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Private Federated Learning with Misaligned Power
Allocation via Over-The-Air Computation

Na Yan, Kezhi Wang, Cunhua Pan and Kok Keong Chai

Abstract—To further preserve the data privacy of federated
learning (FL), we propose a differentially private FL (DPFL)
scheme with misaligned power allocation (MPA-DPFL). Unlike
most existing over-the-air FL studies, in MPA-DPFL, the
gradients are aggregated through over-the-air computation
(Aircomp) but do not need to be aligned in the transmission.
Therefore, MPA-DPFL can avoid the problem that the signal-
to-noise ratio (SNR) of the system is limited by the device with
the worst channel condition. We formulate an optimization
problem to minimize the optimality gap of MPA-DPFL while
guaranteeing a certain degree of privacy protection. Addition-
ally, we demonstrate that the MPA-DPFL is more suitable
than the DPFL with aligned power allocation (APA-DPFL)
when the channel condition of a device in the system is lower
than a threshold. The analytical results are validated through
simulation.

Intex Terms - Data privacy, federated learning, over-the-air
computation, power allocation.

I. INTRODUCTION

Federated learning (FL) [1] is regarded as one of the
privacy-preserving distributed machine learning (ML) tech-
niques, which enables devices to train a model cooperatively
with the help of a parameter server (PS). Specifically,
devices train the model or compute gradients locally and
then send the updated model parameters or gradients to PS
for aggregation. Therefore, FL can reduce communication
costs and prevent privacy from being exposed to the public
by avoiding the transmission of raw data. However, there
are still some key challenges for deploying FL due to
the limitation of resources in wireless networks [2, 3] and
the privacy concerns. Some works [4, 5] have shown that
exchanging model parameters or gradients between devices
and PS can still reveal sensitive information of local data if
exchanged messages are attacked.

One of the countermeasures to prevent privacy leakage of
FL is differential privacy (DP) [6] which introduces random
noise into the disclosed statistics (i.e., gradients or model
parameters) to mask the contribution of any individual data
point. However, adopting DP to further secure FL could
have a negative impact on the learning performance because
the noise will lead to a less accurate aggregated gradient
at PS, which is a major issue for the application of DP
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in FL. Therefore, studies worked on differentially private
FL (DPFL) are normally devoted to capturing the tradeoff
between privacy and convergence performance or proposing
strategy to alleviate the adverse impact of noise on training
[7]. The typical noises in DPFL are Binomial [8], Gaussian
[9] and Laplacian noise [10]. Unlike the above studies that
assumed an ideal communication, DPFL via over-the-air
computation (Aircomp) has been investigated recently in
[11–13], where channel noise was exploited for enhancing
DP. In [11], if channel noise was not adequate for privacy
guarantees, artificial Gaussian noise was added to each
gradient before transmitting. The scale of the artificial noise
(AN) was determined by a static power allocation scheme.
Instead of introducing AN, the authors in [12] presented a
more energy-efficient strategy to guarantee DP by adjusting
transmit power. The authors in [13] proposed adaptive power
allocation schemes for DPFL in orthogonal multiple access
and non-orthogonal multiple access channels. Similar to
most of the studies on over-the-air FL, all the above works
tried to align the gradient in the transmission by controlling
transmit power. Although gradient alignment can ensure an
unbiased gradient estimation at PS, the signal-to-noise ratio
(SNR) of the system will be limited to a quite low level
when some devices suffer poor channel conditions.

Against the above background, a DPFL scheme with
misaligned power allocation (MPA-DPFL) is proposed to
enhance the data privacy of FL in this paper. The MPA-
DPFL can avoid the issue that the SNR of system is limited
by the device with the worst channel condition, which exists
in DPFL with aligned power allocation (APA-DPFL) [11].
We also theoretically provide the threshold that can be used
to evaluate which one is better, MPA-DPFL or APA-DPFL,
in a given FL setting.

II. SYSTEM MODEL

A. Federated Learning

We consider a single-antenna wireless FL system as
shown in Fig. 1, where K edge devices collaboratively train
a model with the help of a PS. Assume that each device
holds dataset Dk , {(uk,j , vk,j)}Dkj=1 of size Dk where uk,j
is the j-th data sample and vk,j is the corresponding label.
To simplify the process without losing generality, we assume
that D1 = · · · = DK , and then, the objective of the training
can be given as,

min
θ
L (θ) , 1

K

K∑
k=1

Lk (θ), (1)
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where θ ∈ Rd is the model parameter to be optimized and
Lk (θ) is defined as Lk (θ) = 1

Dk

∑
(u,v)∈Dk ` (θ; (u, v)),

where ` (θ; (u, v)) is the empirical loss function.

PS

Device 1

Device K

Wireless 

MAC

Gradient 

Computation AN

...

Aggregation

Broadcasts

Gradient 

Estimate

Global Update

Gradient 

Computation
AN

Edge devices

Fig. 1: The differentially private wireless FL.

B. Differential Privacy

Here, we involve DP to further enhance the privacy of the
local datasets. The standard DP definition and its Gaussian
Mechanism are given as follows.

Definition 1. (ε, ζ)-DP [6]: A randomized mechanism O
guarantees (ε, ζ)-DP if for two adjacent datasets D,D′
differing in one sample, and measurable output space Q
of O, it satisfies Pr [O (D) ∈ Q] 6 eεPr [O (D′) ∈ Q] + ζ.

Definition 2. Gaussian Mechanism (GM) [6] : A Mechanism
O is called as a GM, which alters the output of another algo-
rithm L : D → Q by adding Gaussian noise, i.e., O (D) =
L (D)+N

(
0, σ2Id

)
. GM O guarantees (ε, ζ)-DP with ε =

∆S
σ

√
2 ln

(
1.25
ζ

)
where ∆S , max

D,D′
‖L (D)− L (D′)‖2.

The term ζ allows for breaching ε-DP with the probability
ζ while ε denotes the protection level and a smaller ε means
a higher privacy preservation level.

C. MPA-DPFL

The details of MPA-DPFL are given as follows by taking
round i as an example. At the beginning of round i, PS
broadcasts the latest model θi to the devices. Next, each
device lets θik = θi, and then computes the gradient
gik = ∇Lk

(
θik
)
, which is assumed to satisfy

∥∥gik∥∥2 6 I .
According to DP, eik ∼ N (0, Id) is added to the gradient
before transmitting. In particular, the input signal from
device k is given as:

xik =

√
λikPk
I

gik +

√
µikPk
d
eik,

(2)

where Pk is the maximum transmission power of device
k. Power scaling factors λik > 0 and µik > 0 indicate the
fractions of power dedicated to the gradient and the AN,
respectively. Also, λik + µik 6 1 should hold for satisfying
transmit power constraint, i.e., E

[∥∥xik∥∥22] 6 Pk. Then,
gradients are transmitted via a shared wireless channel and
aggregated through Aircomp. The received signal at the PS
is given by:

y (i) =
K∑
k=1

hik

(√
λikPk
I

gik +

√
µikPk
d
eik

)
+ ri, (3)

where ri ∼ N (0, N0Id) is channel noise and we assume
that hik ∈ R+ is the real channel gain coefficient for sim-
plicity. The coefficients are independent across devices and
training rounds, but remain constant within one round. The
distinction between APA-DPFL [11] and MPA-DPFL is that
APA-DPFL requires hik

√
λikPk =

√
minj

(
hij
)2
Pj = c,

which is referred to as alignment coefficient.
To obtain the averaging of the aggregated gradient, PS per-

forms post-processing by ĝi = 1
Ky (i). It thus follows that

the aggregation error caused by the misaligned aggregation is
given as ∆i = ĝi−gi, where gi = ∇L

(
θi
)
= 1

K

∑K
k=1 g

i
k

denotes the noise-free aggregated gradient. Finally, PS per-
forms the global update by θi+1 = θi − ηĝi = θi −
η
(
gi +∆i

)
, where η is the learning rate.

III. THEORETICAL ANALYSIS AND POWER ALLOCATION
OPTIMIZATION

In this section, we formulate a power allocation optimiza-
tion problem based on the main analysis results as follows.

A. Privacy analysis and convergence analysis
1) Assumptions: For analysis, we first make the following

assumptions.

Assumption 1. Assume that L (·) satisfies Polyak-
Łojasiewicz inequality, i.e., for all θ, there is a constant
ρ > 0 satisfying ‖∇L (θ)‖22 > 2ρ (L (θ)− L (θ∗)) .

Assumption 2. Assume that L (·) is ξ-smooth, i.e., for all
θ and θ′, one has L (θ) − L (θ′) 6 〈θ − θ′,∇L (θ′)〉 +
ξ
2 ‖θ − θ

′‖22 .

Assumption 3. For each device k in round i, the gradient
satisfies

∥∥gik∥∥2 6 I.

2) Privacy analysis: We here present the privacy analysis
for MPA-DPFL as follows.

Lemma 1. Assume that Assumption 3 holds and Dk,D′k are
two adjacent datasets with only one sample different. Based
on the definition given below,

y (i) =
K∑
n=1

hin

(√
λinPn
I

gin +

√
µinPn
d

ein

)
+ ri, (4)

y′ (i) =
K∑
n=1

hin

(√
λinPn
I

(
gin
)′
+

√
µinPn
d

ein

)
+ ri,

(5)
where(
gin
)′

=

{
gin = 1

Dn

∑
(u,v)∈Dn ∇`

(
θin; (u, v)

)
, n 6= k(

gik
)′

= 1
Dk

∑
(u,v)∈D′k

∇`
(
θik; (u, v)

)
, n = k

(6)
the bound of the sensitivity of device k in round i is given
by:

∆Sik = max
Dk,D′k

‖y (i)− y′ (i)‖2 6 2hik

√
λikPk. (7)

Proof. See Appendix A.
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One can see that the sensitivity of each device can
be controlled by the power scaling factor assigned to the
gradients. Based on Lemma 1, we give the privacy leakage
of each device as follows.

Lemma 2. Assume that Assumption 3 holds, MPA-DPFL
guarantees

(
εik, ζ

)
-DP for device k in round i if the follow-

ing condition is satisfied,

2hik
√
λikPk√∑K

j=1
(hij)

2
µijPj

d +N0

·
√
2 ln

1.25

ζ
= εik. (8)

Proof. Based on Lemma 1 and the GM of DP, we complete
the proof of Lemma 2.

Note that if “=” in (8) is replaced by “6”, it indicates
a stronger privacy protection, therefore, we regard that it
still satisfies

(
εik, ζ

)
-DP. Since hik

√
λikPk is bounded by

max
k

{
hik
√
Pk
}

, one can learn that the privacy leakage goes
asymptotically to 0 when K approaches infinity.

3) Convergence analysis: Assume that θ∗ is the optimal
model and training terminates after T rounds, the optimality
gap of MPA-DPFL is given as follows.

Lemma 3. Assume that Assumption 1 to 3 hold and set
η = 1

ξ , the bound of the optimality gap can be given by,

E
[
L
(
θT
)]
− L (θ∗) 6 ϕTE

[
L
(
θ0
)]
− L (θ∗)

+ 1
2ξ

∑T−1
i=0 ϕT−1−iE

[∥∥∆i
∥∥2
2

]
M
.

(9)

where E
[∥∥∆i

∥∥2
2

]
M

= 1
K2

∑K
k=1

(
hik
)2
µikPk + dN0

K2 +

1
K

∑K
k=1

(
hik
√
λikPk − I

)2
and ϕ = 1− ρ

ξ .

Proof. See Appendix B.

The first term on the right hand side of the inequality
is the initial optimality gap, and the second term relates to
the aggregated error which can be reduced by controlling{
λik
}
,
{
µik
}

for enhancing the learning performance.

B. Power allocation optimization

To minimize the optimality gap while guaranteeing (ε, ζ)-
DP for each device, we formulate an optimization problem as
follows. We define % =

√
2 ln 1.25

ζ for notation convenience.

min
{λk},{µk}

{
K∑
k=1

(
hk
√
λkPk − I

)2
+

K∑
k=1

h2kµkPk
K

}
(10)

s.t.
2%hk

√
λkPk√∑K

j=1

h2
jµjPj

d +N0

= ε, ∀k (10a)

λk + µk 6 1, ∀k (10b)
λk > 0, µk > 0, ∀k. (10c)

In (10), we have simplified the objective function in three
ways. Firstly, we ignore the effect of ϕ on the optimality gap
because it has little impact when ρ is quite small compared
with ξ, which is equivalent to performing the optimization in

each training round. Secondly, we discard the items that are
not related to power allocation, i.e., the initial optimal gap.
Additionally, we omit the index i of each variable for ease
of presentation. (10a) denotes (ε, ζ)-DP constraint for each
device. The maximum power constraint and nonnegativity
constraint are satisfied in (10b) and (10c), respectively. We
consider the same privacy constraint and fixed transmit
power of each device for simplicity. The MPA-DPFL can
be readily extended to the case that devices have distinct
privacy constraints. The case of adaptive transmit power will
be left for future work.

By defining H =
∑K
k=1 h

2
kPk and Φ =

∑K
k=1 h

2
kµkPk,

our solution to solve this problem is given as follows.

Lemma 4. Assume that H > KN0ε
2

4%2 , our solution to the
optimization problem is given as follows:

λ∗k = min
{
1, ε2

4%2h2
kPk

(
Φ∗

d +N0

)}
, (11)

µ∗k = min

{
1− λ∗k,

max{Φ∗−∑k−1
j=1 βj ,0}

h2
kPk

}
, (12)

where βj = h2jPjµ
∗
j and

• Φ∗ = 0, if 2I%ε

ε2+ 4d%2

K2

6
√
N0;

• Φ∗ = 4H%2−KN0ε
2

4%2+Kε2

d

, if 2I%ε

ε2+ 4d%2

K2

> 2%
√

H+dN0

Kε2+4d%2 ;

• Φ∗ = d

(
4I2%2ε2(
ε2+ 4d%2

K2

)2 −N0

)
, if
√
N0 6 2I%ε

ε2+ 4d%2

K2

6

2%
√

H+dN0

Kε2+4d%2 .

Proof. See Appendix C.

From the above, one has 0 6 Φ∗ 6 4H%2−KN0ε
2

4%2+Kε2

d

= M

and it thus follows that the upper bound of E
[∥∥∆i

∥∥2
2

]
M

is

U = maxj={0,M}

{
E
[∥∥∆i

∥∥2
2

]
M
|Φ∗=j

}
.

C. MPA-DPFL vs APA-DPFL

Following APA-DPFL [11], the aggregated error is ∆i
al =

I
Kc

(∑K
k=1 h

i
k

√
µial,kPk

d eik + r
i

)
. The privacy leakage can

be given by,

ε = 2c%√∑K
j=1

(hij)
2
µi
al,j

Pj

d +N0

.
(13)

Based on the solution we obtained in Lemma 4, we have
the following Theorem.

Theorem 1. Assume that H > KN0ε
2

4%2 and U is the upper

bound of E
[∥∥∆i

∥∥2
2

]
M

. Compared with APA-DPFL, there is
a lower optimality gap for MPA-DPFL when c satisfies,

c 6 min

{
ε
√
N0

2% , IK

√
dN0

U

}
. (14)

Proof. See Appendix D.

For any set of feasible solutions to Problem (10), one can
obtain the corresponding condition that MPA-DPFL has a
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Fig. 2: MPA-DPFL versus APA-DPFL.
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Fig. 3: Accuracy of MPA-DPFL under dif-
ferent K.
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Fig. 4: Optimality gap of MPA-DPFL with
different ε.

lower optimality gap, which indicates that when the channel
gain of one device is worse than a threshold, misaligned
power allocation is more suitable than aligned aggregation.

IV. SIMULATION RESULTS

We evaluate MPA-DPFL through training convolutional
neural network (CNN) [14] on the popular MNIST dataset.
The learning rate is set as η = 0.1 and N0 = 1.

In Fig. 2, we plot the testing accuracy of MPA-DPFL and
APA-DPFL with different alignment coefficients c, where
K = 100, ε = 10, and P = 500. The alignment coefficient
c in APA-DPFL is varied by adjusting the worst channel
gain of the device. The channel gain coefficients in MPA-
DPFL setting are the same as those in c = 0.1. The results
validate that when the alignment coefficient c of APA-DPFL
is smaller than the threshold, MPA-DPFL performs better
than APA-DPFL and the superiority is more significant as
c decreases. A smaller c results in a lower overall SNR
of the system, then, the utility of all gradients will be
greatly affected by noise, which leads to a less accurate
model. Particularly, when c approaches a quite small level
(c = 0.1), the noise becomes the main component of the
received gradient at PS, and the model fails to converge. By
contrast, the power allocation in MPA-DPFL does not force
gradient alignment, even though some of the devices have
poor channel conditions, the SNR of other devices will not
be limited.

We study the impact of the number of devices on MPA-
DPFL in Fig. 3, where ε = 10, and P = 500. The accuracy
of the obtained model is observed to increase with K (while
keeping the total dataset size constant). When more devices
share the noise required for required DP, it means that
each gradient suffers less noise distortion, therefore, a more
accurate model can be obtained.

In Fig. 4, we plot the optimality gap as a function of
the privacy level ε, where P = 500. The optimality gap
decreases with the increase of ε until the channel noise is suf-
ficient to meet the privacy requirements, i.e. ε = 20, 22, 25.

V. CONCLUSION

In this paper, we have proposed MPA-DPFL to further
secure FL. We have also provided a threshold that can
be used to estimate whether MPA-DPFL or APA-DPFL

has better performance. To obtain some important analyt-
ical comparisons between MPA-DPFL and APA-DPFL, this
preliminary work considered simple communication settings
for tractability. More practical scenarios will be considered
in our future work. For example, more efficient privacy
protection is possibly obtained by considering the correlation
of the gradients and the channels [15, 16]. Specifically, when
the gradients in adjacent training rounds are correlated, we
may just send the difference, which may lead to a lower
sensitivity, therefore, guaranteeing stronger privacy.

APPENDIX A
PROOF OF LEMMA 1

The sensitivity of device k in round i is given by,

∆Sik = max
Dk,D′k

‖y (i)− y′ (i)‖2

=
hik
√
λikPk
I max

Dk,D′k

∥∥∥gik − (gik)′∥∥∥
2

(a)

6 2hik
√
λikPk,

(15)

where (a) is obtained by using Triangular Inequality and
Assumption 3.

APPENDIX B
PROOF OF LEMMA 3

Recall that θi+1 = θi − η
(
gi +∆i

)
and gi = ∇L

(
θi
)
,

L
(
θi+1

)
− L

(
θi
) (a)

6
〈
∇L

(
θi
)
,θi+1 − θi

〉
+ ξ

2

∥∥θi+1 − θi
∥∥2
2
= −η

〈
∇L

(
θi
)
, gi +∆i

〉
+ ξ(η)2

2

∥∥gi +∆i
∥∥2
2
= −η

(
1− ξη

2

)∥∥∇L (θi)∥∥2
2

+ ξ(η)2

2

∥∥∆i
∥∥2
2
+ η (ξη − 1)

〈
∇L

(
θi
)
,∆i

〉
,

(16)

where (a) comes from Assumption 2. By applying 〈a, b〉 6
‖a‖22
2 +

‖b‖22
2 , one has η (ξη − 1)

〈
∇L

(
θi
)
,E
[
∆i
]〉

6
η(ξη−1)

2

∥∥∇L (θi)∥∥2
2
+ η(ξη−1)

2

∥∥E [∆i
]∥∥2

2
. Then, one has

E
[
L
(
θi+1

)
− L

(
θi
)]

6 −η2 (3− 2ξη)
∥∥∇L (θi)∥∥2

2
+

η(ξη−1)
2

∥∥E [∆i
]∥∥2

2
+ ξ(η)2

2 E
[∥∥∆i

∥∥2
2

] (a)

6

− 1
2ξ

∥∥∇L (θi)∥∥2
2

+ 1
2ξE

[∥∥∆i
∥∥2
2

]
, where (a) follows

from the fact that η = 1
ξ 6 3

2ξ . It thus follows from
Assumption 1 that

E
[
L
(
θi+1

)]
− L (θ∗) 6

(
1− ρ

ξ

) [
E
[
L
(
θi
)]
− L (θ∗)

]
+ 1

2ξE
[∥∥∆i

∥∥2
2

]
.

(17)
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Following that E
[
eik
]
= E

[
ri
]
= 0, one has,

E
[∥∥∆i

∥∥2
2

] (a)

6 dN0

K2 + 1
K

∑K
k=1

(
hik
√
λikPk
I − 1

)2 ∥∥gik∥∥22
+ 1
K2

∑K
k=1

(
hik
)2
µikPk

(b)

6 1
K

∑K
k=1

(
hik
√
λikPk − I

)2
+ 1
K2

∑K
k=1

(
hik
)2
µikPk +

dN0

K2 ,
(18)

where (a) comes from Jensen’s Inequality and
E
[
‖a+ b+ c‖22

]
= ‖a‖22 + ‖b‖22 + ‖c‖22 + 2E [〈a, b〉] +

2E [〈a, c〉] + 2E [〈b, c〉], and (b) follows from Assumption
3. Finally, applying recursion on (17) and replacing i + 1
with T , we complete the proof.

APPENDIX C
PROOF OF LEMMA 4

Following (10a), one has hk
√
λkPk = ε

2%

√
Φ
d +N0. By

relaxing (10b) as
∑K
k=1 h

2
kPk (λk + µk) 6 H and replacing∑K

k=1 h
2
kµkPk with Φ, the original optimization problem

can be re-formulated as,

min
Φ

{
Kε2

4%2

(
Φ

d
+N0

)
+
Φ

K
− KIε

%

√
Φ

d
+N0

}
(19)

s.t. 0 6 Φ 6
4H%2 −KN0ε

2

4%2 + Kε2

d

. (19a)

Then, we replace Φ with ω =
√

Φ
d +N0 to convert this

problem into a problem of obtaining the minimum value of
quadratic function. Due to the limited space, we omit the
details here. By applying properties of a quadratic function,
one obtains Φ∗ as follows:
• Φ∗ = 0, if 2I%ε

ε2+ 4d%2

K2

6
√
N0;

• Φ∗ = 4H%2−KN0ε
2

4%2+Kε2

d

, if 2I%ε

ε2+ 4d%2

K2

> 2%
√

H+dN0

Kε2+4d%2 ;

• Φ∗ = d

(
4I2%2ε2(
ε2+ 4d%2

K2

)2 −N0

)
, if
√
N0 6 2I%ε

ε2+ 4d%2

K2

6

2%
√

H+dN0

Kε2+4d%2 .

Then, one has h2kPkλ
∗
k = ε2

4%2

(
Φ∗

d +N0

)
.

Since (10b) has been relaxed, we finally use
λ∗k = min

{
1, ε2

4%2h2
kPk

(
Φ∗

d +N0

)}
to guarantee

λk 6 1, which still satisfies (ε, ζ)-DP as we mentioned
before. For {µk}, we first rank the leftover powers
1 − λ∗k of each device and then we decide {µ∗k}

by µ∗k = min

(
1− λ∗k,

max{Φ∗−∑k−1
j=1 βj ,0}

h2
kPk

)
where

βj = h2jPjµ
∗
j . Then, we complete the proof.

APPENDIX D
PROOF OF THEOREM 1

Accroding to (13), one has
∑K
k=1

(
hik
)2
µial,kPk =

4dc2%2

ε2 − dN0. Similar to (18), one has E
[∥∥∆i

al

∥∥2
2

]
=

I2

K2c2

∑K
k=1

(
hik
)2
µial,kPk + I2

K2c2 dN0. When

c 6 min

{
ε
√
N0

2% , IK

√
dN0

U

}
, one has µial,k = 0 and

E
[∥∥∆i

al

∥∥2
2

]
> E

[∥∥∆i
∥∥2
2

]
M

. Therefore, MPA-DPFL has a
lower optimality gap than APA-DPFL.
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