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ABSTRACT In this paper, the impact of the non-linearity of the propagation medium on the extended
η-µ fading distribution is studied. In particular, the extended α-η-µ fading model in which the param-
eter α represents the non-linearity of the propagation environment is presented via providing the exact
and asymptotic of the statistical properties, namely, the probability density function (PDF), cumulative
distribution function (CDF), and generalized-moment generating function (G-MGF). To this effect, exact
closed-form mathematically tractable expressions of the outage probability (OP), average symbol error
probability (ASEP), amount of fading (AoF), channel quality estimation index (CQEI) and effective rate (ER)
are obtained. The asymptotic behaviour at high average signal-to-noise (SNR) values is also analysed to gain
further insights into the influence of the index α on the performance metrics of the wireless communication
systems. Moreover, the average channel capacity (ACC) under different adaptive transmission techniques,
such as, optimum rate and adaptation (ORA), capacity of the channel with inversion and fixed rate (CIFR),
and truncated inversion and fixed rate (TIFR) are derived. The validation of the derived expressions is verified
via comparing the numerical results with the Monte-Carlo simulations as well as some previous works for
different scenarios.

INDEX TERMS Extended α-η-µ fading, statistical properties, outage probability, average symbol error
probability, effective rate, average channel capacity.

I. INTRODUCTION
The κ-µ, η-µ [1], and α-µ [2] distributions have been widely
utilised to model the multipath fading of the wireless com-
munications channels. This is because these fading models
unify most of the classical distributions, namely, Rayleigh,
Nakagami-m, and Rician, but with better fitting to the realistic
measurements.

Recently, several models of the η-µ fading that is used
for non-line-of-sight (NLoS) communications scenario have
been reported in the technical literature. For instance, the
statistical characterization of the composite η-µ/ Gamma
fading channel was derived in [3]. The probability density
function (PDF) and cumulative distribution function (CDF)
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of both the signal envelope and instantaneous signal-to-noise
ratio (SNR) of α-η-µ distribution were given in [4]. The
performance of the wireless digital communications systems
over α-η-µ fading model in terms of the outage probability
(OP), average symbol error probability (ASEP) for various
modulation schemes, and average channel capacity (ACC)
was studied in [5] and [6]. The average probability of energy
detection based spectrum sensing over α-η-µ fading channels
was derived in [7]. Moreover, the effective rate (ER), i.e.
capacity, in α-η-µ fading condition was given in [8]. The
authors of [9] analysed the physical layer security over α-η-µ
fading scenario in terms of the lower bound secure outage
probability (SOP). In [10], the ACC of a mobile user over
α-η-µ fading channel was investigated via employing the
random waypoint (RWP) mobility approach. The composite
of α-η-µ/Gamma and α-η-λ-µ/Gamma distributions were
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investigated in [11] and [12], respectively, with applications
to the ACCwith optimum rate adaptation (ORA) and constant
transmit power, channel inversion with fixed rate (CIFR),
and truncated inversion and fixed rate (TIFR) adaptive trans-
mission protocols. The α-η-κ-µ fading model was suggested
in [13] as a unified representation for both α-η-µ and κ-µ
distributions. Additionally, the main advantage of this model
is manifested in providing better fitting to the empirical data
in a mmWave propagation medium than Rayleigh, Rice,
Nakagami-m, α-µ, η-µ and κ-µ distributions [14]. Conse-
quently, the expressions of the ER of α-η-κ-µ fading channel
of the single and multiple inputs wireless communication
systems were provided in [15] and [16], respectively.

More recently, the authors in [17] proposed the extended
η-µ distribution via assuming the clustering imbalance
between the in-phase and quadrature components. In addi-
tion, this model includes the classical η-µ distribution which
unifies number of the conventional distributions, as a spe-
cial case (see [17] and the references therein). Furthermore,
the fundamental statistics of the extended η-µ fading con-
dition are given in simple and closed-form expressions in
comparison with the α-η-κ-µ fading model in which the
imbalance between the clustering of the in-phase and quadra-
ture components is also considered. Accordingly, the PDF,
CDF, and moment generating function (MGF) of the sum
and maximum of the extended η-µ variates were derived
in [18] and [19], respectively, with applications to diversity
combining techniques. The success and outage probabilities
of amplify-and-forward relay-aided device-to-device (D2D)
communication system were reported in [20]. The OP, ASEP,
ACC, and amount of fading (AoF) over the extended η-F
fading which is composite of the extended η-µ and inverse
Nakagami-m distributions were provided in [21].

Based on the above advantages of the extended η-µ fad-
ing distribution and taking into consideration the impact of
the non-linearity propagation environment on the transmitted
signal power, the extended α-η-µ fading model is proposed
in this paper. Therefore, this model comprises the NLoS com-
munication scenario that is modelled by the η-µ fading distri-
bution, the non-linearity of the propagation environment and
imbalance between the clustering of the in-phase and quadra-
ture components simultaneously. To this end and unlike [13],
the statistical properties and important performance metrics
of wireless communications systems are provided in exact
closed-form analytically tractable expressions. Furthermore,
several exact and asymptotic expressions of the performance
measurements of the wireless communications systems are
derived.

The main contributions are summarized as follows:

• Deriving the PDF, CDF, and generalised-MGF (G-GMF)
of both the envelope and instantaneous signal-to-noise
ratio (SNR) over extended α-η-µ fading distribution
in novel exact closed-form mathematically acceptable
formats. To the best of the authors’ knowledge, there
is no effort in the state-of-the-art has been dedicated to

study the effect of the non-linearity of the propagation
media on the extended η-µ distribution.

• Providing the asymptotic expressions of the derived
statistics at high average SNR regime to get more
insights into the influence of the fading indices on the
system behaviour.

• Using the above statistical properties, the performance
of the wireless communication systems over extended
α-η-µ fading channel is analysed in terms of the OP,
ASEP, AoF, channel quality estimation index (CQEI)
and ER. To this effect, both the exact and asymptotic
expressions of the performancemetrics are novel, simple
and computationally tractable.

• Studying the ACC over extended α-η-µ fading channels
with different adaptive transmission strategies. In par-
ticular, the average capacity of channel with ORA and
constant transmit power, CIFR, and TIFR transmission
strategies are studied.

Organization: Section II provides some fundamental
information about the extended η-µ fading distribution.
In Section III, the the principle work of the proposed α-η-µ
fading distribution is explained as well as the statistical
properties of this model are given. Section IV analyses the
performance of wireless communications systems in terms
of the OP, ASEP, AoF, and ER. In this section, the ACC
under ORA, CIFR, and TIFR transmission techniques are
also derived. Section V presents the Monte Carlo simulations
and numerical results for different scenarios. Section VI high-
lights some conclusion remarks about the proposed model.
Notations: E[.] denotes the statistical expectation, 0(.) is

the gamma function [22, eq. (8.310.1)], 1F1(.; .; .) represents
the confluent hypergeometric function [22, eq. (9.14.1)],
Ha,b
c,d [.] refers to the Fox’s H -function (FHF) [23, eq. (1.2)],

Ha,b:c,d;e,f
m,n:p,q;r,s[.] stands for the bivariate FHF (BFHF) defined

in [23, eq. (2.57)] that can be calculated by using the MAT-
LAB code of [24], i =

√
−1, erfc(x) is the complementary

error function [22, eq. (8.250.4)], Ga,bc,d [.] is the Meijer’s
G-function (MGF) [23, eq. (1.111)], 2F1(., .; .; .) repre-
sents the Gauss hypergeometric function [22, eq. (9.14.2)],
and B(a, b) denotes the beta function defined in [22, eq.
(8.380.1)].

II. THE EXTENDED η-µ FADING MODEL
The received signal envelope for the extended η-µ fading
distribution, REηµ, is given by [17]

R2Eηµ =
µx∑
l=1

X2
l +

µy∑
l=1

Y 2
l (1)

where µx and µy are the number of the multipath clusters
of the in-phase and quadrature components, respectively,
whereas X2

l and Y 2
l that are mutually independent Gaussian

RVs with zero mean, namely, E[Xl] = E[Yl], represent the
in-phase and quadrature components of the cluster l, respec-
tively.
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The PDF of REηµ, fREηµ (r), is expressed as [17, eq. (14)]

fREηµ (r) =
2(µξ )µ

0(µ)

(
p
η

) µp
1+p r2µ−1

r̂2µ
exp

(
−
µξr2

r̂2

)
×1F1

(
µp

1+ p
;µ;

µξ (η − p)r2

ηr̂2

)
(2)

where µ = (µx + µy)/2 stands for the total number of the
multipath clusters, r̂2 = E[R2Eηµ] is the average power of
the fading envelope, the parameter p indicates the clustering
imbalance between the in-phase and quadrature components,
ξ = (1+ η)/(1+ p).

Similar to the η-µ fading model, the extended η-µ distri-
bution encompasses two formats. In Format I, p represents
the ratio between the number of the multipath clusters of the
components, namely, p = µx/µy with µx = 2µp/(1 + p)
and µy = 2µ/(1+ p). Moreover, η is the ratio of the powers
of the in-phase and quadrature components, i.e., η = �x/�y
(0 < η < ∞) with �x = E[X2

l ] = 2ηr̂2/(1 + η) and �y =

E[Y 2
l ] = 2r̂2/(1+η). On the other side, in Format II, p stands

for the normalized difference of the number of the multipath
clusters of the in-phase and quadrature components, namely,
p = (µx − µy)/(µx + µy) with µx = (1 + p)µ and µy =
(1 − p)µ. Furthermore, η = (�x − �y)/(�x + �y) (−1 <
η < 1) that means η represents the normalized difference of
the powers of the multipath clusters with�x = (1+η)r̂2 and
�x = (1 − η)r̂2. It is worth mentioning that Format I and
Format II are related to each other by ηI = (1+ηII)/(1−ηII)
and pI = (1 + pII)/(1 − pII). Hence, Format I is used in this
work.

III. THE EXTENDED α-η-µ FADING DISTRIBUTION
In this section, the extended α-η-µ fading distribution is
proposed via adding the impact of the non-linearity of the
propagation medium that is represented by the parameter α.
Interestingly, this distribution comprises several models as
particular cases, such as, α-µ and extended η-µ distributions.
The former model is obtained via inserting p = η or p =
1 and a specific value for η whereas the latter arises by
making α = 2. In addition to that, the extended α-µ fading
model that has not been yet reported by the previous works,
can be also considered as special case of the α-η-µ fading
distribution. All the special cases of the α-η-µ fading and the
corresponding values of their fading parameters p, α, η, and
µ are described in Table 1.

A. PDF OF THE EXTENDED α-η-µ DISTRIBUTION
Theorem 1: Let α, η,µ, p, r̂α , r ∈R+ where r is a random

variable (RV) that denotes the instantaneous signal power of
the fading envelope, R, of the extended α-η-µ distribution.
Accordingly, the PDF of envelope, R, can be expressed as

fR(r) =
αφµ

0(µ)

(
p
η

) µp
1+p rαµ−1

r̂αµ
exp

(
− φ

rα

r̂α

)
×1F1

(
µp

1+ p
;µ;

φ(η − p)rα

ηr̂α

)
(3)

TABLE 1. Common fading channels extracted from the extended α-η-µ
distribution.

where

φ =

(
0(µ+ 2

α
)1F1

( µp
1+p ;µ+

2
α
;
η−p
η

)
0(µ)

( η
p

) µp
1+p

) α
2

. (4)

Proof: The envelope R can be written as

Rα =
µx∑
l=1

X2
l +

µy∑
l=1

Y 2
l . (5)

Comparing (1) with (5), one can deduce that

Rα = R2Eηµ. (6)

Now, let’s define the received signal power of the fading
envelope of the extended η-µ fading as

χEηµ = R2Eηµ. (7)

Employing the transformation of the RV of (7) in (2), this
yields

fχEηµ (x) =
(µξ )µ

0(µ)

(
p
η

) µp
1+p xµ−1

r̂2µ
exp

(
−
µξx
r̂2

)
×1F1

(
µp

1+ p
;µ;

µξ (η − p)x
ηr̂2

)
(8)

where r̂2 = E[χEηµ].
The instantaneous signal power of the envelope, r , under

α-η-µ distribution can be found using

r2 =
r̂2R2

E[R2]
=

r̂2χ2/α
Eηµ

E[χ2/α
Eηµ]

. (9)

To compute E[χ2/α
Eηµ], we need to find the k-th moment of

the RV χEηµ, namely, χkEηµ, of the extended η − µ distri-
bution. Hence, utilising (8) and [22, eq. (7.522.9)], we have

E[χkEηµ] =
0(µ+ k)

( r̂2
µξ

)k( p
η

) µp
1+p 1F1

( µp
1+p ;µ+ k;

η−p
η

)
0(µ)

.

(10)

Substituting k = 2/α into (10), using the concept of
transformation of RVs and then inserting the result in

fR(r) =
αrα−1

r̂α
(
E
[
χ
2/α
Eηµ

])2/αfχEηµ( rαr̂α E[χ2/α
Eηµ

])
. (11)
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Additionally, doing some mathematical straightforward
simplifications, (3) is obtained which completes the proof.
Lemma 1: Assume γ ∈ R+ be a RV that represents the

instantaneous SNR under the extended α-η-µ fading channel
with average γ̄ = E[γ ]. Thus, the exact PDF of γ , fγ (γ ), and
its asymptotic expression when γ̄ → ∞, f∞γ (γ ), are given,
respectively, by

fγ (γ ) =
αφµ

20(µ)

(
p
η

) µp
1+p γ

αµ
2 −1

γ̄
αµ
2

exp
(
− φ

γ
α
2

γ̄
α
2

)
×1F1

(
µp

1+ p
;µ;

φ(η − p)γ
α
2

ηγ̄
α
2

)
(12)

and

f∞γ (γ ) '
αφµ

20(µ)

(
p
η

) µp
1+p

γ
αµ
2 −1

γ̄
αµ
2
. (13)

Proof: Using the concept of transformation between
γ and R, i.e., γ = γ̄R2/E[R2], which leads to fγ (γ ) =√
r̂2/γ̄ γ fR(

√
γ r̂2/γ̄ )/2, the result is (12).

Using the fact that both the exponential function and
1F1(.; .; .) tend to unity when γ̄ →∞ in (12), (13) is yielded
and this finishes the proof.
Lemma 2: To avoid the infinite series expressions of the

CDF and G-MGF as well as the performance metrics, the
PDF of (12) can be rewritten in terms of the product of two
univariate FHFs as

fγ (γ ) =
αφµ

20
(
µϕ
1+p

)(p
η

) µp
1+p γ

αµ
2 −1

γ̄
αµ
2

×H1,0
0,1

[
φδ

γ̄
α
2
γ
α
2

∣∣∣∣ −(0, 1)
]

×H1,1
1,2

[
φβ

ηγ̄
α
2
γ
α
2

∣∣∣∣ (1− µϕ
1+p , 1)

(0, 1), (1− µ, 1)

]
(14)

where (ϕ, δ, β) = (p, 1, p−η) for η < pwhereas (ϕ, δ, β) =
(1, p/η, η − p) for η > p.1

Proof: The exponential function can be written in terms
of the FHF via recalling the identity [23, eq. (1.39)]

e−x = H1,0
0,1

[
x

∣∣∣∣ −(0, 1)
]
. (15)

In addition, the confluent hypergeometric function can be
expressed in terms of the FHF via invoking the property [23,
eq. (1.130)]

1F1(a; b;−x) =
0(b)
0(a)

H1,1
1,2

[
x

∣∣∣∣ (1− a, 1)
(0, 1), (1− b, 1)

]
. (16)

Using (15) and (16) in (12), the PDF of the extended α-η-µ
distribution for η < p is formulated as

fγ (γ ) =
αφµ

20
( µp
1+p

)(p
η

) µp
1+p γ

αµ
2 −1

γ̄
αµ
2

H1,0
0,1

[
φ

γ̄
α
2
γ
α
2

∣∣∣∣ −(0, 1)
]

×H1,1
1,2

[
φ(p− η)

ηγ̄
α
2

γ
α
2

∣∣∣∣ (1− µp
1+p , 1)

(0, 1), (1− µ, 1)

]
. (17)

1For the case η = p, 1F1(.; .; 0) = 1 and (12) reduces to the PDF ofγ
over α − µ fading model [2].

FIGURE 1. Envelope PDF for different cases of extended α-η-µ fading
with α = 4.5, µ = 3.5 and r̂ = 1.

It is worth noting that (17) is not applicable for η > p
because the integral of the FHF converges when the argu-
ments are positive. Consequently, the property that is given
in (16) can be used after recalling the identity 1F1(a; b; x) =
ex1F1(b− a; b;−x) [22, eq. (9.212)]. Thus, this yields

fγ (γ ) =
αφµ

20
(
µ

1+p

)(p
η

) µp
1+p γ

αµ
2 −1

γ̄
αµ
2

H1,0
0,1

[
φp

ηγ̄
α
2
γ
α
2

∣∣∣∣ −(0, 1)
]

×H1,1
1,2

[
φ(η − p)

ηγ̄
α
2

γ
α
2

∣∣∣∣ (1− µ
1+p , 1)

(0, 1), (1− µ, 1)

]
. (18)

One can notice that both (17) and (18) can be unified in a
single format with three different parameters as in (14) and
this completes the proof.
Fig. 1 illustrates the PDF of the envelope of extended α −

η−µ fading with α = 4.5 andµ = 3.5. From this figure, one
can see that the increasing in α from 2 (extended η-µ) to 4.5
(extended α-η-µ) leads to increase the PDF as well as shift it
rightwards which means better fading scenario. In the same
context, when p decreases from 3 to 0.3, the PDF reduces and
shifts leftwards. Fig. 1 also demonstrates some special cases
of the extended α-η-µ fading distribution that are explained
in Table 1.

B. CDF OF THE EXTENDED α-η-µ DISTRIBUTION
Theorem 2: The CDF of R, FR(r), and the CDF of γ ,

Fγ (γ ), under extended α-η-µ fading model can be written
in exact closed-form expression as given in (19) and (20),
respectively, shown at the bottom of the next page.

The asymptotic of the CDF of (20) at γ̄ → ∞, F∞γ (γ ),
is expressed as

F∞γ (γ ) '

( p
η

) µp
1+p

0(1+ µ)

(
φγ

α
2

γ̄
α
2

)µ
. (21)

Proof: Following the same steps in Lemma 2 for (3) and
making use of the definition of the FHF [23, eq. (1.2)] that is
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given in (22) shown at the bottom of the page in which T
represents the suitable contour in the t-plane from %-i∞ to
%+i∞ with % is a constant value, we have (23) as shown at
the bottom of the page.

Now, inserting (23) in FR(r) =
∫ r
0 fR(r)dr and changing

the order of the integrals, the linear integral can be easily eval-
uated. Thereafter, doing some mathematical manipulations
via using the identity 0(x + 1) = x0(x) [22, eq. (8.331.1)]
and invoking [23, eq. (2.57)], (19) is deduced.

Plugging (23) in fγ (γ ) =
√
r̂2/γ̄ γ fR(

√
γ r̂2/γ̄ )/2, we have

(24), as shown at the bottom of the page. Then, substituting
(24) into Fγ (γ ) =

∫ γ
0 fγ (γ )dγ and employing the same

procedure of (19), (20) is derived.
Inserting (13) in F∞γ (γ ) =

∫ γ
0 f∞γ (γ )dγ and computing

the integral, (21) is obtained and this accomplishes the proof.

Fig. 2 shows the envelope CDF of the extended α-η-µ
fading model for the same fading parameters of Fig. 1. The
results of Fig. 1 are confirmed in Fig. 2 where the increasing
in α and/or p would lead to diminish the CDF which refers to
better fading condition. Also, a comparison with [2] and [17]
for α-µ and extended η-µ, respectively, is also carried out in
Fig. 2. As it can be observed, the envelope CDF of (19) is in an
excellent matching with the results of the previous works [2]
and [17] which verifies the correctness of our derived CDF.
Lemma 3: The exact G-MGF of γ , M(k)

γ (s), under the
extended α-η-µ fading distribution can be written in exact
closed-form as in (25) shown at the bottom of the page.

The asymptotic of the G-MGF at γ̄ →∞ can be expressed
as

M(k),∞
γ (s) '

α

20(µ)

(
p
η

) µp
1+p
(

φ

(sγ̄ )
α
2

)µ0(α2µ+ k)
sk

. (26)

FIGURE 2. Envelope CDF for different cases of extended α-η-µ fading
with α = 4.5, µ = 3.5 and r̂ = 1.

Proof: The G-MGF can be evaluated by [25, eq. (2)]

M(k)
γ (s) = E[γ ke−sγ ] =

∫
∞

0
γ ke−sγ fγ (γ )dγ. (27)

Substituting (24) into (27) and changing the order of the
integrals, (28) is obtained as shown at the bottom of the next
page.

Making utilise of [22, eq. (3.381.4)] to compute the lin-
ear integral and with the aid of [23, eq. (2.57)], (25) is
yielded.

FR(r) =
αφµ

20( µϕ1+p )

(
p
η

) µp
1+p rαµ

r̂αµ
H0,1:1,0;1,1
1,1:0,1;1,2

[
φδ

r̂α
rα,

φβ

ηr̂α
rα
∣∣∣∣ (1− αµ

2 ;
α
2 ,

α
2 ) : −; (1−

µϕ
1+p , 1)

(−αµ2 ;
α
2 ,

α
2 ) : (0, 1); (0, 1), (1− µ, 1)

]
. (19)

Fγ (γ ) =
αφµ

20( µϕ1+p )

(
p
η

) µp
1+p γ

αµ
2

γ̄
αµ
2
H0,1:1,0;1,1
1,1:0,1;1,2

[
φδ

γ̄
α
2
γ
α
2 ,

φβ

ηγ̄
α
2
γ
α
2

∣∣∣∣ (1− αµ
2 ;

α
2 ,

α
2 ) : −; (1−

µϕ
1+p , 1)

(−αµ2 ;
α
2 ,

α
2 ) : (0, 1); (0, 1), (1− µ, 1)

]
. (20)

Hm,n
p,q

[
x

∣∣∣∣(a1,A1), · · · , (ap,Ap)(b1,B1), · · · , (bp,Bp)

]
=

1
2π i

∫
T

{
∏m

j=1 0(bj + Bjt)}{
∏n

j=1 0(1− aj − Ajt)}

{
∏q

j=m+1 0(1− bj − Bjt)}{
∏p

j=n+1 0(aj + Ajt)}
x−tdt. (22)

fR(r) =
αφµ

0( µϕ1+p )

(
p
η

) µp
1+p

rαµ−1
r̂αµ

1
(2π i)2

∫
T1
∫
T2

0(t1)0(t2)0
(
µϕ
1+p−t2

)
0(µ−t2)

(
φδ

r̂α r
α

)−t1(
φβ

ηr̂α r
α

)−t2
dt1dt2. (23)

fγ (γ ) =
αφµ

20( µϕ1+p )

(
p
η

) µp
1+p

γ
αµ
2 −1

γ̄
αµ
2

1
(2π i)2

∫
T1
∫
T2

0(t1)0(t2)0
(
µϕ
1+p−t2

)
0(µ−t2)

(
φδ

γ̄
α
2
γ
α
2

)−t1(
φβ

ηγ̄
α
2
γ
α
2

)−t2
dt1dt2. (24)

M(k)
γ (s) =

αφµ

20( µϕ1+p )(sγ̄ )
αµ
2 sk

(
p
η

) µp
1+p

H0,1:1,0;1,1
1,0:0,1;1,2

[
φδ

(sγ̄ )
α
2
,

φβ

η(sγ̄ )
α
2

∣∣∣∣(1− k − αµ
2 ;

α
2 ,

α
2 ) : −; (1−

µϕ
1+p , 1)

− : (0, 1); (0, 1), (1− µ, 1)

]
. (25)

VOLUME 10, 2022 109807



H. Al-Hmood et al.: Extended α-η-µ Fading Distribution: Statistical Properties and Applications

TABLE 2. The values of A1 and A2 for coherent modulation schemes [27].

At high γ̄ regime, the asymptotic of the G-MGF can be
calculated via substituting (13) into (27) and using [22, eq.
(3.381.4)] to obtain (26). Then, the proof is completed.

IV. PERFORMANCE EVALUATION OF WIRELESS
COMMUNICATIONS SYSTEMS OVER EXTENDED α-η-µ
FADING MODEL
A. OUTAGE PROBABILITY
The probability of reducing the output SNR to less than a
certain threshold value, ψ , is called the outage probability.
Consequently, the OP, Po, can be evaluated by [26, eq. (1.4)]

Po = Fγ (ψ) (29)

where Fγ (.) is presented in (20).
The asymptotic of the OP, P∞o , can be deduced from (21),

i.e., P∞o = F∞γ (ψ). Additionally, the P∞o may be expressed
as P∞o ' (Gcγ̄ )−Gd whereby Gc and Gd are the diversity order
and coding gain, respectively. Hence, one can see that Gc =
1
ψ

[( η
p

)p/(1+p) [0(1+µ)]1/µ
φ

]2/α and Gd = αµ/2. It can be noted
that Gd depends on the fading parameters α and µ.

B. AVERAGE SYMBOL ERROR PROBABILITY
1) NON-COHERENT MODULATION
The ASEP for non-coherent modulation, P̄Ns , can be com-
puted by [26, eq. (1.8)]

P̄Ns = a1Mγ (a2) (30)

where a1 and a2 are the modulation constants that are defined
as (a1, a2) = (0.5, 1) and (a1, a2) = (0.5, 0.5) for differential

binary phase shift keying (DBPSK) and non-coherent binary
frequency shift keying (NCBFSK) schemes, respectively.
Furthermore, for M -ary-non-coherent FSK (M -NFSK) with
M ≥ 2, a1 =

∑M−1
m=1 (−1)

m+1/(m+ 1) and a2 = m/(m+ 1).
In (30), Mγ (a2) is the MGF of the extended α-η-µ fading
that can be obtained from (25) via using k = 0 and replacing
s by a2.
Similarly, the asymptotic expression of the ASEP for the

non-coherent detection schemes at high γ̄ values, P̄N ,∞s ,
can be derived from (30) and (26) after inserting k =
0 and s = a2. Hence, one can observe that Gd is also
proportional to α and µ where Gd = αµ/2 and Gc =
a2
[( η

p

)p/(1+p)( 20(µ)
a1αφµ0(αµ/2)

) 1
µ
]2/α .

2) COHERENT MODULATION
For coherent modulation schemes, such as, BPSK, for
high γ̄ for Gaussian minimum shift keying (GMSK),
M -ary-differentially encoded PSK (M -DEPSK), quadrature
PSK (QPSK), M -ary-PSK (M -PSK), M -ary-FSK (M -FSK),
square M -ary-quadrature amplitude modulation (M -QAM),
and M -ary-differential PSK (M -DPSK), the ASEP, P̄Cs , can
be calculated by [27, eq. (19)]

P̄Cs = A1

∫
∞

0
erfc(

√
A2γ )fγ (γ )dγ (31)

where A1 and A2 that represent the modulation parameters are
given in Table 2.2

Substituting (24) into (31) along with the change of
the order of the integrals and using the identity [28, eq.
(06.27.26.0006.01)]

erfc(
√
x) =

1
√
π
G2,0
1,2

[
x

∣∣∣∣ 1
0, 0.5

]
(32)

We have (33) that is shown at the bottom of the page.
Now, one can see that the inner integral is recorded

in [23, eq. (2.9)]. Subsequently, invoking the definition of
the BFHF [23, eq. (2.57)], exact closed-form expression of
the P̄Cs can be derived as in (34) shown at the bottom of the
next page.

When γ̄ →∞, the P̄C,∞s can be derived via inserting (13)
in (31) and utilising [28, eq. (06.27.21.0132.01)]. Thus, after

2For GMSK, A2 = B which is the bandwidth of the premodulation.

M(k)
γ (s) =

αφµ

20( µϕ1+p )γ̄
αµ
2

(
p
η

) µp
1+p

×
1

(2π i)2

∫
T1

∫
T2

∫
∞

0
γ
αµ
2 −

α
2 t1−

α
2 t2−1e−sγ dγ

0(t1)0(t2)0
(
µϕ
1+p − t2

)
0(µ− t2)

(
φδ

γ̄
α
2

)−t1( φβ

ηγ̄
α
2

)−t2
dt1dt2. (28)

P̄Cs =
αφµA1

2
√
π0( µϕ1+p )γ̄

αµ
2

(
p
η

) µp
1+p

×
1

(2π i)2

∫
T1

∫
T2

∫
∞

0
γ
αµ
2 −

α
2 t1−

α
2 t2−1G2,0

1,2

[
A2γ

∣∣∣∣ 1
0, 0.5

]
dγ
0(t1)0(t2)0

(
µϕ
1+p − t2

)
0(µ− t2)

(
φδ

γ̄
α
2

)−t1( φβ

ηγ̄
α
2

)−t2
dt1dt2. (33)

109808 VOLUME 10, 2022



H. Al-Hmood et al.: Extended α-η-µ Fading Distribution: Statistical Properties and Applications

performing some mathematical simplifications, this yields

P̄C,∞s '
φµA1

√
π0(1+ µ)(A2γ̄ )

αµ
2

(
p
η

) µp
1+p

0
(1+ αµ

2

)
. (35)

From (35), it is clear that Gd = αµ/2 and Gc =
A2
[( η

p

)p/(1+p)( √
π0(1+µ)

A1φµ0((1+αµ)/2)

) 1
µ
]2/α .

C. AMOUNT OF FADING AND CHANNEL QUALITY
ESTIMATION INDEX
The AoF, AF , can be computed by [26, eq. (1.27)]

AF =
E[γ 2]
E[γ ]2

− 1 (36)

where E[γ ] and E[γ 2] that represent the first and second
moments of γ , respectively, can be deduced from (25) via
inserting k = 2 and k = 1, respectively, along with s = 0.
Thus, after plugging (18) in (27) with s = 0 and performing
the change of the variable u = γ α/2, the integral can be
evaluated with the aid of [23, eq. (2.3), pp. 60]. Hence, the
k-th moment of γ , µk , over extended α − η − µ fading
distribution is expressed as

µk = E[γ k ] =

( p
η

) µp
1+p

δµ0
(
µϕ
1+p

)( γ̄ α
2

φδ

) 2k
α

×H1,2
2,2

[
β

ηδ

∣∣∣∣(1− µ− 2
α
k, 1), (1− µϕ

1+p , 1)
(0, 1), (1− µ, 1)

]
.

(37)

Alternatively, (37) can be rewritten in terms of the hyper-
geometric function via recalling the identity [23, eq. (1.132)]

H1,2
2,2

[
x

∣∣∣∣(1− a, 1), (1− b, 1)(0, 1), (1− c, 1)

]
=
0(a)0(b)
0(c) 2F1(a, b; c;−x).

(38)

Consequently, this yields

µk = E[γ k ] =
0(µ+ 2

α
k)
( p
η

) µp
1+p

δµ0(µ)

(
γ̄
α
2

φδ

) 2k
α

×2F1

(
µϕ

1+ p
, µ+

2
α
k;µ;−

β

ηδ

)
. (39)

The CQEI, CQEI, that is defined as an effectivemetric that
gives insights on the AoF of at a specific values of SNR, can

be expressed as [29]

CQEI =
AF
E[γ ]

− 1. (40)

D. EFFECTIVE RATE
The ER of wireless communications systems is measured
under imperfect quality of service (QoS) where several
restrictions such as system delay and block duration are taken
into account [30].

The ER,R is given by [30, eq. (8)]

R = −
1
A
log2

{∫
∞

0
(1+ γ )−Afγ (γ )dγ

}
(41)

where A , θTB/ln(2) with θ represents the delay exponent
whereas T and B indicate the time and bandwidth of the
channel, respectively.

The ER over extended α − η − µ fading model can be
derived via inserting (24) in (41) and employing [22, eq.
(3.194.3)] to compute the linear integral. Then, after invoking
the property B(x, y) = 0(x)0(y)/0(x+ y) [22, eq. (8.384.1)]
for the beta function and using the definition of the BFHF [23,
eq. (2.57)], we have (42) shown at the bottom of the page.

The asymptotic behaviour of ER at high γ̄ , R∞, can be
analysed by

R∞ ' −
1
A
log2

{
αφµ

20(µ)γ̄
αµ
2

(
p
η

) µp
1+p

B
(
αµ

2
,A−

αµ

2

)}
(43)

where (43) arises after substituting (13) into (41) and making
use of [22, eq. (3.194.3)].

E. AVERAGE CHANNEL CAPACITY UNDER DIFFERENT
ADAPTIVE TRANSMISSION PROTOCOLS
1) OPTIMUM RATE ADAPTATION WITH CONSTANT
TRANSMIT POWER
The normalized ACC under ORA strategy, C̄ORA, can be
determined by [31, eq. (20)]

C̄ORA =
1

ln(2)

∫
∞

0
ln(1+ γ )fγ (γ )dγ. (44)

Substituting (20) into (44) and changing the order of the
integrals to evaluate the linear integral with the help of
[22, eq.(4.293.3)]. Furthermore, recalling the identity 0(1 −
z)0(z) = π/ sin(πz) [22, eq. (8.334.3)] and using [23, eq.

P̄Cs =
αφµA1

2
√
π0( µϕ1+p )(A2γ̄ )

αµ
2

(
p
η

) µp
1+p

H0,2:1,0;1,1
2,1:0,1;1,2

[
φδ

(A2γ̄ )
α
2
,

φβ

η(A2γ̄ )
α
2

∣∣∣∣( 12 − αµ
2 ;

α
2 ,

α
2 ), (1−

αµ
2 ;

α
2 ,

α
2 ) : −; (1−

µϕ
1+p , 1)

(−αµ2 ;
α
2 ,

α
2 ) : (0, 1); (0, 1), (1− µ, 1)

]
.

(34)

R = −
1
A
log2

{
αφµ

20(A)0( µϕ1+p )γ̄
αµ
2

(
p
η

) µp
1+p

H1,1:1,0;1,1
1,1:0,1;1,2

[
φδ

γ̄
α
2
,
φβ

ηγ̄
α
2

∣∣∣∣ (1− αµ
2 ;

α
2 ,

α
2 ) : −; (1−

µϕ
1+p , 1)

(A− αµ
2 ;

α
2 ,

α
2 ) : (0, 1); (0, 1), (1− µ, 1)

]}
. (42)
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(2.57)] to write C̄ORA in exact closed-form expression as in
(45) shown at the bottom of the page.

2) CHANNEL INVERSION AND FIXED RATE
The normalized ACC with CIFR, C̄CIFR, can be computed by
[31, eq. (73)]

C̄CIFR = log2

{
1+

(∫
∞

0
γ−1fγ (γ )dγ

)−1}
. (46)

The integral of (46) can be obtained from (37) or (39) via
setting k = −1.

3) TRUNCATED INVERSION AND FIXED RATE
The normalized ACC with TIFR, C̄TIFR, can be calculated by
[31, eq. (85)]

C̄TIFR = log2

{
1+

(∫
∞

γ0

γ−1fγ (γ )dγ
)−1}

(1− Fγ (γ0))

(47)

where γ0 is a certain threshold value that is selected to achieve
maximum C̄TIFR.
The integral of (47) can be rewritten as∫

∞

γ0

γ−1fγ (γ )dγ = I1 − I2 (48)

where

I1 =
∫
∞

0
γ−1fγ (γ )dγ

and

I2 =
∫ γ0

0
γ−1fγ (γ )dγ.

It can be observed that I1 can be deduced from (37) or (39)
with k = −1. In addition, I2 can be derived via following the
same procedure of the CDF in Theorem 2 to yield (49) given
at the bottom of the page.

V. NUMERICAL AND SIMULATION RESULTS
In this section, the numerical results for different scenar-
ios are presented to understand the impact of the fading
parameters α and p of the extended α-η-µ fading distri-
bution on the performance metrics of the wireless commu-
nications systems. In addition, to verify the validation of
the derived expressions, the analytical results are compared
with the Monte Carlo simulations that are generated via
using 107 realizations. To achieve further validations for our

FIGURE 3. Exact and asymptotic OP versus γ̄ over extended α − η − µ
fading for ψ = 5 dB, η = 3, µ = 2.5, and arbitrary values of α and p.

derived expressions, several comparisons with some special
cases of extended α-η-µ fading, such as, η-µ and Nakagami-
2.5, that were investigated in the previous works, have been
carried out.3 In all figures, themarkers stand for the numerical
results, whereas the solid and dashed lines denote their simu-
lation and asymptotic counterparts, respectively. Moreover,
in this work, the parameters η and µ are assumed to be
constant where η = 3 and µ = 2.5. This is because the
influence of these parameters has been widely studied in the
literature (please refer to [1], [3], [6], [8], [11], and [17]).

Figs. 3 and 4 demonstrate the OP with ψ = 5 dB and
ASEP for DBPSK modulation, respectively, versus average
SNR, γ̄ , over extended α − η−µ fading model for arbitrary
values of α and p. As expected, both figures explain that the
OP and ASEP diminish when α or/and p increase. This is
because the increasing in α leads to high power exponent
of the sum of multipath components. On the other side, the
increasing in pmeans the number of the multipath clusters of
the in-phase components is higher than that of the quadrature
components of the same signal. For instance, in Figs. 3 and 4,
when α changes from 1.5 to 2.5 at p = 1 (fixed) and γ̄ =
15 dB (fixed), the OP is reduced by approximately 94% and

3The MATLAB codes for the special cases of the extended α-η-µ fading,
such as η-µ and α-µ models are implemented in [32] whereas for extended
α-η-µ fading, we have developed the MATLAB code that is available at:
https://github.com/hugerles/extended.git.

C̄ORA =
αφµ

2 ln(2)0( µϕ1+p )γ̄
αµ
2

(
p
η

) µp
1+p

H1,2:1,0;1,1
2,2:0,1;1,2

[
φδ

γ̄
α
2
,
φβ

ηγ̄
α
2

∣∣∣∣ (1− αµ
2 ;

α
2 ,

α
2 ), (1−

αµ
2 ;

α
2 ,

α
2 ) : −; (1−

µϕ
1+p , 1)

(1− αµ
2 ;

α
2 ,

α
2 ), (−

αµ
2 ;

α
2 ,

α
2 ) : (0, 1); (0, 1), (1− µ, 1)

]
. (45)

I2 =
αφµ

20( µϕ1+p )

(
p
η

) µp
1+p γ

αµ
2 −1

0

γ̄
αµ
2

H0,1:1,0;1,1
1,1:0,1;1,2

[
φδ

γ̄
α
2
γ
α
2
0 ,

φβ

ηγ̄
α
2
γ
α
2
0

∣∣∣∣ (2− αµ
2 ;

α
2 ,

α
2 ) : −; (1−

µϕ
1+p , 1)

(1− αµ
2 ;

α
2 ,

α
2 ) : (0, 1); (0, 1), (1− µ, 1)

]
. (49)

109810 VOLUME 10, 2022



H. Al-Hmood et al.: Extended α-η-µ Fading Distribution: Statistical Properties and Applications

FIGURE 4. Exact and asymptotic ASEP of DBPSK versus γ̄ over extended
α − η − µ fading for η = 3, µ = 2.5, and arbitrary values of α and p.

FIGURE 5. Exact and asymptotic ASEP of various schemes versus γ̄ over
extended α − η − µ fading for α = 1.5, η = 3, µ = 2.5, and p = 0.3.

the ASEP is decreased by nearly 95%. In the same context,
at constant γ̄ = 15 dB and α = 2.5, the OP and ASEP
for p = 3 are roughly 27% and 30%, respectively, less than
that of p = 1. However, the effect of α on the performance
measures is more pronounced of that of p. This confirms the
correctness of our derived expressions of the diversity gain
for both the OP and ASEP that is proportional to α and µ,
namely, Gd = αµ/2. Hence, the overall system performance
greatly degrades with the dropping in the value of α and vice
versa.

Fig. 5 depicts the exact and asymptotic results of the ASEP
for various modulation schemes versus average SNR, γ̄ , for
α = 1.5 and p = 0.3. As anticipated and widely presented
in the technical literature, the C-BPSK scheme outperforms
the other formats. On the contrary, the 8-QAM technique has

FIGURE 6. CQEI versus γ̄ over extended α − η − µ fading for α = 1.5,
η = 3, µ = 2.5, and p = 0.3.

FIGURE 7. Exact and asymptotic ER versus γ̄ over extended α − η − µ
fading for η = 3, µ = 2.5, A = 3.5 and arbitrary values of α and p.

higher ASEP than that of 4-FSK, NC-BFSK, C-BFSK, and
DBPSK schemes.

Fig. 6 plots the CQEI versus average SNR, γ̄ , over
extended α − η − µ fading for different values of α and p.
As it can noted, in this figure, that the CQEI drops when α
or/and p increase. This is because the AoF diminishes as α
or/and p become high.

Fig. 7 shows the exact and asymptotic results of the ER
versus average SNR, γ̄ , over extended α − η − µ fading
for A = 3.5 and arbitrary numbers of α and p. Similar to
Figs. 3 and 4 as well as for the same reasons, the ER improves
when α or/and p become large. For example, at p = 1 (fixed)
and γ̄ = 15 dB (fixed), the ER for α = 2.5 is roughly
increased by 50% when compared to α = 1.5. In the same
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FIGURE 8. ACC for different transmission policies versus γ̄ over extended
α − η − µ fading with η = 3, µ = 2.5, α = 1.5 and arbitrary values of p.

context, the ER for p = 3 is nearly improved by 2.8% when
compared to p = 1 at constant α = 2.5.
It is worth mentioning that the influence of p on the ACC

with different transmission strategies has not been studied in
[17] and [21]. Hence, Fig. 8 illustrates the normalized ACC
with ORA, TIFR, and CIFR transmission techniques over
extended α − η − µ fading model for α = 1.5, p = 0.05,
and p = 1. From this figure, it is clear that as p increases,
the ACC becomes high and for the same reason that has been
shown for the results of Figs. 3 and 4. Furthermore, the ORA
has the superiority on the TIFR which is better than CIFR.
These observations are consistent with the results of [3] and
[12] which prove the correctness of the provided expressions
in this work.

For further insights about the proposed fading model,
Figs. 3, 4, 6, and 7 also include the results for η-µ, Nakagami-
2.5, and Rayleigh fading channels that are special cases
of the extended α − η − µ fading model as previously
explained in Table 1. From these figures, it can be noted that
the metrics over the extended α − η − µ fading condition
with α = 2.5 have better performance than the Nakagami-
2.5 fading channel. This refers to the low value of α of
the Nakagami-2.5 fading condition (α = 2). This provides
another confirmation about the influence of the non-linearity
of the propagation media on the system behaviour. Besides,
one can see that the system has worse performance over
Rayleigh fading channel. This is because the number of the
multipath clusters of the Rayleigh fading channel that arrives
at the receiver is 1 (µ = 1) whereas µ = 2.5 for the
extended α− η−µ fading model and Nakagami-2.5. There-
fore, the performance metrics over Rayleigh fading chan-
nel have lower diversity gain in comparison with the other
scenarios. Also, it is obvious, in all figures, that the numer-
ical results are in excellent matching with the asymptotic
behaviour at high average SNR, γ̄ , as well as theMonte Carlo
simulations.

VI. CONCLUSION
This paper was devoted to analyse the impact of the
non-linearity propagation environment on the extended η-µ
fading distribution. Accordingly, the extended α-η-µ fading
was proposed as a new fading model via deriving the exact
and asymptotic expressions of the PDF, CDF, and G-MGF of
both the signal envelope and instantaneous SNR. Based on
these statistics, exact closed-form mathematically tractable
expressions of the OP, ASEP for different modulation for-
mats, AoF, CQEI, and ER were provided. Moreover, the
asymptotic expressions at high average SNR of the OP, ASEP,
and ER were also given. Additionally, the analysis of the
ACC with ORA, CIFR, and TIFR transmission protocols was
presented. From the presented results, a degradation in the
performance metrics can be noticed when α or/and p reduce.
However, the parameter α has higher impact than p and this
has been proved by the diversity gain which is proportional
to α. A comparison between the numerical results and Monte
Carlo simulation was performed to verify the validation of
the derived expressions. The derived expressions of this work
can be applied for number of fading channels that are special
cases of the extended α-η-µ fading model. For instance,
the performance analysis of the wireless communications
systems over Nakagami-m fading channel with better fitting
to the practical data than the classical model can be obtained
by using the extended α-η-µ fading condition with the fading
parameters of Table 1. In addition, the ACC with differ-
ent adaptive power transmission policies over extended η-µ
fading that has not been yet analysed in the literature, can
be studied by utilising the expressions of Section IV.E after
inserting α = 2.
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