
Abstract — The carbon fibre reinforced polymer (CFRP) 
industry has rapidly expanded over recent due to a range of 
benefits, including high mechanical strength and low weight. 
However, issues arise when the products reach their end-of-life 
(EoL). At present, pyrolysis is the only method for recycling 
CFRPs at scale. The process is still relatively new, resulting in 
stigma around the reapplication of recycled fibres within many 
industries due to the compromised mechanical stability. In order 
to increase the sustainability of the industry, alternative EoL 
pathways must be identified. 

Virgin carbon fibres (vCFs) have been successfully applied as 
adsorbents; however, there appears to be a gap in the literature 
when considering their recycled counterparts. In this study, 
chemical activation of industrial-grade recycled carbon fibres 
(rCFs) using NaOH has been investigated, together with vCF as 
proof of concept. The adsorption capacity of methylene blue 
(MB) was investigated to determine the degree of activation. The 
UV-visible spectrometry results indicated a maximum MB 
removal efficiency of 21.83 % and 21.80 % for activated-vCF 
(AvCF) and activated-rCF (ArCF), respectively; indicating that 
rCF are a promising precursor for applications as adsorbents in 
aqueous media, despite the higher levels of impurities when 
compared to the virgin counterpart. 

I. INTRODUCTION

Polyacrylonitrile (PAN)-based CFRPs boast a range of 
attractive properties, including low weight, while maintaining 
high tensile strength, durability, temperature tolerance and 
chemical resistance. This has led to the rapid expansion of their 
application within a range of industries, some examples being 
aviation, aerospace, automotive, wind turbines and more, with 
the former two contributing the largest portion of over 55 kt in 
2018 [1]. Over a 12-year period from 2006 – 2018, the 
production of carbon fibres (CFs) has increased by 180.36%. 
However, sustainability issues arise when the materials reach 
their EoL with waste projected to reach 20 kt annually by 2025 
[2–4]. This issue has been accelerated by the Coronavirus 
pandemic, with many aircraft retirement programs being 
brought forward; it has been predicted that approximately 6000 
– 8000 commercial aircraft will reach their EoL by 2030 [2].
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At present CFs are classified as chemical waste by the EC 
Waste Landfill Directive leading to sizeable disposal costs [4]. 
Although, in recent years, there has been significant research 
into the recovery of CFs from CFRP matrix using a range of 
methods, namely mechanical, thermal (pyrolysis), chemical, 
microwave, and fluidised bed recycling. Currently, pyrolysis is 
the only commercial recycling method that leaves CFs intact. 
The method involves heating (450 – 700 °C) CFRPs in an inert 
atmosphere to thermally decompose the resin. Gen 2 Carbon 
(formerly ELG), based in the West Midlands, UK, is an 
example of where this method has been commercialised, with 
the recycling plant being capable of processing 5 tons of waste 
per day [5]. However, the process causes a reduction of 
mechanical stability and fibre length, an increase of 
approximately 5 % in weight and the introduction of 
impurities. Therefore, even Gen 2 Carbon has stated that their 
products require new processes and designs rather than directly 
replacing vCFs. 

In recent decades the application of carbonaceous 
adsorbents in environmental remediation has received great 
attention due to their high specific surface area, tunable pore 
size distribution and surface functionalities, leading to high 
removal efficiencies against both organic and inorganic 
pollutants [6–8]. These characteristics are achieved using 
activation and modification to achieve the desired properties to 
attract target pollutants. 

vCFs have been widely activated using physical or 
chemical methods for application as adsorbents in both liquid 
and gas media [9–15]. Physical activation typically involves 
heating (700 – 1200 °C) the CFs with a gaseous activation 
agent such as CO2 or steam [16]. Whereas chemical activation 
involves heating (400 – 850 °C) with a chemical agent, for 
example, sodium hydroxide or nitric acid [16–18]. Chemical 
activation presents several advantages over physical activation, 
such as lower activation temperatures and reaction times, 
higher yields, and controlled porosity development. However, 
the method also comes with some disadvantages, including 
expensive and often corrosive reagents and an additional 
washing stage, resulting in secondary pollutions. Overall, it 
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was decided that the advantages of chemical activation 
outweighed the disadvantages, leading to the application of 
chemical activation methods. 

At present, very few studies have investigated the 
activation of rCF. Nahil et al. recovered CFs from the CFRP 
resin using pyrolysis methods on a laboratory scale [4]. After 
which, they successfully activated the rCF using thermal 
activation methods, achieving a maximum specific surface area 
of 803 m2g-1, which is comparable with SSA achieved for 
physically activated PAN-based vCFs in the current literature 
[6, 18]. The aim of this study is to determine the “proof of 
concept” as whether industrial-grade rCFs are potentially 
suitable precursors to produce activated carbon fibres using 
chemical activation methods for application as adsorbents in 
aqueous media.  

II. MATERIALS AND METHODS

The rCF precursor was obtained from Gen 2 Carbon (West 
Midlands, UK). The rCFs were chemically activated by heating 
in an inert atmosphere (N2) with NaOH to 700 °C for 1 h, using 
a 1:1 impregnation ratio. After activation, the fibres were 
neutralised using HCl (2 M), followed by washing with 80 °C 
deionised water until the filtrate was free of chloride ions [17]. 
The resulting fibres were dried at 110 °C overnight. vCF were 
activated using the same conditions as proof of concept. 

Both rCF and vCF were characterised before and after 
activation using Scanning Electron Microscopy – Energy 
Dispersive X-ray Spectroscopy (SEM-EDS, LEO 1455VP), 
Fourier Transform Infrared Spectrometry (FTIR, Perkin Elmer 
Spectrum One). 

The potential adsorption capacity of ACF was assessed by 
determining the corresponding MB number. 50 ml of MB (21.5 
mg/L) was placed in a sealed container with ACF (40 mg) and 
left at room temperature (20 °C), with shaking (200 rpm) for 
24 h [20]. After which, the solution concentration was 
determined using a UV-vis spectrophotometer (Shimadzu UV-
1800) with a wavelength of 664 nm; the lambda max of MB. 
The final concentration of MB was determined using two 
calibration curves ranging in concentrations from 5 – 25 mg/l.. 
The total amount adsorbed was determined using Equation 1: 

(1) 

where, qe is the maximum adsorption capacity, C0 is the initial 
starting concentration, Ce is the concentration of the MB at 
equilibrium time, V is the solution volume, and M is the 
dosage of adsorbent used in this work. 

III. RESULTS AND DISCUSSION

A. Scanning Electron Microscopy - Energy Dispersive
Spectroscopy (SEM-EDS)

The surface morphology of the ACFs is shown in Figures 1A 
and 1B. The images show a smooth fibrous structure with no 
defects on the surface (Figure 1); this is consistent with images 
of chemically activated PAN-based CFs in the current 
literature [10]. The average diameter of the fibres was 
approximately 7.5 μm and 7.75 μm for AvCF and ArCF, 

respectively. The difference in diameter can be attributed to 
increased impurities within the ArCF structure resulting in 
larger interlayer spacing between the CF planes, which is 
confirmed by the EDS data (Table 1), where ArCF showed a 
larger content of Na, Mg and other impurities, including Si, K 
and Ca. Another difference observed between the two types of 
fibres was the presence of impurities. AvCFs appeared to have 
very few, small amounts of impurities, whereas ArCFs 
typically displayed larger (> 10 μm) impurities on the surface, 
shown in Figure 1B. 

Figure 1. SEM images of AvCF (A) and ArCF (B). 

Moreover, the EDS data showed a very low carbon content for 
both ACFs, which could be attributed to a considerable 
number of oxygen groups added to the surface of ACFs. 

Table 1. Percentage composition of AvCF and ArCF 

Composition (wt%) 
Element AvCF ArCF 

C 24.13 22.72 
O 69.76 65.78 
Na 0.14 2.35 
Mg 0.03 0.15 
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B. Fourier Transform Infrared Spectroscopy
Figure 1 depicts the FTIR spectra for both rCF and vCF; 
displaying some of the typical bonds expected for activated 
carbonaceous adsorbents [22, 23]. Both materials show 
promenant peaks at 3500 and 1122 cm-1, corresponding to O-
H and C=O stretching vibrations, respectively. The peaks 
observed at 1632 cm-1 indicate the stretching vibrations of 
C=C, C=N and C=O in heteroaromatic ring systems [23]. 
Additional peaks are observed at 974 and 807 cm-1 which can 
be attributed to the C=C and C-H bending vibrations, 
sequentially.  

Figure 2. FTIR of activated rCF (top) and vCF (bottom). 

C. Adsorption of Methylene Blue
After adsorption, the remnant concentration of MB was 
determined using UV-visible spectroscopy (Table 2). Both 
ACFs had a maximum experimental adsorption capacities of 
> 5.75 mg/g, which is greater than values achived in other
studies [24]. However, the value remains lower than the
adsorption capacities observed when applying experimental
methods such as design of experiment [22], indicating the
necessity of further optimisation of experimental variables in
the next phase of our study. Overall, ArCF had a fractionally
lower removal efficiency when compared AvCF, which was
attributed to the higher levels of impurities within the structure
resulting in pore blocking and, potentially, the presence of
repulsive electrostatic fields.

Table 2. UV-vis absorbance of AvCF and ArCF at 664 nm. 

Sample Absorbance Ce

(mg/l) 
qe

(mg/g) 
Removal 

(%) 
Ref 

MB 2.70 - - 
AvCF 2.36 16.83 5.77 21.83 
ArCF 2.36 16.84 5.76 21.80 

AC - - 4.80 - [24]

IV. CONCLUSION

In this study, both vCFs and rCFs have been successfully 

activated using chemical methods. It was found that rCFs are 
promising precursors for the synthesis of environmentally 
friendly adsorbents for applications in aqueous media, 
achieving a similar MB removal efficiency to vCFs, of > 21.80 
%. However, in order to make this material comparable to 
other current carbonaceous adsorbents in literature, our pre-
treatment, activation and adsorption methods will be further 
improved in the next phase of this research to achieve the 
optimum adsorption capacity. 
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