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Abstract 

Background: Neuroinflammation is emerging as an important pathological process in frontotemporal dementia 
(FTD), but biomarkers are lacking. We aimed to determine the value of complement proteins, which are key compo‑
nents of innate immunity, as biomarkers in cerebrospinal fluid (CSF) and plasma of presymptomatic and symptomatic 
genetic FTD mutation carriers.

Methods: We measured the complement proteins C1q and C3b in CSF by ELISAs in 224 presymptomatic and 
symptomatic GRN, C9orf72 or MAPT mutation carriers and non‑carriers participating in the Genetic Frontotemporal 
Dementia Initiative (GENFI), a multicentre cohort study. Next, we used multiplex immunoassays to measure a panel of 
14 complement proteins in plasma of 431 GENFI participants. We correlated complement protein levels with corre‑
sponding clinical and neuroimaging data, neurofilament light chain (NfL) and glial fibrillary acidic protein (GFAP).

Results: CSF C1q and C3b, as well as plasma C2 and C3, were elevated in symptomatic mutation carriers compared 
to presymptomatic carriers and non‑carriers. In genetic subgroup analyses, these differences remained statistically 
significant for C9orf72 mutation carriers. In presymptomatic carriers, several complement proteins correlated nega‑
tively with grey matter volume of FTD‑related regions and positively with NfL and GFAP. In symptomatic carriers, 
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Background
Frontotemporal dementia (FTD) is a common form of 
young-onset dementia and is frequently caused by auto-
somal dominant genetic mutations in progranulin (GRN), 
chromosome 9 open reading frame 72 (C9orf72) or 
microtubule-associated protein tau (MAPT) [1, 2]. Accu-
mulating evidence suggests a role for neuroinflammation 
in FTD, although the timing and exact contribution to 
disease pathogenesis remains unclear [3]. Fluid biomark-
ers that reflect neuroinflammation in vivo could be valu-
able for clinical practice and therapeutic trials. Previous 
studies aiming to identify such biomarkers, including 
cytokines and microglial markers, have yielded some-
what inconsistent results [4–13] 

The complement system is a key component of innate 
immunity and comprises a cascade of protein reactions 
which ultimately result in opsonisation and lysis of poten-
tial pathogens, recruitment of immune cells to create a 
pro-inflammatory environment, and clearance of apop-
totic cells [14]. Complement proteins are also involved in 
microglia-mediated synaptic pruning in both the devel-
oping and adult brain [15, 16], and aberrant activation 
of the complement cascade is thought to play a central 
role in synaptic degeneration across neurodegenerative 
diseases [17–20]. In line with this, GRN-/- mice display 
excessive complement activation and synaptic prun-
ing, whereas deletion of the complement genes C1q and 
C3b mitigates synapse loss and neurodegeneration [21, 
22]. Complement proteins in cerebrospinal fluid (CSF) 
and blood are differentially regulated in Alzheimer’s dis-
ease (AD) [23–28] and other neurodegenerative diseases 
compared to controls [29–32], but they have not been 
thoroughly investigated in FTD. Promisingly, an inverse 
correlation was found between CSF C1q and C3b levels 
and Mini Mental State Examination (MMSE) score in a 
small series of GRN mutation carriers [21].

In the present study, we measured a range of comple-
ment proteins in CSF and plasma of presymptomatic and 
symptomatic genetic FTD mutation carriers participat-
ing in the international Genetic FTD Initiative (GENFI). 
To determine their value as disease progression biomark-
ers, we correlated complement levels with corresponding 

clinical and neuroimaging measures. Finally, we explored 
their relationship with biomarkers that reflect neuro-
axonal degeneration (neurofilament light chain, NfL) [33, 
34] and astrogliosis (glial fibrillary acidic protein, GFAP) 
[35, 36].

Methods
Subjects
Subjects were recruited from 19 centres collaborating 
in GENFI, a longitudinal cohort study which follows 
patients with genetic FTD due to a mutation in GRN, 
C9orf72 or MAPT and their 50% at-risk family members 
(either presymptomatic mutation carriers or non-carri-
ers) [37]. Participants underwent an annual assessment 
as previously described [37], which includes a brief medi-
cal history, neurological and neuropsychological exami-
nation, magnetic resonance imaging (MRI) of the brain, 
and collection of blood and CSF. Clinical researchers 
were blinded to the genetic status of at-risk individuals 
unless they had undergone predictive testing. Subjects 
with known auto-immune diseases were excluded from 
the current study as complement levels could be affected 
[38].

CSF samples were available in 104 presymptomatic 
(46 GRN, 42 C9orf72, 16 MAPT) and 46 symptomatic 
mutation carriers (11 GRN, 28 C9orf72, 7 MAPT) and 
74 healthy non-carriers. Plasma samples were avail-
able in 215 presymptomatic (88 GRN, 80 C9orf72, 47 
MAPT) and 104 symptomatic mutation carriers (36 GRN, 
47 C9orf72, 21 MAPT) and 112 non-carriers (Table  1). 
174 subjects were included in both the CSF and plasma 
cohorts.

Mutation carriers were considered symptomatic if they 
fulfilled international consensus criteria for behavioural 
variant FTD [39], primary progressive aphasia [40] or 
amyotrophic lateral sclerosis (ALS) [41]. Disease duration 
was defined based on when the primary caregiver first 
noted symptoms. Global cognition was scored using the 
MMSE and Clinical Dementia Rating scale® plus NACC 
FTLD sum of boxes (CDR® + NACC FTLD-SB) [42], col-
lected within 6 months of CSF or plasma sampling.

correlations were additionally observed with disease duration and with Mini Mental State Examination and Clinical 
Dementia Rating scale® plus NACC Frontotemporal lobar degeneration sum of boxes scores.

Conclusions: Elevated levels of CSF C1q and C3b, as well as plasma C2 and C3, demonstrate the presence of com‑
plement activation in the symptomatic stage of genetic FTD. Intriguingly, correlations with several disease measures 
in presymptomatic carriers suggest that complement protein levels might increase before symptom onset. Although 
the overlap between groups precludes their use as diagnostic markers, further research is needed to determine their 
potential to monitor dysregulation of the complement system in FTD.

Keywords: Biomarker, Complement, Frontotemporal dementia, Neuroinflammation
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T1-weighted MRI on 3 Tesla scanners was obtained 
within 6 months of sample collection using a stand-
ardised GENFI protocol. T1-weighted volumetric MRI 
scans were parcellated into brain regions as previously 
described [37], using an atlas propagation and fusion 
strategy to generate volumes of the whole brain (WBV), 
frontal, temporal, parietal and occipital lobes, insula 
and cingulate gyrus. Brain volumes were expressed 
as a percentage of total intracranial volume (TIV), 

computed with SPM12 running under Matlab R2014b 
(Math Works, Natick, MA, USA) [43].

Sample collection and laboratory methods
CSF was collected by lumbar puncture in polypropylene 
tubes, and blood was collected by venepuncture in EDTA 
tubes. Samples were centrifuged and stored at -80  °C 
until use according to a standardised GENFI protocol.

Table 1 Subject characteristics for (a) CSF and (b) plasma measurements

Continuous variables are expressed as median (interquartile range) and were compared between groups using Kruskal–Wallis tests. Sex distributions were compared 
between groups using Chi-square tests. MMSE  Mini Mental State Examination, CDR  Clinical Dementia Rating scale, SB  sum of boxes
a Phenotypes: behavioural variant FTD (bvFTD) (n = 32), primary progressive aphasia (PPA) (n = 5), FTD with amyotrophic lateral sclerosis (ALS) (n = 3), ALS without FTD 
(n = 3), progressive supranuclear palsy (PSP) (n = 1), memory-predominant FTD (n = 1), dementia not otherwise specified (n = 1)
b Symptomatic mutation carriers were older than presymptomatic carriers in all genetic subgroups. cPhenotypes: bvFTD (n = 78), PPA (n = 16), FTD-ALS (n = 2), ALS 
without FTD (n = 5), PSP (n = 1), memory-predominant FTD (n = 1), dementia not otherwise specified (n = 1)
d Symptomatic MAPT mutation carriers were younger at symptom onset than C9orf72 (p = 0.004) and GRN mutation carriers (p = 0.002)
e Symptomatic C9orf72 mutation carriers had a longer disease duration than symptomatic GRN carriers at sample collection

(a) CSF cohort

Non-carriers Presymptomatic carriers Symptomatic  carriersa p

N 74 104 46

Sex, male (%) 34 (46%) 43 (41%) 28 (61%) 0.085

Age at collection, years
Years

47 (39–58) 46 (35–56) 63 (55–69)  < 0.001

MMSE (n = 219) 30 (29–30) 30 (29–30) 26 (24–29)  < 0.001

CDR® + NACC FTLD‑SB (n = 185) 0 (0–0) 0 (0–0) 9 (2–13)  < 0.001

Per genotype GRN C9orf72 MAPT GRN C9orf72 MAPT

N 46 42 16 11 28 7 ‑

Age at collection, years 54
(42–59)

43
(33–53)

42
(34–46)

67
(61–70)

60
(55–72)

59
(52–64)

 < 0.001b

Age at symptom onset, years – – – – 64
(54–67)

56
(49–62)

55
(52–56)

0.141

Disease duration, years – – – – 2.5
(1.0–4.3)

4.1
(2.1–8.0)

2.6
(0.4–8.0)

0.229

(b) Plasma cohort

Non-carriers Presymptomatic carriers Symptomatic  carriersc p

N 112 215 104

Sex, male (%) 49 (44%) 79 (37%) 64 (62%)  < 0.001

Age at collection, years
Years

50 (39–60) 45 (35–55) 63 (58–69)  < 0.001

MMSE (n = 405) 30 (29–30) 30 (29–30) 25 (20–28)  < 0.001

CDR® + NACC FTLD‑SB (n = 329) 0 (0–0) 0 (0–0) 8 (3–14)  < 0.001

Per genotype GRN C9orf72 MAPT GRN C9orf72 MAPT

N 88 80 47 36 47 21

Age at collection, years 51
(39–59)

44
(34–53)

40
(33–46)

64
(59–68)

66
(59–72)

58
(52–63)

 < 0.001b

Age at symptom onset, years – – – – 60
(55–66)

59
(55–66)

53
(47–57)

 < 0.001d

Disease duration, years – – – – 2.6
(1.8–4.2)

5
(2.6–6.6)

5.6
(1.5–6.8)

0.002e
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All CSF and plasma measurements were performed 
in duplicate. The mean duplicate coefficient of varia-
tion (CV) was below 10% for all analytes; samples with 
a CV > 20% were re-measured or excluded. For sample 
concentrations outside of the range of quantification, 
we imputed the lower or upper limits of quantification 
(LLOQ and ULOQ) (Additional file 1: Table S1).

CSF complement proteins C1q and C3b were meas-
ured using the ELISA kits Human Complement C1q 
(ab170246) and Human Complement C3b (ab195461) 
from Abcam (Boston, MA, USA) according to the manu-
facturer’s instructions. Plates were read on a SpectraMax 
M2 plate reader (Molecular Devices, San Jose, CA). CSF 
NfL was measured using the Simoa NF-Light Advantage 
Kit from Quanterix (Billerica, MA, USA) on a Simoa 
HD-1 analyzer instrument according to the manufactur-
er’s instructions.

Plasma complement proteins were measured using 
the multiplex Human Complement Magnetic Bead 
Panel 1 (complement factors C2, C4b, C5, C5a, C9, 
factor D, mannose-binding lectin, and factor I) and 
Human Complement Magnetic Bead Panel 2 (C1q, C3, 
C3b, C4, factor B, factor H) (HCMP1MAG-19  K and 
HCMP2MAG-19  K, respectively) kits from EMD Milli-
pore Corporation (Billerica, MA, USA) according to the 
manufacturer’s instructions. Plates were analysed on a 
Luminex MAGPIX Instrument System (Luminex Corp, 
Austin, TX, USA). Plasma NfL and GFAP were measured 
using the multiplex Neurology 4-Plex A kit from Quan-
terix on a Simoa HD-1 Analyzer according to the manu-
facturer’s instructions, as previously described [36].

Laboratory technicians were blinded to all clinical and 
genetic information.

Statistical analysis
Statistical analyses were performed in IBM SPSS Statis-
tics 25 and R.

Demographic and clinical variables were compared 
between groups (symptomatic, presymptomatic, non-
carrier) using Kruskal–Wallis tests for continuous 
variables and a Chi-square test for sex. Normality of bio-
marker data was assessed using Kolmogorov–Smirnov 
tests and visual inspection of Q–Q plots. All raw protein 
concentrations, both in CSF and plasma, were non-nor-
mally distributed. For CSF analytes, normal distributions 
were achieved after log-transformation, and we subse-
quently performed ANCOVAs with age and sex as covar-
iates to compare protein concentrations between groups. 
For plasma complement proteins, normal distributions 
could not be achieved with conventional transforma-
tions (e.g. log transformation, Box–Cox transformation), 
and we therefore applied quantile regression, which is 
robust to non-normality and outliers, with age and sex 

as covariates. In comparisons between symptomatic 
mutation carriers, we also included disease duration as 
a covariate. Correlations between raw biomarker values 
and clinical and neuroimaging measures, as well as NfL 
and GFAP, were assessed using Spearman’s rho for pre-
symptomatic and symptomatic mutation carriers sepa-
rately. Correction for multiple comparisons was done 
with the Holm–Bonferroni method. We restricted correl-
ative analyses between CSF and plasma measurements to 
subjects for whom the time interval between both sample 
collections was less than 6 months.

Results
Subjects
Subject characteristics of the CSF and plasma cohorts are 
shown in Table 1.

CSF complement levels
We excluded 7 samples from C1q analyses (5 presympto-
matic carriers, 2 non-carriers) and 12 samples from C3b 
analyses (5 presymptomatic and 3 symptomatic carriers, 
4 non-carriers) due to duplicate CV’s > 20%. CSF C1q 
correlated strongly with C3b levels (rs = 0.709, p < 0.001). 
Furthermore, C1q and C3b correlated with age at sample 
collection (rs = 0.359 and rs = 0.323; both p < 0.001) in the 
entire cohort, but not in non-carriers alone (Additional 
file 1: Table S2).

Group differences
C1q levels were significantly higher in symptomatic 
mutation carriers (median 362  ng/ml (interquar-
tile range 284–481)) than in presymptomatic carriers 
(256  ng/ml (199–337), p = 0.014), but not compared to 
non-carriers (298  ng/ml (210–402), p = 0.148) (Fig.  1a). 
Higher levels of C3b were found in symptomatic carri-
ers (3295 ng/ml (2558–4734)) compared to non-carriers 
(2350 ng/ml (1730–3452), p = 0.046). However, C3b lev-
els between symptomatic and presymptomatic carriers 
(2406 ng/ml (1772–3127) were not significantly different 
(p = 0.074) (Fig.  1b). After exclusion of extreme outliers 
(> median + 3*IQR; n = 1 for C1q and n = 5 for C3b), C3b 
levels were also elevated compared to presymptomatic 
carriers (p = 0.038).

Separated by genetic group, C1q and C3b levels were 
elevated in all symptomatic carriers, but after correc-
tion for age, group differences were only significant 
for C9orf72 mutation carriers (C1q: p = 0.041; C3b: 
p = 0.025) (Fig.  1c, d). C1q or C3b levels did not differ 
between symptomatic carriers of different genetic groups 
(p = 0.351).
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Correlative analyses
In presymptomatic mutation carriers, C1q and C3b levels 
correlated with NfL and inversely with frontal lobe vol-
ume (Fig. 2 and Additional file 1: Table S3a). These corre-
lations remained significant after correction for age.

In symptomatic carriers, we observed an inverse corre-
lation between C1q and MMSE (rs = − 0.370, p = 0.013) 
(Additional file  1: Table  S4a), and C3b levels—but not 
C1q—were correlated with disease duration (rs = 0.343, 
p = 0.024) (Additional file 1: Fig. S1a and 1b).

Plasma complement levels
C3b, C5a and C9 were excluded from analyses as con-
centrations were below the LLOQ in 80–100% of 

samples; the samples with levels above the LLOQ were 
from all clinical groups. For some analytes, a small 
number of samples was excluded due to CVs > 20% 
(Additional file 1: Table S1).

Moderate correlations were found between most 
plasma analytes (Additional file  1: Table  S5). Further-
more, we found positive correlations between age and 
almost all analytes (Additional file 1: Table S2); several of 
these remained significant when analyses were limited to 
non-carriers.

Group comparisons
Symptomatic mutation carriers had significantly higher 
levels of plasma C2 and C3 than presymptomatic carriers 
(Table 2, Fig. 3a, b).
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Separated by genetic subgroup, elevated levels of C2 
and C3 were observed in symptomatic C9orf72 and 
MAPT—but not GRN—mutation carriers, reaching sta-
tistical significance in C9orf72 (Fig. 3c, d). No significant 
differences were observed in C2 or C3 levels between 
symptomatic carriers of different genetic subgroups (C2: 
p = 0.425; C3: p = 0.512).

Correlative analyses
In the presymptomatic stage, inverse correlations were 
observed between several complement proteins and 
regional grey matter volume. The strongest correlations 

were observed for factor D with WBV (rs = −  0.344, 
p < 0.001), temporal volume (rs = −  0.271, p < 0.001) and 
volume of the cingulate gyrus (rs = −  0.262, p < 0.001), 
and for C5 with temporal volume (rs = −  0.241, 
p = 0.001), which remained significant after correction 
for age. Furthermore, C4b, C5 and factor D were posi-
tively correlated with NfL and GFAP (Fig.  4, Additional 
file 1: Tables S3b, 6).

In the symptomatic stage, C2, C3 and factor D were 
inversely correlated with WBV and volume of the tem-
poral and parietal lobes, cingulate gyrus and insula, and 
C2, C3, factor D, factor I and factor H were correlated 
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with CDR® + NACC FTLD-SB score (Additional file  1: 
Tables S3b, 4b). Furthermore, we found positive correla-
tions with disease duration for C2 (rs = 0.279, p = 0.006), 
factor D (rs  = 0.239, p = 0.015) and factor I (rs  = 0.202, 
p = 0.039).

Correlation between CSF and plasma C1q levels
CSF and plasma C1q levels were not correlated among 
147 subjects with matched CSF and plasma samples 
(rs  = 0.092, p = 0.266; mean time interval between CSF 
and plasma: 13 days). Restricting analyses to samples col-
lected on the same day similarly revealed no correlation 
(rs  = 0.065, p = 0.543, n = 91).

CSF and plasma complement levels in converters
In the seven presymptomatic carriers who were diag-
nosed with FTD during follow-up (‘converters’), no rela-
tionship between CSF or plasma complement levels and 
time to symptom onset was observed (Additional file 1: 
Table S7).

Discussion
This large, international study demonstrated elevated 
levels of several complement proteins in CSF and plasma 
in the symptomatic stages of genetic FTD, as well as 
correlations with various measures of disease severity. 
Our findings provide in  vivo evidence of an inflamma-
tory component in FTD and could aid therapeutic trials 
aimed at modulation of the immune response.

The elevated levels of C1q and C3b in CSF of sympto-
matic mutation carriers probably reflect increased local 
synthesis of complement proteins by glial cells and neu-
rons, as has previously been reported in neurodegen-
eration [18, 44–47]. C1q is the initiator molecule of the 

classical pathway, and its binding to immune complexes, 
apoptotic cells and various other stimuli triggers a cas-
cade of protein reactions to generate C3b [14]. C3b is one 
of the primary complement opsonins, and its accumula-
tion on synapses and subsequent recognition by phago-
cytic microglia is thought to underlie the synapse loss 
observed early in the neurodegenerative process [18–20]. 
If direct associations can be confirmed, CSF C1q and C3b 
might provide a means to monitor complement-mediated 
synaptic pruning and measure the effect of complement-
directed therapeutics [44]. C3b also elicits generation of 
the cytotoxic terminal C5b-C9 complex (TCC) [14]. It 
would be interesting to expand on our results by measur-
ing CSF complement proteins directly implicated in the 
TCC, as well as regulatory factors, a decrease of which 
might further amplify aberrant complement activation 
[48].

In symptomatic mutation carriers, plasma measure-
ments revealed elevated levels of C2, a component of 
the classical pathway, and C3. Rather than reflecting 
overflow from the central nervous system (CNS), these 
findings might reflect a systemic immune response, 
which could in turn contribute to neuroinflammation 
by passing through the (compromised) blood–brain 
barrier [44, 49]. The lack of a correlation between CSF 
and plasma C1q suggests that systemic and local com-
plement activation might not occur simultaneously 
and indicates that plasma complement measurement 
is not a suitable surrogate for CSF. Investigation of 
CSF–plasma associations of other complement pro-
teins besides C1q might confirms this, in which case 
brain-derived extracellular vesicles could provide a 
better peripheral measure of CNS complement activa-
tion [25, 28]. Furthermore, since consumption of intact 

Table 2 Plasma complement levels per clinical group

All concentrations are expressed as medians (interquartile range) in µg/ml. P-values are derived from quantile regression models with age and sex as covariates. 
MBL mannose-binding lectin. *Pairwise comparisons: symptomatic vs presymptomatic carriers: p = 0.028. **Pairwise comparisons: symptomatic vs presymptomatic 
carriers: p = 0.004

Non-carriers Presymptomatic carriers Symptomatic carriers p

C2 0.358 (0.274–0.532) 0.332 (0.274–0.431) 0.411 (0.319–0.548) 0.006*

C4b 9.97 (8.00–12.3) 9.92 (8.15–12.8) 10.8 (8.88–14.3) 0.913

C5 29.1 (21.6–35.8) 27.0 (21.7–35.2) 31.0 (25.1–38.3) 0.358

Factor D 3.57 (2.99–4.37) 3.46 (2.69–4.15) 4.19 (3.50–5.28) 0.481

MBL 2.44 (0.841–4.20) 2.01 (0.860–4.12) 1.71 (0.763–4.41) 0.710

Factor I 39.6 (32.9–46.6) 37.9 (32.8–45.2) 40.9 (35.0–47.0) 0.863

C1q 71.4 (64.5–81.2) 71.2 (60.6–80.1) 68.7 (62.2–76.2) 0.636

C3 44.8 (29.9–98.2) 39.9 (29.9–58.8) 45.5 (30.5–102) 0.047**

C4 293 (254–360) 297 (252–348) 294 (254–349) 0.577

Factor B 168 (147–211) 167 (146–205) 170 (143–202) 0.772

Factor H 250 (213–295) 250 (212–288) 254 (228–285) 0.849
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complement components (e.g. C3, C4 and C5) can par-
adoxically reduce plasma levels during strong comple-
ment activation [38], future measurements of activated 
fragments (e.g. C3a, C3b and components of the TCC) 
in FTD might provide more robust measures of periph-
eral complement activation.

In genetic subgroup analyses, the elevated comple-
ment protein levels in CSF and plasma remained sta-
tistically significant only in C9orf72 mutation carriers. 
Interestingly, C9orf72−/− mice have been shown to have 
upregulated interferon-β expression, increased micro-
glial activation, and excessive synaptic pruning com-
pared to wild-type mice [50]. In  vivo administration of 
interferon-β drives microglial activation and complement 

C3-dependent synapse elimination [51]. C9orf72 defi-
ciency might thus promote microglial activation through 
interferon-β, in turn leading to synaptic elimination by 
complement activation. Alternatively, since complement 
activation has also been reported in cell and animal mod-
els of GRN and MAPT mutations [17, 21, 22, 52], the lack 
of significant differences in GRN- and MAPT-related 
FTD might instead reflect a lack of statistical power given 
the smaller sample size of these genetic subgroups. The 
elevated levels of complement proteins in various other 
neurodegenerative diseases similarly point towards a 
general rather than gene- or disease-specific upregula-
tion of the complement system [21–30]. Future studies 
comparing complement levels in genetic and sporadic 
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forms of FTD and associated clinical subtypes might fur-
ther elucidate potential gene-specific effects.

In presymptomatic mutation carriers, CSF and plasma 
complement levels correlated with regional grey matter 
volume and NfL. These correlations remained significant 
even after correction for age, and suggest that comple-
ment activation might occur in the late-presymptomatic 
stage in conjunction with early brain atrophy. Accord-
ingly, elevated complement levels have been observed in 
presymptomatic genetic AD [27, 53] and mild cognitive 
impairment [26, 28]. In AD mouse models, complement 
aggregation is observed prior to plaque formation [17, 
18, 52]. Despite applying statistical correction for age, the 
lack of group differences in complement levels between 
presymptomatic carriers and non-carriers could partly 
be due to including carriers of all ages, and thus time to 
symptom onset was highly variable.

CSF and plasma complement levels showed substantial 
overlap between groups, which has also been reported 
in AD [26, 27, 54] and precludes their use as diagnostic 
biomarkers. NfL may be a more powerful tool to distin-
guish symptomatic from presymptomatic mutation car-
riers [34]. The large variability in complement levels, 
which was observed even among non-carriers, suggests 
that within-individual changes in complement levels may 
be more informative for disease monitoring than single 
measurements. The lack of correlation in symptomatic 
mutation carriers between CSF complement factors and 
most disease severity measures, including brain atro-
phy, NfL, GFAP and MMSE, indicates that complement 
levels probably do not increase linearly as the disease 
progresses. Instead, in line with the dynamic nature of 
neuroinflammation [3], they might fluctuate depending 
on the disease stage [55]. Longitudinal studies of CSF and 

plasma complement factors, including a larger number 
of converters, might elucidate their dynamics over the 
course of FTD.

Strengths of this study include the very large, well-
characterised genetic FTD cohort with corresponding 
clinical and neuroimaging data. In plasma, we measured 
a broad range of complement proteins covering all three 
activation pathways as well as various regulatory mole-
cules. The strong correlations between CSF C1q and C3b, 
as well as between the various plasma complement fac-
tors, support the validity of our results.

The findings presented in this study must be viewed 
in light of some limitations. Our plasma complement 
measurements could have been affected by various con-
founding factors, including body mass index, hyperten-
sion, diabetes mellitus and (asymptomatic or low-grade) 
inflammatory processes [38, 56]. Although we excluded 
subjects with known auto-immune diseases, we can-
not rule out the presence of other inflammatory condi-
tions, such as infections. Future research should include 
a blood panel to check for infectious parameters at the 
time of sample collection. Furthermore, complement 
proteins are sensitive to variability in pre-analytical 
parameters [57], which could have affected our results, 
despite following standardised protocols for sample col-
lection and processing. Finally, we were unable to quan-
tify plasma C3b, C5a and C9 levels, presumably due to 
very low concentrations, highlighting the need for more 
sensitive assays.

Conclusions
In conclusion, we provide in  vivo evidence of comple-
ment activation in genetic FTD, which might already 
occur in late-presymptomatic stages in conjunction with 
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neuronal loss. Future longitudinal studies could eluci-
date at which stage of disease complement levels start to 
change, and might reveal their potential value as moni-
toring biomarkers [44].
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