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ABSTRACT

Few-shot object detection (FSOD) has more attention in recent years as the quantitative

limitation of instances during the model training. Previous works based on meta-learn-

ing and transfer learning focus on the detection precision but ignore the inferring speed,

which is difficult to apply in amounts of applications. In this letter, to keep a high infer-

ring speed and a comparable detection precision, we propose a real-time detector entitled

Bi-path Combination You Only Look Once (BC-YOLO) for FSOD. BC-YOLO can be

categorized as a transfer learning based one-stage object detector with a two-phase train-

ing scheme. It is particularly composed of bi-path parallel detection branches which

detect base and novel class objects respectively and commonly detect objects with a dis-

criminator in the inferring stage. Moreover, to elevate the model generalization trained

from few-shot objects, we further propose an Attentive DropBlock algorithm to make the

detector focus on the entire details of objects instead of the local discriminative regions.

Extensive experiments on PASCAL VOC 2007 and MS COCO 2014 datasets demon-

strate that our method can achieve a better tradeoff between speed and precision than

state-of-the-art methods.

1. Introduction

Object detection is one of the most important tasks in com-

puter vision. There are many detectors proposed based on con-

volutional neural network (CNN) [1, 2, 3, 4, 5] or vision Trans-

former [6, 7, 8, 9, 10] with high detection performance. How-

ever, the community of these models is that the performance is

achieved at the cost of massive data. When the number of data

is limited, the detection precision will drop rapidly as the com-

plexities of objects and the enormousness of model parameters.

Therefore, few-shot object detection (FSOD) is received more

attention in recent years.
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To better adapt the quantitative limitation of instances, there

are currently few-shot object detectors based on two types of

mainstream thinking, i.e., meta-learning and transfer learning.

For the meta-learning based methods [11, 12, 13, 14, 15], the

aim is to build the feature relevance between the query image

and the few support samples. Although the detection perfor-

mance gets improved, the computational complexity also in-

creases severely as the feature extractor in the few-shot branch,

the relation builder between input features and few support fea-

tures, and the number of object categories. For the transfer

learning based approaches [16, 17, 18, 19], the goal is to make

the detector that has already possessed the ability of feature rep-

resentation adapt in few-shot objects well. However, to elevate

the detection precision, most methods focus on the two-stage

detectors such as Faster-RCNN [3] or Mask-RCNN [4], which

is cumbersome during the inferring stage as the input images

should be large and the proposals should be generated in Re-

gion Proposal Network (RPN).
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In this letter, to achieve a fast inferring speed for FSOD

with a comparable detection precision, we propose a real-time

detector called Bi-path Combination You Only Look Once

(BC-YOLO). BC-YOLO is a transfer learning based model

which consists of backbone, detection neck, and bi-path par-

allel branches in detection heads to concentrate on base and

novel class objects, respectively. During the inferring stage, two

branches will commonly detect objects and output the bound-

ing boxes after going through a discriminator. In addition, to

circumvent the model overfitting and enhance the generaliza-

tion trained from few-shot objects. We hence propose an At-

tentive DropBlock algorithm to guide the model to focus on the

entire object semantic features by masking the local discrimi-

native regions with higher probability. To our best knowledge,

we are the first to focus on real-time FSOD and achieve a better

tradeoff between speed and precision at the same time.

Our contributions can be summarized as three-folds:

• We propose a real-time detector called BC-YOLO based

on transfer learning with a two-phase training scheme to

elevate the detection efficiency for FSOD. It owns two par-

allel detection branches for the sake of detecting base and

novel class objects and commonly detecting objects with a

discriminator in the inferring stage.

• We propose an Attentive DropBlock algorithm to decrease

the influence of local discriminative regions and guide the

model to concentrate on the entire object semantic features

during the few-shot tuning to increase the model general-

ization.

• We carry out experiments on PASCAL VOC 2007 [20]

and MS COCO 2014 [21] datasets to demonstrate the ef-

fectiveness of our method. Extensive experimental results

indicate that our proposed detector can achieve a better

tradeoff between speed and precision than state-of-the-art

methods.

2. Related works

2.1. Few-shot Learning

To precisely classify unseen categories with limited quan-

tities. Two mainstreams can be concluded as metric learning

based [22, 23, 24] and meta-learning based approaches [25, 26].

Metric learning focuses on building strong feature embeddings

to close and enlarge feature vectors with the same and differ-

ent classes, respectively. There are various metric loss func-

tions used to distinguish feature vectors such as cosine loss [22]

and triplet loss [26]. Meta-learning endows the meta-model

a strong knowledge representation and can make the model

quickly adapt into few-shot samples [25, 26].

2.2. Few-shot Object Detection

Motivated from the effectiveness in image classification by

meta-learning based approaches. Some meta-detectors are pro-

posed and achieve good detection performance [11, 12, 13, 14,

15]. For example, FSRW [11] is proposed to extract a few

sample features and reweight to query features in channel di-

mension. Meta-RCNN [13] follows this insight but focuses on

Region of Interests (RoIs). However, two parallel backbones

located in few-shot and base samples lead to high computa-

tional complexity. Besides, the computational complexity is

also a positive correlation to the number of categories and rela-

tion builder between query and few-shot samples, which means

training the meta-detector will be hard if there are too many cat-

egories or the relation builder is complex. To make the training

simpler and more efficient, there are some few-shot object de-

tectors based on transfer learning [17, 18, 19]. For instance, the

work in [18] proposed TFA by adopting a two-phase training

scheme based on transfer learning. CoRPN [19] follows this

strategy and builds multiple RPNs to build proposals more pre-

cisely. Nevertheless, these two-stage few-shot object detectors

are hard to achieve fast inferring speed which impedes amounts

of engineering applications such as autonomous driving.

2.3. Regulization

To elevate the model generalization, there are some reg-

ulization methods proposed to randomly drop the feature units.

Specifically, DropOut [27] randomly drops features from arbi-

trary dimensions. DropConnect [28] then convert to drop net-

work weights before computing with extracted features. Spatial

DropOut [29] randomly drops features in a specific dimension

and DropBlock [30] drops a square region features. Except to

feature, input and network module can also be considered to

drop by adopting CutOut [31] and Stochastic Depth [32], re-

spectively.

3. Proposed method

In this section, we describe BC-YOLO from the model ar-

chitecture, training scheme, and detection process in inferring

stage, respectively. Then, the Attentive DropBlock algorithm is

detailed in the second part.

3.1. Overview

The architecture of BC-YOLO is shown in Fig. 1. The main

components include CNN backbone, Feature Pyramid Network

(FPN) [33], and bi-path detection branches with a discrimina-

tor, that focus on extracting image features, providing seman-

tic features with different scales, and detecting base and novel

class objects, respectively. The main reasons for utilizing bi-

path detection branches are to avoid the model degradation that

appeared in detecting the base class objects when the model is

trained on few-shot objects [34]. In addition, according to the

knowledge distillation [35], the novel detection branches Detn
can be generalized better by learning from the strong base de-

tection branches Detb. After extracting the high semantic fea-

tures in the backbone, Spatial Pyramid Pooling (SPP) layer [36]

is then equipped behind the last layer of the backbone to further

enlarge the receptive fields of these features.

A two-phase training scheme is needed during training for

BC-YOLO. The first phase called base training is trained for

base class objects Cb with abundant data Db offering and the
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Fig. 1. The architecture of the proposed BC-YOLO detector. The red line
indicates the place we use the Attentive DropBlock algorithm. Bounding
boxes about the novel and base class objects are represented in terms of
blue and green color, respectively.

second phase called few-shot tuning is trained for novel class

objects Cn with limited data K for each class.

Firstly, the whole network is trained except Detn such that

the backbone and detection neck can own the strong knowl-

edge representation [18] in the base training. The loss function

trained on Db is,

Lbase training = Lbox + Lcls + Lob j (1)

Where Lbox is the combination of GIoU loss [37] and smooth

L1 loss [3] for coordinate regression. Lcls and Lob j are focal

loss [38] and binary cross-entropy loss functions, respectively.

Secondly, in the few-shot tuning stage, the backbone, detec-

tion neck, and Detb are frozen to keep the strong generaliza-

tion. Detn and the SPP layer is trained for novel class objects

in the few-shot tuning. However, with our trials, we find the

detection precision is low when only the novel class objects are

adopted. The reason might be that the similarity existed in base

and novel classes so that Detn generates many false positive

bounding boxes. We hence increase the categories of the object

as Cb ∪ Cn by randomly taking K instances from Db for each

base class. In addition, with the consideration that Detb owns

strong generalization trained from Db, Detn should learn the

soft weights from Detb to get better generalization. We hence

build a base distillation loss Lb between Detb and Detn branches

computed as follow:

Lb =
1

N

⎛⎜⎜⎜⎜⎜⎝
N∑

i=1

l
(
Oclsbase

b,i ,Oclsbase
n,i

)⎞⎟⎟⎟⎟⎟⎠ (2)

Where N donates the batch size. l is the sum of absolute er-

ror function. Oclsbase
b,i and Oclsbase

n,i indicate the base classification

scores from the Detb output Ob and the Detn output On for i-
th image, respectively. Therefore, the loss function trained on

few-shot objects can be summarized as:

Lfew-shot tuning = Lbox + 2Lcls + Lob j + λ · Lb (3)

Where λ is a weight that controls the influence of base distilla-

tion learning and we set this weight as 0.1 in default.

Algorithm 1 Attentive DropBlock

Input: Feature map F; parameter keep prob; parameter

block size and model state mode
Output: Feature map F′

1: if mode == In f erence then
2: F′ = F
3: else
4: Compute fC by applying global max pooling function

in each channel dimension

5: Compute fS by applying global average pooling func-

tion in each spatial dimension

6: Compute γ: γ = 1−keep prob
block size2 · σ( fC )×σ( fS )

α

7: Build mask M: Mi, j ∼ Bernoulli (γ)
8: Each zero position in M is set as the center for a square

zero mask with the length equals block size
9: Compute F′: F′ = F ∗ A

10: Normalize F′: F′ = F′ ∗ count(M)/sum(M)

11: end if
12: return F′

In the inferring stage, Detb and Detn jointly detect objects.

However, resolving Ob added with On severely prolongs the in-

ferring process. We hence incorporate a discriminator behind

these two branches to choose the most probable one. Specifi-

cally, the discriminators only output one of Ob and On by com-

paring their combination result Rb = max
(
Ocls

b

)
∗Oob j

b from Detb
and Rn = max

(
Ocls

n

)
∗ Oob j

n from Detn, where max
(
Ocls
)

and

Oob j respectively denote the maximum of classification scores

and object confidence from the output as follow:

Od(i, j) =

⎧⎪⎪⎨⎪⎪⎩
Ob(i, j) if Rb(i, j) ≥ Rn(i, j),
On(i, j) otherwise.

(4)

Where Od(i, j) denotes the discriminator output for a specific

spatial gird (i, j).

3.2. Attentive DropBlock

To further elevate the model generalization during the few-

shot tunning, we propose an Attentive DropBlock algorithm

which is influenced not only by the parameters of keep prob
and block size, but also the object semantic features. Specifi-

cally, the DropBlock [39] algorithm which sets a constant coef-

ficient for all positions within a feature map as follow:

γ =
1−keep prob
block size2

· f eat size2

( f eat size − block size + 1)2
(5)

Where keep prob and block size are the hyparameters that in-

fluence the frequency and the square size of dropping. Dif-

ferent from the original DropBlock, γ is a dynamic coefficient

which is also dependent on the extracted feature map in Atten-

tive DropBlock algorithm.

To be specific, given a feature map F ∈ RB×C×H×W , we com-

pute fC ∈ R
B×C×1×1 by applying the global max pooling func-

tion in each channel dimension and fS ∈ RB×1×H×W by applying
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Table 1. Few-shot object detection results on different datasets

PASCAL VOC MS COCO

Novel Set 1 Novel Set 2 Novel Set 3 Novel Set

Method Backbone 5 10 5 10 5 10 10 / FPS 30

LSTD [16] Darknet-19 29.1 38.5 15.7 31.0 27.3 36.3 3.2 / - 6.7

YOLO-ft-full [11] Darknet-19 24.8 38.6 16.1 33.9 32.2 38.4 3.1 / - 7.7

FsDetView [17] ResNet-101 36.1 42.3 22.6 29.2 33.2 39.8 7.6 / - 12.0

FRCN-ft-full [13] ResNet-101 41.5 45.6 31.6 39.1 35.0 45.1 6.5 / - 11.1

RepMet [15] ResNet-101 38.6 41.3 28.3 35.8 34.3 37.2 - / - -

FSRW [11] Darknet-19 33.9 47.2 30.1 39.2 40.6 41.3 5.6 / - 9.1

NP-RepMet [14] ResNet-101 47.3 49.4 43.4 49.1 41.5 44.8 - / - -

CoRPNs w/cos [19] ResNet-101 54.1 55.7 36.2 41.3 51.6 49.6 - / - -

MetaDet[12] VGG-16 36.8 49.6 31.7 43.0 43.9 44.1 7.1 / - 11.3

Meta R-CNN [13] ResNet-101 45.7 51.5 34.8 45.4 41.2 48.1 8.7 / 11.7 12.4

TFA w/cos [18] ResNet-101 55.7 56.0 35.1 39.1 49.5 49.8 10.0 / - 13.7
BC-YOLO Darknet-53 47.3 55.1 37.7 41.5 40.9 45.4 8.2 / 43.6 12.0

BC-YOLO∗ Darknet-53 50.4 57.6 38.9 43.3 42.5 49.1 9.0 / 5.8 12.9
∗ donates the results with multi-scale testing

the global average pooling function in each spatial information.

Then the dynamic γ ∈ RB×C×H×W can be calculated as follow:

γ =
1 − keep prob

block size2
· σ ( fC) × σ ( fS )

α
(6)

Where σ is the sigmoid function that controls the weight scale

of attention information and α is the amplification factor. Algo-

rithm 1 describes how Attention DropBlock works for a given

feature map. Note that the count and sum indicate the number

and the sum of elements, respectively.

Finally, the notations utilized in our method are summarized

in Appendix A.5

4. Experiments

We firstly introduce the implementation details of BC-YOLO

and Attentive DropBlock. Then we compare our approach with

other state-of-the-art methods on PASCAL VOC 2007 [20] and

MS COCO 2014 [21] datasets, respectively. The ablation stud-

ies and qualitative results on PASCAL VOC 2007 are presented

later.

4.1. Implementation Details

To increase the data diversity indirectly, we use Mixup [40]

with random affine transformation and multi-scale strategy with

label smoothing [41] to augment the limited instances. The op-

timizer used is SGD with the weight decay and the momen-

tum set as 0.0005 and 0.9, respectively. The cosine learning

rate schedule [42] from 0.001 to 0.00001 in base training and

few-shot tunning for 300 epochs. BC-YOLO is trained over 4

GPUs with 64 images per batch size. Moreover, the keep prob,

block size and α set in Attentive DropBlock as 0.9, 7 and 0.1,

respectively.

4.2. Comparison With State-of-the-Art

To ensure the fairness of comparison, the data and class

splits adopted are the same as the settings from previous works

[11, 12, 13, 14, 16, 17, 18, 19], i.e., the overall categories in

PASCAL VOC are divided into 15 base and 5 novel classes

with three different splits. For MS COCO, all 20 categories

in PASCAL VOC can be seen as novel classes and the rest of

60 categories are base classes. We report 5, 10-shot results on

PASCAL VOC and 10, 30-shot results on MS COCO as the

extremely few-shot objects lead to the large variances that ex-

ist in detection results. Moreover, we report the mean Average

Precision (mAP) on MS COCO and mean Average Precision

with 0.5 IoU threshold on PASCAL VOC (mAP@50), respec-

tively. Table 1 shows the detection results compared with other

state-of-the-art methods.

Note that the 10-shot results in the column of MS COCO

respectively represent the mAP (left) and FPS (right). It can

be observed that BC-YOLO outperforms some of the state-of-

the-art methods on mAP and mAP@50. More importantly, our

model uses a relatively small backbone (Darknet-53 vs ResNet-

101) and achieves real-time FSOD (43.6 FPS) on 10-shot MS

COCO novel set, which is nearly 4 times faster than Meta-

RCNN with only 0.5 and 0.4 mAP gap for 10-shot and 30-shot

MS COCO, respectively. After adopting multi-scale testing

strategy, all detection results can be improved and even surpass

the state-of-the-art precision. Therefore, these results plausibly

demonstrate that BC-YOLO can have a better tradeoff between

speed and precision.

4.3. Ablation Studies and Qualitative Results

In this part, we analyze the effectiveness of each component

in our model on the PASCAL VOC dataset. Experimental re-

sults are shown in Table 2. nAP, bAP, and aAP donate the

mAP@50 on novel class, base class, and all class objects, re-

spectively. It can be apparently observed that each component
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Table 2. Ablation studies from 10-shot PASCAL VOC novel set 3

Two-phase Bi-path Base Attentive
nAP bAP aAP

Param

Training Scheme Combination Distillation Loss DropBlock (M)

32.7 48.3 45.7 64.3

� 41.9 69.8 62.9 64.3
� � 44.3 71.3 64.6 70.5

� � � 44.7 72.5 65.6 70.5

� � � � 45.4 72.5 65.7 70.5

Fig. 2. Qualitative results on PASCAL VOC dataset. The top and bottom row is the detection results of YOLO∗ and BC-YOLO without Lb and Attentive
DropBlock, respectively.

Fig. 3. Detection results from 10-shot PASCAL VOC novel set 1 for BC-
YOLO, keep prob we set is 0.9 for DropBlock and Attentive DropBlcok.

Fig. 4. Object responses from 10-shot PASCAL VOC novel set 3 for Detb
and Detn, respectively.

can bring gains to different extents. Specifically, after adopt-

ing our two-phase training scheme, the nAP can significantly

be elevated by 9.2% (41.9% vs 32.7%).

Then we incorporate the bi-path parallel detection branches

with a discriminator into the model, it promotes the nAP

and bAP about 2.4% and 1.4%. To further demonstrate their

strength, qualitative results are shown in Fig 2. It can be seen

that, for novel class objects, BC-YOLO can figure out them

even are close to the base class object, own special gesture, or

small scale with occlusion. For base class objects, thanks to

the strong Detb and the discriminator, the base class objects can

also be detected without forgetting in the inferring stage.

The base distillation loss can bring 1.2% bAP and 0.4% nAP

increase, respectively. We conjecture it because the general-

ization learned from Detb can effectively influence Detn and

make our model better distinguish objects whether they belong

to base or novel categories.

Table 3. Detection results from 10-shot PASCAL VOC novel set 2 for dif-
ferent factors in discriminator.

Factor nAP bAP aAP

Oob j 41.1 70.2 62.9

max(Ocls) 40.3 70.4 62.9

max(Ocls) ∗ Oob j 41.5 70.8 63.5

Attentive DropBlock is also beneficial to the model gen-

eralization, which promotes the model 0.7% nAP. To further

demonstrate its effectiveness, we compare it with the original

DropBlock [39]. The results are shown in Fig. 4. It can be
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noticed that the curve of Attentive DropBlock is more dynamic

than the DropBlock one as the former algorithm pays more at-

tention to the object. Attentive DropBlock can get better nAP

when the block size equals 5 and 7 than DropBlock, which

means it is the significance of considering the object semantic

features.

To further explore the influence of the components in our

model, a suitable discriminator we found is helpful to BC-

YOLO. Table 3 shows the results by considering different fac-

tors. It is interesting to observe from the results that the maxi-

mum classification score and the object confidence are suitable

determinations for base and novel class objects, respectively.

However, the best results generated from the combination of

object confidence and classification score indicate its superior-

ity.

Table 4. Detection results from 10-shot PASCAL VOC novel set 3 for dif-
ferent detection branches

Detection branch nAP bAP aAP

Detb 0.0 70.0 52.5

Detn 45.1 67.6 62.0

Detn + Detb 45.4 72.5 65.7

A potential problem is whether the Detb can identify novel

class objects during the base training as the input images

also exist these objects except their ground-truth information.

Therefore, to clearly observe the responses of Detb and Detn,

Table 4 respectively shows the results of different detection

branches. To the Detb, it can be noticed that they are by no

means interested in novel class objects but generate high re-

sponses in base class objects. However, the Detn generates re-

sponses for all objects. After combining them in the discrimi-

nator, nAP, bAP, and aAP can get the best results. Lastly, Fig.

3 further illustrates the responses of the Detb and Detn, respec-

tively.

5. Conclusion

To achieve real-time FSOD with comparable detection preci-

sion, we proposed BC-YOLO detector and an Attentive Drop-

Block algorithm. BC-YOLO has bi-path parallel detection

branches which respectively focus on base and novel class ob-

jects and commonly detect objects with a discriminator in infer-

ring stage. Attentive DropBlock can further elevate the model

generalization by masking local discriminative regions with a

higher probability. Extensive experiments on PASCAL VOC

2007 and MS COCO 2014 datasets demonstrate that our model

can achieve a better tradeoff between speed and precision than

state-of-the-art methods.
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Appendix A. Notations

Table A.5. Lookup table for notations in the paper

Notation Description

Detb detection branches of base class objects

Detn detection branches of novel class objects

Cb list of base class

Cn list of novel class

Db dataset of base class

Dn dataset of novel class

Ob output of base class detection branches

On output of novel class detection branches

Od output of discriminators

Rb combination results of base class objects

Rn combination results of novel class objects

K number of few-shot instances

l sum of absolute error function

fC max spatial feature in each channel dimension

fS average channel feature in each spatial dimension

λ weight of base distillation loss

α amplification factor of attention information

γ coefficient of controling the dropping unit

σ sigmoid function
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