (i) 3 | ρ(·) , f W 

(·)) 
C( f W 

(·) , �(·) ) , (2.1)

here the pdf of the observable U can be computed from the phase space pdf by integrating
ut from the latter, all those phase space coordinates that are not observed and C(·, ·) is the
ormalisation of this pdf of the observables. Thus, 

 U 

(
x (i) 1 , x (i) 2 , v (i) 3 | ρ(·) , f W 

(·) 
)

= 

∫ x (max,i) 
3 

x (min,i) 
3 

∫ v (max,i) 
2 

v (min,i) 
2 

∫ v (max,i) 
1 

v (min,i) 
1 

f W 

(
�

(
ρ

(√ 

(x (i) 1 ) 2 + (x (i) 2 ) 2 + x 2 3 

))
+ 

(
v 2 1 + v 2 2 + (v (i) 3 ) 2 

)
/ 2 

)
d v 1 d v 2 d x 3 , 

here this density of the observables will need to be subsequently normalised by
( f W 

( ·) , �( ·) ) , which is defined as the integral over all values of the observables, i.e. this
ormalisation is: 

( f W 

( ·) , �( ·) ) = 

∫ 

g U 

(x 1 , x 2 , v 3 | ρ(·) , f W 

(·)) d x 1 d x 2 d v 3 . 

ecognising that values of X 1 and X 2 appear in the integrals relevant to RHS of the equa-
ion that defines g U 

(·|·) , via the term X 

2 
1 + X 

2 
2 , we replace (x (i) 1 ) 2 + (x (i) 2 ) 2 in the integrand

ith (x (i) p ) 2 , where we define 

 

2 
p := X 

2 
1 + X 

2 
2 . 
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imilarly, we replace (v (i) 1 ) 2 + (v (i) 2 ) 2 in the integrand with (v (i) p ) 
2 , where we define 

 

2 
p := V 

2 
1 + V 

2 
2 , 

nd d v 1 d v 2 by 2πv p d v p , i.e. the double integral with respect to (w.r.t.) V 1 and V 2 is replaced
y a single integral w.r.t. v p , by invoking isotropy in velocity-space. Thus, the definition of
 U 

(·) reduces to: 

g U 

(
x (i) 1 , x (i) 2 , v (i) 3 | ρ(·) , f W 

(·) 
)

= 2π

∫ x (max,i) 
3 

x (min,i) 
3 

∫ v (max,i) 
p 

v (min,i) 
p 

f W 

(
�

(
ρ

(√ 

(x (i) p ) 2 + x 2 3 

))
+ 

(
v 2 p + (v (i) 3 ) 2 

)
/ 2 

)
v p dv p dx 3 . (2.2)

In light of the introduction of X p , as motivated just above, we clarify the normalisation of
he pdf of the observables as 

( f W 

( ·) , �( ·) ) = 2π

r max ∫ 

x p =0 

√ 

−2�(x p ) ∫ 

v 3 = −
√ 

−2�(x p ) 

g U 

(x p , v 3 | ρ(·) , f W 

(·)) x p dx p dv 3 . (2.3)

ere, the maximal value that V 3 can attain at a given value of X p is obtained by recalling
he definition of energy as sum of potential and kinetic energies. When energy attains the
ighest value (of 0), kinetic energy is maximal, at x 3 = 0, i.e. at potential �(x p ) . This follows

rom �(x p ) < �( 
√ 

x 2 p + x 2 3 ) , ∀ x 3 � = 0. Then the maximal value of V 3 is computed using this

aximal kinetic energy at V 1 = V 2 = 0. Thus, the maximal value of V 3 is 
√ 

0 − 2�(x p ) . The
inimal value of V 3 is the negative of this computed maximal value. The maximal value of
 p is the maximal radius r max , observations of U till which, we consider in our learning. 

However, it appears impossible to compute the likelihood introduced in Eq. (2.1) , since
alculation of g U 

(·) appears impossible, given that learning of f W 

(ε) and ρ(r) appears impos-
ible. The last claim is due to the fact that training data set { (ε j , f W 

(ε j )) } N e j=1 is unavailable,

nd training data { (r k , �(r k )) } N r k=1 is also unavailable, ∀ N e , N r ∈ N . However, such training
ets are pre-requisites for the supervised learning of the phase space pdf and gravitational
ass density function. In lieu of these training sets - and with the aim of generating such

raining data sets - we learn “vectorised versions” of each of the sought functions, where we
xplain below, what we imply by vectorised version of a sought function. 

We discretise the relevant interval ( [ r 0 , r max ] ) in the domain of the sought function ρ(·) ,
nto N r partitions. Each such partition is referred to as an “R-bin”. Then the j-th R-bin
omprises r ∈ [ r 0 + ( j − 1) δr , r 0 + jδr ) , ( j = 1 , . . . , N r ), where we choose to use a constant
idth δr for all R-bins. So we use δr = (r max − r 0 ) /N r . Then we approximate the function
(r) as 

j ≡ ρ(r) , ∀ r ∈ [ r 0 + ( j − 1) δr , r 0 + jδr ) ; j = 1 , . . . , N r . 

e define the N r -dimensional vector ρ = (ρ1 , . . . , ρN r ) 
T , and replace our ambition of learning

(r) - for now - by learning ρ, i.e. each of the N r “ρ-parameters” ρ1 , . . . , ρN r . 
Similarly, we discretise the relevant range of normalised energy values ([-1, 0)), into N e

ε-bins”, such that we approximate the function f W 

(ε) as 

f k ≡ f W 

(ε) , ∀ ε ∈ [ −1 + (k − 1) δe , −1 + kδe ) ; k = 1 , . . . , N e , 
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here δe = 1 /N e . Here by “normalised energy”, we imply the variable ˜ ε that takes value
˜  ∈ [ −1 , 0) , where we normalise ε to ˜ ε as: 

˜  := 

ε 

−�(0)) 
. 

e define the N e -dimensional vector f = ( f 1 , . . . , f N e ) 
T . In fact, for every trial f - i.e. at every

teration of the inference, we normalise f k with a global scale s.t. f k ≤ 1 , ∀ k = 2, . . . , N e .
nd learn f 2 , . . . , f N e , so that we can deterministically assign to f 1 the value such that ( f 1 +
( f 2 + f 3 + . . . + f N e −1 ) + f N e ) δe / 2 = 1 , i.e. the (trapezoidal implementation) of the Riemann
um approximation of the area under the phase space pdf equals 1. Thus, we learn f 2 , . . . , f N e 
nd treat f 1 as deterministically known, given the learnt “ f -parameters” in every iteration of
he adopted inferential scheme. 

Thus, the Bayesian inference using MCMC that we will undertake, will make infer-
nce on the state space parameter vector (ρ1 , . . . , ρN r , f 2 , . . . , f N e ) 

T , given the data D .
e summarise, that by vectorised-version of the sought ρ(·) and f W 

(·) functions, we
mply the vectors ρ and f , respectively. Learning the N r ρ-parameters enables realisa-
ion of the pairs: (r 1 , ρ1 ) , . . . , (r N r , ρN r ) , and learning the f -parameters leads to the pairs:
( ̃  ε 2 , f 2 ) , . . . , ( ̃  ε N e , f N e ) . While the first set is the originally-absent training set that will allow
or the supervised learning of the ρ(R) function, the latter set is such a training data set for
earning f W 

(ε) . Eq. (B.1) , provides the means to compute the gravitational potential �(R) ,
iven a vectorised version of ρ(R) . 

To learn the ρ-parameters and f -parameters, we recall the definition of the probability
ensity of the observables, expressed in terms of the phase space pdf and in that, replace the
ought functions with their respective vectorised forms. Thus, considering the projection of the
hase space pdf into the space of observables - which is what the RHS of Eq. (2.2) manifests
 over each ε-bin individually, and summing over all such energy partitions, this equation
educes to 

 U 

(x (i) 1 , x (i) 2 , v (i) 3 | ρ, f ) = 2π
∑ N e 

j=1 

[ 

f j 

∫ v (max,i) 
p 

v (min,i) 
p 

∫ x (max,i) 
3 

x (min,i) 
3 

v p dv p dx 3 

] 

, (2.4)

here the integrals on the RHS represent the volume that the j-th ε-bin, i.e. energy-partition,
ccupies in the space of the unobservables. From the definition of energy, at a given r (i) =
 

(x (i) p ) 2 + x 2 3 , and given v (i) 3 , the maximal value of V p is given as 

v (max,i) 
p 

)2 = 0 − 2�
(
r (i) 

) −
(

v (i) 3 

)2 
, 

.e. (v (max,i) 
p ) = 

√ 

−2�(r (i) ) − (v (i) 3 ) 2 , while (v (min,i) 
p ) = −

√ 

−2�(r (i) ) − (v (i) 3 ) 2 . Again, from

he definition of energy, at given x (i) p and v (i) 3 , the maximal value of X 3 is x 
(max,i) 
3 - root of the

quation: 0 = �

(√ 

(x (i) p ) 2 + x 2 3 

)
+ (v (i) 3 ) 2 / 2. The minimal X 3 value is 0. The g U 

(·) computed

his way from Eq. (2.4) is then normalised by the RHS of Eq. (2.3) , which we refer to now
s C( f , �) , in light of the vectorisation of the functions. 

While Eq. (2.4) allows for computation of the pdf of the observables, conditional on the
odel parameters ρ1 , . . . , ρN r , f 2 , . . . , f N e in the noise-free instance, noise in the measurement

f V 3 exists, and we need to perform learning of our model parameters, while acknowledging
uch noise. As we state above, we model the noise on the i-th observation of V to be the
3 
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i ∼ N (0, s 2 i ) . We ignore the noise in the X p measurement, in comparison to the noise in the
easurement of V 3 . Then in the presence of this noise, the pdf of the i-th datum given the
odel parameters, is updated to the convolution of g U 

(x (i) 1 , x (i) 2 , v (i) 3 | ρ, f ) with the Gaussian
n v (i) 3 , with parameters 0 and s 2 i , as mean and variance, respectively. This updated pdf of the
-th datum given the model parameters, is then to be normalised by the normalisation C( f , ρ)

f the pdf of the observable given (vectorised) forms of the phase space pdf and gravitational
ass density function. Thus, likelihood of the model parameters given data D that includes

he observational noise in V 3 , under the assumption of independent data points, is 

 

(
ρ1 , . . . , ρN r , f 2 , . . . , f N e | D 

) = 

N data ∏ 

i=1 

g U 

(
x (i) 1 , x (i) 2 , v (i) 3 | ρ, f 

)
∗ N 

(
v (i) 3 ; 0, s 2 i 

)
C( f , ρ) 

. (2.5)

Having defined the likelihood of the model parameters - that are the ρ-parameters and the
f -parameters - given the data D , we can write the posterior pdf of these model parameters
iven this data, subsequent to the selection of priors on the model parameters. As stated
bove, we will motivate the case here, for weak priors, since we want to avoid biasing
ur inference, especially on the f -parameters, in this learning exercise in which the data
as weaker informative influence on the f -parameters, over the ρ-parameters. In case the
stronomer is blessed with information on the gravitational mass density and phase space
df of a given galaxy, such information can be translated to more informative priors in such
ituations. Our weak priors π0 (θ ) include Normal and truncated Normal priors on a model
arameter θ ∈ { ρ1 , . . . , ρN r , f 2 , . . . , f N e } , with a mean that is the chosen seed value of θ , and
 variance that is large - namely, 3 to 10 times the variance used in the proposal density that
rial values of this model parameter θ are proposed from, in any iteration of the undertaken

CMC-based inference. Our experimentation indicates robustness of the inferred results on
1 , . . . , ρN r , f 2 , . . . , f N e , to the choice of priors. 

We choose a seed value for f j by considering the “seed phase space pdf ” to be uniform,
uch that the seed value of f j is f 0 , ∀ j = 2, . . . , N e . Again, we choose a “seed gravitational
ass density function”, to bear pre-chosen forms, eg. an NFW form [2] , such that ρk is

omputed using this chosen form, at radius R = r k , k = 1 , . . . , N r . We have experimented
ith different forms of the seed gravitational mass density function, and find our inferred

esults to be insensitive to the chosen seeds, i.e. each learnt parameter is inferred to be
onsistent within the learnt uncertainties on itself, (which given our MCMC-based inference,
s the 95 % Highest Probability Density credible region learnt for this parameter, given the
ata). 

Thus, the posterior pdf is given as 

(
ρ1 , . . . , ρN r , f 2 , . . . , f N e | D 

) ∝ 

 

(
ρ1 , . . . , ρN r , f 2 , . . . , f N e | D 

)
π0 (ρ1 ) . . . π0 (ρN r ) π0 ( f 2 ) . . . π0 ( f N e ) , 

here any global scale in the definition of the posterior of the model parameters given the
ata, is irrelevant to the MCMC-based posterior sampling that we undertake towards making
nference on the model parameters. 
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.2. Inference on model parameters in the 1st-stage 

We choose to employ the Metropolis-within-Gibbs algorithm [22] , towards such inference,
o appreciate the expectedly higher correlation amongst the ρ-parameters and amongst the
f -parameters, compared to the correlation amongst ρ-parameter- f -parameter pairs. Thus, we
pdate the ρ-parameters in the 1st block of an iteration, given the data D , and then in the
nd block of the iteration, at the updated ρ vector, we update the f -parameters, given the
ata. 

In the 0-th iteration, the ρ-parameters and the f -parameters are assigned respective seed
alues, using the seed gravitational mass density form and the seed phase space pdf stated
bove. In the t-th iteration, ( t = 1 , . . . , N iter ), let the current value of ρk be ρ(t−1) 

k and the
urrent value of f j is f (t−1) 

j ; k = 1 , . . . , N r , j = 1 , . . . , N e . In the 1st block of this t-th
teration, the proposed ρ j , is sampled from a truncated Normal proposal density as 

(
,t ) 
j ∼ T N 

(
ρ

(t−1) 
j , 0, ∞ , σ 2 

j 

)
, for j = N r , and 

(
,t ) 
j ∼ T N 

(
ρ

(t−1) 
j , ρ

(
,t ) 
j+1 , ∞ , σ 2 

j 

)
, for 1 ≤ j < N r , 

here the truncated Normal density with mean a, left truncation b, right truncation c, and
ariance d is depicted as T N (a, b, c, d ) . As can be appreciated from this proposal scheme
uggested above, the ρ-parameters are proposed at the outermost radial bin first, and then the
ther ρ-parameters are sequentially proposed, as we move inwards, from the outermost radial
in. Thus, the constant jump-scale σ j is used to propose ρ j in any iteration. 

The demand that a proposed ρ j not fall below the recently-updated ρ j+1 , is implemented via
roposing from the truncated Normal density that is left truncated at this minimally allowed
alue for ρ j in any iteration. This allows for adherence of each ρ-parameter to the physically-
otivated constraint of monotonic non-increasing with increasing radius, and at the same time,

lso satisfies positivity. The correlation amongst the ρ-parameters that is suggested via this
onotonicity, once allowed to percolate to the learning of the ρ-parameters via the MCMC-

ased inference, renders the learning robust to small to moderately large changes in seeds
nd priors. Unlike ρ j , ∀ j = 1 , . . . , N r − 1 , there is no value that ρN r can be deterministically
nown to be in excess of - other than 0, (since all ρ-parameters are non-negative). Thus, the
ncertainty in our learnt value of ρN r is typically the highest, amongst uncertainties on all
ther learnt ρ-parameters. 

Then the ρ-parameters proposed in (the first block of) this t th iteration are accepted or
ot depending on whether the following acceptance criterion is obeyed: 

1 
(
ρ(
,t ) , ρ(t−1) 

) ≥ u, 

here U = u, with U ∼ Uniform [0, 1] , and 

1 
(
ρ(
,t ) , ρ(t−1) 

) = 

π
(
ρ

(
,t ) 
1 , . . . , ρ

(
,t ) 
N r 

, f (t−1) 
2 , . . . , f (t−1) 

N e 
| D 

)
π

(
ρ

(t−1) 
1 , . . . , ρ

(t−1) 
N r 

, f (t−1) 
2 , . . . , f (t−1) 

N e 
| D 

) ×

�
(
ρ

(t−1) 
1 , ρ

(
,t ) 
2 , ∞ , σ 2 

1 

)
. . . �

(
ρ

(t−1) 
N r 

, 0, ∞ , σ 2 
N r 

)
�

(
ρ

(
,t ) 
1 , ρ

(t−1) 
2 , ∞ , σ 2 

1 

)
. . . �

(
ρ

(
,t ) 
N r 

, 0, ∞ , σ 2 
N r 

) . (2.6)
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If the acceptance criterion is obeyed, we state that ρ(t ) 
j = ρ

(
,t ) 
j ; else ρ(t ) 

j = ρ
(t−1) 
j ; j =

 , . . . , N r . Thus, the ρ-parameters are updated in the first block of the t th iteration. 
Then in the 2nd block of this iteration, at the updated ρ of ρ(t ) 

1 , . . . , ρ
(t ) 
N r 

, we update the
f -parameters. We propose the kth f -parameter from a truncated Normal that is left truncated
t 0 to ensure non-negativity of the parameter; has a mean that is the current value of the
arameter, i.e. f (t−1) 

k ; has a constant variance v k , ∀ k = 2, . . . , N e . Thus, 

f (
,t ) k ∼ T N 

(
f (t−1) 

k , 0, ∞ , ν2 
k 

)
, for k = 2, . . . , N e . 

hen acceptance of this proposed value of f k depends on adherence to the acceptance criterion:

2 
(

f (
,t ) , f (t−1) 
) ≥ u, 

nd 

2 
(

f (
,t ) , f (t−1) 
) = 

π
(
ρ

(t ) 
1 , . . . , ρ

(t ) 
N r 

, f (
,t ) 2 , . . . , f (
,t ) N e 
| D 

)
π

(
ρ

(t ) 
1 , . . . , ρ

(t ) 
N r 

, f (t−1) 
2 , . . . , f (t−1) 

N e 
| D 

)

×
�

(
f (t−1) 
2 , 0, ∞ , ν2 

2 

)
. . . �

(
f (t−1) 
N r 

, 0, ∞ , ν2 
N r 

)
�

(
f (
,t ) 2 , 0, ∞ , ν2 

1 

)
. . . �

(
f (
,t ) N r 

, 0, ∞ , ν2 
N r 

) . (2.7)

If the acceptance criterion is obeyed, we state that f (t ) k = f (
,t ) k ; else f (t ) k = f (t−1) 

k ; k =
, . . . , N e . This way, we update the f -parameters in the 2nd block of the t th iteration. 

.3. What is N r and N e in 1st-stage? 

We definitely do not wish to learn the number N r of R-bins that the radial range [ r 0 , r max )

s partitioned into; neither do we want to learn the number N e of ε-bins. This reluctance
bout treating N r and N e as variables stems from desired avoidance of an MCMC-based im-
lementation in which the dimensionality of the state space vector (ρ1 , . . . , ρN r , f 2 , . . . , f N e ) 

T 

s a variable. Such an implementation will generally be Reversible Jump MCMC; we wish to
void it since it is a cumbersome inferential tool, and its need for the application at hand is
ver-ridden by provisions in the data for deterministic choice of N r and of N e . 

We choose N r to be such that if the interval [ r 0 , r max ) is partitioned into these many R-bins,
hen there will be at least one datum in each such bin. At the same time, we appreciate that the
arger is N r , smaller is the error in approximating the function ρ(R) with its vectorised-version
. 

We could invoke similar considerations to guide our choice of N e , except that there is
he additional complication that computation of value of the energy variable, requires input
rom the potential function. To acknowledge this, we first employ the N r R-bins over which
he frequency distribution of particle numbers is constructed, and treat this as proportional
o the frequency distribution of the particle gravitational mass, i.e a rudimentary indicator
f ρ. We then employ this vectorised version of the gravitational mass density function, in
he discretised Poisson Equation, to compute a rudimentary value of the vectorised version
referred to as �0 = (�1 , 0 , . . . , �N r , 0 ) 

T ) of the gravitational potential function, where � j, 0

s defined over the jth R-bin; j = 1 , . . . , N r . Then adding the ith observed value of V 

2 
3 / 2

o this preliminary indicator for the gravitational potential (vector), we generate N data values
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f energy ε. We normalise these values such that all such indicator values of energy lie in
-1,0). The histogram of the set of such computed values of energy is constructed using N e

ins, with bounds of 0 and -1, where N e is chosen to ensure that no energy bin is bereft of a
omputed energy value. With a preliminary choice of N e , a chain of MCMC is run, and the
ravitational mass density vector ρ learnt from it, is again employed to learn the vectorised
ersion of the gravitational potential, by inputting the learnt ρ into the discretised Poisson
quation. Normalised energy values computed by adding observations of V 

2 
3 / 2 are then again

sed to compute the energy histogram with N e bins, over the interval [-1,0). If the number
f data points within each energy bin is ≥ 1 , then N e is retained as the number of ε-bins
n the learning exercise. We appreciate that the computational time rises super-linearly with
ncrease in N e , and therefore, in the first instance of choosing N e to construct the indicative
istogram of energy values, we choose the smallest N e that satisfies the constraint that no
-bin is empty of an input. 

.4. Learning & predicting sought gravitational mass density and phase space pdf : 
nd-stage 

At the end of the 1st-Stage, we obtain the originally-absent training data sets: 

 ρ := { (r 1 , ρ1 ) , . . . , (r N r , ρN r ) } , 
nd 

 ε := { ( ̃  ε 2 , f 2 ) , . . . , ( ̃  ε N e , f N e ) } . 
n the 2nd-Stage, the aim is to perform supervised learning of the gravitational mass density
unction and the phase space pdf , using D ρ and D ε , respectively. We do this by treating either
unction as random function, which is equivalent to saying that each unknown function is
reated as if it attains a given form, with a probability. In other words, we undertake the
ayesian approach, in which we model a random structure with a probability distribution.
ow, a probability distribution on a space of functions is of course a stochastic process. 
Thus, we treat the random function ρ(·) as a random realisation from an adequately selected

tochastic process, and we treat the random function f W 

(·) as a random realisation from a
tochastic process as well. We aim to invoke generic stochastic processes to model the sought
unctions. Thus, processes that are such that the realised functions are constrained to abide
y given equations, are not ideal. On the other hand, if these functions are considered to be
enerated by respective Gaussian Processes, ( GP s), then the only constraint that each function
as to abide by, is that the joint probability distribution of a finite number of realisations of
he function is Multivariate Normal, [23] . In other words, the we would need to set: 

(·) ∼ GP (μρ(·) , K ρ (·, ·)) and f W 

(·) ∼ GP (μ f (·) , K f (·, ·)) , 
here μρ(·) and K ρ (·, ·) are the mean and covariance functions of the GP that ρ(·) is a

ealisation of, and μ f (·) and K f (·, ·) are the mean and covariance functions of the GP that
f W 

(·) is a realisation of. 
Then by definition of GPs, the joint of N r realisations of ρ(·) - namely, ρ1 , . . . , ρN r - is a

ultivariate Normal, with a mean vector μρ and variance-covariance matrix 

ρ = [ Cov(ρc , ρd )] ≡ [ K ρ (r c , r d )] ; c, d ∈ { 1 , . . . , N r } , 
here the covariance between the pair ρc , ρd of ρ-parameters, is modelled as a declining

unction K ρ (·, ·) of the difference between the inputs r c and r d , ∀ c, d ∈ { 1 , . . . , N r } . Then
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 ρ (·, ·) is a function that parametrises the covariance of this Multivariate Normal density,
nd thereby the covariance structure of the GP that underlines the function ρ(·) ; we say that
his covariance structure is parametrised with the covariance kernel K (·, ·) . Many forms of
 (·, ·) are possible [24] ; we can for example choose the simple Square Exponential (or SQE)

orm of this kernel function. Under the SQE form of the kernel, 

ov(ρc , ρd ) = K (r c , r d ) := A exp 

(
− (r c − r d ) 2 

� 2 

)
, 

here the amplitude A > 0 and the length scale � ∈ R are the hyperparameters of this kernel
unction that we learn from the data. The same values of the hyperparameters will suffice, for
ll elements of the covariance matrix, i.e. ∀ c, d ∈ { 1 , . . . , N r } , as long as the ρ(·) function is
ontinuous 2 However, given the training data D ρ alone, we cannot be confident if the sought
unction is continuous; on the other hand, the distribution of the output variable in the training
et, across the design input points, can indicate if the underlying function is not continuous.
n other words, the underlying function may still not be continuous, though a finite discrete
ample of input-output pairs from the function may suggest continuity. But if the training
ample indicates lack of continuity, the function is not likely to be continuous. We will
owever proceed with the SQE covariance kernel for the sake of simplicity of computation
 which we acknowledge, might compromise accuracy of predictions. We will check on this
ccuracy by predicting the value of ρ(R) at test inputs. 

As stated above, the joint of N r realisations of ρ(·) is the Multivariate Normal ( MN ) with
arameters μρ and �ρ . 

 ρ(r 1 ) , . . . , ρ(r N r )] = MN ( μρ, �ρ ) , 

hich given our vectorised learning in the 1st-Stage, is equivalent to stating that the joint 

 ρ1 , . . . , ρN r ] = MN ( μρ, �ρ ) , 

.e. probability of data on the output of the sought function, conditional on μρ and �ρ , is the
ultivariate Normal density with parameters μρ and �ρ , [25] . In fact, the only unknowns in

he mean vector and covariance matrix are the amplitude and length scale (hyperparameters):
 ρ and � ρ , where Cov(ρc , ρd ) = K (r c , r d ) = A ρ exp (−(r c − r d ) 2 /� 2 ρ ) , ∀ c, d ∈ { 1 , . . . , N r } . 

But, this conditional probability of data is the likelihood of the model parameters given
he data, i.e. the likelihood is 

 (A ρ, � ρ | D ρ ) = 

1 √ | 2π�ρ| 
exp 

( 

− ( ρ − ρ̄) T �−1 
ρ ( ρ − ρ̄) 

2 

) 

, (2.8)

here ρ̄ is the empirical mean of the ρ-parameters learnt in the 1st-Stage. In our application,
e actually standardise the data with the sample mean and standard deviation of the ρ-
arameters; this renders �ρ the correlation matrix, implying that A ρ= 1. 

If learning both A ρ and � ρ , we choose adequate priors on these variables, to then define
heir joint posterior probability density, given the data D ρ . We choose to work with Truncated
ormal and Normal priors that are centred at the seed values of the variables, and variances

hat are typically 3 to 10 times that of the proposal density used in our MCMC-based inference
n these unknowns. The seed values are chosen as 1, typically. The joint posterior pdf of
2 In an upcoming contribution, Chakrabarty & Wang suggest a judicious continuity descriptor as globally Lipschitz. 
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he unknowns given data D ρ is then proportional to the product of the likelihood (given
n Eq. (2.8) ) and the prior. We perform posterior sampling using Random Walk Metropolis
astings, in which � ρ is proposed from a Normal proposal density with a mean given by the

urrent value of � ρ and an experimentally chosen constant variance. A ρ if learnt, is proposed
rom a Truncated Normal proposal density, which is assigned the current A ρ to be the mean,
nd the constant variance of this proposal density is chosen through experimentation. The
CMC-based inference allows for the learning of the marginal posterior pdf on each learnt

ariable, using which, the 95 % Highest Probability Density credible region (HPD) on each
earnt variable is computed, [26] . 

We undertake the same route delineated above, to learn hyperparameters � f and A f (if
earnt), of the covariance structure of the GP that the phase space pdf is treated as a random
ealisation from. Again, the joint probability of the f -parameters learnt in the 1st-Stage, at
esign energy values, is a Multivariate Normal density, with mean μ f and variance-covariance
atrix � f = [ Cov( f c , f d )] = [ K f (ε c , ε d )] = A f exp (−(ε c − ε d ) 

2 /� 2 f ) , for c, d ∈ { 2, . . . , N e } .
n our application we typically standardise the f -parameters using the sample mean and
tandard deviation of the outputs in the training set D f , rendering � f the correlation matrix
nd A f = 1 then. We compute the 95 % HPD on each learnt variable., given the training data
 f . 

.5. Uncertainties in learnt training sets 

We have discussed the learning of the functions ρ(·) and f W 

(·) given training data
ets that were learnt in the 1st-Stage, as if ρ-parameters and f -parameters are learnt
n the 1st-Stage without errors. This is not true. We in fact learnt each of these pa-
ameters with their respective 95 % HPD. Thus, the correct representation of D ρ is
 (r 1 , [ ρ

(min) 
1 , ρ

(max) 
1 ]) , . . . , (r N r , [ ρ

(min) 
N r 

, ρ
(max) 
N r 

]) } , where [ ρ(min) 
j , ρ

(max) 
j ] is the 95 % HPD on

he learnt ρ j , j = 1 , . . . , N r . Similarly, each f -parameter is learnt in the 1st-Stage with 95 %
PD. 
When we learn the hyperparameters of the covariance kernel that we invoke to parametrise

he covariance matrix of the Multivariate Normal likelihood, we actually model the covariance
atrix as �X + D X , for X = 

′′ ρ ′′ , “ f ′′ , where D ρ is a diagonal matrix, with diagonal elements
f ((ρ(max) 

1 − ρ
(min) 
1 ) / 5) 2 , . . . , ((ρ

(max) 
N r 

− ρ
(min) 
N r 

) / 5) 2 while D f is a diagonal matrix, with diag-

nal elements of (( f (max) 
2 − f (min) 

2 ) / 5) 2 , . . . , (( f (max) 
N e 

− f (min) 
N e 

) / 5) 2 . We treat the distribution
f the uncertainty learnt on any parameter as approximated by a Normal, such that the width
f the 95 % HPD on the parameter is 5 times the standard deviation of this distribution of
he “noise” that we in fact learn on this parameter. Thus, the variance-covariance matrix of
he Multivariate Normal likelihood density, is augmented by a diagonal matrix, diagonals of
hich are the variances of the error distribution on each parameter, [23] . 

.6. Prediction of gravitational mass density and phase space pdf 

The ulterior motivation behind the learning of the gravitational mass density function
nd the phase pace pdf is to predict values of the gravitational mass density at test radii,
 

(t est ) 
1 , . . . , r (t est ) 

N t 
i.e radii that are not included as design radii r 1 , . . . , r N r in the training

ata D ρ . We define r (t est ) = (r (t est ) 
1 , . . . , r (t est ) 

N t 
) T . Let gravitational mass density at R = r (t est )

q 

e ρt est ) 
q . Then it follows from the joint probability of ρ1 , . . . , ρN r , ρ

(t est ) 
1 , . . . , ρ

(t est ) 
N t 

to be
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ultivariate Normal, that the posterior predictive of ρ
(t est ) 
1 , . . . , ρ

(t est ) 
N t 

is also Multivariate
ormal [23] : 

 ρ
(t est ) 
1 , . . . , ρ

(t est ) 
N t 

|{ r c } N r c=1 , { r (t est ) 
q } N t q=1 , ρ1 , . . . , ρN r , � ρ, A ρ] = MN ( μ
 

ρ, �

 
ρ ) , 

here 

 
ρ = [ K ρ (r (t est ) 

q , r c )]( [ K ρ ( r c , r d )] + D ρ ) −1 ρ, 

nd 


 
ρ = [ K ρ (r (t est ) 

q , r (t est ) 
p )] − [ K ρ (r (t est ) 

q , r c )]( [ K ρ ( r c , r d )] + D ρ ) −1 [ K ρ (r c , r 
(t est ) 
q )] , 

here c, d ∈ { 1 , . . . , N r } ; p, q ∈ { 1 , . . . , N t } ; ρ = (ρ1 , . . . , ρN r ) 
T ; K (·, ·) = A ρ exp (−(· −

) 2 /� 2 ρ ) . Thus, the mean value of the gravitational mass density is predicted at R = r (t est )
q 

s the qth component of the μ
 vector defined above, with uncertainty on this prediction
iven as the (standard deviation that is) square root of the qth diagonal element of the matrix

 
ρ given above. This way, we predict values of the gravitational mass density function at a

est radius. 
The posterior predictive of values of the phase space pdf - conditional on the test input

nergies ε (t est ) 
1 , . . . , ε 

(t est ) 
N s 

; the design energy values in learnt training set D f ; the learnt f -
arameters; and the learnt A f , � f - is also Multivariate Normal. Mean and variance of this
osterior predictive are closed-form and identified. In other words, the phase space pdf can
e predicted in a closed-form way, with known uncertainty, at a test energy. 

To summarise, the 2nd-Stage allows the prediction of the gravitational mass density at any
adius, and the phase space pdf at any energy. 

.7. Testing for the assumption of isotropy in the data: 3rd-stage 

In the 1st-Stage, we have performed the learning of the vectorised gravitational mass
ensity function as ρ, and the vectorised phase space pdf as f , using the empirical or observed
ata D . In the 2nd-Stage, we have performed the learning of the gravitational mass density
unction ρ(R) , and the phase space pdf f W 

( ε), using the training data sets that comprise values
f the respective vectorised function. 

Both sets of learning in the previous two stages were undertaken under the assumption
hat the phase space that the tracer particles - observable phase space coordinates of which
e use in our work - live in an isotropic phase space W . Equivalently, we recall that the

earning in the first 2 stages has been undertaken under the assumption that the phase space
df is an isotropic function of the location vector X and velocity vector V , i.e. this pdf is

f W 

(‖ x ‖ , ‖ v ‖ , x · v ) , where ‖ · ‖ denotes Euclidean norm. This assumption is affected by
xpressing the support of the phase space pdf as energy ε, (or a function thereof); the modelled
hase space pdf then adheres to the assumption that it is an isotropic function of X and V ,
since energy = �(R) + V 

2 / 2, where ‖ X ‖ = R and ‖ V ‖ = V ). 
[27] advance a new Bayesian test of hypothesis to test for the null 

 0 : f W 

(X 1 , X 2 , X 3 , V 1 , V 2 , V 3 ) = f W 

(ε) against 

 1 : f W 

(X 1 , X 2 , X 3 , V 1 , V 2 , V 3 ) � = f W 

(ε) . 

aking inspiration from the methodology presented therein, here we forward a parametrisation
f how anisotropic the learnt phase space pdf vector is. This new parameter for quantifying
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nisotropy in the learnt (vectorised) form of a phase space pdf is a divergence measure between
he joint posterior probability density of the learnt parameters given the empirical data under
onsideration, and the posterior given the “generated data”. We discuss such generated data,
nd the motivation behind the formulation of this parametrisation of departure from isotropy,
efore discussing implementation. 

We generate a data set D 

(gen) - comprising the same number ( N data ) of observations as
n the empirical data 4 D , where said observations are on X p , V 3 and the parametrisation of
oise in the measurement of V 3 , as the standard deviation S of the error density in V 3 . Here
 

(gen) is generated by sampling location and velocity coordinates from the (vectorised) state
pace pdf ( f ) learnt under the assumption of isotropy, using empirical data, at the (vectorised)
ravitational mass density ( ρ) that is simultaneously learnt using D . So out of the 6 sampled
hase space coordinates - sampled from the phase space space pdf learnt in the 1st-Stage,
t the ρ learnt in the 1st-Stage - we retain only the N data sampled values of the (X p , V 3 , S)

riad, to serve as data points in D 

(gen) . 3 

emark 2.2. Data D 

(gen) is sampled from an isotropy-abiding phase space pdf that was learnt
sing empirical data D , at gravitational mass density (and thereby potential) learnt using D ,
nder the assumption that the phase space pdf is isotropic. In other words, the data D 

(gen)

s sampled from an isotropic phase space pdf , unlike the empirical data D , which might, or
ight not have been sampled from an isotropic galactic phase space pdf . It then follows that,
and f learnt under the assumption of an isotropic phase space, using data D 

(gen) , will be
ore “compatible”, (or at least, as compatible) with the used data, than the ρ, f learnt under

he assumption of an isotropic phase space, using empirical data D . So the difference between
uch a parametrised “compatibility” will inform on how much less such compatibility is with
he empirical data D , than with the generated data D 

(gen) . Here we parametrise “compatibility”
f a learnt set of ρ, f with a given data set, by the joint posterior pdf of the ρ-parameters
nd f -parameters that are learnt using the given data set. 

So the modus operandi of our computation of the compatability of a learnt ρ; f pair, with
 given empirical data set, is 

1. That we first learn ρ1 , . . . , ρN r and f 2 , . . . , f N e given the empirical data D that com-
prises N data data points, using the learning scheme delineated under 1st-Stage, under
the assumption that this data is sampled from an isotropic phase pace pdf . Let the joint
posterior pdf of the sought parameters, given this empirical data be 

π(ρ1 , . . . , ρN r , f 2 , . . . , f N e | D ) . 

2. Then we sample N data values of (X p , V 3 ) - using Rejection Sampling - from the f that
is learnt under the assumption of isotropy, using D , at the (vectorised) potential that
is computed using the ρ learnt using D under the same assumption, (in the 1st-Stage).
These N data samples constitute the generated data D gen . 

3. We learn ρ1 , . . . , ρN r and f 2 , . . . , f N e given the generated data D gen , using the learning
scheme delineated under 1st-Stage, under the assumption of isotropy. We use the same
priors on each parameter, as we do in our learning undertaken with D , and allow for
3 We recall here that observations on X 1 and X 2 are condensed into values of X p := 

√ 

X 2 1 + X 2 2 . 
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the chain to run for the same number of post-burnin iterations ( N iter − N burnin ). Let the
joint posterior of the parameters given the generated data be 

πgen (ρ1 , . . . , ρN r , f 2 , . . . , f N e | D gen ) . 

4. Compute the difference between posterior density of parameters learnt given empirical
and generated data, obtained at each post-burnin iteration of the chains run (respectively)
with D and D gen . We will employ a divergence measure between the posterior densities
to compute this difference. 

We use a divergence measure between the post-burnin values of the (logarithm of the) joint
osterior π(·) of ρ and f computed within the MCMC chains, run using the empirical data,
nd π(·) 

gen run using the generated data. (We recall that our MCMC-based inference readily
ffers the logarithm of this joint posterior, but replacing π(·) 

gen with its logarithm, and π(·) with
ts logarithm, in the definition of the Kullbeck-Leibler divergence, does not make statistical
ense. Neither does replacing the posterior values with their respective logarithms in the

efinition of Hellinger distance = 

∑ N iter 
t= N b urnin ( 

√ 

( 
√ 

π(t ) −
√ 

π
(t ) 
gen ) ) 

2 / 
√ 

2 , [28] ). So we simply

se the sum over t = N burnin , N burnin + 1 , . . . , N iter , of the difference between the logarithm of
(t ) and the logarithm of π(t ) 

gen as the divergence measure δ(π, πgen ) that we use in our work.
n other words, the divergence between the computed log (π (t ) ) and log (π (t ) 

gen ) is suggested as

(π, πgen ) = 

N iter ∑ 

t= N burnin +1 

⎛ 

⎜ ⎝ 

1 −
(

log (π (t ) ) 

log (π (t ) 
gen ) 

)
N iter − N burnin 

⎞ 

⎟ ⎠ 

. 

However, we do not know how to interpret a value of δ(π, πgen ) ; we ask if a computed
alue of δ(·, ·) can be considered such that we can reject the assumption of an isotropic
hase space. While a computed δ(π, πgen ) of 0 implies that the phase space that the (used)
mpirical data has been sampled from is isotropic, a non-zero δ(π, πgen ) is indicative of such
hase space being anisotropic. The strength of the effect - namely, anisotropy - is computable
nd interpretable in a comparative sense, i.e. we quantify how much more anisotropic the
hase space pdf is, from which a given empirical data set (say, of size N ) is sampled, as
istinguished from the phase space pdf that underlines another data set (say, of size N 

/ ). 

. Illustration of the 3-staged learning strategy on real galaxy NGC4649 

In our empirical illustration, we use the kinematic data comprising observed values of
 p ; of V 3 ; and of the measurement noise in V 3 , (parametrised as S), of 269 PNe and 115
Cs in the elliptical galaxy NGC4649. These 2 datasets were shared with us by Dr. Kristin
oodley. From this data on the tracked PNe, we discard the observations of PNe that move
ith observed | v 3 | > 700 km s −1 . In fact, all PNe except one, appear in the original data set

o bear a V 3 value in [ −650, 650] km s −1 ; this motivates our treatment of the single PNe with
 3 < −700 km s −1 as an outlier that is omitted from the data that we work with. The single
Ne with such high, absolute LOS speed in this data set, is depicted in red in the lower right
anel of Fig. 1 that displays the plot of V 3 of the observed PNe against R p . Observations of
he remaining PNe are used in our work; these observations comprise the data set D PNe . 
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Fig. 1. Right lower panel: plot in black, of observed values of V 3 of the PNe, against R p , for those tracked PNe, 
| v 3 | of which is ≤ 700 km s −1 ; observations that disobey this constraint are in red. Left lower panel: same as in 
the right lower panel, except the data plotted here is for the tracked GCs. GCs with errors in the observation of V 3 
in excess of 100 km s −1 are depicted in red. PNe and GCs, observations of which are in black, comprise the data 
sets D PNe and D GC that we perform our learning with. Histograms of the observed sample of R p values in D PNe 

and D GC , are depicted in broken and solid lines in the top left panel . In the top right panel , in black, we display 
the histogram of a rudimentary proxy for the energy variable as computed using the observed V 3 values, and the 
potential computed in Poisson Equation using a scaled frequency distribution of the observed R p values. In broken 
lines, we join the f -parameters learnt using the 9 energy bins - suggested by this histogram. All depictions in red 
will appear to be in grey in the monochromatic version of the paper. 
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Again, from the full data set that consists of observations on GCs, we discard those
bservations that bear a measurement error s > 100km s −1 , where we recall that s i is the
alue of this error of the measurement of V 3 of the i-th GC in the data set. GCs with such
rrors in V 3 are depicted in red in the plot of V 3 against R p , shown in the lower left panel
f Fig. 1 . Observations of the remaining 115 GCs comprise the data D GC that we use in our
ork. A “large” value of S, on comparable V 3 value, does render attaining convergence in

he learning difficult. Hence we impose this arbitrary cutoff of 100 km s −1 on s. The sample
ize of D PNe is about 2.33 times that of D GC . 

For this galaxy, effective radius is suggested to be about 9.86 kpc [18] . Then 5 times
he effective radius is ∼ 50 kpc, which is in excess of the r max in either data set that we
se. Hence in this application, r gal ≡ r max . As motivated earlier in Section 2.3 , we choose
he partitioning of the radial interval [ r 0 , r max ) given a data set, keeping in mind that each
-bin should be ideally populated with at least one datum, as well as that a trade-off exists
etween increasing the number N r of such R-bins that we partition the relevant range of
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alues of radius R into, and the computational effort (which increases as N 

3 
r ). Then for the

ata D PNe , the optimal choice is for r 0 = 2. 2 kpc, r max = 33 kpc and R-bin width δr = 1 . 1
pc. For D GC , r 0 = 3 . 44 kpc, r max = 44. 04 kpc and R-bin width δr = 1 . 4 kpc are suitable
alues. Histograms of the sample of observed values of R p - as included in the data sets
 PNe and D GC - are displayed in the top left panel of Fig. 1 , in broken and solid lines,

espectively. Indeed the observations of the GCs are so sparse at higher radii, that we cannot
atisfy the desired property that the histogram of R p of the observed GCs hosts ≥ 1 data
oint in each R-bin - a strict imposition of this desirable characteristic of the radial binning
ill lead to unsatisfactorily fewer R-bins, or truncation of the radial range that we can learn

he gravitational mass density to. (Our latent aim is to extend this radial coverage to mimic
 R e f f of this galaxy, as closely as possible, where 5 R e f f for NGC4649 is about 50 kpc). 

In the top right panel of Fig. 1 we present the motivation behind choosing the number N e

f ε-bins for either data set. As stated in Section 2.3 , one way to generate the value of energy
s to use a rudimentary proxy for the energy variable, namely, the sum of the observed value
f V 

2 
3 / 2 and of �0 , where �0 is the vectorised version of the potential function, computed

y using a scaled frequency distribution of the sample of observed R p values in Poisson
quation; the scaled frequency serves as a proxy for a rudimentary (vectorised) gravitational
ass density. The histogram of the resulting (normalised) sample of such computed energy

alues is shown in solid lines in the figure. The figure includes only the energy-histogram
or the GC data, for ease of visualisation. A chosen N e of 9 serves the purpose of populating
very ε-bin with at least one data point. This is found to be true for the PNe data as well.
e corroborate the choice of N e = 9 for the GC data, by running a chain with these many

-bins, (and radial binning as discussed above), and note the (vectorised version of the) learnt
normalised) density over energy - i.e. the phase space pdf - to be as depicted with the filled
ircles and error bars, in red (or grey in the monochromatic print of the paper). The mean of
he learnt f -parameters are joined with broken lines to aid visualisation. It is evident that a
hoice of N e = 9 does not lead to any bin being rendered empty; density in the most sparsely
opulated bin is about 10 

−3 times that of the density in the most densely populated one. 

.1. Results from 1st-stage 

Logarithm (to the base 10) of the components of the ρ vector that we learn using D PNe

re displayed in black, as plotted against the (logarithm of the) location of the corresponding
-bin, in the right panel of Fig. 2 ; the 95 % HPD on each learnt ρ-parameter is overplotted on

he mean value of the learnt ρ-parameter. The components of the f vector learnt using this
ata set, are plotted against the energy value of the corresponding ε-bin, where the energy
alue has been normalised by −�(0) . This plot is depicted in the left panel of this figure.
omponents of ρ and f that are learnt using data D GC , are shown in red (or the grey in the
onochromatic version of the paper) in the left and right panels, respectively. 
Both chains that are run with the two data sets are started with a seed ρ(R) function that

s plotted in green in the right panel; this function is ρseed (r) = K/ (10 + r 2 ) 1 . 5 , where the
onstant K = 10 

11 , though other values of this constant that are 6 decades apart have been
oted to yield the same results. Again, the seed for the learning of the f -parameters is a
orizontal line, i.e. the seed f (ε) function is a uniform density. This is depicted in green in
he left panel. 

We also include the logarithm of a scaled (truncated) Gaussian in broken lines in the
eft panel, where this fit curve is 0. 3 N (−0. 9 , 0. 175 

2 ) ; this is the optimal fit to the learnt
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Fig. 2. Right panel: plot of logarithm (to the base 10) of the ρ-parameters learnt using D PNe against logarithm of 
the radius, (depicted in black), while the ρ-parameters learnt using data D GC are in red. The 95 % HPDs on each 
learnt parameter is overplotted on the mean value of the learnt parameter that is depicted in filled circles. Left panel: 
logarithm of the f -parameters learnt using the data comprising the observations of the PNe and the GCs are plotted 
in black and red respectively, against the energy variable that is normalised with −�(0) . The seed gravitational mass 
density function and the seed phase space pdf that we start each chain of MCMC with - with either data set - is 
depicted in green. In the broken lines we display a Gaussian (with mean of -0.9 and variance of 0.175 2 ) in this 
normalised energy variable, with this Gaussian scaled by 0.3. All depictions in red will appear to be in grey, and 
depictions in green in lighter grey, in the monochromatic version of the paper. 
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f -parameters given the two data sets. It is clear that a (truncated) Normal is not a good fit to
ll f -parameters learnt with either data set. A scaled Gaussian is a better fit but even then,
t fits the f -parameters learnt at less negative energy values less well than parameters learnt
t lower energies; a scaled truncated Normal is a better fit to the results learnt using the data
n the GCs than results obtained using the data on PNe. So an important indicator of these
esults is that there is no apriori motivation behind modelling the galactic phase space density
o be a truncated Normal. 

Traces of the learnt ρ-parameters and f -parameters display convergence. We display traces
f the ρ-parameters learnt using D PNe in Fig. 3 ; these traces display convergence. Again, the

f -parameters learnt using D GC are shown in black in Fig. 4 , with the traces of f -parameters
earnt using D PNe overplotted in green. Again, these traces also display convergence, offering
onfidence in our learning of the ρ-parameters and the f -parameters. 

.2. Learning the ρ(·) function and the phase space pdf and predicting - implementation of 
he 2nd-stage 

Learning the ρ-parameters and the f -parameters using the data sets D GC and D PNe provides
he training data sets D 

(GC) 
ρ ; D 

(GC) 

f and D 

(PNe ) 
ρ ; D 

(PNe ) 
f , respectively. Then we employ these

raining sets to learn the gravitational mass density function and the phase space pdf , by
odelling these functions as realisations from respective GPs. Covariance functions of the

nderlying GPs are kernel parametrised, and the (length scale and amplitude) hyperparameters
f these kernels are learnt using these training sets that are generated in the 1st-Stage. 

In Fig. 5 we see results from the learning of the multivariate Normal likelihood that results
rom the modelling of the sought ρ(·) and f W 

(·) functions with respective GPs, using the
raining data that are subsets of D 

(GC) 
ρ and D 

(GC) 

f , respectively. Trace of the length scale
yperparameter of the covariance matrix of the Multivariate Normal likelihood is depicted for
ach functional learning, in the left panels of the figure. The training data used for the learning
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Fig. 3. Traces of 16 of the ρ-parameters learnt using data D PNe . 

Fig. 4. Traces of the f -parameters learnt using data D GC in black, with traces of the corresponding f -parameter 
learnt using data D PNe overplotted in green (or grey in the monochromatic version of the paper). 
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f either function comprises ρ-parameters and f -parameters that are respectively plotted in
lack, in the right panels of Fig. 5 , against logarithm of the radius, and against logarithm
f the negative of values of the energy variable. The data points in either D 

(GC) 
ρ or D 

(GC) 

f ,
hat are not plotted in black in Fig. 5 , are the test data points. We undertake prediction of
he mean value of the learnt ρ(·) and f W 

(·) function, at the inputs of the test data points;
uch predicted values of the respective function are plotted in red, with 2.5 times the standard
eviation in the value of the function at the given test input overplotted on either side of the
redicted mean. (Here, we choose to use 5 times the predicted standard deviation as the width
f the error bar, drawing motivation from the standard result that for Normally distributed
ariables, there is 95 % probability for the variable value to lie within a interval of width 2.5
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Fig. 5. Traces of the length scale hyperparameter � ρ , that is learnt using the training set that is a subset of D 

(GC) 
ρ , 

is plotted in the top left panel. Again trace of the � f learnt when using a training set that is subset of D 

(GC) 
f , is 

displayed in the lower left panel. In the top right panel, log of those values of ρ(·) that comprise the training data 
set that is a subset of D 

(GC) 
ρ , are plotted against log of design radii. Predictions of the mean functional value at 

test radii, performed following the learning of this function, are shown in red filled circles, with an error bar of 
width given as 5 times the predicted standard deviation of the functional value. The true value of the function at the 
corresponding test radius is plotted in green. Forecasting is also performed at a radius that is more central in the 
galaxy, than the innermost training data point; this is shown in red. In the lower right panel, we plot predicted values 
of the learnt phase space pdf , at test energy values, using a training set that is a subset of D 

(GC) 
f . The predicted 

mean values are shown in red circles with 5 times the predicted standard deviation overlaid in red. The true value 
of the pdf is overplotted in green broken lines. All depictions in red and green appear as grey and light grey in the 
black and white version of this paper. 
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(  
imes the standard deviation, symmetrically about the mean of this distribution). However, the
rue value of the function is known to us - as one of the outputs in D 

(GC) 
ρ or D 

(GC) 

f , that we
o not use as part of the training data employed towards the learning+prediction exercise that
e undertake here. This known value of the ρ(·) or f W 

(·) function at a test radius/energy,
s then overplotted on the predicted value of the function, in green. We also perform one
orecasting - at a test radius that is less than the innermost design input. The uncertainty in
ur forecasting is expectedly higher than that of prediction. GP-based forecasting is also in
eneral of inferior quality to prediction following GP-based learning; our results corroborate
hese expectations [29] . 

We use the capacity for predicting at test inputs, to predict values of the learnt function
f W 

(·) at multiple (100) values of the energy. The results are shown in Fig. 6 . Logarithm
to the base 10) of the predicted value of the function is plotted against logarithm of the
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Fig. 6. Right panel: logarithm of the predicted values of the function f W 

(·) learnt using the training set that is a 
subset of the data D 

(PNe ) 
f , plotted in black against the logarithm of the negative of test energies. A scaled Gaussian 

is fit to these predicted values; it is then overlaid on these predicted functional values (in green or grey in the 
monochrome version of the paper). Left panel: similar to that in the right panel, but here, the predictions follow the 
phase space pdf learning undertaken with GC data. 
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egative of the test energy at which this functional value is computed. A truncated Normal
ensity that is scaled by the factor γ is fit to the predicted functional values; the Gaussian
ith mean of about -3 ×10 

7 km 

2 s −2 and standard deviation of 0.5701 ×10 

7 km 

2 s −2 , scaled
y a factor of γ= 1.1786, is found to be the best fit to the values predicted using the training
ata that comprises observations of GCs, On the other hand the scaled Gaussian that best fits
he predictions made after learning using PNe observations, is the Gaussian with a mean of
bout -3.67 ×10 

7 km 

2 s −2 and standard deviation of 0.5251 ×10 

7 km 

2 s −2 , scaled by a factor
f γ= 1.0856. It is seen that the incompatibility of the truncated Normal density with the
earnt phase space pdf is not just in the demand for a non-unit scale factor γ , but also in the
eparture of this form from the pdf as learnt using the kinematic data. 

.3. Results from 3rd-stage 

In Fig. 7 , the lower panels display plots of the V 3 values of the PNe (in the right) and
Cs (in the left), against the observed values of R p of these particles. These are the data
oints in the data sets D PNe and D GC , respectively, and are displayed in black circles. On
hese, the data points of the corresponding generated data set, are overplotted in red cross.
he generated data D 

(gen) 
PNe is constructed by sampling X 1 , X 2 , V 3 from the f learnt using D PNe ,

t the potential computed with the ρ learnt using D PNe , in addition to the measurement error
n V 3 . Similarly, the generated data set D 

(gen) 

GC comprises sampled X 1 , X 2 , V 3 values, generated
sing Rejection Sampling, from the f learnt using D GC , at the potential computed with the

learnt using D GC , in addition to the measurement error S in the values of V 3 . The top
ight panel shows the traces of the logarithm of the joint posterior πPNe (·|·) of the f and ρ,
iven the empirical PNe data D PNe (in black), learnt under the assumption of isotropy, and the
osterior π(PNe ) 

gen (·|·) of the same parameters given the generated data D 

(gen) 

PNe (in red). A similar
lot is displayed on the top left, in which the trace of the log of posterior π(GC) ( ρ, f | D GC )

s plotted in black, while that of π(GC) 
gen ( ρ, f | D GC ) is plotted in red. 

Using these traces of the joint posterior computed given the empirical data set and the
orresponding generated data set, we compute the value of the divergence δ(·, ·) . We find that
(π (PNe ) , π(PNe ) 

gen ) ≈ 259 . 77 , while δ(π (GC) , π(GC) 
gen ) ≈ 44. 66 . Thus, we identify the empirical
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Fig. 7. Lower right panel: V 3 values in data D PNe plotted in black, against values of R p = 

√ 

X 2 1 + X 2 2 in this data 

set. Values of V 3 are plotted in red against the corresponding value of R p in the generated data set D 

(gen) 
PNe . Lower 

left panel: same as in the figure included in the lower right panel, except here, the plots are of points in the set 
D GC and the generated data of the same size, namely, D 

(gen) 
GC . Top right panel: trace of the joint posterior of the 

ρ-parameters and the f -parameters, learnt using data D PNe in black, while the joint posterior of these parameters 
learnt using D 

(gen) 
PNe is in red. Top left panel: same as in the figure in the top right panel, except here, the traces of 

joint posteriors of learnt parameters given D GC and D 

(gen) 
GC are shown in black and red, respectively. 
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Ne data set D PNe to deviate from the assumption that it has been sampled from an isotropic
hase space pdf , more than the data comprising the GC observations, namely the data D GC . 

Then indeed, the anisotropy parameter - defined as the ratio of the 2nd moment of the
angential component of the velocity vector to that of the radial component of the velocity
ector, subtracted from 1, [10] - is likely to bear a higher value for the PNe data, over
he GC data. However, our method does not offer a value of this anisotropy parameter. Our
arametrisation of the anisotropy in the phase space that a given set of empirical data is
ampled from, informs on the departure from an isotropic form, of the pdf of the phase space
oordinates that live in this phase space. 

Our parametrisation of anisotropy, offers information on the anisotropy of the phase space
df that the empirical data D I is sampled from, in comparison to the anisotropy of the pdf
hat another data D II is sampled from. If however, we wish to offer information on data D I 

n isolation - specifically on the anisotropy of the underlying pdf that D I is sampled from -
ur identification of such anisotropy via the parameter δ(π (I ) , π(I ) 

gen ) does not appear possible,
though a discussion of the same is suggested in the conclusive section). Thus, our method
urrently offers only a comparative quantification of anisotropy of the phase space pdf that
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l  
nderlines a data set, in reference to the anisotropy borne in the density that underlines another
ata set. 

emark 3.1. It will be desirable to reconcile the computed δ(·, ·) divergence measure, with
he astronomically-motivated anisotropy parameter that is used in Jeans equation. Here, we
ave not been able to motivate a transformation of δ(·, ·) that offers a meaningful connection
ith the anisotropy parameter. However, a possible means of achieving the same is discussed

n Section 5 . 

. Comments on results obtained from empirical illustration 

In this section, we discuss the main takeaway from the implementation of the 3-staged
trategy to learn the gravitational mass density function, along with the phase space pdf , of
he galaxy NGC4649, using data on observable phase space coordinates of 2 different types
f galactic particles. 

.1. Phase space pdf s learnt using PNe data distinct from that learnt using GC data 

The phase space pdf that is learnt using observations of tracked PNe, is not consistent with
he pdf learnt using the GC data, within the learnt 95 % HPDs. This reinforces the result that
he f -parameters learnt using the 2 different data sets in the 1st-Stage, are different within
5 % HPDs. We see that the phase space pdf learnt with uncertainties of 95 % HPDs, using
he PNe and GC data sets, are distinct. 

.2. Distinction between phase space pdf s that PNe and GC data are sampled from - 
mplications 

The discrepancy between the learnt phase space pdf s feeds into the worry that the phase
pace pdf learnt using either data set - which we expect to interpret as the phase space pdf of
he galaxy - is not consistently learnt for this galaxy, given the two data sets. One suggestion
or a resolution to this worry is that it might be that the assumptions undertaken to permit the
earning, are differently adhered to, under the two data sets, s.t. the inconsistent results are
ue to such differential obeying, (by the observed PNe and GC samples), of the undertaken
ssumptions about the galaxy having equilibrated - i.e. behaving as an autonomous dynamical
ystem - and/or about the galactic phase space being isotropic. 

emark 4.1. If differential adherence to the assumption of isotropy is true, 

• then it follows that the learnt f (GC) 
W 

(·) and the learnt f (PNe ) 
W 

(·) functions are incorrect
representations of the galactic phase space pdf . 
• The outcome of our learning is that the phase space pdf that underlines the GC data is

different - by departing less from the assumption of this pdf being isotropic - compared
to the pdf that the PNe data are sampled from. Such differential departure from the
assumption of isotropy confirms that the phase space pdf that the GC data are sampled
from is distinct from the pdf that the PNe data are sampled from. 

Hence the phase space of this galaxy is not a monolithic structure, but partitioned into - at
east two - sub-volumes, the distributions of the phase space vectors in which are distinct. One
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f these sub-volumes hosts the PNe and the other the GCs that are observationally tracked
n this galaxy. 

Thus, our learning adduces evidence towards this partitioned picture of the galactic phase
pace on NGC4649. The galactic phase space pdf is composed of (at least two) distinct basins
f attractions, and the orbits of the galactic PNe population and the GC populations live in the
espective basins. It then follows, that the observable phase space coordinates of the tracked
Ne that comprise the data D PNe , are sampled from the phase space pdf that is generated
y the orbital distribution in the basin of attraction of the galactic phase space, that includes
rbits of the tracked PNe. Similarly, D GC is sampled from the pdf that is generated by the
rbital distribution of the basin of attraction that the tracked GCs are a part of. A galaxy -
s a complex and multicomponent dynamical system - is likely to have a phase space that
s marked by multiple attractors, and the current proposition of the same for the phase space
df of NGC4649, is likely. Of course, if this is true, then the phase space pdf that the PNe
ata are sampled from - and therefore learnt with - will in general be unequal to the pdf that
s learnt with the GC data, and one manifestation of this difference in the native phase space
ensities, will be in their differential anisotropies, in general. 

.3. Gravitational mass enclosed within a radius 

Computing the gravitational mass that is enclosed within a given radius, by numerically
ntegrating over the vectorised gravitational mass density function, supplemented with pre-
icted and forecast density values, is not a robust computation. Different implementation of
he Riemann sum - that approximates the integral 

π

r ∫ 

s=0 

s 2 ρ(s) ds 

hat gives value M(r) of the mass enclosed within radius R = r - yields different M(r) .
his owes to the very steep shape of the gravitational mass density function at low radii,
ompounded by the large (uniform) width of the R-bins that we use in our learning, given
he available data. 

We found a useful way of addressing the steepness of the density at low radii, by fitting
 parametric function to the logarithm of the learnt ρ-parameters, plotted against log of the
esign radii. In the right panel of Fig. 8 we display the trend in the log of the uncertainty-
ncluded ρ-parameters learnt using the GCs data, against log (R) . The inner few ρ-parameters
etray a linear trend in this plot, i.e. a power-law relation is anticipated for the gravitational
ass density function - between ≈ 4kpc and ≈ 29 kpc. We realise that such linear fits to

he learnt ρ-parameters in this radial interval can have the maximal and minimal slopes,
s depicted by the broken straight lines (in red), in the right panel of Fig. 8 . These fits
hen suggest the uncertainties in the mass values enclosed within the interval of ≈ [4, 29]
pc in this galaxy. To the maximal possible value of this computed enclosed mass in the
omputed uncertainty interval, we add the value of the gravitational mass that is distributed
niformly within the sphere of radius of about 4 kpc, at the corresponding uncertainty level,
o produce the uncertainty-included gravitational mass values enclosed within 29 kpc. This is
8 . 81 × 10 

12 , 1 . 37 × 10 

13 ] M �. where the mass enclosed within the inner 4 kpc of the galaxy
ies in the interval [1 . 11 × 10 

12 , 3 . 61 × 10 

12 ] M �. 
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Fig. 8. Left panel: logarithm of the vectorised form of the gravitational mass density parameters - or ρ parameters - 
learnt with the empirical GC data, plotted against logarithm of radius. The maximally and minimally sloped straight 
lines fits to this data, in the radial interval of about 4.4 to 29 kpc, are shown in the broken red lines. Right panel: 
same as in the left panel, except ρ-parameters learnt using the empirical PNe data are plotted. Linear fits to these 
data in the radial interval of about 3.3 to 22 kpc are shown in red lines. 
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From the ρ-parameters learnt using the PNe data, linear fits appear possible within the
adial range of about [5.5, 22] kpc, to the values of logarithm of the learnt ρ-parameters, and
og of radius R. These maximally and minimally sloped linear fits are depicted in the left
anel of Fig. 8 . Adding the result on the gravitational mass enclosed within this radial interval,
o the values relevant to radial intervals: between 5.5 kpc and r min = 3 . 3 kpc for this data
et; ≤ 3 . 3 kpc (by spreading mass uniformly at R ≤ r min ), we get that uncertainty-included
ravitational mass included within 22 kpc is [4. 6 × 10 

12 , 1 . 29 × 10 

13 ] M �. Gravitational mass
nclosed with 3.3 kpc from learning done with this data set, is [3 . 3 × 10 

12 , 9 × 10 

12 ] M �.
hus, the enclosed mass values learnt with both data sets concur within uncertainties. 

When comparing results obtained with a given kinematic data set, but with different meth-
ds, we advocate comparison of the gravitational mass density functions - or values of the
ame learnt/estimated in the different methods at fixed radii - if the density is available. This is
referred to a direct comparison of learnt/estimated values of the gravitational mass enclosed
ithin a given radius. A comparison of the gravitational mass density values helps avoid the

ccumulation of the uncertainties that render the enclosed mass values more uncertain; in
 method like ours, in which the density is implemented to compute the mass, numerical
ntegration over the uncertainty-included, non-linear density function leads to this uncertainty
nflation. There is the additional uncertainty in the enclosed mass, stemming from the lack of
nformation in the region inner to the inner-most radial bin. 

.4. Coincidence of gravitational mass density functions learnt using 2 data sets & possible 
mplications 

It is noted that even while the phase space pdf s learnt with the two data sets are distinct,
he gravitational mass density functions overlap within the learnt 95 % HPDs. We note that
n NGC4649, data on distinct particle types imply distinct phase space pdf s - and therefore
istinct moments of the learnt phase space pdf s - while implying the coincident gravitational
ass density functions. This is similar to what [30] note for this galaxy, when they refer to

he possibility that “the PNe and GCs trace different kinematics”. 
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It then follows that gravitational mass distribution in this galaxy cannot be computed as
roduced self-consistently. Such is clear from consideration of the Jeans equation, which
esults from computing the 0th and 2nd order moments of the phase space pdf , using the
ollisionless Boltzmann Equation or CBE, to connect spatial derivatives of such moments

o the radially-cumulative gravitational mass distribution M(R) . So in general we expect that
nputting unequal phase space pdf s in Jeans equation will imply distinct mass distributions. In
ontrast, that coincident mass distributions are produced from the inputting of the distinct pdf s
or this galaxy, appears to imply that the gravitational mass distribution does not follow self-
onsistently from the phase space pdf . One - perhaps less interesting - possibility is that the
onsistency that is noted between the cumulative gravitational mass values computed using
he ρ-parameters learnt given the data set on the two types of tracer particles, is only an
rtefact of the largeness of the uncertainties on the computed mass values, caused by the size
f the 95 % HPDs learnt on the ρ-parameters. 

.5. Model checking 

A check of how good the model and results are, in the available empirical data, can be
nswered by checking for overlap between such empirical data, and data that is generated
sing the models learnt given such empirical data. In other words, we can perform model
hecking in our work, via our consideration of the generated data above. If the learnt models
nd results are compatible with the given data, then data that is generated from the learnt
odels, will concur with the empirical data. If such generated data does not concur with the

mpirical data, then the model assumptions could be wrong, and/or results of the analysis
ould be wrong. 

We have already generated data from our learnt model of the phase space pdf , at the
espective learnt gravitational mass density function - both learnt given an empirical data on
ne type of tracer particles in this galaxy. We have found (in the 3rd-Stage) that the generated
nd empirical GC data are closer to each other, than the generated and empirical PNe data.
n other words, our results obtained with the GC data are less circumspect, than our results
eported using the PNe data. 

.6. Non-normal nature of learnt pdf s 

A Normal approximation for the phase space pdf is in fact worse when we perform the
earning with PNe data than GC data - with the scaled Normal form unable to fit f W 

(·)
earnt with the PNe data for energies � -2 ×10 

7 km 

2 s −2 , while this parametric form deviates
rom the function learnt using the GC data for energies in excess of about -1 ×10 

7 km 

2 s −2 ,
pproximately. 

.7. Anisotropy and non-normality 

One interesting observation that we have noted above is that the Normal is not a good fit
o the phase space pdf learnt with either observed data set. In fact, it is a scaled (truncated)
aussian that is an approximate fit to the mean value of the pdf predicted at a given energy,

ubsequent to our learning of the parameters that specify the Gaussian Process - a sample
ath of which is the sought pdf , as per our modelling strategy. 
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Additionally, we find that such a scaled Gaussian is a worse fit to the pdf results that
re learnt using the PNe data than results obtained using the GC data. The fit is worse at
igher energies. At the same time we recall that we have learnt the phase space pdf that
he empirical PNe data are sampled from to be more anisotropic than the phase space pdf
hat the empirical GC data is sampled from. This motivates curiosity on whether departure
rom (scaled) Normality at higher energies, is the cause/effect for the phase space pdf - that
nderlines the PNe orbital distribution in the galaxy - to be anisotropic . From the point
f view of the Central Limit Theorem, there is no a priori reason for this distribution to
e Normal as the galactic particles interact gravitationally, i.e. particles are not mutually
ndependent, but there exists correlation between the phase space variable vector of one
article and another. So we take away the lesson that a (truncated) Normal description of
 phase space pdf that is learnt/predicted using empirical data on a certain type galactic
articles, is incorrect, but adopt a data-driven answer to the question that is italicised above.
 future simulation study is suggested to explore the connection between non-Normality and

nisotropy of a learnt phase space pdf . 

.8. Comparison of results on modelling of the gravitational mass distribution in NGC4649 

Using kinematic data of nearly 300 PNe, measured using the FORS2 Cassegrain spectro-
raph of the ESO Very Large Telescope unit 1 (Antu), [19] report that the mass of the dark
atter halo component in their model, within 3 times the effective radius of this galaxy, is
 × 10 

11 M �, which is ǣalmost one-half of the total mass ǥ of about 1 . 15 × 10 

12 M � within
 R e f f in their model. They state this total mass to be similar to that estimated using globular
luster kinematic data; observations from XMM-Newton; and Chandra observations. We recall
hat effective radius for this galaxy is suggested to be about 9.86 kpc, [18] . Cambell [31] re-
orts a mass of about 1 . 2 × 10 

12 M � to slightly in excess of 2 × 10 

12 M �, as enclosed
ithin about 4.3 times the effective radius, using tracer kinematics data input to different
odels, the anisotropy and form of the potential of which are varied using pre-chosen values

f parameters that distinguish different potential forms, (and anisotropy), from each other. In
ur model-free learning of the gravitational mass density function, as stated above, the mass
nclosed within 29 kpc, using GC data lies in the interval [8 . 81 × 10 

12 , 1 . 37 × 10 

13 ] M �,
hile that within 22 kpc, learnt using the PNe data is in [4. 6 × 10 

12 , 1 . 29 × 10 

13 ] M �. We
ave stated in Section 4.3 why it is less inaccurate to compare values of gravitational mass
ensity function learnt/estimated across different methods, that the enclosed mass. Das et al.
30] state that “averaging all the GCs velocity dispersions” estimated using GC kinematic data
n the NMAGIC method, yields enclosed mass values - enclosed within an annular region ex-
ending from a radius of about 21.8 kpc to about 36.9 kpc - that “correspond to the values fit
y Shen & Gebhardt (2010)”, where Shen and Gebhardt [32] offer an enclosed mass estimate
f about 10 

12 M �. Das et al. [30] advance that their results indicate that “it is possible that
he PNe and GCs trace different kinematics” in NGC4649. We find the gravitational mass
ensity learnt using the PNe and GC kinematic data sets to be consistent within the learnt
5 % HPDs, though the phase space pdfs that we learn using the data on the two types of
racers, are distinct. 
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. Conclusion 

This paper offers a 3-staged protocol to learn the gravitational mass density, and phase
pace probability density function in real galaxies, using noisy, small-sample kinematic data
hat are available, on galactic particles that trace the galactic gravitational field. The for-

ulation and implementation of said protocol adopt the approach that any such galaxy is
 sample point in a statistical sample; the only galaxy-specific information invoked within
his implementation is the accessed kinematic data. Thus, the method allows for automated
 and yet reliable - learning of the distribution of gravitational mass in a galaxy, without
his result being offered as predicated upon details of the (parametric) model employed to
odel the mass distribution in the galaxy. In addition, the phase space pdf is learnt, while

he major assumption of phase space isotropy that is made in the learning achievable within
his approach, is tested within the available data. 

It is proposed that the method be converted into a black- box for astronomers usage; this
ill be addressed in a future contribution. The methodology discussed here, can be generalised

o include radial and energy bins the widths of which are logarithmic, than constants. 
An added advantage of the method is that it can accommodate results on summaries of

he mass distribution learnt/estimated using other techniques, and that too, the astronomer can
mpose their confidence on such a summary, within the prior structure used in the learning
f the ρ-parameters. For example, an estimate of the mass enclosed within a given radius
ay be available for the considered galaxy, though the astronomer may be cautious about the

sage of this enclosed mass value, given their lack of conviction regarding the technique used
o attain this enclosed mass value. Then the relevant sum over all the relevant ρ-parameters
an be computed at every iteration of the MCMC chain that is run to learn the parameters,
nd a Gaussian-shaped prior pdf on this sum is designed, with a mean given by this measured
nclosed mass, while the prior variance is maintained as an adequately-chosen large value, to
eflect the weak belief in the centring of the current enclosed mass on this measured enclosed
ass. On the other hand, if information on such enclosed mass is obtained from a different

echnique - say lensing measurements, if available for this galaxy - then the astronomer may
ave stronger faith in the available enclosed mass. Then the (Normal) prior of the relevant
um of the ρ-parameters is designed as centred at this given enclosed mass, with a smaller
alue of the prior variance, compared to that used in the previous example. Using such extra
nformation - if available - will guide the learning of the parameters better than if such
nformation is not used in the learning. 

From a purely inferential point of view, this application offers a clear example of how
hysically-motivated constraints of positivity and monotonicity can be imposed on the sought
unctions, purely through MCMC. 

The ultimate aim of supervised learning of the spatial density function of the gravitating
ass of all matter in the galaxy - as well as of learning the pdf of the phase space vector

ariable - appears unattainable, given that the training data that is the requisite for such
earning is not available at the outset. Said training set would comprise pairs of design value
f the domain variable of the sought function, and values of the function computed at this
esign input. So the first stage of our protocol is dedicated to the generation of the originally-
bsent training sets - undertaken by embedding the gravitational mass density in the support
f the phase space pdf , within a vectorised approach to each sought function. Using the thus
enerated training sets, we then learn the gravitational mass density function and the phase
pace pdf , given the tracer particle kinematic data at hand. The generation of the training sets
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re undertaken within the model assumptions that includes isotropy of the phase space that the
mpirical kinematic data is sampled from; at the last stage of this protocol, we quantify this
eparture of the phase space that such an empirical data set is sampled from, from invariance
o rotation, i.e. to isotropy. We illustrate the method on the 2 empirical data sets that are
vailable to us, for the galaxy NGC 4649. 

Learning with these 2 data sets in this example galaxy has indicated that the phase space
f this galaxy has perhaps not equilibrated in its evolution and/or the galactic phase space
s split into distinct sub-volumes that are not fully mixed, at the time when said data sets
ere observed, with each of the 2 available empirical data sets sampled from a distinct sub-
olume of this galaxy. Further to the above, self-consistent solutions for the gravitational
otential may not be possible in this galaxy. Neither result is surprising given the complex,
ulti-component nature of the dynamical system that a galaxy is. 
A future endeavour is planned, to undertake reliable and with-uncertainty prediction of

he anisotropy parameter of a newly observed galaxy, by learning the functional relationship
etween the anisotropy parameter, and the divergence measure δ(·, ·) - that informs on how
eviant the observed galaxy is from the assumption of phase space isotropy. An in-depth
imulation study is anticipated, such that we sample synthetic data sets D 1 , . . . , D n from n
istinct known phase space pdf s and learn the sought ρ-parameters and f -parameters in each
f these cases. We then compute the δ(·, ·) divergence measure for each case, between the joint
osterior pdf of all parameters given the empirical data and generated data sets, in each of the
 cases. Thus, for the i-th synthetic empirical data set D i - that is sampled from a phase space
df model ascribed the anisotropy parameter βi - we now know δ(·, ·) , ∀ i = 1 , . . . , n. Then
sing the { (δ(·, ·) , βi ) } n i=1 training set, we can learn the relationship between the anisotropy
arameter and this divergence measure. That way, for a future galaxy for which δ(·, ·) is
omputed - as delineated in the method presented here - we can predict what its anisotropy
arameter is. 

eclaration of Competing Interest 

The authors declare that they have no known competing financial interests or personal
elationships that could have appeared to influence the work reported in this paper. 

ppendix A. Learning vectorised gravitational mass density and phase space pdf 
unctions using synthetic data 

We present results of learning the vectorised gravitational mass density function, (i.e.
he vector ρ), and the vectorised phase space pdf , (i.e. f ), using synthetic data sets
hat are simulated from respective densities. In fact, we simulate a data set D Iso =
 (x 1 

(i) , x 2 

(i) , v3 

(i) , si) } N data 
i=1 , with 270 observations of R p = 

√ 

X 

2 
1 + X 

2 
2 ; V 3 ; and error in the

bserved V 3 , from a basal phase space pdf f Iso ( x , v ) . Here, this pdf is an isotropic function of
he location variable X , and velocity V , where this known isotropic density f Iso ( x , v ) - that is
 function of energy ε = �(r) + v 2 / 2 - is defined using the basal potential �(R) , which we
odel as a Plummer potential. This isotropic basal phase space pdf f Iso ( x , v ) is proportional

o exp (−ε/ 2σ 2 
0 ) and �(R) = M 0 / 

√ 

R 

2 + R 

2 
c with the arbitrarily chosen values of parameter

 0 set to 4 × 10 

11 M �; of R c to 1 kpc; of σ0 to 219 km s −1 . G is Newton’s Universal
ravitational constant that is known. The true gravitational mass density function is then the
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Fig. A1. Left lower panel: plot of the ρ-parameters learnt using the synthetic kinematic data set D Iso that is simulated 
from an isotropic phase space pdf at the Plummer potential. The true Plummer gravitational mass density function 
computed using the used Plummer potential in the basal model, is depicted in red, (or grey in the monochrome version 
of the paper), at radial bins used in the learning. Mean of the learnt ρ-parameters is in black filled circles and the 
error bars are the learnt 95 % HPDs. The MCMC chain used for this learning is initialised with ρ-parameters that are 
computed as values of the ǣseed ǥ density function - depicted in green (or light grey in the monochrome version) 
- at the corresponding radial bin. The functional form of this seed density function and the Plummer density are 
discussed in the text. Right lower panel: plot of the f -parameters learnt using this data D Iso . The seed pdf is depicted 
in green (or light grey). Left upper panel: as in the lower left panel, except these ρ-parameters are learnt using the 
data D 

(gen) 
Iso that is generated from the simulated galactic model, the gravitational potential of which is computed 

using the ρ-parameters learnt using D Iso and the phase space pdf of which is represented by the f -parameters learnt 
using D Iso . True values of the ρ-parameters are in red (or grey). Right upper panel: f -parameters learnt using data 
D 

(gen) 
Iso . 

P  

i  

ρ  

b
 

=  

d  

ε  

t
 

w  

T  

t  
lummer density GM 0 / 
√ 

(R 

2 
c + R 

2 ) 3 . The data is sampled s.t. the observed values of R p lie
n the interval [0,8] kpc. Results of learning the vectorised gravitational mass density, i.e. the

vector, and the vectorised phase space pdf f - using the data D Iso - are presented in the
ottom left and right panels respectively, of Fig. A.9 . To undertake this learning we use N r

 27, with R-bins that are 0.3 kpc wide each. In this learning, we use N e = 12. These binning
etails are primarily motivated - as discussed in Section 3 - to ensure that each R-bin and
-bin has at least 1 observation within it. Consistency between the learnt and true values of
he ρ-parameters is indicated in this figure. 

Multiple choices of the seed, or the initial form of the gravitational mass density function
ere used; these all led to consistent values (within the learnt error bars) of each ρ-parameter.
he traces of the parameters displayed in Fig. A.10 , indicate convergence, suggesting that

he chain is irreducible (and aperiodic), which indicates lack of dependence on the initial
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Fig. A2. Traces of various ρ-parameters that are learnt using the data D 

(gen) 
Iso . The top right panel depicts the trace 

of the joint posterior of all the parameters that are sought, given this data. 
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hoices of each parameter that we attempt learning, given the data D Iso . The seed gravitational
ass density displayed in Fig. A.9 to learn the ρ-parameters given data D Iso , is the function
 . 8 × 10 

11 / (1 + R 

2 / 4) 5 . The seed phase space pdf used to learn the f -parameters given data
 Iso , is chosen to be a uniform density with amplitude 0.3. The ρ-parameters and f -parameters

earnt using the simulated data D Iso under the assumption that the phase space is isotropic,
re used to sample the generated data set D 

(gen) 

Iso . The ρ-parameters and f -parameters learnt
sing this generated data set - again under the assumption of an isotropic phase space pdf -
re displayed in the top panels of Fig. A.9 . The seeds for learning the components of the ρ
nd f vectors using the generated data set D 

(gen) 

Iso , are the respective vectors learnt using the
imulated data D Iso . Other forms of the seeds, including those similar to the aforementioned
unctional form, are also used. Again, the learnt parameters are then consistent within the
5 % HPDs, with those displayed in the top panels. This is only to be expected since the
races of the learnt parameters display convergence, implying that the chain is aperiodic and
rreducible. In other words, the chain bears the ability to move to any part of the state space,
aving started from any other point in state space [20] . 

The proposal of each ρ-parameter is undertaken to ensure adherence to the monotonicity
nd positivity constraints on any such parameter, as discussed in Section 2.2 . Similarly, the
roposal of the f -parameters follow the discussion in that section. The prior on each parameter
s chosen to be a Normal prior, the mean of which is the seed value of the parameter and the
tandard deviation of which is about 2.5 times the scaled seed value. This scale is the same
or all ρ-parameters, which is different from the scale that is relevant in the learning of all
he f -parameters. 
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Fig. A3. As in Fig. A.1 , except the ρ-parameters and f -parameters in the left lower panel and right lower panel 
respectively, are learnt using the synthetic data D Aniso that is simulated from an anisotropic phase space pdf at the 
Plummer potential. ρ-parameters and f -parameters in the left upper panel and right upper panel respectively, are 
learnt using the data D 

(gen) 
Aniso that is generated by sampling data points from the f -parameters learnt using D Aniso at 

the potential computed using the ρ-parameters learnt using this data. 
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Again, we simulate 270 data points on R p , V 3 , with observational error on V 3 , by simu-
ating from a basal phase space pdf f Aniso ( x , v ) that is an anisotropic function of the location
ariable X and velocity variable V . This anisotropic basal phase space pdf is f Aniso ( x , v ) ∝
xp (−ε/ 2σ 2 

0 ) exp (−L 

2 
z / (R 

2 
a σ

2 
0 )) and the basal potential is �(R) = −GM 0 / 

√ 

R 

2 + R 

2 
c . The

odel parameters M 0 , R c , σ0 are as used in the case in which data was simulated from an
sotropic phase space pdf , while the parameter R a is set as 4 kpc. Results of learning the
-parameters and f -parameters using data D Aniso are depicted in Fig. A.11 . The proposal and
riors used to run the MCMC chain using this data are as used when learning given data
 Iso . Seeds for the ρ and f vectors in the learning with D Aniso are also the same as those
sed when learning with data D Iso . The ρ and f vectors learnt using D Aniso are input to a
ejection sampling algorithm, and another data set - called D 

(gen) 

Aniso - comprising 270 number
f the observables, is generated. 

To predict the level of anisotropy of the phase space of the galaxy under consideration,
e also computed the divergence measure δ(·, ·) between the (logarithm) of the joint poste-

ior probability density πIso (·| D Iso ) of all ρ-parameters and f -parameters given data D Iso ,
nd the joint πIso (·| D 

(gen) 

Iso ) given the generated data D 

(gen) 

Iso . We then compare this value
f the divergence measure to the same computed given D Aniso and D 

(gen) 

Aniso . We find that
(πIso , π

(gen) 
Iso ) ≈ 0. 03237 , while δ(πAniso , π

(gen) 
Aniso ) ≈ 0. 1046 . 
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ppendix B. Computing gravitational potential from gravitational mass density 

The gravitational potential �(R) at radius R, is computed by inputting the gravitational
ass density function ρ(R) in Poisson equation. It is easier to appreciate this computation of

he potential using the gravitational mass M(R) that is enclosed within the sphere of radius
, i.e. M(R) = 

∫ R 
x=0 4πρ(x ) x 2 dx and G is the known (Universal Gravitational) constant. Then

or the N r number of radial bins used in our learning - with each bin of width δr - at R = r,

(r) = 

−GM(r) 

r 
, where 

(r) = 

t ∑ 

s=1 

4π

3 

[
s 3 δ3 

r − (s − 1) 3 δ3 
r 

]
ρs + 

4π

3 

[
R 

3 − (tδr ) 
3 ]ρt+1 , 

for r ∈ [ tδr , (t + 1) δr ) , 

(r) = 

N r ∑ 

s=1 

4π

3 

[
s 3 δ3 

r − (s − 1) 3 δ3 
r 

]
ρs , for r ≥ N r δr 

(r) = 

4π

3 

[ r 3 ] ρ1 , for r ∈ [0, δr ] . (B.1)
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