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Local and Global Feature Learning With Kernel
Scale-Adaptive Attention Network for
VHR Remote Sensing Change Detection

Tao Lei
Zhiyong Lv

Abstract—Change detection is an important task of identifying
changed information by comparing bitemporal images over the
same geographical area. Currently, many existing methods based
on U-Net and attention mechanism have greatly promoted the
development of change detection techniques. However, they still
suffer from two main challenges. First, faced with the diversity of
ground objects and the flexibility of scale changes, vanilla attention
mechanisms cripple spatial flexibility in learning object details
due to the same scale convolution kernels at different convolution
layers. Second, the complex background and high similarity be-
tween changed information and nonchanged information makes it
difficult to fuse low-level details and high-level semantic by simple
skip-connection in U-Net. To address the above issues, a local
and global feature learning with kernel scale-adaptive attention
network (LGSAA-Net) is proposed in this article. The proposed
network makes two contributions. First, a scale-adaptive atten-
tion (SAA) module has been designed to exploit the relationships
between feature maps and convolutional kernel scales. The SAA
module can achieve better feature discrimination than vanilla
attention mechanism. Second, a multilayer perceptron based on
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patches embedding has been employed by skip-connection to learn
the local and global pixel association, which is helpful for achieving
globally deep fusion of low-level details and high-level semantics.
Finally, experiments and ablation studies are conducted on three
datasets of LEVIR/WHU/GZ. Experimental results demonstrate
that the proposed LGSAA-Net performs favorably against compar-
ative current approaches and provides more accurate contour and
better internal compactness for changed targets, thus verifying the
effectiveness and superiority of the proposed LGSAA-Net in VHR
remote sensing change detection.

Index Terms—Attention mechanism, change detection, multi-
layer perceptron, skip-connection.

I. INTRODUCTION

HANGE detection is the process of identifying differences
C in the state of an object or phenomenon by comparing
two images at the same geographical area but of different time
periods, which can reveal the dynamic changes in the surface
and is one of the most important techniques in remote sensing
interpretation [1]. As the Earth’s surface is constantly evolv-
ing, real-time and accurate access to the surface changes is
important for understanding of human activities, ecosystem, and
their interactions. Recently, change detection based on VHR
remote sensing images has been widely applied in land use [2],
disaster monitoring [3], urban environmental investigation [4],
etc. In change detection tasks, some factors, e.g., anthropogenic
behavior, atmospheric conditions, and illumination, may lead to
false detected regions [1], [4] and manual change detection is
time-consuming and tedious. Under this circumstance, a large
number of change detection approaches for remote sensing
images have been proposed in recent years.

Existing change detection methods can be categorized
roughly into traditional methods and deep learning-based meth-
ods. Furthermore, traditional change detection methods can be
divided into pixel-based approaches [5], [6], [7] and object-
based approaches [8], [9], [10]. The pixel-based approaches
usually generate difference images by comparing the spectral
or texture information of pixels and obtain results by using
pixel classification. Compared to pixel-based approaches, the
object-based approaches are working in units of objects and
capture the image contextual information by processing ho-
mogeneous pixels of same objects. However, these methods
usually depend on the hand-crafted features and show some

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see
https://creativecommons.org/licenses/by-nc-nd/4.0/


https://orcid.org/0000-0002-2104-9298
https://orcid.org/0000-0001-8375-1181
https://orcid.org/0000-0002-8044-0860
https://orcid.org/0000-0003-2595-4794
https://orcid.org/0000-0001-6248-2875
mailto:leitaoly@163.com
mailto:xdinghua@sust.edu.cn
mailto:ninghailong93@gmail.com
mailto:yangshuangming@penalty -@M tju.edu.cn
mailto:yangshuangming@penalty -@M tju.edu.cn
mailto:Lvzhiyong_fly@penalty -@M hotmail.com
mailto:Lvzhiyong_fly@penalty -@M hotmail.com
mailto:asoke.nandi@brunel.ac.uk
https://github.com/SUST-reynole/LGSAA-Net
https://github.com/SUST-reynole/LGSAA-Net

LEI et al.: LGSAA-NET FOR VHR REMOTE SENSING CHANGE DETECTION

bottlenecks [7], [9], [10]. Specifically, it is difficult to design
useful feature extraction operators for traditional methods, since
remote sensing images are usually more complex than other
natural images [11]. By contrast, deep learning methods [12],
[13], [14], especially convolutional neural networks (CNNs),
have been widely used in various fields due to their strong
feature discrimination abilities [15], [16], [17]. As a result, a
large number of deep learning-based approaches [17], [18],
[19], [20] have been reported, although they achieve better
change detection results by employing various of improved
CNNs, they still face some challenges. On the one hand, the
prevailing pooling operation in CNNs easily leads to a difficulty
of detail feature extraction. On the other hand, a large num-
ber of parameters in CNNs may cause overfitting and some
unpredictable problems [21]. Therefore, the current change
detection methods based on CNNs still have much room for
improvement.

The U-Net [22] is a very popular network in medical image
segmentation, since it is specially designed for small samples
training. Similar to medical images, remote sensing images also
have difficulties in sample acquisition and data annotation [23],
[24]. However, compared to medical images, remote sensing
images often involve higher resolution, more complex image
content, and more serious noise interference. Therefore, it is
difficult to obtain good change detection results by applying the
U-Net directly to remote sensing images [25]. The U-Net treats
all feature maps equally, and thus, ignores the fact that different
feature maps pay attention to different object regions. To address
this problem, various improved U-Nets have been put forward
by employing attention mechanism to improve the performance
of networks. The receptive fields of image context at different
convolution layers are diverse. However, the existing attention
mechanisms usually adopt a fixed convolutional kernel scale
at different convolutional layers, which is disadvantageous for
image details representation of changed targets. Furthermore,
U-Nets utilize the skip-connection to realize feature fusion of
low-level details and high-level semantics. Although they can
improve image feature discrimination abilities, the symmetric
fusion ignores the association between shallow-layer and deep-
layer features. Consequently, a lot of improved networks are
proposed, such as UNet++ [26] and UNet3+ [27]. However,
these networks conduct the connection using pixel-by-pixel fu-
sion, which ignores the local and global information integration
in an image.

To solve the above problems, a local and global feature
learning with kernel scale-adaptive attention network (LGSAA-
Net) is proposed for VHR remote sensing change detection in
this article. On the one hand, we introduce a scale-adaptive
convolution kernels strategy to solve the problem of the diffi-
culty of image detail feature extraction caused by single-scale
convolution kernels. On the other hand, for the large semantic
gap between low-level details and high-level semantics caused
by conventional skip-connection, we adopt the fusion of local
and global features to alleviate this problem. The proposed
LGSAA-Net achieves a good comprehensive performance in
model complexity and change detection accuracy. The main
contributions of this article are summarized follows.
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1) To boost the feature learning effect on object details of
VHR remote sensing images, a scale-adaptive attention
(SAA) module is designed according to the change of
feature map scales at different layers. The SAA module
can establish the internal correlation between feature maps
and convolution kernel scales.

2) To enhance effectively the local and global feature dis-
crimination abilities of the proposed LGSAA-Net, a mul-
tilayer perceptron based on patches embedding (MLPPE)
module is proposed. The MLPPE module uses a multilayer
perceptron (MLP) to facilitate the global association learn-
ing of pixels, while employing the attention mechanism to
learn the local correlation of different patches.

The rest of this article is arranged as follows. The related work
is reviewed in Section II. Section III gives a detailed description
of the proposed LGSAA-Net. The experimental results and
analysis are shown in Section IV. Finally, Section V concludes
this article.

II. RELATED WORK
A. Attention Mechanism on Change Detection

Attention mechanism in vision perception relates to the pro-
cess of selectively concentrating on parts of the most informative
feature discrimination while suppressing the useless ones [28].
Previous literatures [29], [30] show that the attention mecha-
nism can help CNNs to achieve better image classification and
semantic segmentation. The most popular attention module is
squeeze-and-excitation (SE) [31], which simply squeezes each
feature map to model the cross-channel relationships in feature
maps and efficiently build interdependencies among channels.
To simplify the structure of the channel attention, an efficient
channel attention network (ECA-Net) [32] adopts a 1-D con-
volution filter to compute channel weights. However, channel
attention only considers encoding interchannel information but
ignores the spatial details of feature maps. In order to capture
the spatial details of feature maps and aggregate image contex-
tual information, the gather-excite network (GENet) [33] and
the pointwise spatial attention network (PSA-Net) [34] extend
the attention mechanism by adopting different spatial attention
or designing advanced attention blocks in spatial dimension.
Moreover, from the perspective of interpretability, the hybrid
model of combining channel attention and spatial attention is
more conducive for improving network performance. Therefore,
the bottleneck attention module (BAM) [35], the convolutional
block attention module (CBAM) [36] and the global context
network (GCNet) [37] refine convolutional features indepen-
dently in channel- and spatial-dimension by cascading these two
attentions. In particular, both BAM and CBAM exploit position
information by reducing the channel dimension of the input
tensor and then computing spatial attention using convolutions.

Compared to the attention modules mentioned above, the
self-attention mechanism can effectively model the long-range
dependencies by relating different positions of a single data
sample. As a result, the self-attention [38] has obvious ad-
vantages in modeling long-range dependencies and building
spatial- or channelwise attention. Due to the superiority of
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self-attention, scholars have proposed many improved attention
networks, including the nonlocal neural networks (NLNet) [39],
the criss-cross attention (CCNet) [40], the dual attention network
(DANet) [41], and the segmentation transformer (SETR) [42].
These networks aim to overcome the limitations of convolu-
tional operators that only capture local relationships but fail in
modeling long-range dependencies in vision tasks. Unlike in
the presented models [39], [40], [41], the SETR [42] adopts a
vision transformer (ViT) [43] encoder and two decoders that
are designed based upon progressive upsampling and multilevel
feature aggregation. Although the SETR exercises stronger rea-
soning and modeling abilities due to the excellent self-attention,
the parallel computing increases the complexity of models, and
direct upsampling or deconvolution is not conductive to global
feature learning.

In recent years, attention mechanisms have also been widely
used in change detection tasks [44], [45]. The Siamese CNN
(Siam-Net) [44] incorporates the CBAM to Siamese network
to extract adaptively spectrum-spatial features from bitemporal
remote sensing images. To mitigate the problem of class imbal-
ance in change detection, the dual task constrained deep Siamese
convolutional network [45] constructs dual CBAMs for each
bitemporal feature to emphasize change information. CBAM is
also commonly used to refine bitemporal features, as Shi et al.
[46] proposed a deeply supervised metric method. It utilizes
CBAM to make the deep features of different phases more
discriminative. In order to extend the advantage of self-attention
in capturing long-range dependencies to remote sensing change
detection tasks, a series of studies have appeared [47], [48],
[49]. However, the above studies adopt fixed receptive fields at
different layers, which easily lead to poor feature learning on
the spatial details of changed targets. To tackle the problem,
we propose a scale-adaptive attention (SAA) module in this
article. The SAA module can establish the relationship between
feature maps and convolution scales, implements the adaptive
scale space operation on the basis of channel attention for change
detection, and thus, achieves better feature learning.

B. Skip-Connection on Change Detection

In image semantic segmentation, feature fusion strategy is
used to improve the problems of missed details, rough segmen-
tation results, and low precision [50], [51], [52]. To achieve
feature fusion, the skip-connection is one of the most important
factors that decide the success of encoder—decoder networks in
image semantic segmentation [53], [54]. The U-Net [22] applies
multiple skip-connections to construct a contracting path and
a symmetric expanding signal path. Similar to the U-Net, the
SegNet [55] utilizes a small network structure and the skip-
connection method to achieve better visual semantics as well as
detailed contextures. Although the skip-connection can help the
U-Net and the SegNet to achieve high segmentation accuracy,
the symmetric fusion employed by skip-connection neglects the
association between shallow- and deep-layer features.

In light of above problem, some improved models that can
be considered as an extension of the U-Net based on skip-
connection, such as the UNet++ [26] and the UNet3+ [27].
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The UNet++ [26] uses a series of nested convolutional structure
before feature fusion to capture contextual information, while
the UNet3+ [27] applies full-scale skip-connection to capture
fine-grained detail information and coarse-grained semantic in-
formation. However, as these networks achieve feature fusion
in a pixel-by-pixel manner, it is not conducive to bridging
effectively the semantic gap of feature maps between the en-
coding stage and the decoding stage. To alleviate this issue,
some strategies have been designed and applied to the skip-path
to improve network performance, such as the modified U-Net
(mU-Net) [56] and the MultiResUnet [57]. They add some
additional convolution operations before feature fusing, which
reduces the difference between feature maps from encoder and
decoder leading to better feature discrimination abilities. In
addition, before concatenating the features at each resolution of
the encoder with the corresponding features in the decoder, both
the attention gate U-Net (Attention U-Net) [58] and the nonlocal
U-Nets (nonlocal U-Net) [59] rescale the outputted features
of the encoder by using an attention module. Furthermore,
they utilize higher-level semantic features to guide the current
features for attention selection, but this kind of strategies does
not consider the local and global information integration in an
image.

Due to the simplicity and superior performance of the skip-
connection based on U-shaped structure, popular networks for
change detection [25], [60], [61], [62] still depend on the U-
shaped architecture. Based on UNet++, Peng et al. [25] em-
phasized the difference information learning by using skip-
connections inside convolution units. Furthermore, Peng et al.
[60] designed an improved UNet++ architecture to integrate low-
level details and high-level semantics. In addition, an end-to-end
LU-Net [61] is designed to leverage both spatiality and tem-
porality characteristics simultaneously. Since change detection
networks tend to focus on the extraction of semantic information
and ignore the importance of shallow features, Fang et al. [62]
proposed a densely connected U-Net. It reduces the loss of
shallow location information by the network through compact
transmission. It can be seen that those networks mentioned above
can improve change detection accuracy by fusing low-level
details and high-level semantics. However, due to the large
semantic gap between high-level and low-level features, the
existing skip-connection methods may result in limited abilities
of feature discrimination. Therefore, to narrow the semantic gap,
we further adopt a multilayer perceptron to learn the association
of global pixels and the relationship of different patches to
exploit more useful feature discrimination information.

III. METHODS

An overview of the proposed LGSAA-Net is shown in Fig. 1.
First, the feature extraction is performed on VHR remote sensing
images in the first encoding branch. Second, the raw difference
images by performing subtracting on bitemporal images are
fed into the second encoding branch to extract the difference
information. Third, the result of each feature extraction layer in
the second encoding branch is fused with the output result from
the first encoding branch. Fourth, the subtraction operation is
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Fig. 2. Comparison of the single-scale and multiscale convolution kernels on
multiresolution images. It is found that the later provides better change detection
results than the former due to the employment of multiscale convolution kernels.

GT

esult

CX1x1 Cx1x1

Fig. 3. SAA module.

performed on feature maps from the corresponding bitemporal
paths. Finally, the fused features are fed into the next encoding
layer.

In order to refine the target contour, the SAA module is
proposed to establish the relationships between feature maps
and convolution kernel scales, which is described in detail in
Fig. 3. We also present the structure of the MLPPE, as shown in
Fig. 5, which can learn local correlation of different patches and

(@) (b) © (d)

Fig. 4. Comparison of change detection using different networks. The first
column: (a) Raw difference image and ground truth image. From the second to
the fourth column, top is heatmaps and the bottom is change detection results
from: (b) U-Net; (c) attention U-net; and (d) U-Net+multilayer perceptron.

—————tm =t

Fig. 5.  MLPPE module.
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facilitate the global association learning of pixels. In general,
the proposed LGSAA-Net can effectively improve its feature
discrimination abilities and provide excellent change detection
results.

A. The SAA Module for Change Detection

Multiscale Convolution Kernels: The utilization of multiscale
information is an important strategy in image segmentation
applications, since multiscale convolutional kernels can learn
richer features. Generally, fine-grained sampling can obtain
richer detail information, while coarse-grained sampling can
extract richer contextual information. The latter is in favor of
getting the overall trend of an image information. In addition,
the existing spatial attention networks for change detection
often utilize convolution kernels with fixed size to harvest the
correlation of image spatial position information, which leads
to the problem of the limited performance of target contour
detection. Fig. 2 shows the comparison of the single-scale and
multiscale convolution kernels on multiresolution images. It is
clear that the latter provides better change detection results than
the former due to the employment of multiscale convolution
kernels.

Design of SAA Module: In light of the above discussion,
the SAA module is designed based on the scale changes of
feature maps in the encoding stage. Specifically, let the output
of the previous layer of the network F' € RE*H*W be the input
feature maps of the module as shown in Fig. 3, then the global
average pooling and convolutional operation are performed on
F' to obtain the A€ that refers to compressed output score of
each channel. To simplify the symbol mark, we use GAP to
represent the operation of global average pooling. The specific
calculations are defined as follows:

A¢ = s(convlD (GAP (F), k%)) (D

where, A° € R€*1*1 conv1D represents 1-D convolution op-
eration, s(-) stands for the sigmoid function. k€ is the size of
the convolution kernel. If 7" is an even number, then k¢ = T'(+),
otherwise k¢ = T'(-) + 1. Inthis article, we set « and 3 to 1 and 2
according to the empirical value in the experiment, respectively.
ROUND denotes the rounding operation. The refined output is
defined as

FA° = A, (F, A9 A3)

where A,,. denotes channelwise multiplication. This operation
can adaptively adjust the value of k¢ according to the number
of channels, and conveniently obtain channel interactivity infor-
mation.

Furthermore, the average value and maximum value in chan-
nel dimension on the feature maps FA4° ¢ RE*T*W are cal-
culated, and the 2-D convolution is performed to complete the
space mapping. The calculation formulae are given as follows:

A% =35 (conv (concat (gbave (FAC) s Omax (FAC)) ,kzs)) 4)
k* = ROUND (v X |log (H x W,¢)|) 5)
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where ¢, (+) represents the channel mean operation, @ (+)
denotes channel maximum operation, concat denotes the con-
catenate operation, and conv stands for the 2-D spatial convo-
lution operation. k° is the size of convolution kernels. In this
article, we set € and ~y to 10 and 3 according to the empirical
value in the experiment, respectively. A® is the scale adaptive
spatial attention weight. Finally, the refined output of the SAA
module denoted by F'® is calculated as follows:

P _ A (F, Ams (FAC7AS)) (6)

where A\,,s represents elementwise multiplication, and A 4 de-
notes elementwise addition. The SAA module employs the
combination of channel attention and spatial attention with the
characteristics of scale adaption, establishes the relationships
between the feature maps and the convolution kernel scales, and
realizes the scale-adaptive spatial attention operation.

B. MLPPE Module for Change Detection

Multilayer Perceptron: The current networks [60], [61], [62]
improve change detection accuracy by fusing low- and high-
level features. However, these methods mainly adopt the pixel-
by-pixel fusion strategy, which ignores the integration of local
and global information. Thus, most networks usually employ
full connection layers in middle and high-level layers, to summa-
rize features globally and help the network effectively learning
global information. In light of discussion above, we employ full
connection layers in feature fusion stage to summarize features
globally and help the network effectively learning global in-
formation. As shown in Fig. 4, compared with the U-Net and
Attention U-Net [58], the network with multilayer perceptron
[63], named U-Net + multilayer perceptron, obtains more intu-
itive heat maps by fusing low- and high-level features. At the
same time, it provides better detection results than the U-Net
and the attention U-Net, which shows that multilayer perceptron
is helpful for improving change detection results. In order to
further improve the network performance, the patches strategy
from the original feature maps are utilized in MLPPE module.

Global Features Based on Multilayer Perceptron: In this
section, we present the MLPPE module, as shown in Fig. 5.
Let feature map F’ be an input tensor, the input feature maps are
reshaped to M to facilitate the next full connection operation.
The specific calculations are given as follows:

M = L (R (F)) @)
F9—5§ {7% (£ (o (M)))} ®)

where L(-) denotes the linear operation between different layers,
R(-) denotes the reshape operation to realize F' € RE*>*W
M e REHW (is the number oﬁchannels, H x W is the size
of the current input feature maps. R (-) represents the inverse op-
eration of R(-) and is used to achieve M € R“*HW — F9 ¢
RE*H>W 1n the MLPPE, we employ two linear layers, and §
refers to the ReLLU function. Furthermore, in order to avoid the
problem of linear operations being sensitive to the intermediate
input scale, the double-normalization method [64] is used in
the MLPPE. o stands for double-normalization operation. M’
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denotes the result of doule-normalization. Here y ]\//.71” ;=1
where ¢ and j denote index of each dimension, respectively, and k
is utilized to index current location information. The calculation
formulas are given as follows:

— exp (M;,;)
M =<=—"vr— 9
T Y exp (M)
MZ{’J_ — exp(JWi,\J) (10)
>k €Xp (Mzk)

Local features Based on Patches Channel Information: For
VHR images containing rich spatial information and complex
contexture, the local spatial details of targets play a vital role
in change detection, and the modeling for channel correlation
is also beneficial to improving feature discrimination abilities.
Therefore, the MLPPE module captures the image attention
information with spatial property by learning both patches chan-
nel association and image local spatial details, which further
boosts the change detection accuracy for VHR remote sensing
images. As shown in Fig. 5, F is sequentially divided into s2
patches { P1, Pa, ..., Pg2}.In which P,, € REH W' where
H' = H/(s?), W' =W/(s?),and 1 < n < 5%, n,s € N;. To
simplify the symbol mark in Fig. 1(c), we use €2 to synthesize
the calculations of (11) and (12). Then we get the output feature
information V',, € R¢*1*1 of each corresponding patch P,, by
implementing (11) and (12). The specific calculation formulas
are defined as follows:

Un = Wn * Pn (11)
. " W
vy = mzzuﬁ(%j) (12)

where n indexes the nth patch of feature maps. U,, €

RE*H>W'" {5 the output feature map. Besides, W, =
[wl, w2, ... wS], w™ is a mth 2-D spatial filter kernel. V,, =
[vl w2, ..., v¢], in which v/ denotes mth channel association

of V. Then, two linear layers are applied to establish the
channel association of V', and obtain features P,,. The specific
calculation is defined as follows:

P,=s(LO(L(Va) (13)

similarly, to simplify the symbol mark in Fig. 5, we use ®
to synthesize the calculation of (13), in which P,, € RE*1x1
denotes the refined channel output of each patch. £(-) denotes
the linear operation between layers. Besides, {1317 132, e 1382 }
is the channel correlation on patch-level and the relevance of
patch spatial details.

In this section, the globally contextual information of VHR
remote sensing images is achieved by integrating the patch
embedding result into the multilayer perceptron. Then weights
obtained by patch embedding are applied to the patches corre-
sponding to the global feature maps obtained by the multilayer
perceptron. Similar to F'® in (7)—(8), we compute local patch
information results { Py, Py, ..., P,} by performing (7) and
(8)on{ P4, Pa,..., Ps2}.The calculation formulas are defined
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as follows:
Ln = Aa (Pl Ame (P, Pa)) (14)
{Ly,Ls,...,L,} = F' (15)
F' = N4 (F9,FY) (16)

where L., represents the output results of nth patch feature in-
formation, A\, . denotes channelwise multiplication, A 4 denotes
elementwise addition, = denotes the operation that can unite
all patches, and F! denotes final output with channel weights
information and local patch information. Then we obtain the
final refined feature fusion output F’ € RE*H>W

IV. EXPERIMENTS AND ANALYSIS

In order to evaluate the proposed method, some state-of-
the-art methods, including FC-EF [65], FC-di [65], FC-conc
[65], FCN-PP [66], FDCNN [67], DSIFN [68], SRCD-Net [18],
Trans-CD [19], are considered as comparative methods in our
experiments. We complete the comparisons by the released
model codes. Furthermore, we conducted the ablation studies
to prove the validity of each component.

A. Experimental Setup

Datasets: In this article, three benchmark datasets, including
LEVIR, WHU, and GZ, are used to assess the proposed method.
All of these datasets contain raw bitemporal images, and ground
truths.

LEVIR Dataset [69] is a building change detection dataset
with a spatial resolution of 0.55 m. It contains 637 pairs of
bitemporal images with size of 1024 x 1024. These bitemporal
images are within a time span of 5 to 14 years and have significant
land changes, especially the growth of buildings covered by
various types of buildings, such as villas, high apartments,
small garages, and large warehouse. The fully annotated LEVIR
dataset contains a total of 31 333 individual changed examples.
We applied overlapping and nonoverlapping manners to crop the
data into image patches with size of 224 x 224, then obtained
11 083 training samples, 2880 validation samples, and 2048
testing samples.

WHU Dataset [70] is a building change detection dataset
with a spatial resolution of 0.075 m. It contains one pair of
bitemporal images with size of 32 507 x 15 354. We first
divide the bitemporal images into four smaller images without
overlapping: 32507 x 12610/18 361 x 2744/7634 x 2744/6511
x 2744. We used the first patch as the training set, the second
and third patches as the validation set, and the fourth patch as
the testing set. Then, we cropped these data into image patches
with size of 224 x 224, obtaining 9637 training samples, 2494
validation samples, and 1600 testing samples.

GZ Dataset [71] is acquired during 2006 and 2019 period.
These bitemporal images cover the suburb area of Guangzhou
City, China. In order to align the image pairs, it collects 20
pairs of bitemporal images that change with the season varying
by BIGEMAP software of Google Earth. These 20 pairs of
bitemporal images, which have a spatial resolution of 0.55 m
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Fig. 6.

and a size range of 1006 x 1168 pixels to 4936 x 5224 pixels,
are divided into three parts: training set (14 pairs)/validation set
(3 pairs)/testing set (3 pairs). Then, we cropped these data into
image patches with size of 224 x 224. Finally, we obtained 5612
training samples, 1692 validation samples, and 1456 testing
samples.

Implementation Details: We implemented the proposed
LGSAA-Net with PyTorch and trained it on a NVIDIA GeForce
RTX 2080Ti GPU with 11 GB RAM. In this article, the param-
eter setting of comparative approaches follows original papers.
For the proposed LGSAA-Net, we set s = 2 for the MLPPE
module. The Adam optimizer is adopted with a learning rate
of 10~* as an optimization algorithm, and the batch size of the
training data is set to 16.

Evaluation Metrics: To evaluate the performance of the pro-
posed LGSAA-Net, five popular metrics have been adopted,
including precision (Pre), recall (Rec), overall error (OF),
overall accuracy (OA), and Fl-score (F'1). Specifically, the
Pre denotes the ratio of detected areas that are really changed
regions in totally detected regions. The Rec denotes the ratio
of detected areas that are really changed regions compare to
ground truths. The OF is usually used to evaluate the overall
error ratio of object detection. OF, O A, and F'1 are the overall
evaluation indexes of the prediction change detection results.
Smaller value of O F and larger values of O A and F'1 mean that
the better prediction change detection results, and vice versa.
Moreover, there is a large number of testing images in each
of the three datasets (e.g., LEVIR, WHU, and GZ datasets).
We use [pre]_m, [rec]_m, Joe]_m, Joa]_m, { — [score]_m to
define the metrics of the m-th testing sample, in which m denotes
the number of testing samples in each dataset. These metrics are
defined as follows:

TP
Pre = —— 1
T TP FP 1n
TP
fee = 7p  FN (18)
FP+ FN
OE + (19)

" TP+TN+FP+ FN

S N & S & & N Q
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Experimental results on LEVIR dataset. (a) Pretemporal images. (b) Posttemporal images. (¢) Ground truths. (d) FC-EF. (e) FC-di. (f) FC-conc.

(g) FCN-PP. (h) FDCNN. (i) DFISN. (j) SRCD-Net. (k) Trans-CD. (I) LGSAA-Net. Note that, the black color represents the unchanged regions, the white
color represents the changed regions, the pink color denotes false-detected regions, and the cyan color denotes true-missed regions.

TP+ TN
OA = 20
TP+TN + FP+ FN (20)
Pre x R
F1=2x 2 X8e¢ @1
Pre 4+ Rec

where the T'P (true positive) denotes the total number of pixels
accurate-detected on really changed regions, the T'N (true nega-
tive) means the total number of pixels accurate-detected on really
unchanged regions, the F'P (false positive) stands for the total
number of pixels over-detected, and the F'/N (false negative) is
the total number of pixels miss-detected, respectively.

B. Comparison With State-of-The-Art Methods

Comparison on LEVIR Dataset: Fig. 6 shows the change
detection results on LEVIR dataset, where Fig. 6(a)(c) are
the bitemporal images and the ground truths, respectively. In
Fig. 6(d)(f), the first three comparison methods are based on
fully convolution network and feature fusion methods. It can
be seen that the change detection results provided by FC-di are
better than FC-EF and FC-conc, which shows that the Siamese
encoder can slightly improve the model accuracy. Also, the
results provided by FC-EF are inferior to FC-di, but better
than FC-conc, which indicates that FC-EF can extract better
discriminative features from bitemporal images than FC-conc.
In addition, as shown in Fig. 6(g) and (h), although FCN-PP
and FDCNN miss some truly changed regions (cyan color)
in sample_2, they achieve better change detection results in
sample_1 and sample_3, since the Gaussian pyramid module of
FCN-PP possesses a strong feature discrimination ability, and
the multiscale and multidepth feature difference maps generated
by FDCNN are beneficial for change detection. Thus, FCN-PP
and FDCNN provide better change detection results than the
first three comparison methods. In contrast, the missed regions
(cyan color) in Fig. 6(i)—(k) are greatly reduced, and their
internal compactness of objects are improved compared with
the results in Fig. 6(d)—(h). Fig. 6(1) shows that the proposed
LGSAA-Net achieves the best change detection results with
complete boundaries and high internal compactness, since it
uses patch embedding and multilayer perceptron to learn local
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Experimental results on WHU dataset. (a) Pretemporal images. (b) Posttemporal images. (c) Ground truths. (d) FC-EF. (e) FC-di. (f) FC-conc. (g) FCN-PP.
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(h) FDCNN. (i) DFISN. (j) SRCD-Net. (k) Trans-CD. (1) LGSAA-Net. Note that, the black color represents the unchanged regions, the white color represents the
changed regions, the pink color denotes false-detected regions, and the cyan color denotes true-missed regions.

TABLE I
QUANTITATIVE EVALUATION RESULTS ON LEVIR DATASET

TABLE I
QUANTITATIVE EVALUATION RESULTS ON WHU DATASET

Evaluation metrics

Evaluation metrics

Methods Methods
Pre Rec OF OA Fl1 Pre Rec OF OA F1
FC-EF [65] 0.8748 0.8452 0.0307 0.9693 0.8475 FC-EF [65] 0.8102 0.8159 0.0301 0.9699 0.7945
FC-di [65] 0.8870 0.8438 0.0270 0.9730 0.8531 FC-di [65] 0.8801 0.8250 0.0230 0.9770 0.8317
FC-conc [65] 0.8668 0.7985 0.0347 0.9653 0.8211 FC-conc [65] 0.6881 0.8271 0.0506 0.9494 0.7187
FCN-PP [66] 0.8581 0.8901 0.0273 0.9727 0.8642 FCN-PP [66] 0.8910 0.8567 0.0194 0.9806 0.8539
FDCNN [67] 0.9070 0.8455 0.0262 0.9738 0.8655 FDCNN [67] 0.8747 0.8537 0.0208 0.9792 0.8457
DFISN [68]  0.9099 0.8825 0.0231 0.9769 0.8890 DFISN [68] 09226 0.8691 0.0185 0.9815 0.8766
SRCD-Net [18] 0.9175 0.8901 0.0209 0.9791 0.8981 SRCD-Net [18] 0.9201 0.8819 0.0174 0.9826 0.8846
Trans-CD [19] 0.9045 0.8643 0.0259 0.9741 0.8779 Trans-CD [19] 0.9129 0.8557 0.0169 0.9831 0.8716
LGSAA-Net 0.9290 0.9037 0.0185 0.9815 0.9116 LGSAA-Net 0.9310 0.8947 0.0147 0.9853 0.9019

Best values are in bold.

and global pixel association, and the SAA module makes the
network learn the feature map information more reasonably.

The quantitative evaluation results on LEVIR dataset are
summarized in Table 1. It can be seen that FC-di obtains higher
value of F'1 among the first three comparative methods, since
FC-di explicitly guides the network to compare the differences
between the bitemporal images. The last three comparative
methods show more satisfactory results. Among them, SRCD-
Net obtains the highest value of F'1 89.81%, respectively, since
the stacked attention module is in favor of capturing changed
information. The third-ranked DFISN obtains F'1 88.90% due
to the effectiveness of deep supervision for change detection. Itis
worth noting that the proposed LGSAA-Net achieves the lowest
value of O F and the highest value of F'1. Besides, the proposed
LGSAA-Net obtains an extra 1.35% on F1 than the best result
from comparative approaches due to the useful discriminative
features provided by our LGSAA-Net.

Comparison on WHU Dataset: Fig. 7 shows the change detec-
tion results on WHU dataset, where Fig. 7(a)—(c) correspond to
the bitemporal images and the ground truths, respectively. These
changed targets mainly concentrated on buildings and suburban
houses. In Fig. 7(a) and (b), the contrast of changed targets in

Best values are in bold.

bitemporal images is quite low, which may affect the accuracy of
change detection. Fig. 7(d)—(g) contain obvious falsely changed
regions (pink color). In contrast, the results in Fig. 7(h)—(k)
provided by FDCNN, DSIFN, SRCD-Net, Trans-CD, and the
proposed LGSAA-Net are better than the results in Fig. 7(d)—(g).
Notably, the proposed LGSAA-Net can accurately detect the
contour information of small changed targets more accurately,
and it obtains good change detection results in Fig. 7(1) that are
close to ground truths.

Table II, respectively, shows the quantitative evaluation re-
sults on WHU datasets. Compared to the LEVIR dataset, the
first three comparative methods show similar performance on
WHU dataset. FC-di provides higher value of F'1 among the
first three comparative methods, since FC-di considers the
differences of bitemporal images in the encoding stage. Dif-
ferent from the results provided by FCN-PP and FDCNN on
LEVIR dataset, FCN-PP outperforms FDCNN, since FCN-PP
employs Gaussian pyramid to improve the ability of feature
learning of models. In addition, SRCD-Net obtains the high-
est value of F'1 among the last three comparative methods,
DFISN and Trans-CD provide similar accuracy on F'1. No-
tably, we can see that the proposed LGSAA-Net obtains the
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Experimental results on GZ dataset. (a) Pretemporal images. (b) Posttemporal images. (¢) Ground truths. (d) FC-EF. (e) FC-di. (f) FC-conc. (g) FCN-PP.
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(h) FDCNN. (i) DFISN. (j) SRCD-Net. (k) Trans-CD. (1) LGSAA-Net. Note that, the black color represents the unchanged regions, the white color represents the
changed regions, the pink color denotes false-detected regions, and the cyan color denotes true-missed regions.

TABLE III
QUANTITATIVE EVALUATION RESULTS ON GZ DATASET

Evaluation metrics

Methods
Pre Rec OF OA F1

FC-EF [65] 0.9330 0.9682 0.0169 0.9831 0.8924
FC-di [65] 0.9320 0.9396 0.0105 0.9895 0.9318
FC-conc [65] 0.8842 0.9577 0.0148 0.9852 0.9145
FCN-PP [66] 0.9528 0.9539 0.0066 0.9934 0.9504
FDCNN [67] 0.9526 0.9471 0.0077 0.9923 0.9471
DFISN [68]  0.9720 0.9677 0.0033 0.9967 0.9686
SRCD-Net [18] 0.9776 0.9675 0.0032 0.9968 0.9708
Trans-CD [19] 0.9571 0.9567 0.0057 0.9943 0.9543
LGSAA-Net 0.9846 0.9811 0.0014 0.9986 0.9822

Best values are in bold.

highest value of F'l. Furthermore, the proposed LGSAA-Net
achieves a performance improvement of 1.73% on F'1 than
the best result in comparative approaches, which further illus-
trates the advantage of the proposed LGSAA-Net for change
detection.

Comparison on GZ Dataset: Fig. 8 shows the change detec-
tion results on GZ dataset to further demonstrate the superi-
ority and generalizability of the proposed LGSAA-Net, where
Fig. 8(a)—(c) show the bitemporal images and the ground truths,
respectively. Fig. 8(a) and (b) show that images from the GZ
dataset contains more noise than LEVIR and WHU datasets.
Therefore, some falsely changed regions (pink color) are ap-
parent in Fig. 8(d)—(g). Compared to the first four comparative
methods, the results provided by FDCNN, DSIFN, SRCD-Net,
and Trans-CD are improved, as shown in Fig. 8(h)—(k). Also,
it can be seen from Fig. 8(d)—(l) that the proposed LGSAA-
Net provides better change detection results than comparative
methods, which further verifies the advantages of the proposed
LGSAA-Net for change detection.

As can be seen from Table III, the proposed method also sig-
nificantly outperforms all comparative methods on GZ dataset,
achieving the highest value of F'1. Different from the results

on LEVIR and WHU datasets, FC-conc performs higher ac-
curacy than FC-EF on GZ dataset, this indicates that FC-conc
on different datasets shows inconsistent performance. FC-di
also achieves best segmentation accuracy among the first three
comparative methods, since FC-di considers the differences
of bitemporal images in the encoding stage. Also, SRCD-Net
obtains higher value of F'1 than the scores obtained by other
comparative methods, since the stacked attention module in
SRCD-Net is in favor of capturing changed information. Com-
pared with SRCD-Net, the proposed LGSAA-Net obtains an
extraraising 1.14% on F'1 owing to better feature learning of the
SAA module and effectively fusion of low-level details and high-
level semantics of the MLPPE module. From analysis above, the
proposed LGSAA-Net is effective for obtaining accurate change
detection results.

C. Ablation Studies

To illustrate further the effectiveness of different modules
in the proposed network, experiments about various combi-
nations of modules are conducted on LEVIR, WHU, and
GZ datasets. Fig. 9(a)—(c) are the bitemporal images and
ground truths, respectively. Added modules corresponding to
Fig. 9(d)—(i) are abbreviated U-Net (Base) [22], Siamese U-
Net (Siam) [65], Transformer-Vit (ViT) [43], MLPPE, multi-
branch encoding (MB) [65], efficient channel attention (ECA)
[32], the convolutional block attention module (CBAM) [36],
and SAA, respectively. The ablation schemes include: U-Net
based on difference images (Base+DI), Siamese U-Net based
on bitemporal images (Base+Siam), Siamese U-Net based on
bitemporal images and Transformer-ViT (Base+Siam+ViT),
Siamese U-Net based on MLPPE (Base+Siam+MLPPE),
Siamese U-Net and MLPPE with multibranch encoding
(Base+Siam+MLPPE+MB), Siamese U-Net and MLPPE
based on MB and ECA (Base+Siam+MLPPE+MB+ECA),
Siamese U-Net and MLPPE based on MB, and CBAM
(Base+Siam+MLPPE+MB+CBAM) and LGSAA-Net.

As shown in Fig. 9(c)—(f), it can be concluded that the
feature extraction methods based on bitemporal images can
obtain better change detection results than the methods based on
difference images. The ViT module does improve the accuracy
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Fig. 9.
truths,

of change detection, as shown in Fig. 9(f), but the sequence of
image features completely replaces features maps, which ig-
nores the contextual structure information of feature maps from
original CNN and leads to false regions (pink color). In addition,
it can be seen from Fig. 9(f) and (g) that the MLPPE module is
beneficial to improving change detection results. On this basis,
we added the multibranch encoding strategy to further enhance
feature discrimination capabilities for bitemporal images and
difference images, as shown in Fig. 9(h). Furthermore, compared
with Fig. 9(h)—(k), it shows that the result by adding CBAM
module is better than ones adding ECA module, but inferior to
ones adding the SAA module, which indicates that the SAA
can better respond to feature extraction of feature maps with
different resolutions. In conclusion, for change detection task,
the proposed LGSAA-Net can obtain clearer changed regions
with more complete boundaries, and maintains a high internal
compactness in truly changed regions. Table IV shows the
quantitative evaluation results of our ablation experiments on

Comparison of ablation experiments on LEVIR, WHU and GZ datasets:
(d) Base+DI, (e) Base+Siam, (f) Base+Siam+ViT, (g) Base+Siam+MLPPE, (h) Base+Siam+MLPPE+MB, (i) Base+Siam+MLPPE+MB+ECA,
(j) Base+Siam+MLPPE+MB+CBAM (k) LGSAA-Net. Note that, the black color represents the unchanged regions, and the white color represents the changed
regions, the pink color denotes false-detected regions, and the cyan color denotes true-missed regions.

(a) pre-temporal images, (b) post-temporal images, (c) ground

LEVIR, WHU, and GZ datasets. It can be seen that the change
detection results are improved with different degrees by adding
these modules. Obviously, the incorporation of both the MLPPE
and the SAA modules can improve the performance of networks
on three datasets, which indicates that the proposed LGSAA-Net
has a positive impact on change detection.

V. DISCUSSION

In this section, the discussions about the effectiveness of the
SAA and the MLPPE modules, the sensitivity experiments in the
MLPPE module, as well as the model complexity are presented
to demonstrate further the contributions of our studies.

A. Discussion on the Effectiveness of the SAA and the MLPPE

In order to show the feature extraction process of the deep
model, we interpreted what the network learns by visualiz-
ing the heatmap of feature maps. In fact, the color of the
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TABLE IV
QUANTITATIVE EVALUATION RESULTS FOR ABLATION EXPERIMENTS ON LEVIR, WHU, AND GZ DATASETS

Evaluation metrics

Dateset Base Siam VIiT MLPPE MB ECA CBAM SAA
Pre Rec OF OA F1
v 0.8527 0.8159 0.0348 0.9652 0.8165
v v 0.9021 0.8071 0.0308 0.9692 0.8379
v v v 0.8621 0.8953 0.0275 0.9725 0.8683
LEVIR v v v 0.9091 0.8806 0.0226 0.9774 0.8857
v v v v 0.9106 0.8910 0.0215 0.9785 0.8949
v v v v v 0.9237 0.8917 0.0209 09791 0.8994
v v v v v 0.9281 0.8991 0.0187 0.9813 0.9079
v v v v v 0.9290 0.9037 0.0185 0.9815 0.9116
v 0.8526 0.7698 0.0346 0.9654 0.7589
v v 0.8628 0.8262 0.0246 0.9754 0.8265
v v v 0.8835 0.8466 0.0205 0.9795 0.8466
WHU v v v 0.8909 0.8668 0.0208 0.9792 0.8636
v v v v 0.9050 0.8744 0.0174 0.9826 0.8742
v v v v v 0.9085 0.8776 0.0170 0.9830 0.8798
v v v v v 0.9143 0.8792 0.0179 0.9821 0.8817
v v v v v 0.9310 0.8947 0.0147 0.9853 0.9019
v 0.8825 0.8385 0.0308 0.9692 0.8454
v v 0.9005 0.8919 0.0189 0.9811 0.8909
v v v 0.9371 0.9225 0.0104 0.9896 0.9267
GZ v v v 0.9618 0.9583 0.0050 0.9950 0.9572
v v v v 0.9697 0.9636 0.0045 0.9955 0.9646
v v v v v 0.9696 0.9680 0.0041 0.9959 0.9672
v v v v v 0.9784 0.9797 0.0023 0.9977 0.9780
v v v v v 0.9864 0.9811 0.0014 0.9986 0.9822

Best values are in bold.

heatmap reflects the correlation between the specific location
information and the whole image, and various colors present the
degree of contribution of network for the predicted category.
In Fig. 10, the red denotes higher attention values and the
blue denotes lower values, where Fig. 10(a)—(c) are the bitem-
poral images and ground truths, respectively. By comparing
and. 10(d)—(f), it can be clearly seen that the SAA and the
MLPPE modules can help the proposed network focus on the
truly changed targets. Thus, the LGSAA-Net can obtain more
discriminative features to guide the network outputting accurate
predictions.

B. Discussion on the Sensitivity Experiments of the MLPPE

As described in Section III-B, we introduced the MLPPE
module to skip-path to effectively fuse low-level details and
high-level semantic features and narrow the segmentation gap.
Here, the patches strategy of the MLPPE module is adopted
to evaluate the change detection results, in which the scale
parameter of patches s plays a decisive role in improving the

model performance and the model accuracy. To explore the
influence of different values on the change detection results, we
conducted comparative experiments on three datasets by setting
different scale parameter of patches s. As the number of network
layers increases, the resolution of feature maps at different layers
decreases, the minimum size of patch is set to 7 x 7. Therefore,
we set the maximum s = 1, 2, 4, 8, 16 at convolutional layers of
encoding stage, and the setting of s at different layers are shown
in Table V.

Fig. 11 presents the visual change detection results on several
samples of the three datasets. It can be seen that all values of s can
detect really changed regions, except for some falsely changed
regions. The change detection results are more satisfactory when
s = 2, 4. To be more specific, on LEVIR and GZ datasets, they
achieve the highest values of F1 when s =4, representing an
improvement of 1.14% and 0.80% compared to s = 1. However,
it achieves the highest values of F'1 when s =2 on WHU dataset.
In addition, as the value of s continues to increase, the accuracy of
the model begins to decrease, since small patches in feature maps
with large resolution may reduce the correlation between patches
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Fig. 10. Heatmap visualization of LEVIR, WHU and GZ dataset. (a) Pretem-
poral images. (b) Posttemporal images. (¢) Ground truths. (d) Base. (e) SAA.
(f) SAA+MLPPE. Red denotes higher attention values and blue denotes lower
values.

with larger distances. To sum up, considering the model size
and performance comprehensively, we set s to 2 in the MLPPE
module.

C. Discussion on the Model Complexity

In practical applications, it is also necessary to consider
factors, such as model complexity under the premise of high-
precision detection results, so as to facilitate subsequent model
deployment. Therefore, we evaluated the model complexity
by comparing several methods with the proposed LGSAA-Net
using four evaluation metrics, including floating point opera-
tions (FLOPs), parameters (Params), model size (Model), and
Mean-F'1. Mean-F'1 denotes the average value of F'1 on LEVIR,
WHU, and GZ datasets. As shown in Fig. 12 and Table VI, the
model complexity of FC-EF, FC-di, and FC-conc is relatively
low, since the backbone networks of these methods are shallower
than the U-Net and its variants. DFISN uses a deep supervisory
strategy to achieve change detection tasks, effectively improving
the change detection accuracy, but increasing model complexity.
Furthermore, FCN-PP leverages the Gaussian pyramid module,
so it corresponds to the larger model size, while the complexity
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TABLE V
COMPARISON OF THE DIFFERENT PATCHES SCALE S IN MLPPE MODULE

s F1 Model
size

fl 2 3 f4 {5 LEVIR WHU GZ (MB)
1 1 1 1 1 09053 0.8824 0.9769 36.18

2 2 2 2 2 09116 09019 0.9822 37.13
4 4 4 4 2 09167 0.8848 0.9849 39.09
8 8 8 4 2 09082 0.8960 0.9803 41.15

16 16 8 4 2 09097 0.8783 09784  43.26

Best values are in bold, where f1-f5 denote the first to the fifth
fusion path between the encoding stage and the decoding
Stage, the best values are in bold.
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Fig. 11.  (a) Pretemporal images, (b) post-temporal images, (c) ground truths,
the change detection results of the maximum, (d) s = 1, (e) s = 2, () s = 4,
(g) s = 8, and (h) s = 16 in the MLPPE module.

(e)

of SRCD-Net and Trans-CD is similar. SRCD-Net has a smaller
model size due to small size of stacked attention module. In
Trans-CD, a modified ViT module is added to U-Net, which
results in a bit larger model size than U-Net. It is worth noting
that FC-EF performs satisfyingly regarding FLOPs, Params,
and model size. However, the Mean-F'1 of FC-EF on three
datasets is lower among these comparative methods. Finally,
the proposed LGSAA-Net achieves a favorable tradeoff in model
complexity and change detection accuracy relative to all compar-
ative methods. Significantly, the proposed LGSAA-Net offers
the highest Mean-F'1 with favorable segmentation accuracy,
reaching 93.19% on three datasets.
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Fig. 12.  Model complexity and change detection accuracy comparison of

comparative methods and the proposed LGSAA-Net.

TABLE VI
QUANTITATIVE COMPARISON OF THE COMPARATIVE METHODS AND THE
LGSAA-NET ON MODEL COMPLEXITY AND ACCURACY

Methods FLOPs(GB) Params(MB) Model size (MB) Mean-F'1
FC-EF [65] 2.63 0.85 3.34 0.8448
FC-di [65] 3.47 0.85 3.34 0.8772

FC-conc [65] 4.07 1.07 4.09 0.8181
FCN-PP [66] 34.65 28.13 107.39 0.8895
FDCNN [67] 32.40 1.86 7.09 0.8861
DFISN [68] 112.15 43.50 166.92 09114
SRCD-Net [18]  27.42 16.19 64.86 0.9178
Trans-CD [19] 39.25 16.37 57.27 0.9012
LGSAA-Net 22.77 13.10 37.13 0.9319

Best values are in bold.

VI. CONCLUSION

In this work, we proposed the LGSAA-Net and studied
change detection in bitemporal VHR remote sensing images.
Different from popular change detection networks, the proposed
LGSAA-Net can realize the adaptive spatial attention operation
by establishing the relationships between feature maps and the
convolution kernel scales. Moreover, it can effectively fuse
low-level details and high-level semantics to improve feature
discrimination ability by utilizing multilayer perceptron com-
bined with patch attention mechanism. Experimental results on
three change detection datasets demonstrated that the proposed
LGSAA-Net can produce more accurate boundaries and high
internal compactness for changed regions than state-of-the-art
methods. Overall, the proposed LGSAA-Net achieves a favor-
able tradeoff in model complexity and change detection accu-
racy.
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