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Abstract 
This contribution moves in the direction of 
answering some general questions about the 
most effective and useful ways of modelling 
bioprocesses. We investigate the 
characteristics of models that are good at 
extrapolating. 
 
We trained 3 fully predictive models with 
different representational structures (diff eqns, 
inheritance of rates, network of reactions) on 
Saccharopolyspora erythraea shake flask 
fermentation data using genetic programming. 
The models were then tested on unseen data 
outside the range of the training data and the 
resulting performances compared. 
 It was found that constrained models with 
mathematical forms analogous to internal 
mass balancing and stoichiometric were 
superior to flexible unconstrained models even 
though no A priori knowledge of this 
fermentation was used. 
 

1 Introduction 
Artificial intelligence techniques have been 
used for several years in the modelling of 
bioprocesses. The majority of this work has 
been focussed on producing models for 
monitoring and control of manufacturing 
processes. Where the need is for robust models 
accurate within a narrow range of operating 
conditions. With data being abundantly 
available a number of techniques have been 
developed; from neural network based 
inferential sensors, to using GP to infer models 
in the form of process control diagramsi and 
hybrid models combining neural networks 
with a mass balance over the reactor ii. 
 
Models can also be used to guide the 
optimisation of process conditions and 
operating strategies during process 
development resulting in a saving in the 
number of experiments that need to be 
performed compared with fractional factorial 
statistical designs (IFED) or OFAT 
experiments. Kennedy and Spooner(1996)iii 

found that simple neural networks and fuzzy 
logic models could produce a saving of 63% in 
the number of experiments required for media 
optimisation.  
Such simple statistical models only predict 
single response variables e.g. final DCW and 
so people have looked to dynamic models 
capable for predicting fermentation profiles to 
assist in optimisation of the feeding and 
control strategies which are intimately 
connected with the media and operating 
conditions. However the requirements and 
challenges of building models for process 
development are radically different to those of 
manufacturing and it is not immediately clear 
what modelling strategies are appropriate for 
this usage.   Data is scarce, time is at a 
premium and because process conditions are 
changing significantly models are called upon 
to extrapolate far from their training data. 
However the models need only be indicative 
rather than totally accurate.  
 
Hybrid models incorporating  NN’siv have 
been used, however most work has tended to 
focus on parameter identificationv in 
mechanistic models. Notably the work of Hans 
Roubos(2002)vi who developed a hybrid model 
of  clavulanic acid production by streptomyces 
clavuligerus using an existingvii metabolic 
model as the base and inferring  the kinetics 
using a genetic algorithm. 
 
These approaches relying as they do on a large 
amount of a priori knowledge have proved to 
be both accurate and to have good 
extrapolative properties.  However formulating 
the theoretical parts is time consuming and 
therefore in a  development program an 
expensive task. This restricts their practical use 
to where adequate metabolic models exist.   
 
Accepting that mechanistic models and hybrid 
models derived from biochemical knowledge 
and first principles are good at extrapolating 
the question we ask in this paper is:  “Is this 
because the theoretical part is true as a whole. 
Or because of certain features of mechanistic 
models” 
Such features may be: mass balancing, 
stoichiometric relations, classical enzyme 
kinetics or other proven subunits and concepts. 
Specifically we attempt to infer models(that 
make use of such concepts) from data with no 
a priori knowledge of that particular 
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fermentation. Our hypothesis is that such 
models (which we term structured models) will 
have superior extrapolative abilities when 
compared against unstructured black box 
methods. 
 
This is similar to the philosophical episteme 
that theories that are internally consistent and 
built from accepted axioms as well as fitting 
observations have more truth-value than those 
that merely fit observations. 
 
The 3 Models we compare are shown in 
figures 1-3. 

2 Materials and methods 
2.1 optimisation/search method 
The models were trained on a PIII computer 
using a general evolutionary system written in 
Borland C++ by the researchers.  This system 
uses the principles of genetic programmingviii, 
a powerful global stochastic method inspired 
by Darwinian evolution capable of finding 
solutions in complex search spaces. 
 
1. Randomly generate initial population 
2. Tune the values of constants in the models 

using simplex method 
3. Test the fitness of individuals within the 

population. Fitness is defined by the user 
essentially as being able to perform a 
specific task. e.g how good the model is 

4. Individuals with poor fitness are killed 
5. Individuals are allowed to breed by either 

cloning and mutation or by crossover –
analogous to that in sexual reproduction. 

6. These offspring and surviving individuals 
make up the new population 

 
Genetic programming is very good at this 
global search; finding the form of models, 
however it is poor at finding the exact values 

of constants. For this reason a simplex method 
was employed for fast local searchix.  
 
This hybrid algorithm is a powerful search 
method and has successfully been used to find 
the forms of differential equationsx, and to 
gene regulatory networks using artificial dataxi, 
using a similar approach to the (GP=diff) 
representation used in this paper. However 
unlike our system they did not allow the use of 
internal intermediates not in the training data 
e.g. an internal variable representing and 
intermediate such as ATP or pyruvate. 
 
2.1 fitness functionxii  
 We use a fitness function that is a weighed 
average:  
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where  

Figure 2 system of eqns with the form 
determined by GP 

Figure 3 network of reactions with classical 
kinetics

Figure 1 system of equations with 
inheritance of rates
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=ix array of actual values wrt(time or batch) 

=iy array of predicted values wrt(time or batch) 
 

Highly weighted towards the correlation 
coefficient and with parsimony included to 
encourage simple models and so reduce 
computational burden.  
 
We consider correlation in two dimensions: 

• time with variable and batch fixed  
• batch with time and variable fixed  

 
This captures the model response with respect 
to the two independent variables time and 
initial conditions. The use of the correlation 
coefficient rather than R2 error is critical in 
two respects, firstly because the purpose of 
models in optimisation is to predict that a 
batch run under condition x will do better than 
under condition  y  and therefore the exact 
yield is of lesser importance. The second 
feature is that since all models that have a 
given dynamic response will have the same 
correlation coefficient it performs an 
equivalence mapping on the search space 
effectively reducing the difficulty of the 
search. 
 
2.1 Termination criteria 
We terminate when fitness constant for n 
generations and the fit to training data is 
reasonably good. 
 

3. Assessment of 
models 
3.1 test system 
Saccharopolyspora Erythraea (red variant wild 
type) was grown in defined media under 
different carbon and nitrogen source 
concentrations. The cultures were allowed to 
incubate concurrently at 28’C for 72 hours in a 
rotary shaker. The pH, biomass, nitrate, carbon 
and red pigment concentrations were 
monitored.xiii 
 
 The system was chosen since there is 
great variation in the data as the bacteria 
shifts from carbon to nitrate limited 
growth depending on the initial 
conditions. The production of red 
pigment is growth dependant under 
carbon-limiting conditions and is 

produced at the onset of the stationary phase in 
nitrogen-limited conditions. 
 
3.1 goodness of fit criteria 

The aim here 
is to produce 
models of the 
fermentation 
that can predict 

the concentration time profiles of DCW, Red 
pigment, Glucose, Nitrate from initial 
conditions only. 
We will train on only 3 batches of data and test 
the models on 2 unseen batches of data outside 
the range of the training set. i.e. a 
glucose/nitrate concentration higher or lower 
than the nearest one in the training set. We do 
this for 3 different combinations of training 
and testing data so our results are independent 
of bias in the training data. 
 
In order to quantify the relative performance of 
the models over all combinations of training 
and testing data we turn to 3 measures of 
goodness of fit. 

• Scaled error on 
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This gives a measure of fit corrected for the 
magnitude of the individual variables. 
 

• Improvement v 
average=

batchon  data  trainingof profile average oferror  scaled
batchon  model oferror  scaled

 
This gives us a measure of how different 
testing models are from the training data. Since 
profiles similar to the training data will be 
close to the average profile of the training data 
 

• Correlation coefficient 

( )( )
yx

n

i yixi yx
n

σσ

µµ

⋅

−−
=

∑ =1

1

  

Where x,y are the final red pigment 
concentrations. And the average is taken of the 
correlation in each training and testing set.  
this provides a measure of how well the model 
would perform in practical use. 

Glucose (in 
sol'n), g/L 

Nitrate (in 
sol'n), g/L 

Pyruvic 
Acid, g/L 

a-Ketoglutaric 
Acid, g/L 

Red Pig, 
g/L 

DCW, 
g/L 

batch 1 33.21 1.76 0.028 0.152 0.000 1.371
batch 2 35.33 2.35 0.033 0.122 0.000 1.185
batch 3 32.78 2.94 0.031 0.136 0.000 1.087
batch 4 30.05 4.22 0.030 0.342 0.000 1.542
batch 5 29.70 8.77 0.034 0.001 0.000 1.839

Experiment Training 
batches 

Testing 
batches 

1 1,3,4 2,5 
2 1,2,3 4,5 
3 3,4,5 1,2 

Table 1 initial conditions of shake flask experiments 



Results 
 

Figures 4-5 show the fermentation profiles 
predicted by each model trained on batches 
1,3,4 from initial conditions for an unseen 
batch(2) against actual measurements. It can be 
seen that the models all make “usefully 
accurate” predictions although they all seem to 
struggle with the dynamics of the red pigment. 
It can also be seen that the flexible pure GP 
structure performs worst, with the inheritance 
based model performing slightly better and the 
reaction model performing significantly better 
than that. 
 
If we now turn our attention to the results of all 
testing and training combinations (table 3) 
The overall performance based on scaled 
errors shows that the models in order of 
superiority are reaction, inheritance, GP. This 
confirms our hypothesis that the more 
structured models will perform better. 
However looking at the data in more detail we 
see firstly that the difference between models 
is not massive. We also see that the superiority 
is not necessarily evident on any individual 
batch.  This would suggest that future work 
should consider far more data in order to 
produce more statistically significant results 
 
If we divide by the error between the average 
of the training data and that batch we get a 
scale according to how different a batch is 
from the training data and therefore a measure 
of extrapolation rather than interpolation. (1-
imp v av) Again according to this measure Gp 
based models are significantly worse than 
Inherit and reaction based ones.  
 
Looking at the correlation coefficient with 
respect to final product concentration which is 
a better indicator of how useful the models 
would be in practice [figure 6] we see a more 
pronounced difference between the models.  
 
All these measures indicate that structured 
models perform better although they do not 
allow us to say which of the two more 
structured models are superior.  
 

Conclusions 
In this paper we showed that it was possible to 
produce usefully predictive models of 
fermentation. The results showed that in this 
particular fermentation that more structured 
models had better extrapolative power than 
unstructured models. Since many 
fermentations share similar features to this one 
we may be tempted to generalise and 
extrapolate from this result to other systems. 
However caution is required in making this 
leap from a single test system. It is a critical 
feature of the methodology outlined in this 
paper that we see experiments to determine 
rationally what modelling approaches will 
work in a given situation as the future rather 
than a one size fits all approach. Future work is 
required to extend this methodology to other 
test systems, illuminate any critical differences 
in the approach required for different types of 
fermentation and thus find representations 
ideally suited to process development. 

predicting final titre using model
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Figure 7 

training testing   GP Inherit reaction average
 3,4,5 batch 1 scaled error 0.44 0.21 0.63 0.85
 3,4,5 batch 2 scaled error 0.46 0.23 0.60 0.77
1,3,4 batch 2 scaled error 0.39 0.26 0.15 0.29
1,3,4 batch 5 scaled error 0.56 0.52 0.43 1.16
1,2,3 batch 4 scaled error 0.17 0.21 0.17 0.68
1,2,3 batch 5 scaled error 0.56 0.92 0.26 1.36
 Average overall scaled error 0.43 0.39 0.38 0.853
    1- imp v av 62% 50% 49%   
 Table 2   correlation coeff 0.84 0.89 0.92   
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Figure 8 
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Figure 9 
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Figure 10 
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