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Abstract— Popular semi-supervised medical image seg-
mentation networks often suffer from error supervision from
unlabeled data since they usually use consistency learning
under different data perturbations to regularize model train-
ing. These networks ignore the relationshipbetween labeled
and unlabeleddata, and only compute single pixel-levelcon-
sistency leading to uncertain prediction results. Besides,
these networks often require a large number of parameters
since their backbone networks are designed depending on
supervised image segmentation tasks. Moreover, these net-
works often face a high over-fittingrisk since a small number
of training samples are popular for semi-supervised image
segmentation. To address the above problems, in this paper,
we propose a novel adversarial self-ensembling network
using dynamic convolution (ASE-Net) for semi-supervised
medical image segmentation. First, we use an adversar-
ial consistency training strategy (ACTS) that employs two
discriminators based on consistency learning to obtain
prior relationships between labeled and unlabeled data.
The ACTS can simultaneously compute pixel-level and
image-level consistency of unlabeled data under different
data perturbations to improve the prediction quality of
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labels. Second, we design a dynamic convolution-based
bidirectional attention component (DyBAC) that can be
embedded in any segmentation network, aiming at adap-
tively adjusting the weights of ASE-Net based on the
structural information of input samples. This component
effectively improves the feature representation ability of
ASE-Net and reduces the overfitting risk of the network.
The proposed ASE-Net has been extensively tested on
three publicly available datasets, and experiments indicate
that ASE-Net is superior to state-of-the-art networks, and
reduces computational costs and memory overhead. The
code is available at: https://github.com/SUST-reynole/ASE-
Nethttps://github.com/SUST-reynole/ASE-Net.

Index Terms— Semi-supervised learning, medical image
segmentation, dynamic convolution, adversarial learning.

I. INTRODUCTION

MEDICAL image segmentation plays a significant role
in computer-aided diagnosis and treatment research

since it can extract important organs or lesions in abnor-
mal images. In recent years, many supervised-learning based
encoder-decoder networks for medical image segmenta-
tion have achieved remarkable results such as U-Net [1],
U-Net++ [2], H-DenseUNet [3], etc. However, the success of
these techniques relies heavily on a large amount of pixel-level
labeled data but it is usually very expensive to annotate
medical images in practice. One of the reasons is that medical
images usually show poor visual effects due to low contrast
and noise interference. Moreover, medical image annotation
requires much more professional knowledge than natural
images. Therefore, it is almost impossible to build a large
number of medical image datasets with high-precision labels.
Compared to supervised learning, semi-supervised learning
is a new learning paradigm to solve the problem of incom-
plete supervision of data in weakly supervised learning [4].
It mainly uses a small amount of labeled data and a large
amount of unlabeled data to achieve joint training. Obviously,
semi-supervised learning is of great importance and more
in line with the requirement of actual clinical scenes than
supervised learning in medical image segmentation.

The main semi-supervised medical image segmenta-
tion methods can be roughly classified as consistency
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learning [5], [6], [7], [8], [9], [10] adversarial learn-
ing [11], [12], [13], self-training [14], [15], [16], contrastive
learning [17], [18], [19], and collaborative training [20], [21].
In this paper, we focus on consistency learning and adversarial
learning. Consistency learning usually employs consistency
regularization with different perturbations to train a network.
One of the most representative methods is self-ensembling
Mean Teacher (MT) [5], which utilizes perturbation-based
consistency loss between the self-ensembling teacher model
and the student model on unlabeled data, along with the
supervised loss on labeled data. Depending on MT, subse-
quently improved methods focus on choosing different data
perturbations as well as feature perturbations to achieve
performance gains. Precisely, the quality of a segmentation
network in generating consistent pseudo labels determines
the knowledge mining ability of the network for unlabeled
data. For adversarial learning, the generative adversarial net-
works (GAN) [11], [12], [13] for medical image segmentation
mainly involve two subnetworks, namely a discriminator and
a generator. The discriminator aims to identify whether the
input samples are from the ground truth or the generator. The
generator aims the discriminator not to be able to distinguish
between the ground truth and the output from the segmentation
network. Once the discriminator cannot determine where the
input is from, the generative samples are considered to be
close enough to the ground truth. The two networks update
alternately and promote each other.

Albeit those methods mentioned above have achieved great
success, they still face the following challenges. First, in con-
sistency learning, a typical Mean Teacher method acquires
consistency loss only depending on different data perturba-
tions, which does not effectively exploit the prior relationship
between unlabeled and labeled data, resulting in slow feature
learning on unlabeled data and weak model generalization
ability. Second, in adversarial learning, popular methods only
employ a single segmentation network and a single discrimi-
nator network to mine the potential knowledge from unlabeled
data. Unfortunately, the two networks can often mislead each
other, leading to the problem of error accumulation during
the training process. Third, it is usually inappropriate for
semi-supervised methods to use directly a segmentation net-
work with fixed parameters from supervised learning. On the
one hand, the segmentation network with fixed parameters is
better to fit labeled data but has poor feature representation for
unlabeled data. On the other hand, different samples share the
same model weights in the networks with fixed parameters,
which easily causes network overfitting for small labeled
datasets, leading to poor quality of generating pseudo labels
for unlabeled data.

In order to solve the above problems, in this paper,
we propose a novel adversarial self-ensembling network using
dynamic convolution (ASE-Net) for semi-supervised med-
ical image segmentation. ASE-Net effectively exploits the
prior relationship between unlabeled and labeled data as
well as pixel-level and image-level consistency by using
consistency learning and adding two discriminator networks
to an MT framework. In addition, we propose a dynamic
convolution-based bidirectional attention component that can

be easily embedded in a segmentation network to avoid the
overfitting problem. The main contributions of this paper are
summarized as follows:

(1) We propose an adversarial consistency training strategy
(ACTS) using double discriminators. The first discriminator
learns the prior relationship between labeled and unlabeled
data and the second one learns the image-level consistency
of a segmentation network on the same data with different
data perturbations. Both discriminators aim to improve the
knowledge transfer ability of the segmentation network from
labeled data to unlabeled data.

(2) We design a dynamic convolution-based bidirectional
attention component (DyBAC), which can sufficiently mine
the prior knowledge of samples and dynamically adjust the
parameters of convolutional kernels depending on different
input samples. The DyBAC can effectively improve the feature
representation ability of our proposed network and avoid
network overfitting.

(3) We extensively validate the performance of the proposed
method in three challenging medical image segmentation
tasks, and the experiments demonstrate that the proposed
network is very competitive compared to the state-of-the-art
methods. It is worth mentioning that our proposed network is
a lightweight network that requires fewer parameters and has
a faster inference speed than comparative networks.

II. RELATED WORK

A. Semi-Supervised Medical Image Segmentation

To solve the problem of lacking a large number of labeled
data, researchers proposed many semi-supervised learning
methods for medical image segmentation. Since traditional
semi-supervised medical image segmentation methods usu-
ally employ manually designed shallow features with limited
representation ability, they cannot provide good segmentation
results for medical images with low contrast and serious noise
interference. Compared with those methods mentioned above,
deep learning-based semi-supervised methods can provide
excellent segmentation results since they have powerful feature
representation and modeling abilities [22]. Currently, popular
semi-supervised medical image segmentation methods often
use a regular encoder-decoder segmentation network as the
backbone [1], [2], [3], [23], [24], [25], [26]. Aiming to utilize
unlabeled data better, more methods focus on improvements
in learning strategies. In this paper, we focus on employing
consistency learning [27] and adversarial learning [28] to
improve network performance.

For consistency learning, the state-of-the-art technique is
Mean Teacher (MT) [5], [29], which performs consistency
learning under different data perturbations by accumulating
the weights of the student model. Specifically, the MT is first
conducted in the way of supervised learning on labeled data.
After that, the teacher model of MT is used to provide pseudo
labels for unlabeled data, and the prediction consistency of the
teacher and student model for unlabeled data is maintained
through different regularization methods. Finally, the student
model is updated through feedback on supervision and consis-
tency loss. Among them, the teacher model is the exponential
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moving average (EMA) of the student model weights. This
operation enables the teacher model to accumulate continu-
ously the historical prediction information of unlabeled data.
The subsequent improvements [6], [7], [8], [9], [10], [30]
use different consistency regularization strategies to improve
the prediction quality of unlabeled data and avoid network
overfitting.

For example, Li et al. [6] proposed a transformation-
consistent self-ensembling model (TCSM_v2) to utilize effec-
tively unlabeled data by introducing the regularization strategy
of data transformation consistency. Chen et al. [8] proposed
a cross pseudo supervision (CPS) method based on network
perturbation to encourage the high consistency between predic-
tion results from two perturbed networks. However, calculating
the consistency between two predictions of unlabeled data
may cause some unreliable guidance and thus make the
training unstable. In order to solve this problem, Yu et al. [9]
proposed an uncertainty-aware framework based on the Mean
Teacher structure (UA-MT), which makes the student model
gradually learn more reliable targets according to uncertainty
estimates after multiple forward propagations. In order to
reduce the time and memory overhead, Wu et al. [31] proposed
a mutual consistency network (MC-Net). The network includes
two decoders and expresses the difference between the two
predictions as model uncertainty information to regularize
model training, so as to improve the quality of the pseudo
labels. Liu et al. [32] proposed a perturbed and strict mean
teacher (PS-MT) framework to improve the segmentation
accuracy by adding an auxiliary teacher model, designing
different loss functions, and using different data perturbation
methods. In addition, Luo et al. [33] constructed a dual-task
consistency (DTC) regularization method by jointly predicting
the pixel-wise segmentation map and the geometry-aware
level set representation of targets. DTC focuses on task-level
consistency rather than data-level consistency.

Adversarial learning [11], [12], [28], [34], [35], [36], [37]
is a popular strategy for improving model robustness by
effectively mining potential knowledge from unlabeled data.
For example, Zhang et al. [12] proposed a deep adversarial
network (DAN) to improve the prediction quality of unlabeled
data. However, popular semi-supervised adversarial learning
methods, [11], [12], [28] only contain a single generator and
a single discriminator, which may lead to low segmentation
accuracy due to over-reliance on the result of a single network.
Therefore, the knowledge obtained from a model with low
segmentation accuracy may produce misguidance during the
learning process on unlabeled data. To go a step further, some
improved methods [34], [35], [36], [37] give consideration to
both consistency learning and adversarial learning to improve
the learning ability of models.

B. Dynamic Neural Network

Traditional deep learning networks perform inference in
a static manner, in other words, the network parameters
are fixed after training. For different input samples, these
static networks output different predictions using the same
parameters combined with different inputs, which leads to
poor predictions for some complex input samples due to

weak feature representation ability. Contrary to static net-
works, dynamic neural network [38] means that the network
structure [39], parameters [40], and features maps [41], [42]
change according to different inputs in the inference stage.
For example, in terms of dynamic feature networks based on
attention mechanisms, Gu et al. [42] demonstrated in detail
the effectiveness of attention mechanisms and achieved better
results in medical image segmentation. Therefore, the dynamic
neural network is more compatible with the human visual
system. In this paper, we focus on the study of convolution
neural networks with dynamic parameters.

The conditionally parameterized convolutions proposed
by Yang et al. [41] and the dynamic convolutional neural
network (CNN) proposed by Chen et al. [40] mainly
dynamically aggregate multiple groups of weights from
different convolutional kernels according to input images to
achieve dynamic convolution. However, both of them lead
to a dramatic increase in the number of parameters and only
use the prior knowledge of channels without considering
spatial information of feature maps. To solve the problem,
Involution [43] and Decoupled Dynamic Filter Networks
(DDF) [44] propose the idea of spatial specificity, which makes
the values of convolutional kernel parameters vary with the
spatial location in a feature map. Involution and DDF skillfully
use the spatial prior knowledge of samples to extract the
spatial structure information of images and therefore achieve
good results. In contrast to the above methods, Li et al. [45]
introduced an omni-dimensional dynamic convolution via a
parallel strategy to learn more flexible attention to improve
the network performance. In general, the dynamic convolution
applies soft attention to convolution kernels by adjusting
network parameter values depending on different inputs. Thus,
dynamic CNNs can effectively exploit the prior knowledge
of samples to improve feature representation.

Different from the above methods, first, considering
the MT framework, we extend an adversarial consistency
training strategy to a semi-supervised learning framework
(ACTS), which makes better use of the essential relationship
between unlabeled and labeled data. Second, we propose a
dynamic convolution-based bidirectional attention component
(DyBAC), which aims to reduce the overfitting risk of the
network and to reduce the memory overhead while maintaining
the segmentation accuracy.

III. METHOD

In this paper, we propose an adversarial self-ensembling
network (ASE-Net) for semi-supervised medical image seg-
mentation. As shown in Fig. 1, our ASE-Net consists of
segmentation networks and discriminator networks. The seg-
mentation networks consist of a student model and a teacher
model. The student model has the same structure as the teacher
model and both of them are based on the encoder-decoder
structure; the difference is that the former is trained by the
loss function while the latter is the exponential moving average
(EMA) of the student model weights. The discriminator net-
works consist of convolutional layers, the proposed DyBAC,
and the global average pooling, whose specific structure of our
ASE-Net is shown in Fig. 1.
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Fig. 1. The framework of the proposed ASE-Net. The ASE-Net consists of two main parts: the segmentation networks (left) and the discriminator
networks (right). The segmentation network is based on the encoder-decoder architecture. The right figure shows the detailed structure of the
discriminative network, where k, s, and p represent the kernel size, the stride, and the padding of convolutional kernels, respectively. The discriminators
are unnecessary in the inference stage.

In our ASE-Net, we propose an adversarial consistency
training strategy (ACTS) based on the MT framework to
mine the prior knowledge from unlabeled data. We use two
discriminators of the same structure for different purposes. The
first discriminator learns the predicted quality consistency of
the segmentation network for unlabeled data as well as the
labeled data. The second discriminator learns the prediction
consistency of teacher and student networks using the same
inputs but under different perturbations. It is worth mentioning
that the input of our discriminator network is a concatenation
of the segmentation result after softmax and the original image,
rather than just the segmentation result. In this way, the
quality of the segmentation results can be further evaluated
by using the original image as a benchmark to discriminate
the matching relationship between the segmentation results
and the benchmark. In terms of network structure, we apply
DyBAC to replace all convolutional layers except the first
layer in segmentation networks and discriminator networks.
The DyBAC can improve the feature representation ability of
the network and reduces the risk of overfitting. In addition,
the segmentation networks and the discriminators are trained
alternately, and the discriminators are unnecessary in the
inference stage, which avoids additional computational costs.

A. Adversarial Consistency Learning

Although consistency learning and adversarial learning are
useful for semi-supervised image segmentation tasks, they
still have some limitations. First, regular semi-supervised
image segmentation networks usually use consistency strate-
gies under different perturbations to regularize the training of

the model. These networks often ignore the prior relation-
ship between labeled and unlabeled data. Besides, they only
calculate pixel-level consistency for unlabeled data that may
result in uncertain prediction results. Second, the adversarial
learning-based approaches rely excessively on a single seg-
mentation network and a single discriminative network, easily
causing the problem of misguidance.

To address these problems, we propose a novel training
strategy. As shown in Fig.1, we add two discriminators, and
the two discriminators have the same structure but different
functions. The discriminator D1 learns the difference between
the output quality of labeled data and unlabeled data. The
discriminator D2 learns the difference between perturbed
data and unperturbed data in unlabeled data. Finally, through
the supervision loss Ls , the consistency loss Lsemi and the
adversarial loss (Lad1, Lad2) encourage the student network
to generate high-quality segmentation results on unlabeled
data. Actually, the roles of D2 and Lsemi , are complementary.
The consistency loss Lsemi is a pixel-level consistency among
individual samples, which pays more attention to feature map
details. Our D2 is mainly used for the image-level consistency
among perturbed and unperturbed data, which pays more
attention to feature map global information.

Specifically, we achieve adversarial consistency learning
through alternate training. First, we input medical images
into the segmentation networks to obtain the segmentation
prediction maps. Then, we concatenate the output feature maps
and the corresponding original images into the discriminator
networks. The discriminators mainly evaluate the quality of
the segmentation results, where 0 means the quality of the
segmentation result is poor and 1 means good. During the
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training process of the segmentation network G, we encourage
the segmentation network to generate high-quality segmenta-
tion results for unlabeled data xu , aiming to ensure the results
are as close to 1 as possible. During the training process of
the discriminative networks, we encourage the discriminative
networks to discriminate against different inputs as much as
possible. Consequently, the optimization objective function of
the student network G and the two discriminative networks
D1, D2 is defined as:

min
G

max
D1,D2

(LG(θ) + L D1(θ) + L D2(θ)), (1)

where θ represents the parameter to be optimized. Exactly,
the segmentation network and the discriminator networks are
trained alternately. The objective function of the segmentation
network, LG(θ) is defined as:

LG (θ) = Ls(ŷi , yi ) + λ(Lsemi (ŷu, ŷema)

+Lad1(D1(xu, ŷu), 1) + Lad2(D2(xu, ŷu), 1)),

(2)

where Ls(·) represents supervision loss, Ls(·) = Lce(·) +
Ldice(·), Lce(·) is the cross-entropy loss and Ldice is Dice
loss. Lsemi (·) is MSEloss, and both Lad1(·) and Lad2(·) are
binary-class cross-entropy loss. yi is the label corresponding
to the input xi , and xu is unlabeled input data with data
perturbations via πi . πi denotes random Gaussian noise. ŷi

and ŷu are segmentation results on labeled and unlabeled
data, respectively. ŷema is the prediction result of the teacher
network and λ is the weighting coefficient. According to [6], λ

is a Gaussian ramp-up curve, λ = δe(−5(1−I )2
), and I denotes

the number of epochs.
At the early stage of the training network, the value of λ

is very small and the update of the network mainly relies
on supervision loss. Therefore, the network is trained mainly
depending on labeled data in the early stage of the training
network. As the training proceeds, the value of λ continues to
increase, and the network can obtain a reliable segmentation
result and generate targets for unlabeled data. This is because
other loss functions are in effect. Next, the discriminator
networks try their best to distinguish the output of the segmen-
tation network. The objective functions of the discriminators
D1 and D2 are defined as:

L D1(θ) = Lad1(D1(xi , ŷi ), 1) + Lad1(D1(xu, ŷu), 0), (3)

L D2(θ) = Lad2(D2(xema, ŷema), 1) + Lad2(D2(xu, ŷu), 0),

(4)

where xi and xema represent labeled data and unlabeled inputs,
respectively.

The parameters of the teacher model are the EMA accu-
mulation of the parameters of the student model. The teacher
model retains the historical information of the student model
and can generate higher quality targets for unlabeled data.
Its effectiveness has been proved in [5] and [6], and the
parameters θ �

t of the current teacher model are defined as:
θ �

t = αθ �
t−1 + (1 − α)θt , (5)

where the parameters θ �
t−1 is the historical accumulation of

the teacher model. θt is the weight of the student model. α is a

hyperparameter of the smoothing coefficient, and α determines
the dependency relationship between the teacher model and the
student model. According to [5], [6], and [9] and experimental
experience, when the value of α is 0.999, the performance of
networks is the best.

In conclusion, the segmentation networks and the discrim-
inator networks play games against each other. When the
discriminator networks cannot distinguish the segmentation
result and ground truth, the segmentation networks have high
segmentation quality for labeled data, unlabeled data, and
data under different perturbations. This adversarial learning
approach can effectively utilize unlabeled data to improve the
quality of predicted pseudo labels.

B. Dynamic Convolution-Based Bidirectional Attention
Component

Overfitting is a common problem in segmentation tasks.
To overcome this problem, many segmentation networks based
on semi-supervised learning employ different consistency
regularization strategies, such as data perturbation [5], [6],
network parameters perturbation [8], [46], and feature pertur-
bation [10]. However, these perturbation-specific approaches
are only valid for specific tasks and it is usually very
difficult to choose effectively a uniform perturbation type
for different tasks, resulting in an unsatisfied segmentation
effect. Moreover, since these semi-supervised methods still use
segmentation networks with fixed convolutional kernels, their
own structures have potential risks of overfitting. Segmentation
networks with fixed parameter values are effective only on
the premise that there is a large amount of pixel-labeled data
in the task, but in practice, semi-supervised learning only
involves a small amount of labeled data and a large amount
of unlabeled data. Therefore, a semi-supervised segmentation
network based on standard convolution easily suffers from
overfitting and has poor feature representation ability.

To solve the above problems, we start from the data
itself and construct supervision information according to its
structure for unlabeled data. Specifically, we utilize dynamic
convolution to adjust adaptively a set of parameters for each
sample, which can make better use of the prior knowledge
while reducing the overfitting risk and improving the feature
representation ability of our network. Furthermore, to over-
come the problems of low contrast and blurred edges in
medical images, we add spatial attention before using dynamic
convolution. As a result, the final values of convolutional
kernels are decided by the combination of spatial attention
and dynamic convolution. Therefore, the strategy is named
dynamic convolution-based bidirectional attention component
(DyBAC).

Specifically, the structure of DyBAC is shown in Fig. 2, for
a given input xin ∈ R

C×H×W , where C represents the number
of input channels, and H and W represent the height and
width of the input feature maps. To enhance the significance
of important spatial positions, the input feature maps are first
proceeded by a spatial attention module. The specific operation
is shown in Fig. 2 (a). First, a 1 × 1 convolution is used in the
input feature maps for dimensionality reduction. Second, the
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Fig. 2. The structure of DyBAC. (a) Spatial attention, (b) Dynamic convolution. The dynamic convolutional kernels are generated mainly based on
the channel and spatial information of samples. For different input samples, the values of convolution kernel parameters change adaptively.

output tensor is normalized by a sigmoid activation function.
Finally, the obtained spatial attention weights are multiplied
by the input feature maps pixel by pixel to obtain the feature
maps x1 ∈ R

C×H×W .
Next, we mainly introduce the generation process of

dynamic convolution. Different from the attention mechanism
in SE-Net [47], we assign weights to convolutional kernels
rather than feature maps. First, through a global average
pooling layer, the feature map x1 is transformed to x2 ∈
R

C×1×1, then 1 × 1 convolution is used to reduce the
dimension and we get p ∈ R

N×1×1 after a softmax activation
function, where N is the number of convolutional kernels and
it is defined as a hyperparameter in advance. N can be set
according to the specific task. In this paper, we empirically
set N = 4. We multiply the obtained coefficients p to N
convolutional kernels respectively and then sum the weights of
N convolutional kernels to generate a dynamic convolutional
kernel. In this way, we can obtain the most representative
convolutional kernel from N convolutional kernels through
dynamic aggregation. The weight w of the convolutional
kernel is defined as:

w =
N∑

i=1

(pi · conv i ), (6)

where pi is the i -th coefficient of p, 0 ≤ pi ≤ 1,
∑N

i=1 pi = 1,
and conv i is the weight of the i -th convolutional kernel. The
number of parameters of a standard dynamic convolution,
denoted by Qs , is defined as:

Qs = Cin × N + N × Cin × Cout × k × k, (7)

where k × k is the size of the convolutional kernel, Cin

and Cout indicate the number of channels of the input and

output feature maps, respectively. Obviously, the number
of parameters is N times more than that of the vanilla
convolution.

To reduce the number of parameters, we fully decouple
the spatial and channel correlations. Specifically, we define
N depthwise convolutions to extract each channel feature
and then use pointwise convolution to obtain the information
among different channels. We multiply the obtained atten-
tion coefficient to the corresponding convolution kernel, and
dynamically select a convolutional kernel for the final convo-
lution operation. The number of parameters of our proposed
dynamic convolution, denoted by Qo, is defined as:

Qo = Cin × N + N × Cin × k × k + Cin × Cout . (8)

The ratio r of the number of parameters of our proposed
dynamic convolution to the standard convolution is:

r = Cin × N + N × Cin × k × k + Cin × Cout

Cout × Cin × k × k

= N + N × k × k + Cout

Cout × k × k
≈ 40 + Cout

9 × Cout
� 1. (9)

In practical applications, the convolutional kernel size
is usually k = 3, the value of Cout is larger than 16,
and the number of predefined convolutions N is usually 4.
Obviously, compared with vanilla convolution and standard
dynamic convolution, our DyBAC greatly reduces the number
of parameters. Specifically, our operation adaptively adjusts
the parameters of the convolutional kernel according to the
structure information of each sample, which is different from
the vanilla convolution that shares static parameters for all
samples.
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IV. EXPERIMENTS

A. Dataset and Pre-Processing

To evaluate our approach, we performed a full evaluation on
three different types of medical image datasets, liver Computed
Tomography (CT) scans [48], dermoscopy images [49], and
3D left atrium magnetic resonance (MR) image scans [50].

1) Liver Segmentation CT Dataset: In our experiment,
we use Liver Tumor Segmentation Challenge (LiTS) [48]
as the experimental dataset, which contains 131 labeled CT
scans. The size of each image is 512 × 512, and the pixel
spacing varied from 0.55 mm to 1 mm. The slice thickness
varied from 0.55 mm to 6 mm. To enhance liver contrast
and remove interference, we truncate the intensity value of
all scans of [−200, 250] Hounsfield Unit (HU). To improve
the training efficiency, we resize the images to 256 × 256.
In our semi-supervised setting, we randomly select 121 cases
as the training set and the remaining 10 cases as the testing set.
we perform random data augmentation on the training set, such
as flipping, mirroring, and rotating. For better comparison,
we randomly select 10% (12 cases) and 20% (24 cases) of
the cases in the training set as labeled data, and the rest is
used as unlabeled data.

2) Skin Lesion Segmentation Dermoscopy Dataset: The der-
moscopy image dataset is from the 2018 International Skin
Imaging Collaboration (ISIC) skin lesion segmentation chal-
lenge [49]. The training set contains 2,594 images and the vali-
dation set contains 100 images. The dataset has different types
of skin lesions as well as different resolutions. To improve
the computational efficiency of different models, we resize all
images to 256 × 192 as in [51]. To perform semi-supervised
learning, similarly, we randomly select 10% (259 images) and
20% (519 images) in the training set to be used as labeled
data and the rest as unlabeled data, respectively. In the training
phase, we perform online random data augmentation.

3) 3D Left Atrium Segmentation MR Dataset: The left atrial
(LA) dataset [50] is from the 2018 Left Atrial Segmentation
Challenge and consists of 100 3D gadolinium-enhanced MR
images with a resolution of 0.625 × 0.625 × 0.625 mm3.
Following [9], [31], and [33], we use 80 scans for training
and 20 scans for validation. We adopt a common data pre-
processing scheme that randomly crops the left atrial data to
the size of 112 × 112 × 80. In this experiment, 10% (8 scans)
and 20% (16 scans) are still used as labeled data, and the rest
are used as unlabeled data.

B. Experimental Settings and Evaluation Indicators

All the networks in our experiments are implemented on
a server with NVIDIA GeForce RTX 3090 24GB, Ubuntu
18.04, and PyTorch 1.7. We choose Adam to optimize the
segmentation model. The initial learning rate is 1×10−3. The
SGD algorithm with a momentum of 0.9 is used to optimize
the discriminator networks. The initial learning rate is 0.01,
and the weight decay is 0.0001.

For the liver CT dataset, we use Dice per case score (DI)
and average symmetric surface distance (ASD) to evaluate
the liver segmentation results based on the 3D volume [48].
For the dermoscopy image dataset, we use Dice coefficient

(DI), Jaccard index (JA), Pixelwise Accuracy (AC), Sensitivity
(SE), and Specificity (SP) to evaluate the segmentation results
according to [6]. For the 3D MR left atrial dataset, we use DI,
JA, 95% Hausdorff distance (95HD), and ASD to evaluate the
segmentation results. The values of DI, JA, AC, SE, and SP are
in the range of 0 to 1. Therefore, better segmentation results
imply higher values of DI, JA, AC, SE, and SP as well as
lower values of 95HD and ASD. These evaluation indicators
are defined as:

DI = 2T P

F P + 2T P + F N
, (10)

J A = T P

T P + F N + F P
, (11)

AC = T P + T N

T P + F P + T N + F N
, (12)

SE = T P

T P + F N
, (13)

S P = T N

T N + F P
, (14)

where T P , T N , F P and F N indicate the number of true
positives, true negatives, false positives, and false negatives,
respectively.

H D = max

{
max

sA∈S(A)
d(sA, S(B)), max

sB∈S(B)
d(sB, S(A))

}
,

(15)

ASD =

∑
sA∈S(A)

d(sA, S(B)) + ∑
sB∈S(B)

d(sB, S(A))

|S(A)| + |S(B)| ,

(16)

where A and B denote the ground truth and the segmen-
tation result, respectively. S(A) and S(B) denote the set
of surface voxels corresponding to A and B respectively,
and d(sB, S(A)) = min

sA∈S(A)
||sB − sA|| denotes the shortest

Euclidean distance of the voxel sB to the set S(A). Similarly,
d(sA, S(B)) = min

sB∈S(B)
||sA − sB || denotes the shortest Euclid-

ean distance of the voxel sA to the set S(B). In addition, the
95HD is defined as the 95th quantile of Hausdorff distances
(HD) instead of the maximum.

C. Ablation Studies

In this paper, we focus on two contributions, ACTS and
DyBAC. We use the semi-supervised method MT [5] as
the baseline and U-Net [1], U-Net++ [2] and V-Ne [25]
as the backbone of the segmentation network respectively.
We perform ablation experiments on three datasets including
the LiTS [48], the dermoscopy images [49], and the 3D left
atrial [50]. Note that the DyBAC is extended to a 3D version
of DyBAC when the proposed ASE-Net is used for the 3D
left atrial segmentation. To demonstrate the effectiveness of
the adversarial consistency learning, we validate two of the
discriminators separately.

As shown in Table I, the ablation experiment is performed
on the LiTS liver testing set, and the training set is divided into
10% labeled (12 cases) and 90% unlabeled (109 cases). We use
U-Net [1] as the backbone network for liver segmentation,
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TABLE I
COMPARISON OF ABLATION EXPERIMENTS ON THE LITS-LIVER

TESTING SET BY UTILIZING 10% LABELED DATA OF THE TRAINING

SET. THE BEST VALUES ARE IN BOLD

and the results in Table I demonstrate the effectiveness of
our contributions. The semi-supervised adversarial learning
method using a single segmentation network and a single
discriminator obtains a lower DI of 92.11% compared to
other semi-supervised methods. Compared to the supervised
U-Net, the semi-supervised method MT gets an improvement
(4.22% for DI) and our proposed ASE-Net improves by 5.95%,
benefiting from the MT framework that provides pseudo labels
for the student model through the teacher model, which can
better utilize the unlabeled data and effectively improve the
performance of the network. To demonstrate the effectiveness
of the proposed ASE-Net, we add the proposed discriminators
D1, D2, and dynamic convolution-based bidirectional attention
component (DyBAC) to MT, respectively. It can be seen that
the discriminators D1, D2 and DyBAC achieve the increase
of DI by 0.72%, 0.75%, and 0.97% based on MT.

In addition, as shown in Fig. 3, we visualize the feature heat
maps generated by the standard convolution and the proposed
DyBAC. The first and third rows are feature heat maps
of U-Net employing standard convolution, and the second
and fourth rows are feature heat maps of U-Net employing
DyBAC. The encoding of U-Net has five stages, and we
replaced all the convolution layers except for the first layer
with the proposed DyBAC. From left to right, the feature
maps are shown from shallow to deep layers respectively,
and different colors indicate different spatial attention weights.
It can be seen that our proposed DyBAC can effectively
improve the liver segmentation in medical images.

As shown in Table II, the ablation experiment is performed
on the dermoscopy image validation set, and the training set
is divided into 20% labeled (519 images) and 80% unlabeled
(2075 images). We use U-Net++, [2] as the backbone network
for skin lesion segmentation and the results are in Table II.
The supervised U-Net++ obtains 84.36% of DI, while the
semi-supervised method MT obtains 85.83% of DI. It can be
seen that the DI of our proposed discriminators D1, D2, and
DyBAC are 0.58%, 0.53%, and 0.51% higher, respectively,
compared to the baseline MT. Moreover, Fig. 4 shows the
Dice values and loss curves for U-Net++ and U-Net++ with
DyBAC on the training and validation sets under the condition
of using 2,594 labeled data. To make an effective analysis,
we do not use the semi-supervised regularization strategy
during the process of experiments. As shown in Fig. 4, after the

Fig. 3. Visualization of the feature heat maps for each convolutional layer
in the encoding phase. The first and third rows are feature heat maps
of U-Net employing the standard convolution, and the second and fourth
rows are feature heat maps of U-Net employing DyBAC. The encoding of
U-Net has five stages, and we replace the convolution after the first layer
with the proposed dynamic convolution-based bi-directional attention
component (DyBAC). From left to right, the feature maps are shown from
shallow to deep layers respectively, and different colors indicate different
spatial weights.

TABLE II
COMPARISON OF ABLATION EXPERIMENTS ON THE DERMOSCOPY

IMAGE VALIDATION SET UTILIZING DIFFERENT PROPORTIONS OF

LABELED DATA FROM THE TRAINING SET. THE BEST VALUES

ARE IN BOLD

Fig. 4. The learning curves on the dermoscopy image training and valida-
tion sets by utilizing 2,594 labeled data, the blue and red curves represent
U-Net++ employing DyBAC and the gray and yellow curves represent
U-Net++ employing the standard convolution. (a) The accuracy curve
of training and validation sets on the dermoscopy image dataset and
(b) The loss curve of training and validation sets on the dermoscopy
image dataset.

40th epochs, the loss curve on the validation set of U-Net++
shows a large oscillation, which makes it difficult to converge,
and the corresponding validation Dice curve is also suffered a
drop. In contrast, by adding the DyBAC to U-Net++, the new
loss curve becomes relatively stable, and the validation Dice
curve has an upward trend. Therefore, the proposed DyBAC
can reduce overfitting risk for small datasets.
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TABLE III
COMPARISON OF ABLATION EXPERIMENTS ON THE LEFT ATRIUM

VALIDATION SET BY UTILIZING 10% LABELED DATA OF TRAINING SET.
THE BEST VALUES ARE IN BOLD

In addition, we extend the proposed ASE-Net to the 3D
MR left atrium image segmentation task. We use V-Net, [25]
as the backbone of the segmentation network. The ablation
experiments are performed on the 10% labeled and 90%
unlabeled of the training set. As shown in Table III, the
semi-supervised adversarial learning method using a single
segmentation network and a single discriminator achieves the
lowest 76.15% of DI, while the supervised V-Net achieves
79.99% of DI and the MT method achieves 84.24% of DI.
Based on MT, our proposed discriminators D1, D2, and
DyBAC improve the DI values by 1.58%, 1.93% and 1.51%,
respectively.

Overall, the additional discriminator D1 allows the network
to obtain effectively the prior relationship between unlabeled
data and labeled data. The additional discriminator D2 enables
the network to learn effectively the prediction consistency
when performing different perturbations on the same input,
which further increases the consistency constraint based on
MT. The proposed DyBAC effectively enhances the network
for image feature representation and improves the segmenta-
tion accuracy.

D. Comparative Experiments on Different Datasets

In order to verify the effectiveness of our proposed
method, we compare with supervised methods U-Net [1]
U-Net++ [2] and V-Net [25] as well as seven state-of-the-
art semi-supervised methods DAN [12] MT [5] UA-MT, [9]
TCSM_v2 [6] CP [8], DTC, [33] and MC-Net [31] on three
publicly available datasets LiTS [48] ISIC dermoscopy image
dataset [49], and 3D MR Left atrial dataset [50]. In addi-
tion, for the semi-supervised experimental setup, we perform
comparison experiments on 10% labeled and 90% unlabeled,
as well as 20% labeled and 80% unlabeled of training sets,
respectively.

1) CT Liver Segmentation: For a fair comparison, we use
U-Net as the backbone network for all methods in the liver
segmentation task. Table IV shows the comparison results
of different methods on the LiTS-liver testing set under the
condition of utilizing 10% labeled data. It can be seen that
DAN [12] improves DI by 4.01% and ASD by 2.25mm
compared to U-Net [1] under the condition of utilizing the
same proportion of labeled data. This shows that DAN can
effectively use unlabeled data to obtain better segmentation
results by using adversarial training methods. MT, [5] and
its improved methods UA-MT [9], TCSM_V2, [6] CPS [8]

TABLE IV
QUANTITATIVE COMPARISON BETWEEN OUR METHOD AND OTHER

COMPARISON METHODS ON THE LITS-LIVER TESTING SET BY

UTILIZING 10% LABELED DATA OF TRAINING SET. THE BACKBONE

NETWORK OF ALL EVALUATED METHODS IS U-NET. THE BEST

VALUES ARE IN BOLD

DTC [33], and MC-Net [31] also show some advantages
compared to DAN, which indicates that the consistency regu-
larization methods further enhance the utilization of unlabeled
data. The proposed ASE-Net reaches 94.12% of Dice and
3.51mm of ASD. Compared to the supervised method, our
method records improvements of 5.95% for DI and 3.38 mm
for ASD. Compared with the latest semi-supervised method
MC-Net [31], our method offers improved performance by
0.5% for DI and 0.21 mm for ASD.

Table V shows the experimental results with 20% labeled
and 80% unlabeled conditions, and we can see that our
ASE-Net improves 6.02% for DI and 3.32mm for ASD
compared to the supervised learning method. Moreover, the
experimental results of the proposed ASE-Net under the
condition of 20% labeled data are much closer to those of
U-Net using 100% labeled data. It can be demonstrated that
our ASE-Net effectively utilizes the advantages of consistency
learning and adversarial learning, which can further improve
the performance of our network.

In addition, Fig. 5 shows the visualization results of different
methods under the condition of 10% labeled data, where
the green indicates the ground truth, the red indicates the
segmentation result and the yellow indicates the overlap of
the segmentation result, and the ground truth. Therefore, fewer
green and red regions, and more yellow regions represent
better segmentation results. The last column in Fig. 5 shows
the segmentation results provided by our ASE-Net, it is clear
that our ASE-Net provides better segmentation results than
other methods used for comparison.

E. Skin Lesion Segmentation

To validate further our proposed ASE-Net, we con-
ducted sufficient experiments on the ISIC dataset. We use
U-Net++ [2] as the backbone network for all semi-supervised
methods, and we also perform quantitative comparisons using
10% and 20% labeled data, respectively. Table VI shows the
segmentation results for the validation set under the condition
of 10% labeled data of the training set. Using the same number
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Fig. 5. Visualization result of different methods on the LiTS testing set by utilizing 10% labeled data of training set. Green is the ground truth, red is
the segmentation result, and yellow is the overlap region of the segmentation result and ground truth. Therefore, fewer green and red regions imply
better segmentation results.

TABLE V
QUANTITATIVE COMPARISON BETWEEN OUR METHOD AND OTHER

COMPARISON METHODS ON THE LITS-LIVER TEST DATASET BY

UTILIZING 20% LABELED DATA OF TRAIN DATASET. THE BACKBONE

NETWORK OF ALL EVALUATED METHODS IS U-NET. THE BEST

VALUES ARE IN BOLD

of labeled data, our method shows an overall improvement
compared to the supervised method (2.62% for DI, 5.25%
for JA, 2.07% for SE, 1.39% for AC, 2.39% for SP). Our
method also shows some improvement compared to state-of-
the-art semi-supervised methods. Moreover, Table VII shows
the results of our ASE-Net compared with other methods under
20% labeled data condition, and it can be seen that our method
obtains the highest DI of 87.21%, JA of 79.25%, SE of 91.15%
and AC of 93.09%. Therefore, our ASE-Net can effectively
utilize the prior relationship between unlabeled and labeled
data and possesses a better feature representation ability.

Fig. 6 shows some of the visualization results of the
validation set under the condition of 20% labeled data of
the skin lesions dataset. We can see that the comparative
methods only provide rough boundaries but our ASE-Net

TABLE VI
QUANTITATIVE COMPARISON BETWEEN OUR METHOD AND OTHER

COMPARISON METHODS ON THE DERMOSCOPY IMAGE VALIDATION

SET BY UTILIZING 10% LABELED DATA OF THE TRAINING SET. THE

BACKBONE NETWORK OF ALL EVALUATED METHODS IS U-NET++.
THE BEST VALUES ARE IN BOLD

obtains high-quality segmentation results with smooth bound-
aries compared to other methods. One of the main reasons is
that the two additional discriminator networks generate addi-
tional supervised information for the segmentation network
by learning the matching relationship between the original
image and segmentation results. It can be further analyzed
to demonstrate that the discriminator networks are very sen-
sitive to the boundaries of segmentation results. The main
reason is that the segmentation network can roughly predict
the location of targets, but the prediction of boundaries is
not fine enough. Therefore, the discriminator networks make
the segmentation network generate high-quality segmentation
results with smooth boundaries by continuously feeding back
the segmentation network’s prediction quality on boundaries.

1) MR Left Atrium Segmentation: In order to demonstrate
the effectiveness of the proposed ASE-Net in 3D med-
ical image segmentation tasks, we extend the application of
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Fig. 6. Visualization result of different methods on the dermoscopy image validation set by utilizing 20% labeled data of training set.

TABLE VII
QUANTITATIVE COMPARISON BETWEEN OUR METHOD AND OTHER

COMPARISON METHODS ON THE DERMOSCOPY IMAGE VALIDATION

SET BY UTILIZING 20% LABELED DATA OF THE TRAINING SET. THE

BACKBONE NETWORK OF ALL EVALUATED METHODS IS U-NET++.
THE BEST VALUES ARE IN BOLD

ASE-Net to the 3D left atrium for experiments. We perform
quantitative comparisons using 10% and 20% labeled data,
respectively. All the comparison methods in the experiment
employ V-Net [25] as the backbone. The specific experimental
results are shown inTables VIII and IX. It can be seen that
our ASE-Net obtains a higher Dice value of 87.83% than
other semi-supervised methods under the condition of 10%
labeled data. However, our ASE-Net achieves a slightly lower
value of DI (0.05%) than the latest MC-Net [31] under
the condition of 20% labeled data as shown in Table IX.
One of the main reasons is that MC-Net [31] employs
a double-decoder architecture containing more parameters
(12.35 M) than our ASE-Net (3.92 M) to improve the seg-
mentation accuracy. Fig. 7 shows the segmentation results
on the left atrium dataset with the latest methods DTC [33]
and MC-Net [31] under 10% labeled and 20% labeled data,
respectively. It is clear that our results are closer to the ground
truth.

In general, our ASE-Net can effectively combine con-
sistency and adversarial learning to make the segmentation
network learn consistently for both labeled and unlabeled
data. In addition, the proposed two discriminators can effec-
tively learn the segmentation difference between labeled data
and unlabeled data, the segmentation difference between per-
turbed data and unperturbed data. Furthermore, the obtained

TABLE VIII
QUANTITATIVE COMPARISON BETWEEN OUR METHOD AND OTHER

COMPARISON METHODS ON THE LEFT ATRIUM VALIDATION SET BY

UTILIZING 10% LABELED DATA OF TRAINING SET. THE BACKBONE

NETWORK OF ALL EVALUATED METHODS IS V-NET. THE BEST VALUES

ARE IN BOLD

TABLE IX
QUANTITATIVE COMPARISON BETWEEN OUR METHOD AND OTHER

COMPARISON METHODS ON THE LEFT ATRIUM VALIDATION SET BY

UTILIZING 20% LABELED DATA OF TRAINING SET. THE BACKBONE

NETWORK OF ALL EVALUATED METHODS IS V-NET. THE BEST VALUES

ARE IN BOLD

difference is used to update the segmentation network for
achieving better segmentation results.

V. DISCUSSION

A. Model-Size Comparison

Table X shows the comparison of parameters, floating point
operations (FLOPs), and model size of different networks in
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Fig. 7. Visualization result of different methods on the left atrium
validation set by utilizing 10% and 20% of the labeled data in the training
set, respectively.

TABLE X
COMPARISON OF THE EFFICIENCY OF DIFFERENT NETWORKS, THE

BEST VALUES ARE IN BOLD

the inference phase. Since our proposed discriminator net-
works are only used in the training phase, we only test the effi-
ciency of the segmentation network. Specifically, we replace
the standard convolution of the segmentation network with a
dynamic convolution-based bidirectional attention component
(DyBAC) while the first layer is excluded. The computational
cost of the 2D networks is estimated with an input size of 1
× 256 × 256, and the computational cost of the 3D networks
is evaluated with an input size of 112 × 112 × 80. It can
be seen that when the backbone network adopts U-Net, [1],
the number of parameters of ASE-Net is only 15.0% of the
original U-Net. When the backbone network is U-Net++ [2]
with dense skip-connection, the number of parameters of
ASE-Net is only 41.7% of the original U-Net++. When the
backbone network is V-Net [25], the number of parameters of
ASE-Net is only 41.5% of the original V-Net. Obviously our
ASE-Net significantly reduces the number of parameters and
computational costs.

B. Statistical Analysis

Since the statistical significance of an algorithm can indicate
that the differences observed in experiments are real but not
accidental, we perform the paired t-test with α = 0.05 on the
LiTS [48] and the dermoscopy image, [49] datasets. As shown
in Table XI, we mainly conducted the one-tailed test by
Dice metric and calculated the p value between MT [5] and

TABLE XI
STATISTICAL SIGNIFICANCE OF THE PROPOSED ASE-NET AND

BASELINE MT METHODS ON DIFFERENT DATASETS

our ASE-Net. We find that the p value is less than 0.05.
Generally, if p < 0.05, then there is a significant difference.
Therefore, through the above analysis, it can be concluded that
the proposed ASE-Net is statistically significant.

VI. CONCLUSION

In this work, we have proposed ASE-Net for semi-
supervised medical image segmentation. First, the proposed
ACTS effectively combines adversarial learning and consis-
tency learning, using adversarial training to maximize con-
sistency learning. This allows the network to learn quickly
the prior relationship between unlabeled and labeled data,
and further mines the potential knowledge existing in unla-
beled data. Then, our proposed DyBAC adaptively adjusts the
parameter values of convolutional kernels according to input
samples, which not only effectively avoids network overfitting
and improves the feature representation ability of the network
but also reduces the memory overhead. Experiments on three
publicly available benchmark datasets demonstrate that our
proposed ASE-Net outperforms state-of-the-art methods and
provides an effective solution for semi-supervised medical
image segmentation, significantly reducing network overfitting
risk and uncertainty prediction in consistency learning.
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