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Connections among brain regions allow pathological perturbations to spread from a single source region to multiple 
regions. Patterns of neurodegeneration in multiple diseases, including behavioural variant of frontotemporal demen-
tia (bvFTD), resemble the large-scale functional systems, but how bvFTD-related atrophy patterns relate to structural 
network organization remains unknown. Here we investigate whether neurodegeneration patterns in sporadic and 
genetic bvFTD are conditioned by connectome architecture. Regional atrophy patterns were estimated in both gen-
etic bvFTD (75 patients, 247 controls) and sporadic bvFTD (70 patients, 123 controls). First, we identified distributed 
atrophy patterns in bvFTD, mainly targeting areas associated with the limbic intrinsic network and insular cytoarchi-
tectonic class. Regional atrophy was significantly correlated with atrophy of structurally- and functionally-connected 
neighbours, demonstrating that network structure shapes atrophy patterns. The anterior insula was identified as the 
predominant group epicentre of brain atrophy using data-driven and simulation-based methods, with some second-
ary regions in frontal ventromedial and antero-medial temporal areas. We found that FTD-related genes, namely 
C9orf72 and TARDBP, confer local transcriptomic vulnerability to the disease, modulating the propagation of path-
ology through the connectome. Collectively, our results demonstrate that atrophy patterns in sporadic and genetic 
bvFTD are jointly shaped by global connectome architecture and local transcriptomic vulnerability, providing an ex-
planation as to how heterogenous pathological entities can lead to the same clinical syndrome.
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Introduction
Frontotemporal dementia (FTD) is one of the most common forms 

of early-onset dementia.1,2 The behavioural variant of FTD 

(bvFTD), which presents with various combinations of behavioural 

(apathy, disinhibition, compulsions and stereotypies), personality 

(decreased empathy and sympathy, altered personal preferences) 

and cognitive (executive dysfunction and social cognitive deficits) 

changes, is the most common clinical variant of FTD.2,3 Despite 

its distinctive clinical presentation, bvFTD is pathologically heter-

ogenous, with the most common subtypes being related to the 

accumulation of hyperphosphorylated aggregates of either Tau or 
TDP-43.4 This group of pathological proteinopathies causing FTD 
are classified under the frontotemporal lobar degeneration (FTLD) 
umbrella. Most cases are sporadic; however, around 20% are caused 
by an autosomal-dominant genetic mutation including hexanu-
cleotide repeat expansions near C9orf72, GRN and MAPT, as the 
most common causative genes.4

FTLD pathology cause clinical bvFTD symptoms through their 
predominant localization in frontal and anterior temporal brain re-
gions.4 Clinically, this is reflected by progressive cortical atrophy, 
which is a crucial biomarker for the diagnosis.5,6 While there is 
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major overlap in atrophy patterns between sporadic and genetic 
bvFTD, each genetic subtype has distinctive features, including 
antero-medial atrophy in MAPT, posterior frontal and parietal in-
volvement in GRN and thalamic/cerebellar volume loss in 
C9orf72.7 In recent years, there has been an interest to understand 
how heterogeneous pathological changes could lead to similar clin-
ical and atrophy profiles.8

In early work based on functional MRI, it was hypothesized that 
atrophy in neurodegenerative diseases progresses predominantly 
along functional neural networks,9 with the salience network being 
predominantly affected in bvFTD.10,11 Within the salience network, 
the anterior insula was identified as the most likely disease epi-
centre,9,11 a finding that was further supported by pathologic accu-
mulation of tau or TDP-43 aggregates in fork cells and Von Economo 
neurons, which are specific to this region.12 While the anterior in-
sula clearly plays a significant role in the disease, other studies 
using data-driven methods on structural atrophy patterns revealed 
distinct morphological subtypes including two salience network- 
predominant subgroups (a frontal/temporal subtype and a frontal 
subtype), a semantic appraisal network-predominant group and a 
subcortical-predominant group.13 This opens the possibility that 
there is not a single unique epicentre at the origin of all bvFTD 
cases.

Emerging theories emphasize that connectome architecture 
shapes the course and expression of multiple neurodegenerative 
diseases.14–18 Misfolding of endogenous proteins and their subse-
quent trans-neuronal spread has been documented in FTLD, 
Alzheimer’s disease, Parkinson’s disease, Huntington’s disease 
and amyotrophic lateral sclerosis.9,19–26 Despite differences in ori-
gin and the proteins involved in each disease, the spread of the 
pathology appears to reflect brain network organization at the 
macroscale level. Namely, anatomical connectivity is thought to 
support the propagation of toxic protein aggregates, such that focal 
pathology can spread between connected neuronal populations 
and infiltrate distributed networks in the brain.

Two key questions remain unanswered about the spread of path-
ology in bvFTD. First, the spread of pathology is likely to occur via 
physical white matter connections, but the contribution of struc-
tural connectivity to atrophy progression has been less explored in 
bvFTD. Evidence for transneuronal spread of FTLD pathology is 
mostly based on extrapolation from functional imaging,8,9 with 
some support from studies using animal models,27 autopsy data28

and prediction of atrophy patterns.29 Although functional connect-
ivity reflects the underlying structural connectivity patterns and is 
sometimes used as a proxy for structural connectivity if no such 
data is available, the two modalities capture fundamentally different 
features of brain network organization and are only moderately cor-
related with each other.30 Second, the role of local vulnerability is 
poorly understood. It is possible that regional differences in molecu-
lar and cellular make-up render some nodes more or less vulner-
able.31–33 In particular, recent reports in other neurodegenerative 
diseases suggest that regional differences in gene expression may 
confer vulnerability, effectively guiding the pathological process 
through the network.34–36 Altogether, we hypothesize that brain net-
work architecture, in concert with local vulnerability conferred by 
expression of specific genes, shapes the spatial distribution of atro-
phy patterns in brain disorders, including FTD.11,37

In the present study, we tested a structural network-based atro-
phy propagation model in bvFTD across sporadic and genetic var-
iants. Specifically, we tested the hypothesis that atrophy patterns 
in bvFTD reflect the underlying network organization and local 
transcriptomic vulnerability. First, we estimated cortical atrophy 

patterns as regional changes in tissue deformation in bvFTD 
patients. We then used structural and functional connectivity 
networks derived from an independent sample of healthy indivi-
duals to investigate whether regions that are connected to each 
other display similar atrophy patterns. Finally, we identified poten-
tial disease epicentres using a data-driven approach as well as a 
simulation-based approach that models the spread of atrophy 
across the brain network. We further explored the potential contri-
bution of FTD-related genes to the propagation of atrophy.

Participants and methods
Participants

We retrieved data from subjects with bvFTD and cognitively normal 
controls (CNCs) from the Frontotemporal Lobar Degeneration 
Neuroimaging Initiative (FTLDNI) database, which contains 
T1-weighted MRI scans matching each clinical visit (http://4rtni- 
ftldni.ini.usc.edu/). The inclusion criterium for bvFTD patients 
was a diagnosis of possible or probable bvFTD, according to the 
FTD consortium criteria,3 resulting in 70 patients with bvFTD 
(mostly sporadic) and 123 CNCs available for analyses. Several pa-
tients had more than one scan; therefore, there was a total of 156 
scans in the bvFTD group and 326 in the CNC group. We also ac-
cessed data from the third data freeze (12/2017) of the Genetic 
Frontotemporal Dementia Initiative 2 (GENFI2—http://genfi.org. 
uk/), which includes 23 centres in the UK, Europe and Canada.38

GENFI2 participants included known symptomatic carriers of a 
pathogenic mutation in C9orf72, GRN or MAPT and their first-degree 
relatives, who are at risk of carrying a mutation, but do not show 
any symptoms (i.e. at-risk subjects). Healthy first-degree relatives, 
who were found to be non-carriers of a mutation, were considered 
CNCs. Since the aim of the present study was to study network 
propagation of atrophy in the bvFTD clinical phenotype, presymp-
tomatic carriers and symptomatic carriers whose clinical diagnosis 
was other than bvFTD were excluded. This GENFI2 cohort included 
75 patients with bvFTD and 247 CNCs. Demographic and clinical 
characteristics of these two cohorts are described in Table 1. 
Two-sample t-tests were conducted to examine demographic and 
clinical variables at baseline. Categorical variables were analysed 
using χ2 analyses. Results are expressed as mean ± standard devi-
ation (SD) and median (interquartile range) as appropriate.

MRI acquisition and processing

For the FTLDNI cohort, 3.0 T MRIs were acquired at three sites 
[T1-weighted magnetization-prepared rapid gradient-echo imaging 
(MPRAGE), repetition time (TR) = 2 ms, echo time = 3 ms, inversion 
time = 900 ms, flip angle 9°, matrix 256 × 240, slice thickness 
1 mm, voxel size 1 mm3]. For the GENFI2 sample, volumetric 
T1-weighted MPRAGE MRI was obtained at multiple centres using 
the GENFI imaging protocol on either Siemens Trio 3 T, 
SiemensSkyra 3 T, Siemens 1.5 T, Phillips 3 T, General Electric (GE) 
1.5 T or GE 3 T scanners. Scan protocols were designed at the outset 
of the study to ensure adequate matching between the scanners 
and image quality control.

All T1-weighted scans were pre-processed through our longitu-
dinal pipeline that included image denoising, intensity non- 
uniformity correction and image intensity normalization into 
range (0–100) using histogram matching.39–42 The image processing 
tools used in this study were designed to process data from multi- 
site studies to handle biases due to multi-site scanning, and they 
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have successfully been applied to a number of multi-site pro-
jects.37,43–45 Each native T1-weighted volume from each time point 
was linearly registered first to the subject-specific template, which 
was then registered to the ICBM152 template. All images were then 
non-linearly registered to the ICBM152 template using ANTs diffeo-
morphic registration pipeline.46 The images were visually assessed 
by two experienced raters (M.D. and A.L.M.) to exclude cases with 
significant imaging artifacts (e.g. motion, incomplete field of view) 
or inaccurate linear/non-linear registrations. This visual quality 
control was completed blind to the diagnosis. Out of 1724 scans, 
only 43 (2.5%, 36 scans in GENFI2

and seven in FTLDNI) were rejected. This resulted in a total of 
515 subjects that were included to perform cross-sectional mor-
phometric analyses.

Deformation-based morphometry analyses

Deformation-based morphometry (DBM)47,48 analysis was per-
formed using Montreal Neurological Institute (MNI) MINC tools.49

The local deformations, obtained from the non-linear transforma-
tions mapping the MNI-ICBM152-2009c template to the subject’s 
MRI, encode the local tissue volume difference between the MNI 
average template and subject’s brain. The determinant of the 
Jacobian of the deformation field is measured at each voxel. 
Determinant values >1.0 indicate that the local volume in the sub-
ject is larger than the average template (e.g. ventricular or sulci en-
largement in the case of FTD). Determinant values <1.0 indicate 
that the local volume in the subject is smaller than the template. 
The latter is often interpreted as tissue atrophy, despite the use 
of only cross-sectional data. DBM was used to assess voxel-wise 
cross-sectional group-related volumetric differences. To obtain a 
voxel-wise map reflecting the patterns of difference between 
bvFTD and CNCs, the following mixed effects model was applied 
on a voxel-by-voxel basis, separately for each dataset:

DBM ≏ 1 + Dx + AGE + SEX + (1/SITE) (1) 

The mixed effects model included ‘age’ as a continuous fixed vari-
able and ‘diagnosis (Dx)’ and ‘sex’ as fixed categorical variables. 
‘Site’ was included as a categorical random variable. The variable 

of interest was ‘diagnosis’, reflecting the brain regions that were 
significantly different between bvFTD and CNCs, controlling for 
age and sex. Statistical t-maps were extracted from the model 
and used for the rest of the analyses throughout the manuscript. 
Finally, the t-statistics were multiplied by −1, such that higher posi-
tive values correspond to higher atrophy and negative values cor-
respond to volume expansion in patients.

Anatomical parcellation

Statistical t-maps obtained through DBM analysis and mixed ef-
fects models were parcellated into 219 and 1000 approximately 
equally sized cortical regions or parcels using the Cammoun atlas,50

a multiresolution extension of the anatomical Desikan–Killiany at-
las.51 We refer to 219 and 1000 parcellation resolutions as low and 
high parcellation resolutions, respectively. The parcel-wise 
t-statistics (i.e. atrophy) were estimated as the mean t-statistic of 
all the voxels that were assigned to that parcel according to the at-
las. We repeated all the analyses at both parcellation resolutions to 
ensure that results are replicable across multiple spatial scales.

Structural and functional network reconstruction

Connection patterns from healthy individuals are used to represent 
the architecture of brain networks for the distributed atrophy patterns 
that are observed in bvFTD patients. Structural and functional con-
nectivity data of 70 healthy individuals (mean age 28.8 ± 9.1 years) 
were obtained from a publicly available dataset.52 Details about data 
acquisition parameters and preprocessing analysis are available in 
Griffa et al.52 Briefly, the participants were scanned in a 3 T MRI scan-
ner (Trio, Siemens Medical) using a 32-channel head-coil. The session 
protocol included: (i) an MPRAGE sequence sensitive to white/grey 
matter contrast (1-mm in-plane resolution, 1.2-mm slice thickness); 
(ii) a diffusion spectrum imaging (DSI) sequence (128 diffusion- 
weighted volumes and a single b0 volume, maximum b-value 8000 s/ 
mm2, 2.2 × 2.2 × 3.0 mm voxel size); and (iii) a gradient echo echo- 
planar imaging sequence sensitive to blood–oxygen-level-dependent 
(BOLD) contrast (3.3-mm in-plane resolution and slice thickness 
with a 0.3-mm gap, TR 1920 ms, resulting in 280 images per partici-
pant). DSI data and deterministic streamline tractography were used 
to construct structural connectivity networks for each healthy 

Table 1 Demographic and clinical characteristics of the FTLDNI and GENFI2 samples

FTLDNI 
n = 193

GENFI2 
n = 322

CNCs 
n = 123

bvFTD 
n = 70

P-value CNCs 
n = 247

bvFTD 
n = 75

P-value

Total number of scans 326 156 409 119
Age mean (SD), years 63 ± 6 62 ± 6 0.36 48 ± 14 64 ± 8 <0.001
Males, n (%) 53(43%) 47(67%) 0.001 106(43%) 41(55%) 0.07
Education mean (SD), years 17.5 ± 1.9 15.6 ± 3.4 <0.001 13.9 ± 3.5 11.8 ± 4.03 <0.001
Estimated years of onset mean (SD), years — N/A — — 5.2 ± 5.7 —
Disease duration mean [min-max], years 5.1[3.5-8.2]
MMSE score mean (SD) 29.4 ± 0.8 23.6 ± 4.9 <0.001 29.4 ± 1.1 21.9 ± 7.2 <0.001
FTLD-CDR score mean (SD) 0.04 ± 0.2 6.3 ± 3.3 <0.001 0.21 ± 0.7 9.7 ± 1.4 <0.001
Genetic group, n (%)

C9orf72 — — — 39(52%)
MAPT — — — 17(22.7%)
GRN — — — 19(25.3%)

CNCs in the GENFI2 cohort correspond to non-carrier first degree relative of a family member with a documented genetic mutation related to FTD. Genetic groups listed for CNCs 
in the GENFI2 cohort refer to mutation present in the family of these non-carrier subjects. Values are expressed as mean ± SD, median [interquartile range]. Data available is 

specified for each clinical variable as n, whereas N/A indicates data not available from the original databases.
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individual. Each pair-wise structural connection was weighted by the 
log-transform of the fibre density. Individual structural connectivity 
networks were parcellated into the low and high parcellation resolu-
tions using the Cammoun atlas described before. Resting-state func-
tional MRI data collected in the same healthy individuals (with eyes 
open) were used to construct functional connectivity networks. The 
preprocessed resting-state functional MRI time series was also parcel-
lated using both the low and high resolution versions of the Cammoun 
atlas and were correlated to estimate functional connectivity between 
pairs of brain regions using Pearson correlation coefficients. Finally, a 
consensus group-average structural connectivity preserving the edge 
length distributions in individual networks53–55 was constructed and a 
group-average functional connectivity was estimated as the mean 
pairwise connectivity across individuals.

Network atrophy

Group-average structural and functional connectivity networks 
were used to estimate average atrophy values of neighbours of 
each brain region.56 Briefly, neighbours of a given brain region 
were defined as regions connected to it with a structural connection 
for both structurally- and functionally-defined neighbours. The 
structurally-connected neighbour atrophy value of each brain re-
gion was then estimated as the average weighted atrophy values 
of all the neighbours of that region:

Ai =
1
Ni

􏽘Ni

j=1

aj × SCij , j ≠ i (2) 

where Ai is the average neighbour atrophy value of brain region or 
node i, aj is atrophy of thej-th neighbour of node i, SCij is the strength 
of structural connection between nodes i and j, and Ni is the total 
number of neighbours that are connected to node i with a structural 
connection (i.e. node degree). Normalization by term Ni ensures 
that the estimated neighbour atrophy value is independent from 
the node degree. The neighbour atrophy estimation excludes self- 
connections (j ≠ i). The functionally-connected neighbour atrophy 
values were estimated using the same equation as above, with 
the exception that regional atrophy values were weighted by the 
strength of functional connections between nodes i and j (FCij):

Ai =
1
Ni

􏽘Ni

j=1

a j × FCij , j ≠ i (3) 

For both structurally- and functionally-defined neighbour atrophy 
estimates, neighbours were defined as nodes that were structurally 
connected to the node under consideration. Altogether, a single 
neighbour atrophy value was estimated for each region. We used 
Pearson correlation coefficients to assess the relationship between 
node atrophy and mean neighbour atrophy for structurally- and 
functionally-defined neighbours, separately (Fig. 2A).

Data-driven epicentre analysis

To identify potential disease epicentres, we hypothesized that an 
epicentre would be a node with high atrophy that is also connected 
to highly atrophied neighbours, compared with a high atrophy node 
with healthy neighbours or a healthy node with atrophied neigh-
bours. Using a data-driven approach,56,57 we first ranked the nodes 
based on their estimated regional atrophy values. We also ranked 
the nodes based on the average atrophy values of their neighbours 

in a separate list. We then calculated the average ranking of each 
node in the two lists and identified nodes that were highly ranked 
in both lists (i.e. nodes with both high local and neighbourhood 
average rankings) as the potential epicentres (Fig. 2B).

Agent-based spreading model

Simulation-based epicentre analysis

To investigate the trans-neuronal spread hypothesis, we simulated 
the spread of pathology on the left hemisphere of the low- 
resolution weighted consensus structural connectivity network 
(111 regions) using a Susceptible-Infected-Removed (SIR) agent- 
based model.34 Briefly, the model consists of simulating the mis-
folding of normal proteins in the cortex and their trans-neuronal 
spreading through the structural connections between brain re-
gions. The accumulation of pathology, which act as pathogenic 
agents, then leads to the atrophy of the afflicted regions. 
Importantly, this model incorporates synthesis and clearance 
rates, which can vary heterogeneously across brain regions. More 
details about the model’s main equations can be found in the 
Supplementary material. To explore the likelihood that a brain re-
gion acts as an epicentre of this spreading process, we first used 
baseline clearance and synthesis rates for all regions. We simulated 
the spread of pathology and the resulting atrophy using, one at a 
time, each individual brain region as the seed of the process. For 
each seed region, and at each time point, we then computed the 
Pearson correlation between the simulated and empirical patterns 
of atrophy.

Gene expression

To investigate the potential role of gene expression in shaping the 
modelled patterns of atrophy, we accessed the Allen Human Brain 
Atlas (AHBA; http://human.brain-map.org/),58 which provides re-
gional microarray expression data from six post-mortem brains 
(one female, ages 24–57 years, 42.5 ± 13.38 years). We generated vec-
tors storing gene expression scores for each of the 111 regional par-
cels of the left hemisphere. These vectors were then incorporated 
into the SIR model to regulate the synthesis and clearance rate of 
each region, such that a greater expression score entailed greater 
synthesis and clearance rates More specifically, our analyses fo-
cused on four vectors of gene expression associated with genes 
that have been linked previously to bvFTD, namely MAPT, GRN, 
C9orf72 and TARDBP. Given that subjects were selected based on 
their clinical phenotype (bvFTD) rather than on a specific patho-
logical subtype or genetic mutation, we explored the potential 
role of the expression of all four genes for both synthesis and clear-
ance. Our objective was to identify potentially new mechanistic 
processes underlying the spreading of atrophy, particularly in spor-
adic bvFTD, where we do not have adequate knowledge of the con-
tribution of genes related to the various proteinopathies. In 
complementary experiments, we also used the first principal com-
ponent of the full ‘genes × brain regions’ matrix of gene expression. 
This component captures the principal axis of transcriptional vari-
ation across the human cortex.59

The AHBA data were preprocessed and mapped to the parcel-
lated brain regions using the abagen toolbox (https://github.com/ 
rmarkello/abagen).60 During pre-processing, we first updated the 
MNI coordinates of tissue samples to those generated via non- 
linear alignment to the ICBM152 template anatomy (https:// 
github.com/chrisgorgo/alleninf). We also reannotated the micro-
array probe information for all genes using data provided by 
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Arnatkevic̆iūtė and colleagues.61 We then filtered the probes by 
only retaining those that have a proportion of signal to noise ratio 
greater than 0.5. When multiple probes indexed the expression of 
the same gene, we selected the one with the most consistent pat-
tern of regional variation across donors. Samples were then as-
signed to individual regions in the Cammoun atlas. If a sample 
was not found directly within a parcel, the nearest sample, up to 
a 2 mm-distance, was selected. If no samples were found within 
2 mm of the parcel, we used the sample closest to the centroid of 
the empty parcel across all donors. To reduce the potential for mis-
assignment, sample-to-region matching was constrained by hemi-
sphere and gross structural divisions (i.e. cortex, subcortex/ 
brainstem, and cerebellum, such that e.g. a sample in the left cortex 
could only be assigned to an atlas parcel in the left cortex). All tissue 
samples not assigned to a brain region in the provided atlas were 
discarded. Tissue sample expression scores were then normalized 
across genes using a scaled robust sigmoid function62 and were re-
scaled to a unit interval. Expression scores were also normalized 
across tissue samples using the same procedure. We then aggre-
gated the microarray samples belonging to the same regions by 
computing the mean expression across samples for individual par-
cels for each donor. Regional expression profiles were finally aver-
aged across donors.

Null models

To assess the statistical significance of the node-neighbour rela-
tionships and the epicentre analysis, we used a spatial autocorrel-
ation preserving null model (i.e. ‘spin tests’63,64). We first used the 
Connectome Mapper toolkit65 (https://github.com/LTS5/cmp) to 
generate a surface-based representation of the Cammoun atlas 
(both low and high resolution) on the Freesurfer fsaverage surface. 
We then defined the spatial coordinates of each parcel by selecting 
the vertex on the spherical projection of the generated fsaverage 
surface that was closest to the centre of mass of the parcel.56,57

Finally, we used the resulting parcel spatial coordinates to generate 
null models of brain maps (e.g. atrophy maps, epicentre rankings) 
by randomly rotating the maps and reassigning node values with 
the values of closest parcels. The rotations were first applied to 
one hemisphere and the mirrored rotations were used for the other 
hemisphere. This procedure was repeated 10 000 times to generate 
a null distribution of brain maps with preserved spatial 
autocorrelation.

To ensure the specificity of our transcriptomic results, we relied 
on a second spatial autocorrelation-preserving null model. This 
model was proposed by Burt and colleagues66 and can be imple-
mented using the brainSMASH python toolbox (https://github. 
com/murraylab/brainsmash). First, the empirical brain map is ran-
domly permuted. Then, this permuted brain map is spatially 
smoothed and re-scaled to re-introduce the spatial autocorrelation 
(SA) of the empirical brain map. The smoothing process is achieved 
via the following transformation:

y = |b|1/2x + |a|1/2z (4) 

where y is the surrogate map, x is the permuted data and z is a vec-
tor of random gaussian noise. The α and β parameters are estimated 
via a least-square optimization between variograms of the original 
and permuted data. By maximizing the fit between the variograms 
of the original and permuted data, we ensure that the SA of the sur-
rogate map matches the SA of the empirical map.

To ensure that the observed correlation between the empirical 
and simulated atrophy map from the agent-based model is ex-
plained by the topological organization of the structural connection 
between brain regions and not solely by the spatial embedding of 
brain regions, we generated surrogate networks that preserve the 
geometry of the structural connectome. The edges of the consensus 
network were first binned according to inter-regional Euclidean 
distance. Within each length bin, pairs of edges were then selected 
at random and swapped.67 This procedure was repeated 500 times, 
generating a population of rewired structural networks that pre-
serve the degree sequence of the original network and that approxi-
mately preserve the edge length distribution (i.e. wiring cost) of the 
empirical network.

Data availability

Data used in this study are part of FTLDNI and GENFI databases and 
de-identified data can be accessed upon request at http://4rtni- 
ftldni.ini.usc.edu/ and http://genfi.org.uk/, respectively, after agree-
ing to their corresponding data terms.

Results
Demographics

Table 1 compares demographic and clinical variables between 
bvFTD and CNCs across the two research databases. Subjects 
with bvFTD were on average older than CNCs in the GENFI2 cohort 
but not in FTLDNI. As expected, significantly lower average MMSE 
and higher FTLD-CDR scores were observed in symptomatic sub-
jects compared with healthy controls.

Distribution of atrophy and resting state networks 
and cytoarchitectonic classes

We used a linear mixed effects model to obtain a group-level, 
bvFTD-related atrophy map, controlling for age, sex and acquisition 
site. The voxel-level and parcellated atrophy maps are depicted in 
Supplementary Fig. 1A and B. To assess whether distributed atro-
phy patterns are more pronounced in specific brain systems, we 
used two brain system definitions (Fig. 1): (i) intrinsic functional 
networks defined by Yeo and colleagues68; and (ii) a cytoarchitec-
tonic classification of human cortex based on the classic von 
Economo atlas.69–72 Nodes were first stratified according to their 
network assignments based on the Yeo networks and von 
Economo classes. We then calculated the mean atrophy values 
for each intrinsic network (Fig. 1, left) and cytoarchitectonic class 
(Fig. 1, right) for the FTLDNI (Fig. 1A) and GENFI (Fig. 1B) datasets, 
separately. To assess the statistical significance of network atrophy 
values, we compared the empirical values to a distribution of 
means calculated from a set of spatial autocorrelation-preserving 
null models (i.e. ‘spin tests’63,64; see the ‘Materials and methods’ 
section for more details on the null model). Specifically, network la-
bels were randomly rotated while preserving the spatial autocorrel-
ation and the mean network atrophy values were calculated for 
each rotation (10 000 repetitions; two-tailed test).

The observed mean network atrophy and the corresponding 
null distribution of means are depicted for each intrinsic network 
and cytoarchitectonic class in Fig. 1. The anatomical distributions 
of intrinsic networks and cytoarchitectonic classes are depicted in 
Fig. 1 (bottom row). Note the difference in the definition of ‘limbic’ 
system between the intrinsic networks and cytoarchitectonic 
classes. The intrinsic limbic network mainly consists of the 
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temporal poles and orbitofrontal cortex, whereas the cytoarchi-
tectonic limbic class mainly includes the cingulum. In terms of in-
trinsic networks, limbic and default mode intrinsic networks were 
the most affected (i.e. higher than expected atrophy) with relative 
preservation of somatomotor and visual intrinsic networks (i.e. 
lower than expected atrophy). In terms of cytoarchitectonic 

classes, the insular and association cytoarchitectonic classes dis-
played greater atrophy compared to nulls, with lower atrophy in 
primary sensory cytoarchitectonic classes. While there are mar-
ginal variations in statistical significance of the findings, the over-
all trend of network atrophy patterns is consistent across the two 
datasets.

Figure 1 Atrophy patterns in intrinsic networks and cytoarchitectonic classes. Mean network atrophy (i.e. t-value) was calculated for Yeo 
intrinsic functional networks68 (left) and von Economo cytoarchitectonic classes69–72 (right). Higher t-values correspond to greater atrophy. The 
observed mean atrophy values are shown by filled circles for each intrinsic network and cytoarchitectonic class. Network labels are then randomly 
permuted using 10 000 rotations from spin tests, preserving the spatial autocorrelation in the data. The null distributions of means from spin tests 
are depicted using box plots for intrinsic networks and cytoarchitectonic classes for both (A) FTLDNI and (B) GENFI datasets (10 000 repetitions; 
two-tailed test). The bottom row displays the location of intrinsic networks (left) and cytoarchitectonic classes (right) on the cortex. List of Yeo networks: 
visual (vis), somatomotor (sm), dorsal attention (da), ventral attention (va), limbic (lim), frontoparietal (fp), default mode (dmn). List of von Economo 
classes: primary sensory cortex (ps), primary motor cortex (pm), primary/secondary sensory cortex (pss), limbic (lb), insular cortex (ic), association 
cortex (ac, ac2).

D
ow

nloaded from
 https://academ

ic.oup.com
/brain/article/146/1/321/6533638 by guest on 18 January 2023



328 | BRAIN 2023: 146; 321–336                                                                                                                                   G. Shafiei et al.

Relationship between atrophy maps and 
connectivity

We next investigated whether atrophy patterns in bvFTD are condi-

tioned by network organization, such that connected regions dis-

play similar atrophy patterns. Specifically, we assessed whether 

the connectivity profile of a node can predict the atrophy of its 

neighbours by investigating the relationship between node and 

neighbour atrophy values (Fig. 2A). Structural and functional con-

nectivity (SC and FC) networks (Supplementary Fig. 1C), derived 

from an independent sample of 70 healthy participants,52 were 

used to estimate mean neighbour atrophy value for each region. 

The relationship between node and neighbour atrophy was then 

examined by correlating the mean neighbour atrophy with nodal 

atrophy (Fig. 2C and D). Regional atrophy was significantly corre-

lated with the mean atrophy of its connected neighbours in both 

datasets. Fig. 2C (left panel) shows the results for FTLDNI dataset 

(high resolution parcellation: r = 0.69, Pspin = 0.0001 and r = 0.65, 
Pspin = 0.0001, for SC- and FC-defined neighbours, respectively) 
and Fig. 2D (left panel) shows the results for GENFI dataset (high 
resolution parcellation: r = 0.61, Pspin = 0.001 and r = 0.54, Pspin = 
0.0006, for SC- and FC-defined neighbours, respectively). These cor-
relations are significantly greater when considering connected ver-
sus not-connected neighbours, across datasets and resolutions 
(Supplementary Table 1).

To assess whether the relationship between node and neigh-
bour atrophy is specifically driven by network topology rather 
than spatial autocorrelation, we used a spatial autcorrelation- 
preserving null model to construct a null distribution of node- 
neighbour correlations.63 Fig. 2C and D (middle panel) display the 
observed correlation between node and neighbour atrophy along 
with the corresponding null distribution of correlations for both da-
tasets. We also repeated all analyses at a lower parcellation reso-
lution to ensure that the findings are robust to how network 

Figure 2 Network-dependent atrophy. (A) Atrophy of a node, estimated by t-values, was correlated with the mean atrophy of its connected neighbours 
to examine whether the distributed atrophy patterns in bvFTD reflect the underlying network organization. (B) If atrophy of a node is related to the 
atrophy of its connected neighbours (A), a node with high atrophy whose neighbours are also highly atrophied would be more likely to be a potential 
disease epicentre, compared with a high atrophy node with healthy neighbours. To quantify the epicentre likelihood across the cortex, the nodes were 
first ranked based on their atrophy values and their neighbours’ atrophy values. Epicentre likelihood ranking of each node was then defined as its mean 
ranking in the two lists. (C and D) Left: Node atrophy value was correlated with the mean atrophy value of its structurally- and functionally-weighted 
neighbours (SC and FC) for FTLDNI (C) and GENFI (D) datasets. Scatter plots show the correlation for high parcellation resolution. Middle: The observed 
correlation values (depicted by filled circles) were compared to a set of correlations obtained from 10 000 spin tests (depicted by box plots). Asterisks 
denote statistical significance (Pspin < 0.05, two-tailed). The association between node and neighbour atrophy was consistent across resolutions and 
significantly greater in empirical networks compared to null networks in both datasets. Right: Epicentre likelihood rankings are depicted across the 
cortex. The most likely epicentres with high significant rankings are regions that are mainly located at the bilateral anterior insular cortex and tem-
poral lobes (10 000 spin tests).
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nodes are defined. The relationship between node and neighbour 
atrophy was consistent across resolutions and significantly greater 
in empirical networks compared to null networks in both datasets 
(Fig. 2C and D; Pspin < 0.05, two-tailed tests). The results were con-
sistent when the binarized structural connectivity network was 
used to defined SC-defined neighbours (Supplementary Fig. 2).

Data-driven epicentres analysis

Given that the distribution of atrophy patterns reflects structural 
and functional network organization, we next investigated 
whether there are brain regions that may act as potential epicen-
tres for bvFTD. We define an epicentre as a high atrophy node 
that is connected to high atrophy neighbours (Fig. 2B). Nodes 
were ranked based on their atrophy and their neighbours’ mean at-
rophy values. Epicentre likelihood ranking was then estimated as 
the mean node ranking across the two lists. Fig. 2C and D (right) 
show the epicentre likelihood rankings on the cortex for FTLDNI 
(Fig. 2C) and GENFI (Fig. 2D) datasets, where the highly ranked re-
gions are associated with insular cortex, ventromedial cortex and 
antero-medial temporal areas. Empirical epicentre likelihood rank-
ings were then compared with rankings estimated from spatial 
autocorrelation-preserving null models (10 000 spin tests63). 
Several regions were identified as potential epicentres including 
the anterior insular cortex bilaterally, but also areas in the anter-
ior temporal poles, in addition to ventromedial and dorsomedial 
areas. The results were consistent when binarized structural con-
nectivity network was used to define SC-defined neighbours 
(Supplementary Fig. 2).

Dynamic spreading model

Next, we used an SIR model to explore how the brain’s structural 
connectivity shapes the progressive spread of FTLD changes. This 
model has previously been used to study Parkinson’s 
disease-related atrophy34 and works by simulating the misfolding 
of normal proteins in the cortex and their trans-neuronal spread 
through the structural connections between brain regions. The ac-
cumulation of pathology, acting as pathogenic agents, leads to the 
atrophy of the afflicted regions (Fig. 3A). Epicentres are defined as 
those regions in which misfolded proteins are introduced. We 
tested which is the most likely epicentre for the observed empirical 
patterns of atrophy by running the model and initiating the spread 
in each region. As the misfolded agents spread through the net-
work, we measured the Pearson correlation between the simulated 
and empirical (FTLDNI) patterns of atrophy (Fig. 3B, left). We then 
define a region’s rmax as the largest correlation value observed 
across all values of t when it is used as the epicentre of the spread-
ing process. Regions that have large rmax scores are the most likely 
epicentres. The three nodes with the largest rmax are located in the 
insular, superior-frontal and lateral orbito-frontal cortex. For these 
three potential epicentres, the rmax is greater when considering 
directly-connected neighbours than when considering non- 
connected nodes (Supplementary Fig. 3).

An important factor that can influence the probability that a 
brain region is identified as the epicentre of an atrophy pattern is 
its spatial location in the brain. To isolate the role of structural con-
nectivity, we compared these rmax scores to those obtained by 
simulating the spread of pathology in rewired networks that pre-
serve the density, degree sequence and wiring cost of the empirical 
structural network (Fig. 3B, right). We found that the fit obtained by 
initiating the spread in the insular region of the empirical network 

was significantly larger than the fit obtained in the rewired net-
works (r = 0.601, P < 0.002). We also found that it was larger than 
the fit obtained by replacing the structural connectivity matrix in 
our model with matrices of either Euclidean or geometric distances 
between nodes (Supplementary Fig. 4A). In other words, the fit ob-
served by seeding the insula was significantly larger than what 
would have been expected from its degree and spatial position 
alone and can be attributed to its embedding in the global topology 
of the network. This result suggested that the topology of the struc-
tural connectome plays a significant role in shaping patterns of si-
mulated atrophy that have a high correspondence with the 
empirical atrophy.

More generally, by looking at the topographic distribution of 
rmax scores, we found that the brain regions that showed the largest 
fits were located in the insular, medial prefrontal and anterior tem-
poral cortices (Fig. 3C). These results were in accordance with our 
finding that these regions have large epicentre likelihood rankings. 
Fig. 3D shows the empirical pattern of atrophy for the FTLDNI data-
set. This pattern is compared to the simulated pattern of atrophy 
producing the maximal fit. This largest fit was obtained by seeding 
the insula and was measured at t = 4410. We found a significant re-
lationship between the two distributions (r = 0.60, P = 0.0013). 
Results are presented for the FTLDNI dataset, but similar results 
were found in the GENFI dataset (Supplementary Fig. 5). Up to 
this point, we focused on group effects because deformation-based 
morphometry is a technique mainly intended to detect population- 
level differences in brain structure. To better understand patient 
heterogeneity, we considered genetic subtypes in GENFI. We strati-
fied the GENFI cohort into C9orf72, GRN and MAPT mutation carriers 
and repeated the main analyses separately for each genetic group. 
Supplementary Fig. 6A–C shows the three main findings for each 
genetic group separately. We found a significant network spreading 
effect in each group. In addition, both the data-driven and 
simulation-based analysis identified frontal, temporal and insular 
epicentres in C9orf72 and MAPT carriers, with more pronounced in-
volvement of the antero-medial temporal poles in MAPT as well as 
frontal and lateral parietal regions in GRN carriers, consistent with 
previous research.7

Contribution of gene expression to network 
spreading

Given the contribution of genetic variants to bvFTD,73 we next as-
sessed whether the incorporation of gene expression information 
into the SIR model can enhance the fits. We used regional micro-
array expression data from the AHBA58 to generate vectors of 
gene expression for four genes that have been previously asso-
ciated with bvFTD: MAPT, GRN, C9orf72 and TARDBP.4 Figure 4A
shows their topographic distributions. We used this genetic infor-
mation to set regional heterogeneity for the clearance and synthe-
sis of proteins in the model. We used the insula as the seed region of 
the spreading process as it is the region that showed the largest fit 
to the empirical data.

For both the FTLDNI (Fig. 4B) and GENFI (Fig. 4C) datasets, we 
measured the rmax scores obtained by incorporating regional ex-
pression for each of the four genes. With MAPT, GRN, C9orf72 and 
TARDBP, we obtained correlation scores of rmax = 0.42, rmax = 0.44, 
rmax = 0.61 and rmax = 0.71 for the FTLDNI dataset and rmax = 0.28, 
rmax = 0.30, rmax = 0.58 and rmax = 0.68 for the GENFI dataset. We 
found that adding regional heterogeneity for synthesis and clear-
ance using expression of C9orf72 and TARDBP increased model fit, 
while the incorporation of information regarding the regional 
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expression of GRN and MAPT decreased model fit. To investigate the 
significance of the findings, we spun the vectors of gene expression 
10 000 times to generate spatially auto-correlated null distributions 
of rmax scores that we compared to the empirical results. We found 
that the scores obtained with C9orf72 and TARDBP were significant-
ly larger than those obtained with permuted gene expression vec-
tors (P = 0.014 and P < 0.0001, respectively, for the FTLDNI dataset, 
and P < 0.0001, for both genes, for the GENFI dataset). The scores 
obtained with C9orf72 and TARDBP were also significantly larger 
than those obtained with spatially auto-correlated distributions 
of gene expression generated using a variogram-based method 

(Supplementary Fig. 7). These results suggested that C9orf72 and 
TARDBP may play a significant role in driving the spatial patterning 
of the empirical atrophy.

To investigate the relationship between gene expression and 
the brain’s structural connectivity, we compared the fits to those 
obtained using rewired networks preserving the wiring-cost of 
the empirical network. For C9orf72, we found that the fits obtained 
using the empirical networks were significantly larger than the fits 
obtained using rewired null networks for both FTLDNI (P < 0.002) 
and GENFI (P < 0.002). The fits obtained with the empirical connec-
tome were also greater than the fits obtained by replacing the 

Figure 3 Agent-based modelling. (A) The SIR model simulates the spread of pathology in the brain. Proteins propagate via the structural connections 
between brain regions and induce atrophy, both pre- and post-synaptically. (B) Left: The spreading process was initiated in every brain region and the 
correlation between the simulated and empirical patterns of atrophy was computed. The three largest correlations were obtained by seeding regions of 
the insula (rmax = 0.601), the superior-frontal cortex (rmax = 0.473) and lateral orbito-frontal cortex (rmax = 0.471). Right: To control for the potential effect 
of a brain region’s spatial embedding, rmax values were compared to rmax correlations obtained using rewired networks that preserve the wiring-cost of 
the empirical structural network. Asterisks denote statistical significance (P < 0.05, two-tailed). The rmax computed by seeding the insula of the empir-
ical network (rmax = 0.60) was significantly larger than the rmax computed by seeding the insula of the rewired networks (P < 0.002). (C) The largest fit 
(rmax) obtained by seeding each brain region is shown on the surface of the brain. Larger values of rmax were generally obtained by seeding insular 
and prefrontal regions. (D) Left: Empirical pattern of atrophy (FTLDNI). Middle: Simulated pattern of atrophy producing the maximal fit. This pattern 
of atrophy was obtained with the insula as the seed, and at t = 4410 (see the arrow in B). Right: Scatter plot of the relationship between standardized 
empirical and simulated patterns of atrophy (r = 0.60, P = 0.0013).
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structural connectivity matrix in the SIR model with matrices 
of either Euclidean or geometric distances between nodes 
(Supplementary Fig. 4B). For TARDBP, we found that the fits ob-
tained using the empirical networks were significantly larger than 
the fits obtained using rewired nulls for FTLDNI (P = 0.014) but not 
for GENFI (P = 0.508). Similarly, the fits obtained with the empirical 
connectome were greater than the fits obtained by replacing it with 
matrices of Euclidean or geometric distances between nodes for the 
FTLDNI dataset but not the GENFI dataset (Supplementary Fig. 4B). 
Altogether, these results demonstrated that the topology of the 
structural connectome has a positive influence on the increase in 
model fit observed when incorporating either TARDBP or C9orf72 
into the SIR model, more so than would the spatial distances be-
tween nodes. For TARDBP, this influence was observed when trying 
to fit our model to patterns of atrophy associated to both sporadic 
and genetic bvFTD, while for C9orf72, this influence was only ob-
served when trying to fit our models to patterns of atrophy asso-
ciated to sporadic bvFTD. In other words, our investigations 
suggested that C9orf72 and TARDBP expression can influence patho-
genic spreading processes unfolding on the structural connectome. 
Interestingly, both TARDBP (r = 0.83) and C9orf72 (r = 0.61) are strongly 
correlated to the principal axis of transcriptional variation across the 
human cortex (gene PC159), which also enhances the fit of the SIR 

model when used to incorporate regional heterogeneity 
(Supplementary Fig. 8). However, contrary to TARDBP and C9orf72, 
this increased fit was not significantly larger than the fits obtained 
using rewired networks. It therefore suggested that the fit obtained 
with gene PC1 was largely due to its spatial distribution on the cor-
tical surface and not necessarily to its influence on pathogenic 
spreading processes unfolding on the structural connectome. For 
completeness, we also repeated these analyses in the three genetic 
subgroups of GENFI. Supplementary Fig. 6D shows that the results 
are consistent across subgroups, with TARDBP and C9orf72 being 
the two gene distributions that give the largest model fits.

Discussion
The present report provides a comprehensive and statistically robust 
model supporting the theory of network-based atrophy in bvFTD, 
both in sporadic and genetic forms. Our findings are consistent 
across two datasets and the genetic/sporadic heterogeneity. 
Namely, for both sporadic and genetic variants, there is a strong cor-
relation between node deformation and the mean of neighbour de-
formation defined by both structural and functional connectivity, 
supporting the theory that atrophy progresses through network- 
based connections. Similar findings were observed at small (219) 

Figure 4 Contribution of gene expression. (A) Vectors of regional gene expression were generated for four genes that have been associated with bvFTD: 
TARDBP, C9orf72, GRN and MAPT. These vectors of gene expression were incorporated into the SIR model. The correlations between empirical atrophy 
and simulated atrophy, with the insula selected as the seed of the simulated spreading process, were then computed for the FTLDNI dataset (B) and for 
the GENFI dataset (C). The maximal correlation scores (rmax) obtained for each gene were compared to the maximal correlation scores (rmax) obtained 
with spun distributions of gene expression vectors (left box plots). Asterisks denote statistical significance (P < 0.05, two-tailed). For both datasets, we 
find that the rmax scores obtained by incorporating information about the expression of C9orf72 and TARDBP were significantly larger than those ob-
tained with permuted gene expression vectors. The maximal correlations were also compared to the maximal correlation scores obtained in distance- 
preserving rewired networks (right box plots).
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and large (1000) cortical parcellation resolutions. Data-driven epi-
centre mapping identified the bilateral anterior insular cortex as 
well as ventromedial cortex and antero-temporal areas as potential 
epicentres. The involvement of the antero-medial areas as epicen-
tres ties into previous research showing that data-driven atrophy 
subtypes include a ‘semantic appraisal network’ predominant 
group.13,74 The genetic bvFTD cohort showed a very similar profile 
of most likely epicentres, with the addition of some dorsal frontal 
areas. The role of these regions as epicentres was further supported 
by the agent-based spreading model.

The localization of cortical atrophy was most significant in the lim-
bic resting state network and less present in the visuospatial network 
(expectedly given its posterior localization). There was significant at-
rophy in the default mode network (DMN) in genetic FTD, with a posi-
tive trend in sporadic FTD. Of note, the salience network, which has 
been previously identified as being predominantly involved in 
bvFTD,10,11 did not show statistically significant atrophy. However, 
when looking at von Economo cytoarchitectonic classes, the insular 
cortex was the most affected, with relative sparing of the primary sen-
sory neurons. This suggested that the insular cortex plays a central 
role in the disease, but not necessarily by spreading through the entire 
ventral attention network including its most posterior regions. In add-
ition, while there have been some reports of opposite connectivity pat-
tern of changes in the salience versus the DMN in bvFTD and 
Alzheimer’s disease,10 our results rather suggested that there is sig-
nificant involvement of DMN regions in bvFTD.

Finally, although exploratory, using a simulation-based ap-
proach and gene expression profile data from the AHBA, we identi-
fied that the C9orf72 and TARDPB gene expression could play a role 
in the propagation of atrophy in sporadic bvFTD. Indeed, factoring 
an impact on clearance and synthesis of both genes related to 
TDP-43 improved the fit between the spreading models and the ac-
tual atrophy maps based on DBM. While we cannot exclude that 
some subjects in the FTLDNI had an unidentified C9orf72 mutation, 
the involvement of TARDPB is of interest given that mutations in 
this gene constitute only a very small fraction of genetic FTD. 
Results suggested that the activity of this gene could play a role in 
sporadic bvFTD, which could be of interest for future therapeutic 
avenues. Interestingly, we found that the atrophy in each of the 
three genetic groups in GENFI (C9orf72, GRN, MAPT) displayed a sig-
nificant network spreading effect and overall has a similar depend-
ence on local gene expression, but different network epicentres. 
Consistent with previous studies,7 C9orf72 and MAPT were marked 
by prominent epicentres in frontal, temporal and insular cortices 
that resemble sporadic cases, with more pronounced antero- 
medial temporal involvement in MAPT. GRN-related atrophy was 
marked by greater epicentre likelihood in more dorsal frontal areas 
and lateral parietal cortex. How population-level genetic variation 
shapes the molecular and network cascades that lead to atrophy re-
mains an exciting question for future research.

It is important to note that these findings are mainly correlational 
and do not prove causal influence of network structure on atrophy. 
Specifically, it is not possible to determine whether connectivity 
drives the progression of grey matter atrophy or that connectome 
architecture itself is compromised in patients as a result of 
white-matter lesions reported in bvFTD, estimated by white matter 
hyperintensities.75–78 We used structural and functional networks re-
constructed from a sample of young healthy participants as the under-
lying architecture that supports pathogen transmission. However, 
extensive changes in network architecture may reroute or restrict 
the spread of pathology. It is also possible that white matter changes 

disrupt normal transneuronal transport of trophic factors, resulting 
in atrophy among connected regions without involvement of any 
pathogens or misfolded proteins. These additional factors could 
be further investigated in more complex models using simultan-
eous measures of regional atrophy and changes in white matter 
architecture and structural and functional networks in a longitu-
dinal sample of FTD patients. Specifically, a highly sampled, multi-
modal longitudinal dataset with simultaneous measurements of 
regional pathology, white-matter lesions, gene expression, metab-
olism, CSF biomarkers, vascular and neuroimaging factors in 
bvFTD would allow precise multifactorial modelling of the disease, 
improving individualized diagnosis, therapeutic interventions and 
prognosis in bvFTD patients.79,80

How could these results apply to individual patients? Because 
deformation-based morphometry is a technique intended to de-
tect population-level differences in brain structure, we focused 
on group effects. Our findings provide a neurobiological explan-
ation as to why patients with such different genetic and patho-
logical variations can present with similar clinical syndromes in 
practice (i.e. because the disease propagation is constrained by 
the network architecture). Given the multifactorial nature of the 
disease and considerable inter-individual variability, it is neces-
sary to tailor therapeutic interventions to individual patient 
needs. The central clinical promise of these network models is 
that they may effectively summarize the complex multimodal 
measurements available, yielding a small number of clinically 
relevant features. These features may then allow identification 
of at-risk pre-symptomatic individuals, candidates for enroll-
ment in clinical trials and targets or outcome measures for novel 
disease modifying therapies.

Altogether, our results build on previous literature that patterns 
of neurodegeneration reflect network architecture.14–18 Consistent 
with reports in other neurodegenerative diseases, we demonstrate 
that atrophy patterns in bvFTD are associated with global 
connectome architecture and local transcriptomic vulnerabil-
ity.9,11,19–26,37 The present findings were replicated in two separate 
samples of genetic and sporadic bvFTD and were validated using 
a range of methodological choices. We also confirmed that the find-
ings are independent from potential confounding factors such as 
spatial distance and parcellation resolution. However, there are 
several methodological considerations that need to be taken into 
account when interpreting the findings.

First, there are currently no available molecular techniques to 
directly measure FTLD changes in vivo. To overcome this 
limitation, we opted to use DBM to estimate atrophy in bvFTD pa-
tients, since it is a robust method to capture local changes in brain 
tissue volume. Given that in vivo PET tracers of TDP-43 and tau PET 
tracers are not currently reliable in FTLD, using post-mortem as-
sessments of pathology such as immunohistochemistry of phos-
phorylated TDP-4381 would provide a more direct measure of 
FTD-related pathology.82–84

Second, we identified potential disease epicentres using cross sec-
tional data and undirected networks, precluding reconstruction of the 
temporal sequence of pathology. In particular, the epicentre model 
cannot assess the cascade of pathology, including molecular, metabol-
ic, vascular and functional changes, that may begin before grey matter 
atrophy and start years before emergence of the clinical syndromes 
and disease diagnosis.85 Modelling disease progression and spread 
of atrophy across brain networks over time remains an exciting 
open question that could eventually be addressed by increased longi-
tudinal sampling in large FTD datasets (including GENFI and 
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ALLFTD86,87) that include multimodal data from presymptomatic gen-
etic carriers to symptomatic patients at later stages of diseases.

Third, DSI and streamline tractography were used to estimate 
structural connectivity networks. Although recent technological and 
analytical developments provide powerful methods to reconstruct 
white matter fibers in vivo, with biologically interpretable weights 
and good correspondence with histology, they may still yield false po-
sitives and negatives.88–96 Fourth, the two multi-site datasets included 
in this study have different demographics that could potentially influ-
ence the results. Although the morphometric procedure controls for 
site, age and sex, and the results are consistent across the two data-
sets, our findings should be interpreted in light of these potential con-
founding variables.97,98

Conclusion
Altogether, structural and functional connectivity networks and 
rigorous statistical analyses that account for spatial autocorrel-
ation and network embedding were used in the present study to 
demonstrate that bvFTD-related neurodegeneration is conditioned 
by connectome architecture, accounting for 30–40% of variance in 
atrophy as well as local transcriptomic vulnerability. FTD-related 
atrophy appears to target particular regions associated with the an-
terior insular cortex, but it is likely that there are multiple potential 
epicentres leading to bvFTD clinical phenotypes. The similarity be-
tween genetic and sporadic forms of bvFTD suggests that multiple 
pathological changes are constrained by the network architecture 
in the spread of atrophy, explaining why many different patho-
logical and genetic entities lead to the same clinical syndrome. 
Although exploratory, our results suggest that TARDPB gene ex-
pression could have a significant contribution to disease progres-
sion, particularly in sporadic bvFTD.
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